当前位置:文档之家› 高一数学基本初等函数

高一数学基本初等函数

高一数学基本初等函数
高一数学基本初等函数

2009~2010学年度高三数学(人教版A 版)第一轮复习资料

基本初等函数

一.【课标要求】

1.指数函数

(1)通过具体实例(如细胞的分裂,考古中所用的14C 的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景;

(2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。 (3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点;

(4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型 2.对数函数

(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用;

(2)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;

3.知道指数函数x a y =与对数函数x y a log =互为反函数(a >0,a ≠1)。 4.幂函数

(1)了解幂函数的概念 (2)结合函数y=x, ,y=

x

2

, y=

x

3

,y=

x

2

1,y=

x

1

的图象,了解它们的变化情况 二.【命题走向】

指数函数、对数函数、幂函数是三类常见的重要函数,在历年的高考题中都占据着重要的地位。从近几年的高考形势来看,对指数函数、对数函数、幂函数的考查,大多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题。为此,我们要熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理。

预测2010年对本节的考察是:

1.题型有两个选择题和一个解答题;

2.题目形式多以指数函数、对数函数、幂函数为载体的复合函数来考察函数的性质。同时它们与其它知识点交汇命题,则难度会加大

三.【要点精讲】

1.指数与对数运算

(1)根式的概念:

①定义:若一个数的n 次方等于),1(*

∈>N n n a 且,则这个数称a 的n 次方根。即若

a x n =,则x 称a 的n 次方根)1*∈>N n n 且,

1)当n 为奇数时,n a 的次方根记作n a ;

2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作

)0(>±a a n

②性质:1)a a n n =)(;2)当n 为奇数时,a a n

n =;

3)当n 为偶数时,???<-≥==)

0()

0(||a a a a a a n 。

(2).幂的有关概念

①规定:1)∈???=n a a a a n

(ΛN *;2))0(10

≠=a a ; n 个 3)∈=-p a

a

p p

(1

Q ,4)m a a a n m n m

,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s

r s

r

,0(>=?+、∈s Q );

2)r a a

a s

r s

r ,0()(>=?、∈s Q );

3)∈>>?=?r b a b a b a r

r

r ,0,0()( Q )。 (注)上述性质对r 、∈s R 均适用。

(3).对数的概念

①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是N a b =,那么数b 称以a 为底N 的对数,记作,log b N a =其中a 称对数的底,N 称真数

1)以10为底的对数称常用对数,N 10log 记作N lg ;

2)以无理数)71828.2(Λ=e e 为底的对数称自然对数,N e log ,记作N ln ; ②基本性质:

1)真数N 为正数(负数和零无对数);2)01log =a ;

3)1log =a a ;4)对数恒等式:N a N

a =log 。

③运算性质:如果,0,0,0,0>>≠>N M a a 则 1)N M MN a a a log log )(log +=; 2)N M N

M

a a a

log log log -=; 3)∈=n M n M a n

a (log log R )

④换底公式:),0,1,0,0,0(log log log >≠>≠>=

N m m a a a

N

N m m a

1)1log log =?a b b a ;2)b m

n

b a n a m log log =。 2.指数函数与对数函数 (1)指数函数:

①定义:函数)1,0(≠>=a a a y x

且称指数函数, 1)函数的定义域为R ;2)函数的值域为),0(+∞;

3)当10<a 时函数为增函数。 ②函数图像:

1)指数函数的图象都经过点(0,1),且图象都在第一、二象限;

2)指数函数都以x 轴为渐近线(当10<a 时,图象向右无限接近x 轴);

3)对于相同的)1,0(≠>a a a 且,函数x

x

a y a y -==与的图象关于y 轴对称

③函数值的变化特征:

(2)对数函数:

①定义:函数)1,0(log ≠>=a a x y a 且称对数函数, 1)函数的定义域为),0(+∞;2)函数的值域为R ;

3)当10<a 时函数为增函数;

4)对数函数x y a log =与指数函数)1,0(≠>=a a a y x

且互为反函数 ②函数图像:

10<a

①100<<>y x 时 , ②10==y x 时 , ③10>

①10>>y x 时 , ②10==y x 时 , ③100<<

1)对数函数的图象都经过点(0,1),且图象都在第一、四象限;

2)对数函数都以y 轴为渐近线(当10<a 时,图象向下无限接近y 轴);

4)对于相同的)1,0(≠>a a a 且,函数x y x y a

a 1log log ==与的图象关于x 轴对称。

③函数值的变化特征:

(3)幂函数 1)掌握5个幂函数的图像特点

2)a>0时,幂函数在第一象限内恒为增函数,a<0时在第一象限恒为减函数

3)过定点(1,1)当幂函数为偶函数过(-1,1),当幂函数为奇函数时过(-1,-1) 当a>0时过(0,0)

4)幂函数一定不经过第四象限

四.【典例解析】

题型1:指数运算

例1.(1)计算:25

.021

21

32

5.032

0625.0])32.0()02.0()008.0()9

45()833[(÷?÷+---;

(2)化简:

5332

33

23

233

2

3

134)2(248a

a a a a

b a

a

ab b b a a ???

-÷++--

。 10<a ①01<>y x 时, ②01==y x 时, ③010><>y x 时,

②01==y x 时,

③100<<

解:(1)原式=4

1

322132)10000

625(]102450)81000(

)949()278[(÷?÷+- 92

2)2917(21]10

24251253794[=?+-=÷??+-=; (2)原式=

5

131212

13231312

3131312313

3133131)()

(2)

2()2()(])2()[(a a a a a

b a b b a a b a a ???-÷

+?+- 23

23

16

1653

13

13

13

13

12)2(a a a a a

a b

a a

b a a =??=?

-?

