当前位置:文档之家› 晶闸管的参数说明

晶闸管的参数说明

晶闸管的参数说明
晶闸管的参数说明

晶闸管的参数说明

晶闸管(thyristor)其派生器件有,快速晶闸管,双向晶闸管,逆导晶闸管,光控晶闸管,是一种大功率开关型半导体器件,V,Vt ,旧标准中用的是SCR,

重要参数说明

1.断炉重复峰值电压,udrm ,,是指晶闸管在正向阻断时,允许加在A,K间的电压。此电压为不重复峰值电压udsm 的90%。

2.反向重复峰值电压urrm,在控制极断路时,允许重复加在晶闸管上的反向峰值电压,称为反向阻断峰值电压。

此电压约为不重复峰值电压udsm的90%。udrm ,和urrm在数值上一般相近,统称为晶闸管的阻断峰值电压,通常把其中较小的那个数值作为该型号器件上的额定电压值,由于瞬时过电压也会使晶闸管损坏,因此晶闸管的乖宝宝电压应选为正常工作峰值电压的,2-3倍以确保安全。

3.额定正向平均电流if在规定的标准散热条件和环境温度40度下,晶闸管的阳极和阴极间允许连接贯通过的工频正统半波电流的平均值。称为额定正向平均电流。由于晶闸管的过载能力小,选用晶闸管的额定正向平均电流时,至少应大于正常工作平均电流的1.5-2倍以留有一定的余地。

4.维持电流ih:在室温下,控制极开路时,维持晶闸管继续导通所必须的最小电流,称为维持电流,当正向电流于ih值时,晶闸管就自行判断,ih值一般为几十至一百多毫安。

5.控制极触发电压VG,触发电流IG在室温下,阳极加正向电压为直流6V时,使晶闸管由阻断变为导通所需要的最小控制极电压和电流,称为控制极触发电压和触发电流。VG一般为3.5-5V,IG约为几十至几百毫安。实际应用时,加到控制极的触发电压和触发电流应比额定值稍微大点,以保证可靠触发。

6.电压上升率DV/DT,晶闸管阻断时其阴阳极之间相当于一个结电容当突加阳极电压时会产生充电电容电流,此电流可能导致晶闸管误导通,因此对管子的最大正向电压上升率,必须加愉限制,一般采用阻容吸收元件并联在晶闸管两端的办法加以限制。

7.电流上升率DI/DT,晶闸管开通时电流是从靠近门极区的阴极开始然后逐渐

晶闸管二极管主要参数及其含义

晶闸管二极管主要参数及其含义 IEC标准中用来表征晶闸管二极管性能特点的参数有数十项但用户经常用到的有十项左右本文就晶闸管二极管的主要参数做一简单介绍 1、正向平均电流I F(AV) (整流 管) 通态平均电流I T(AV) (晶闸管) 是指在规定的散热器温度T HS 或管壳温度 T C 时,允许流过器件的最大正弦半 波电流平均值此时器件的结温已达到其最高允许温度T jm 仪元公司产品手册中均 给出了相应通态电流对应的散热器温度T HS 或管壳温度 T C 值用户使用中应根据实 际通态电流和散热条件来选择合适型号的器件 2、正向方均根电流I FRMS (整流管) 通态方均根电流I TRMS (晶闸管) 是指在规定的散热器温度T HS 或管壳温度 T C 时,允许流过器件的最大有效电 流值用户在使用中须保证在任何条件下流过器件的电流有效值不超过对应壳温下的方均根电流值 3、浪涌电流I FSM (整流管)I TSM (晶闸管) 表示工作在异常情况下器件能承受的瞬时最大过载电流值用10ms底宽正弦半波峰值表示仪元公司在产品手册中给出的浪涌电流值是在器件处于最高允许 结温下施加80% V RRM 条件下的测试值器件在寿命期内能承受浪涌电流的次数是有限的用户在使用中应尽量避免出现过载现象

4、断态不重复峰值电压V DSM 反向不重复峰值电压V RSM 指晶闸管或整流二极管处于阻断状态时能承受的最大转折电压一般用单脉冲测试防止器件损坏用户在测试或使用中应禁止给器件施加该电压值以免损坏器件 5、断态重复峰值电压V DRM 反向重复峰值电压V RRM 是指器件处于阻断状态时断态和反向所能承受的最大重复峰值电压一般取器件不重复电压的90%标注高压器件取不重复电压减100V标注用户在使用中须保证在任何情况下均不应让器件承受的实际电压超过其断态和反向重复峰值电压 6、断态重复峰值漏电流I DRM 反向重复峰值漏电流I RRM 为晶闸管在阻断状态下承受断态重复峰值电压V DRM 和反向重复峰值电压V RRM 时流过 元件的正反向峰值漏电流该参数在器件允许工作的最高结温Tjm下测出 7、通态峰值电压V TM (晶闸管) 正向峰值电压V FM (整流管)

几种特殊的晶闸管

特殊的晶闸管 双向晶闸管TRIAC:TRIode AC semiconductor switch 双向可控硅为什么称为“TRIAC”? 三端:TRIode(取前三个字母) 交流半导体开关:ACsemiconductor switch (取前两个字母)

以上两组名词组合成“TRIAC” 中文译意“三端双向可控硅开关”。 由此可见“TRIAC”是双向可控硅的统称。 双向:Bi-directional(取第一个字母) 控制:Controlled(取第一个字母) 整流器:Rectifier(取第一个字母) 再由这三组英文名词的首个字母组合而成:“BCR”中文译意:双向可控硅。以“BCR”来命名双向可控硅的典型厂家如日本三菱,如:BCR