-=。

点评:根式的化简求值问题就是将根式化成分数指数幂的形式,然后利用分数指数幂的运算性质求解,对化简求值的结果,一般用分数指数幂的形式保留;一般的进行指数幂运算时,化负指数为正指数,化根式为分数指数幂,化小数为分数运算,同时兼顾运算的顺序。 例2.(1)已知112

2

3x x

-+=,求

22332

2

23

x x x x

--+-+-的值

解:∵1

12

23x x -

+=,

∴112

2

2()9x x

-

+=,

∴129x x -++=, ∴17x x -+=, ∴12

()49x x -+=, ∴2247x x -+=, 又∵331112

22

2

()(1)3(71)18x x x x x x --

-+=+?-+=?-=,

22332

2

2472

3183

3

x x x x

--+--=

=-+-。

点评:本题直接代入条件求解繁琐,故应先化简变形,创造条件简化运算。 题型2:对数运算

(2).(江苏省南通市2008届高三第二次调研考试)幂函数()y f x =的图象经过点1(2,)8

--,

则满足()f x =27的x 的值是 . 答案 13

例3.计算

(1)2

(lg 2)lg 2lg 50lg 25+?+;(2)3948(log 2log 2)(log 3log 3)+?+;

(3)1

.0lg 2

1

036.0lg 21600lg )2(lg 8000lg 5lg 23--+?

解:(1)原式2

2

(lg 2)(1lg5)lg 2lg5(lg 2lg51)lg 22lg5=+++=+++

(11)lg 22lg52(lg 2lg5)2=++=+=; (2)原式lg 2lg 2lg3lg3lg 2lg 2lg3lg3(

)()()()lg3lg9lg 4lg8lg32lg32lg 23lg 2=+?+=+?+ 3lg 25lg 35

2lg 36lg 24

=

?=; (3)分子=3)2lg 5(lg 2lg 35lg 3)2(lg 3)2lg 33(5lg 2

=++=++;

分母=4100

6

lg 26lg 101100036lg

)26(lg =-+=?-+; ∴原式=

4

3

。 点评:这是一组很基本的对数运算的练习题,虽然在考试中这些运算要求并不高,但是数式运算是学习数学的基本功,通过这样的运算练习熟练掌握运算公式、法则,以及学习数式变换的各种技巧

例4.设a 、b 、c 为正数,且满足222a b c +=

(1)求证:22log (1)log (1)1b c a c

a b +-+

++=; (2)若4log (1)1b c a ++=,82

log ()3

a b c +-=,求a 、b 、c 的值。

证明:(1)左边222log log log ()a b c a b c a b c a b c

a b a b

+++-+++-=+=?

2222222

2222()22log log log log 21a b c a ab b c ab c c ab ab ab

+-++-+-=====;

解:(2)由4log (1)1b c a ++

=得14b c

a

++=, ∴30a b c -++=……………①

由82

log ()3

a b c +-=得2

384a b c +-==………… ……………②

由①+②得2b a -=……………………………………③ 由①得3c a b =-,代入222a b c +=得2(43)0a a b -=,

∵0a >, ∴430a b -=………………………………④ 由③、④解得6a =,8b =,从而10c =。

点评:对于含对数因式的证明和求值问题,还是以对数运算法则为主,将代数式化简到最见形式再来处理即可。 题型3:指数、对数方程

例5.(江西师大附中2009届高三数学上学期期中)

已知定义域为R 的函数a

b

x f x x ++-=+122)(是奇函数.

(1)求a ,b 的值;

(2)若对任意的R t ∈,不等式0)2()2(2

2

<-+-k t f t t f 恒成立,求k 的取值范围.

解 (1) 因为)(x f 是R 上的奇函数,所以1,021,0)0(==++-=b a b

f 解得即 从而有.212)(1a x f x x

++-=+ 又由a

a f f ++--=++---=112

141

2)1()1(知,解得2=a (2)解法一:由(1)知,121

212

212)(1

++-=++-=+x x x x f 由上式易知)(x f 在R 上为减函数,又因)(x f 是奇函数,从而不等式

0)2()2(22<-+-k t f t t f 等价于).2()2()2(222k t f k t f t t f +-=--<-

因)(x f 是R 上的减函数,由上式推得.2222k t t t +->- 即对一切,0232

>--∈k t t R t 有从而3

1,0124-

<<+=?k k 解得 解法二:由(1)知,221

2)(1

++-=+x x x f 又由题设条件得02

21

2221212212222

22<++-+++-+--+--k t k t t t t t

即0)12

)(22

()12

)(22

(222221

221

2<+-+++-+-+--+-k

t t t t

t k t

整理得12

232>--k

t t ,因底数2>1,故0232>--k t t

上式对一切R t ∈均成立,从而判别式.3

1

,0124-<<+=?k k 解得 例6.(2008广东 理7)

设a ∈R ,若函数3ax

y e x =+,x ∈R 有大于零的极值点,则( B )

A .3a >-

B .3a <-

C .13

a >-

D .1

3

a <-

【解析】'()3ax f x ae =+,若函数在x R ∈上有大于零的极值点,即'()30ax

f x ae =+=有

正根。当有'()30ax

f x ae =+=成立时,显然有0a <,此时13ln()x a a

=-,由0x >我们马

上就能得到参数a 的范围为3a <-.

点评:上面两例是关于含指数式、对数式等式的形式,解题思路是转化为不含指数、对

数因式的普通等式或方程的形式,再来求解。 题型4:指数函数的概念与性质

例7.设12

32,2()((2))log (1) 2.

x e x f x f f x x -??=?-≥??<,

则的值为,( ) A .0 B .1 C .2 D .3

解:C ;1)12(log )2(2

3=-=f ,e

e f f 22))2((10=

=-。 点评:利用指数函数、对数函数的概念,求解函数的值

例8.已知

)1,0()(log 1

≠>+=-a a x x x f a 且试求函数f (x )的单调区间。 解:令t x a =log ,则x =t a ,t ∈R 。 所以t

a a t f -+'=)(即x

x

a a x f -+=)(,(x ∈R )。

因为f (-x )=f (x ),所以f (x )为偶函数,故只需讨论f (x )在[0,+∞)上的单调性。

任取1x ,2x ,且使210x x ≤≤,则

)()(12x f x f -

)()(1122x x x x a a a a --+-+=

212121)

1)((x x x x x x a a a a ++--=

(1)当a >1时,由210x x ≤≤,有210x x a a <<,12

1>+x x a

,所以0)()(12>-x f x f ,即f (x )在[0,+∞]上单调递增。

(2)当0

10x x a a <<,121<+x x a ,所以0)()(12>-x f x f ,

即f (x )在[0,+∞]上单调递增。

综合所述,[0,+∞]是f (x )的单调增区间,(-∞,0)是f (x )的单调区间。

点评:求解含指数式的函数的定义域、值域,甚至是证明函数的性质都需要借助指数函数的性质来处理。特别是分10,1<<>a a 两种情况来处理。 题型5:指数函数的图像与应用

例9.若函数m y x +=-|1|)2

1(的图象与x 轴有公共点,则m 的取值范围是( ) A .m ≤-1

B .-1≤m<0

C .m ≥1

D .0

解:??

???<≥==---)

1(2)

1()21()2

1

(11|

1|x x y x x x Θ,

画图象可知-1≤m<0。 答案为B 。

点评:本题考察了复杂形式的指数函数的图像特征,解题的出发点仍然是1,0,1<>a a 两种情况下函数x

a y =的图像特征。

例10.设函数x x f x f x x 22)(,2

)(|

1||1|≥=--+求使的取值范围。

解:由于2x

y =是增函数,()f x ≥3

|1||1|2

x x +--≥ ① 1)当1x ≥时,|1||1|2x x +--=,∴①式恒成立; 2)当11x -<<时,|1||1|2x x x +--=,①式化为322x ≥,即3

14

x ≤<; 3)当1x ≤-时,|1||1|2x x +--=-,①式无解; 综上x 的取值范围是3

,4??+∞????

点评:处理含有指数式的不等式问题,借助指数函数的性质将含有指数式的不等式转化为普通不等式问题(一元一次、一元二次不等式)来处理 题型6:对数函数的概念与性质

例11.(1)函数2log 2-=x y 的定义域是( )

A .),3(+∞

B .),3[+∞

C .),4(+∞

D .),4[+∞

(2)(2006湖北)设f(x)=x x -+22lg

,则)2

()2(x

f x f +的定义域为( ) A .)

,(),(-4004Y B .(-4,-1)Y (1,4) C .(-2,-1)Y (1,2) D .(-4,-2)Y (2,4)

解:(1)D (2)B 。

点评:求函数定义域就是使得解析是有意义的自变量的取值范围,在对数函数中只有真数大于零时才有意义。对于抽象函数的处理要注意对应法则的对应关系。 例12.(2009广东三校一模)设函数()()()x x x f +-+=1ln 212

.

(1)求()x f 的单调区间;

(2)若当??

????--∈1,11

e e x 时,(其中Λ718.2=e )不等式()m x

f <恒成立,求实数m 的取值范围;

(3)试讨论关于x 的方程:()a x x x f ++=2

在区间[]2,0上的根的个数.

解 (1)函数的定义域为(),,1+∞-()()()1221112++=??

???

?+-+='x x x x x x f . 1分 由()0>'x f 得0>x ;

2分

由()0<'x f 得01<<-x , 3分

则增区间为()+∞,0,减区间为()0,1-. 4分

(2)令()(),0122=++='x x x x f 得0=x ,由(1)知()x f 在??

?

???-0,11e 上递减,在[]1,0-e 上递

增,

6分 由,21

112+=???

??-e

e f ()212-=-e e f ,且21222+>-e e ,

8分

??

?

???--∈∴1,11e e x 时,()x f 的最大值为22-e ,故22->e m 时,不等式()m x f <恒

成立.

9分

(3)方程(),2

a x x x f ++=即()a x x =+-+1ln 21.记()()x x x g +-+=1ln 21,则

()1

1

121+-=

+-

='x x x x g .由()0>'x g 得1>x ;由()0<'x g 得11<<-x . 所以g (x )在[0,1]上递减,在[1,2]上递增.

而g (0)=1,g (1)=2-2ln2,g (2)=3-2ln3,∴g (0)>g (2)>g (1) 10分 所以,当a >1时,方程无解; 当3-2ln3<a ≤1时,方程有一个解,

当2-2ln2<a ≤a ≤3-2ln3时,方程有两个解; 当a =2-2ln2时,方程有一个解;

当a <2-2ln2时,方程无解. 13分 字上所述,a )2ln 22,(),1(--∞+∞∈Y 时,方程无解;

]1,3ln 23(-∈a 或a =2-2ln2时,方程有唯一解;

]3ln 23,2ln 22(--∈a 时,方程有两个不等的解. 14分

例13.当a >1时,函数y =log a x 和y =(1-a )x 的图象只可能是( )

解:当a >1时,函数y =log a x 的图象只能在A 和C 中选,

又a >1时,y =(1-a )x 为减函数。 答案:B

点评:要正确识别函数图像,一是熟悉各种基本函数的图像,二是把握图像的性质,根据图像的性质去判断,如过定点、定义域、值域、单调性、奇偶性

例14.设A 、B 是函数y = log 2x 图象上两点, 其横坐标分别为a 和a +4, 直线l : x =a +2与函数y = log 2x 图象交于点C , 与直线AB 交于点D 。

(1)求点D 的坐标;

(2)当△ABC 的面积大于1时, 求实数a 的取值范围 解:(1)易知D 为线段AB 的中点, 因A (a , log 2a ), B (a +4, log 2(a +4)), 所以由中点公式得D (a +2, log 2)4(+a a )。

(2)S △ABC =S 梯形AA ′CC ′+S 梯形CC ′B ′B - S 梯形AA ′B ′B =…= log 2)

4()2(2++a a a ,

其中A ′,B ′,C ′为A ,B ,C 在x 轴上的射影。

由S △ABC = log 2)

4()2(2

++a a a >1, 得0< a <22-2。

点评:解题过程中用到了对数函数性质,注意底数分类来处理,根据函数的性质来处理复杂问题。

题型8:指数函数、对数函数综合问题

例15.在xOy 平面上有一点列P 1(a 1,b 1),P 2(a 2,b 2),…,P n (a n ,b n )…,对每个自然数n 点P n 位于函数y =2000(

10

a )x

(0

(1)求点P n 的纵坐标b n 的表达式;

(2)若对于每个自然数n ,以b n ,b n +1,b n +2为边长能构成一个三角形,求a 的取值范围; (3)设C n =lg(b n )(n ∈N *),若a 取(2)中确定的范围内的最小整数,问数列{C n }前多少项的和最大?试说明理由

解:(1)由题意知:a n =n +21,∴b n =2000(10

a )21

+

n 。

(2)∵函数y =2000(

10

a )x

(0b n +1>b n +2。

则以b n ,b n +1,b n +2为边长能构成一个三角形的充要条件是b n +2+b n +1>b n , 即(

10a )2+(10

a

)-1>0, 解得a <-5(1+2)或a >5(5-1)。 ∴5(5-1)

∴b n =2000(10

7)21

+

n 。数列{b n }是一个递减的正数数列,

对每个自然数n ≥2,B n =b n B n -1。

于是当b n ≥1时,B n

因此数列{B n }的最大项的项数n 满足不等式b n ≥1且b n +1<1,

由b n =2000(10

7)21

+

n ≥1得:n ≤20。

∴n =20。

点评:本题题设从函数图像入手,体现数形结合的优越性,最终还是根据函数性质结合数列知识,以及三角形的面积解决了实际问题。

例16.已知函数1,0)((log )(≠>-=a a x ax x f a 为常数)

(1)求函数f (x )的定义域;

(2)若a =2,试根据单调性定义确定函数f (x )的单调性

(3)若函数y =f (x )是增函数,求a 的取值范围。 解:(1)由ax x x ax <>-得0

∵a >0,x ≥0

2

2210a x x

a x x >

???

?<≥∴ ∴f (x )的定义域是),1

(

2

+∞∈a x 。 (2)若a =2,则)2(log )(2x x x f -=

设4

1

21>

>x x , 则 0]1)(2)[()()(2)2()2(212121212211>-+-=---=---x x x x x x x x x x x x

)()(21x f x f >∴

故f (x )为增函数。

(3)设11212

21>>>

>x a x a a x x 则

0]1)()[()()()()(212121212211>-+-=---=---∴x x a x x x x x x a x ax x ax

2211x ax x ax ->-∴ ①

∵f (x )是增函数, ∴f (x 1)>f (x 2)

即)(log )(log 2211x ax x ax a a ->- ②

联立①、②知a >1,

∴a ∈(1,+∞)。

点评:该题属于纯粹的研究复合对函数性质的问题,我们抓住对数函数的特点,结合一般函数求定义域、单调性的解题思路,对“路”处理即可 题型9:课标创新题

例17.对于在区间[]n m ,上有意义的两个函数f (x )与g (x ),如果对任意的∈x []n m ,,均有1)()(≤-x g x f ,则称f (x )与g (x )在[]n m ,上是接近的,否则称f (x )与g (x )在[]n m ,上是非接近的,现有两个函数)3(log )(1a x x f a -=与)1,0(1

log )(2≠>-=a a a

x x f a

,给定区间[]3,2++a a 。

(1)若)(1x f 与)(2x f 在给定区间[]3,2++a a 上都有意义,求a 的取值范围; (2)讨论)(1x f 与)(2x f 在给定区间[]3,2++a a 上是否是接近的。 解:(1)两个函数)3(log )(1a x x f a -=与)1,0(1

log )(2≠>-=a a a

x x f a

在给定区间[]3,2++a a 有意义,因为函数a x y 3-=给定区间[]3,2++a a 上单调递增,函数在

a

x y -=

1

给定区间[]3,2++a a 上恒为正数, 故有意义当且仅当1003)2(1

0<

?

??>-+≠>a a a a a ; (2)构造函数)3)((log )()()(21a x a x x f x f x F a --=-=, 对于函数)3)((a x a x t --=来讲,

显然其在]2,(a -∞上单调递减,在),2[+∞a 上单调递增。 且t y a log =在其定义域内一定是减函数 由于10<

所以原函数在区间]3,2[++a a 内单调递减,只需保证

??

?≤-=+≤-=+1

|)23(3log ||)3(|1

|)1(4log ||)2(|a a F a a F a a ???

????

-≤-≤?a a a a a 1)23(31)1(4

当12

57

90-≤

579->

a 时,)(1x f 与)(2x f 在区间[]3,2++a a 上是非接近的

点评:该题属于信息给予的题目,考生首先理解“接近”与“非接近”的含义,再对含有对数式的函数的是否“接近”进行研究,转化成含有对数因式的不等式问题,解不等式即可。

例18.设1x >,1y >,且2log 2log 30x y y x -+=,求22

4T x y =-的最小值。

解:令 log x t y =, ∵1x >,1y >,∴0t >。 由2log 2log 30x y y x -+=得2

230t t

-

+=,∴22320t t +-=, ∴(21)(2)0t t -+=,∵0t >,∴12t =,即1

log 2

x y =,∴1

2y x =,

∴2

2

2

2

44(2)4T x y x x x =-=-=--,

∵1x >,∴当2x =时,min 4T =-。

点评:对数函数结合不等式知识处理最值问题,这是出题的一个亮点。同时考察了学生

的变形能力。

例19.(2009陕西卷文)设曲线1

*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐

标为n x ,则12n x x x ???L 的值为 A.

1n B.11n + C. 1

n n + D.1 答案 B 解析 对1

*'()(1)n n y x

n N y n x +=∈=+求导得,令1x =得在点(1,1)处的切线的斜率

1k n =+,在点

(1,1)处的切线方程为1(1)(1)(1)n n y k x n x -=-=+-,不妨设0y =,

1n

n n x +=则

1212311

(23411)

n n n x x x n n n -???=?????=

++L , 故选 B.

五.【思维总结】

1.b N N a a N a b

n ===log ,,(其中1,0,0≠>>a a N )是同一数量关系的三种不同表示形式,因此在许多问题中需要熟练进行它们之间的相互转化,选择最好的形式进行运

算.在运算中,根式常常化为指数式比较方便,而对数式一般应化为同应化为同底;

2.要熟练运用初中学习的多项式各种乘法公式;进行数式运算的难点是运用各种变换技巧,如配方、因式分解、有理化(分子或分母)、拆项、添项、换元等等,这些都是经常使用的变换技巧,必须通过各种题型的训练逐渐积累经验;

3.解决含指数式或对数式的各种问题,要熟练运用指数、对数运算法则及运算性质,更关键是熟练运用指数与对数函数的性质,其中单调性是使用率比较高的知识;

4.指数、对数函数值的变化特点(上面知识结构表中的12个小点)是解决含指数、对数式的问题时使用频繁的关键知识,要达到滚瓜烂熟,运用自如的水平,在使用时常常还要结合指数、对数的特殊值共同分析;

5.含有参数的指数、对数函数的讨论问题是重点题型,解决这类问题的最基本的分类方案是以“底”大于1或小于1分类;

6.在学习中含有指数、对数的复合函数问题大多数都是以综合形式出现,如与其它函数(特别是二次函数)形成的复合函数问题,与方程、不等式、数列等内容形成的各类综合问题等等,因此要努力提高综合能力

(推荐)高中数学直线与方程知识点总结

直线与方程 1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x 轴平行或重合时, 规定α= 0°. 2、倾斜角α的取值范围: 0°≤α<180°. 当直线l与x轴垂直时, α= 90°. 3、直线的斜率: 一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα ⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l与x轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在. 4、直线的斜率公式: 给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 两条直线的平行与垂直 1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即 注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2 2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,

如果它们的斜率互为负倒数,那么它们互相垂直,即

直线的点斜式方程 1、 直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k )(00x x k y y -=- 2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(b b kx y += 3.2.2 直线的两点式方程 1、直线的两点式方程:已知两点),(),,(222211 y x P x x P 其中),(2121y y x x ≠≠ y-y1/y-y2=x-x1/x-x2 2、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a 3.2.3 直线的一般式方程 1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0) 2、各种直线方程之间的互化。 3.3直线的交点坐标与距离公式 3.3.1两直线的交点坐标 1、给出例题:两直线交点坐标 L1 :3x+4y-2=0 L1:2x+y +2=0 解:解方程组 3420 2220x y x y +-=??++=? 得 x=-2,y=2

高一数学集合与函数概念.

高一数学集合与函数概念. 第一集合与函数概念 一标要求: 本将集合作为一种语言学习,使学生感受用集合表示数学内容时的简洁 性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力 函数是高中数学的核心概念,本把函数作为描述客观世界变化规律的重要数学模型学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识 1 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号 2 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举

法或描述法)描述不同的具体问题,感受集合语言的意义和作用 3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力 4、能在具体情境中,了解全集与空集的含义 、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力 6 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集 7 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用 8 学会用集合与对应的语言刻画函数,理解函数符号=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法 9 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象

10 通过具体实例,了解简单的分段函数,并能简单应用 11 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形 12 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法 13 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事和重要人物,了解生活中的函数实例 二编写意图与教学建议 1 教材不涉及集合论理论,只将集合作为一种语言学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算 教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概

高一数学函数及其表示测试题及答案

必修1数学章节测试(3)—第一单元(函数及其表示) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内(每小题5分,共50分). 1.下列四种说法正确的一个是 ( ) A .)(x f 表示的是含有x 的代数式 B .函数的值域也就是其定义中的数集B C .函数是一种特殊的映射 D .映射是一种特殊的函数 2.已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于 ( ) A .q p + B .q p 23+ C .q p 32+ D .2 3 q p + 3.下列各组函数中,表示同一函数的是 ( ) A .x x y y = =,1 B .1,112-=+?-= x y x x y C .33,x y x y == D . 2 )(|,|x y x y == 4.已知函数2 3212 ---= x x x y 的定义域为 ( ) A .]1,(-∞ B .]2,(-∞ C .]1,21 ()21 ,(- ?--∞ D . ]1,2 1()21,(- ?--∞ 5.设?? ???<=>+=)0(,0)0(,) 0(,1)(x x x x x f π,则=-)]}1([{f f f ( ) A .1+π B .0 C .π D .1- 6.下列图中,画在同一坐标系中,函数bx ax y +=2 与)0,0(≠≠+=b a b ax y 函数的图 象只可能是 ( ) 7.设函数x x x f =+-)11(,则)(x f 的表达式为 ( ) A .x x -+11 B . 11-+x x C .x x +-11 D . 1 2+x x 8.已知二次函数)0()(2 >++=a a x x x f ,若0)(

高一数学抽象函数常见题型

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。本文就抽象函数常见题型及解法评析如下: 一、定义域问题 例1. 已知函数)(2x f 的定义域是[1,2],求f (x )的定义域。 解:)(2x f 的定义域是[1,2],是指21≤≤x ,所以)(2x f 中的2x 满足412≤≤x 从而函数f (x )的定义域是[1,4] 例2. 已知函数)(x f 的定义域是]21[,-,求函数)]3([log 2 1x f -的定义域。 解:)(x f 的定义域是]21[,-,意思是凡被f 作用的对象都在]21[,-中,由此可得 4111)21(3)21(2)3(log 1122 1≤≤?≤-≤?≤-≤--x x x 所以函数)]3([log 2 1x f -的定义域是]4111[, 二、求值问题 例3. 已知定义域为+R 的函数f (x ),同时满足下列条件:①5 1)6(1)2(==f f ,;②)()()(y f x f y x f +=?,求f (3),f (9)的值。 解:取32==y x ,,得)3()2()6(f f f +=

因为5 1)6(1)2(= =f f ,,所以54)3(-=f 又取3==y x 得5 8)3()3()9(-=+=f f f 三、值域问题 例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。 解:令0==y x ,得2)]0([)0(f f =,即有0)0(=f 或1)0(=f 。 若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。 由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有 0)]2 ([)2()2()22()(2≥==+=x f x f x f x x f x f 下面来证明,对任意0)(≠∈x f R x , 设存在R x ∈0,使得0)(0=x f ,则0)()()()0(0000=-=-=x f x f x x f f 这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f 四、解析式问题 例5. 设对满足10≠≠x x ,的所有实数x ,函数)(x f 满足x x x f x f +=-+1)1( )(,

高一数学《直线与方程》知识点整理

高一数学《直线与方程》知识点整理 1. 当直线l与x轴相交时,我们把x轴正方向与直线l向上方向之 间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时, 我们 规定它的倾斜角为0°. 则直线l的倾斜角的范围是 . 2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即 . 如果知道直线上两点,则有斜率公式 . 特别地是,当,时,直线 与x轴垂直,斜率k不存有;当,时,直线与y轴垂直,斜率k=0. 注意:直线的倾斜角α=90°时,斜率不存有,即直线与y轴平行或 者重合. 当α=90°时,斜率k=0;当时,斜率,随着α的增大,斜 率k也增大;当时,斜率,随着α的增大,斜率k也增大. 这样, 能够求解倾斜角α的范围与斜率k取值范围的一些对应问题. 两条直线平行与垂直的判定 1. 对于两条不重合的直线、,其斜率分别为、,有: (1) ;(2) . 2. 特例:两条直线中一条斜率不存有时,另一条斜率也不存有时, 则它们平行,都垂直于x轴;…. 直线的点斜式方程 1. 点斜式:直线过点 ,且斜率为k,其方程为 . 2. 斜截式:直线的斜率为k,在y轴上截距为b,其方程为 . 3. 点斜式和斜截式不能表示垂直x轴直线. 若直线过点且与x轴 垂直,此时它的倾斜角为90°,斜率不存有,它的方程不能用点斜式表示,这时的直线方程为,或 . 4. 注意:与是不同的方程,前者表示的直线上缺少一点,后者才 是整条直线.

直线的两点式方程 1. 两点式:直线经过两点,其方程为, 2. 截距式:直线在x、y轴上的截距分别为a、b,其方程为 . 3. 两点式不能表示垂直x、y轴直线;截距式不能表示垂直x、y轴及过原点的直线. 4. 线段中点坐标公式 . 直线的一般式方程 1. 一般式:,注意A、B不同时为0. 直线一般式方程化为斜截式方程,表示斜率为,y轴上截距为的直线. 2 与直线平行的直线,可设所求方程为 ;与直线垂直的直线,可设所求方程为 . 过点的直线可写为 . 经过点,且平行于直线l的直线方程是 ; 经过点,且垂直于直线l的直线方程是 . 3. 已知直线的方程分别是: ( 不同时为0), ( 不同时为0),则两条直线的位置关系能够如下判别: (1) ; (2) ; (3) 与重合 ; (4) 与相交 . 如果时,则 ; 与重合 ; 与相交 . 两条直线的交点坐标 1. 一般地,将两条直线的方程联立,得到二元一次方程组 . 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.

人教版高一数学必修一第一章 集合与函数概念知识点

高一数学必修1各章知识点总结 第一章集合与函数概念 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西 洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 ◆注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x∈R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 A?有两种可能(1)A是B的一部分,;(2)A与B是注意:B 同一集合。 ?/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A ?/A 或B 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A) ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 ◆有n个元素的集合,含有2n个子集,2n-1个真子集

(完整版)高一数学函数试题及答案

(数学1必修)函数及其表示 一、选择题 1.判断下列各组中的两个函数是同一函数的为( ) ⑴3 ) 5)(3(1+-+= x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =; ⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或2 3.已知集合{}{} 421,2,3,,4,7,,3A k B a a a ==+,且* ,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,5 4.已知2 2(1)()(12)2(2)x x f x x x x x +≤-??=-<

高一直线与方程练习题及答案详解

直线与方程练习题 一、选择题 1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=, 则,a b 满足() A .1=+b a B .1=-b a C .0=+b a D .0=-b a 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为() A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( ) A .0 B .8- C .2 D .10 4.已知0,0ab bc <<,则直线ax by c +=通过() A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限 D .第二、三、四象限 5.直线1x =的倾斜角和斜率分别是() A .045,1 B .0135,1- C .090,不存在 D .0180,不存在 6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足() A .0≠m B .2 3-≠m C .1≠m D .1≠m ,2 3-≠m ,0≠m 7.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是() A .524=+y x B .524=-y x C .52=+y x D .52=-y x 8.若1(2,3),(3,2),(,)2 A B C m --三点共线 则m 的值为( ) A.21 B.2 1- C.2- D.2

9.直线x a y b 22 1-=在y 轴上的截距是() A .b B .2b - C .b 2 D .±b 4.直线13kx y k -+=,当k 变动时,所有直线都通过定点() A .(0,0) B .(0,1) C .(3,1) D .(2,1) 10.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关() A .平行 B .垂直 C .斜交 D .与,,a b θ的值有关 二、填空题 1.点(1,1)P -到直线10x y -+=的距离是________________. 2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;若3l 与1l 关于x 轴对称,则3l 的方程为_________; 3.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 4.与直线5247=+y x 平行,并且距离等于3的直线方程是____________。 三、解答题 1.求经过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程。 2.过点(5,4)A --作一直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为5.

高一数学必修一集合与函数的概念

高一数学必修一集合与函数的概念 第一章集合与函数概念 一:集合的含义与表示 1、集合的含义:集合为一些确定的、不同的东西的全体,人们 能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。 把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。 2、集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确 定的:属于或不属于。 (2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。 (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 3、集合的表示:{…} (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 a、列举法:将集合中的元素一一列举出来{a,b,c……} b、描述法: ①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。 {xR|x-3>2},{x|x-3>2} ②语言描述法:例:{不是直角三角形的三角形}

③Venn图:画出一条封闭的曲线,曲线里面表示集合。 4、集合的分类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合 5、元素与集合的关系: (1)元素在集合里,则元素属于集合,即:aA (2)元素不在集合里,则元素不属于集合,即:a¢A 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R 6、集合间的基本关系 (1).“包含”关系(1)—子集 定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。记作:(或BA) 注意:有两种可能(1)A是B的一部分; (2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA (2).“包含”关系(2)—真子集

高一数学函数的概念及表示方法

全方位教学辅导教案姓名性别年级高一 教学 内容 函数与映射的概念及其函数的表示法 重点难点教学重点:理解函数的概念;区间”、“无穷大”的概念,定义域的求法,映射的概念教学难点:函数的概念,无穷大”的概念,定义域的求法,映射的概念 教学目标1.理解函数的定义;明确决定函数的定义域、值域和对应法则三个要素; 2.能够正确理解和使用“区间”、“无穷大”等记号;掌握分式函数、根式函数定义域的求法,掌握求函数解析式的思想方法 3.了解映射的概念及表示方法 4.了解象与原象的概念,会判断一些简单的对应是否是映射,会求象或原象. 5.会结合简单的图示,了解一一映射的概念 教学过程课前检 查与交 流 作业完成情况: 交流与沟通 针 对 性 授 课 一、函数的概念 一、复习引入: 初中(传统)的函数的定义是什么?初中学过哪些函数? 设在一个变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的 值与它对应,那么就说x是自变量,y是x的函数.并将自变量x取值的集合叫做 函数的定义域,和自变量x的值对应的y值叫做函数值,函数值的集合叫做函数 的值域.这种用变量叙述的函数定义我们称之为函数的传统定义. 初中已经学过:正比例函数、反比例函数、一次函数、二次函数等 问题1:()是函数吗? 问题2:与是同一函数吗? 观察对应: 30 45 60 90 2 1 2 2 2 3 9 4 1 1 -1 2 -2 3 -3 3 -3 2 -2 1 -1 1 4 9 1 2 3 1 2 3 4 5 6 (1)(2) (3)(4) 开平方求正弦 求平方乘以2 A A A A B B B B 1 二、讲解新课:

抽象函数、图像、函数零点

函数基本知识 抽象函数: 1. 已知函数()y f x =的定义域为R ,且对任意,a b R ∈,都有()()()f a b f a f b +=+,且当0x >时,()0f x <恒成立. 证明:(1)函数()y f x =是R 上的减函数;(2)函数()y f x =是奇函数. 2. 已知)(x f 在(-1,1)上有定义,且满足),1( )()()1,1(,xy y x f y f x f y x --=--∈有 证明:)(x f 在(-1,1)上为奇函数; 3. 设)(x f 是R 上的函数,且满足1)0(=f ,并且对于任意的实数x ,y 都有 )12()()(+--=-y x y x f y x f 成立,则=)(x f _____________. 4. 已知定义在R + 上的函数()f x 同时满足下列三个条件:① (3)1f =-; ② 对任意x y R +∈、 都有()()()f xy f x f y =+;③0)(,1<>x f x 时. (1)求)9(f 、)3(f 的值; (2)证明:函数()f x 在R + 上为减函数; (3)解关于x 的不等式2)1()6(--

高一数学集合与函数测试题及答案

第一章 集合与函数 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 如图,U 是全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是 A.(M S P ) B.(M S P ) C. (M P ) (S C U ) D.(M P ) (S C U ) 2. 函数 ]5,2[,142 x x x y 的值域是 A. ]61[, B. ]13[, C. ]63[, D. ),3[ 3. 若偶函数)(x f 在]1,( 上是增函数,则 A .)2()1()5.1(f f f B .)2()5.1()1(f f f C .)5.1()1()2( f f f D .)1()5.1()2( f f f 4. 函数|3| x y 的单调递减区间为 A. ),( B. ),3[ C. ]3,( D. ),0[ 5. 下面的图象可表示函数y=f(x)的只可能是 y y y y 0 x 0 x 0 x 0 x A. B. C. D. 6. 函数5)(3 x c bx ax x f ,满足2)3( f ,则)3(f 的值为 A. 2 B. 8 C. 7 D. 2 7. 奇函数)(x f 在区间[1,4]上为减函数,且有最小值2,则它在区间]1,4[ 上 A. 是减函数,有最大值2 B. 是增函数,有最大值2 C. 是减函数,有最小值2 D. 是增函数,有最小值2 8.(广东) 客车从甲地以60km /h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km /h 的速度匀速行驶l 小时到达丙地.下列描述客车从甲地出发,经过乙地,最后到达丙地所经过的路程s 与时间t 之间关系的图象中,正确的是 A. B. C. D. 9. 下列四个函数中,在(0,+∞)上为增函数的是

2014高中数学抽象函数专题

2014高三数学专题 抽象函数 特殊模型和抽象函数 特殊模型 抽象函数 正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f(x)f(y) [或) y (f )x (f )y x (f =] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [) y (f )x (f )y x (f =-或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x) 正切函数 f(x)=tanx )y (f )x (f 1) y (f )x (f )y x (f -+= + 余切函数 f(x)=cotx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 一.定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ? ?-x f 3log 2 1 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。 []11log ,13 评析: 已知函数()()x f ?的定义域是A ,求函数f(x)的定义域。相当于求内函数()x ?的值域。

高一数学必修直线与方程试题及答案提示

高一数学必修直线与方 程试题及答案提示 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

新课标数学必修2第三章直线与方程测试题 一、选择题(每题3分,共36分) 1.直线x+6y+2=0在x 轴和y 轴上的截距分别是( ) A.213, B.--213, C.--12 3, D.-2,-3 2.直线3x+y+1=0和直线6x+2y+1=0的位置关系是( ) A.重合 B.平行 C.垂直 D.相交但不垂直 3.直线过点 (-3,-2)且在两坐标轴上的截距相等,则这直线方程为 ( ) (A )2x -3y =0; (B )x +y +5=0; (C )2x -3y =0或x +y +5=0 (D )x +y +5或 x -y +5=0 4.直线x=3的倾斜角是( ) B.2 π C.? D.不存在 5.圆x 2+y 2+4x=0的圆心坐标和半径分别是( ) A.(-2,0),2 B.(-2,0),4 C.(2,0),2 D.(2,0),4 6.点(?1,2)关于直线y = x ?1的对称点的坐标是 (A )(3,2) (B )(?3,?2) (C )(?3,2) (D ) (3,?2) 7.点(2,1)到直线3x ?4y + 2 = 0的距离是 (A )54 (B )45 (C )254 (D )425 8.直线x ? y ? 3 = 0的倾斜角是( ) (A )30° (B )45° (C )60° (D )90° 9.与直线l :3x -4y +5=0关于x 轴对称的直线的方程为 (A )3x +4y -5=0 (B )3x +4y +5 =0 (C )-3x +4y -5=0 (D )-3x +4y + 5=0 10.设a 、b 、c 分别为?ABC 中?A 、?B 、?C 对边的边长,则直线x sin A +ay +c =0与直线bx -y sin B +sin C =0的位置关系( ) (A )平行; (B )重合; (C )垂直; (D )相交但不垂直 11.直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平1个单位后,又回到原来位置,那么l 的斜率为( ) (A )-;31 (B )-3; (C );3 1 (D )3 12.直线,31k y kx =+-当k 变动时,所有直线都通过定点( ) (A )(0,0) (B )(0,1)

最新高一数学集合与函数知识点总结

高中课程复习专题——数学集合与函数专题 一、集合相关概念 1、集合中元素的特性 ⑴元素的确定性:组成集合的元素必须是确定的。 ⑵元素的互异性:集合中不得有重复的元素。 ⑶元素的无序性:集合中元素的排列不遵循某种顺序,是随意排列的。 2、集合的表示方法 ⑴列举法:将集合中元素一一列出。 ⑵描述法:将集合中元素的公共属性用语言描述出来。 ⑶解析法:用解析式的方式描述出集合元素的公共属性。 ⑷图示法:用韦恩图直观的画出集合中的元素。 3、集中特殊数集的表示方法 自然数集:N 正整数集:N+ 整数集:Z 有理数集:Q 实数集:R 空集:Φ 二、集合间的基本关系——子集与真子集 1、自反性——任何一个集合都是它本身的子集:A?A。 2、如果A?B 且A≠B,则,A是B的真子集。 3、传递性:如果A?B,B?C,则A?C。 4、如果A?B且B?A,则A=B。 5、空集是任何集合的子集,空集是任何非空集合的真子集。 6、有n 个元素的集合,有2n个子集,有2n-1 个真子集。 三、集合间的运算 x

1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A 到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。 ★2、函数定义域的解题思路: ⑴若x处于分母位置,则分母x不能为0。 ⑵偶次方根的被开方数不小于0。 ⑶对数式的真数必须大于0。 ⑷指数对数式的底,不得为1,且必须大于0。 ⑸指数为0时,底数不得为0。 ⑹如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。 ⑺实际问题中的函数的定义域还要保证实际问题有意义。 3、相同函数 ⑴表达式相同:与表示自变量和函数值的字母无关。 ⑵定义域一致,对应法则一致。 4、函数值域的求法 ⑴观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。 ⑵图像法:适用于易于画出函数图像的函数已经分段函数。 ⑶配方法:主要用于二次函数,配方成y=(x-a)2 +b 的形式。 ⑷代换法:主要用于由已知值域的函数推测未知函数的值域。 5、函数图像的变换 ⑴平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。 ⑵伸缩变换:在x前加上系数。 ⑶对称变换:高中阶段不作要求。 6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f:A→B为从集合A到集合B的映射。 ⑴集合A中的每一个元素,在集合B中都有象,并且象是唯一的。 ⑵集合A中的不同元素,在集合B中对应的象可以是同一个。 ⑶不要求集合B中的每一个元素在集合A中都有原象。 7、分段函数 ⑴在定义域的不同部分上有不同的解析式表达式。 ⑵各部分自变量和函数值的取值范围不同。 ⑶分段函数的定义域是各段定义域的交集,值域是各段值域的并集。 8、复合函数:如果(u∈M),u=g(x) (x∈A),则,y=f[g(x)]=F(x) (x∈A),称为f、g 的复合函数。

高一数学必修1 函数及其表示练习题

高一数学必修1 函数及其表示练习题 1、判断下列对应:f A B →是否是从集合A到集合B的函数: (1){} ,0,:,:;A R B x R x f x x f A B ==∈>→→ (2)*,,:1,:.A N B N f x x f A B ==→-→ (3){} 2 0,,:,:.A x R x B R f x x f A B =∈>=→→ 2、已知函数()()()3,10, ,85,10,x x f x x N f f f x x -≥??=∈=? +? ==-??????

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答) 抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。抽象函数问题既是教学中的难点,又是近几年来高考的热点。 本资料精选抽象函数经典综合问题33例(含详细解答) 1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2 )>1,求x 的取值范围。 解 (1)令a=b=0,则f(0)=[f(0)]2 ∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴) (1 )(x f x f = - 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0) (1 )(>-= x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0 (3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴ 1)()()() () (121212>-=-?=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数 (4)f(x)·f(2x-x 2 )=f[x+(2x-x 2 )]=f(-x 2 +3x)又1=f(0), f(x)在R 上递增 ∴由f(3x-x 2 )>f(0)得:3x-x 2 >0 ∴ 0

最新高中数学必修二直线与方程单元练习题

直线与方程练习题 一、填空题(5分×18=90分) 1.若直线过点(3,-3)且倾斜角为30°,则该直线的方程为 ; 2. 如果A (3, 1)、B (-2, k )、C (8, 11), 在同一直线上,那么k 的值是 ; 3.两条直线023=++m y x 和0323)1(2=-+-+m y x m 的位置关系是 ; 4.直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是 ; 5. 经过点(-2,-3) , 在x 轴、y 轴上截距相等的直线方程是 ; 6.已知直线0323=-+y x 和016=++my x 互相平行,则它们之间的距离是: 7、过点A(1,2)且与原点距离最大的直线方程是: 8.三直线ax +2y +8=0,4x +3y =10,2x -y =10相交于一点,则a 的值是: 9.已知点)2,1(-A ,)2,2(-B ,)3,0(C ,若点),(b a M )0(≠a 是线段AB 上的一点,则直线CM 的斜率的取值范围是: 10.若动点),(),(2211y x B y x A 、分别在直线1l :07=-+y x 和2l :05=-+y x 上移动,则AB 中点M 到原点距离的最小值为: 11.与点A(1,2)距离为1,且与点B(3,1)距离为2的直线有______条. 12.直线l 过原点,且平分□ABCD 的面积,若B (1, 4)、D (5, 0),则直线l 的方程是 . 13.当1 0k 2 << 时,两条直线1-=-k y kx 、k x ky 2=-的交点在 象限. 14.过点(1,2)且在两坐标轴上的截距相等的直线的方程 ; 15.直线y= 2 1 x 关于直线x =1对称的直线方程是 ; 16.已知A (3,1)、B (-1,2),若∠ACB 的平分线在y =x +1上, 则AC 所在直线方程是____________. 17.光线从点()3,2A 射出在直线01:=++y x l 上,反射光线经过点()1,1B , 则反射光线所在直线的方程 18.点A (1,3),B (5,-2),点P 在x 轴上使|AP |-|BP |最大,则P 的坐标为: 二.解答题(10分×4+15分×2=70分)

高中数学第一章集合与函数概念知识点

高中数学第一章集合与函数概念知识点 〖1.1〗集合 【1.1.1】集合的含义与表示 (1)集合的概念 集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法 表示正整数集,Z表示整数集,Q表示有理数集,N表示自然数集,N*或N + R表示实数集. (3)集合与元素间的关系 ?,两者必居其一. ∈,或者a M 对象a与集合M的关系是a M (4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x|x具有的性质},其中x为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类 ①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(?). 【1.1.2】集合间的基本关系 (6)子集、真子集、集合相等

(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有 21n -个非空子集,它有22n -非空真子集. (8)交集、并集、补集 【1.1.3】集合的基本运算

【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法 (2)一元二次不等式的解法 0) 〖1.2〗函数及其表示 【1.2.1】函数的概念 (1)函数的概念

①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足 ,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域

相关主题
文本预览
相关文档 最新文档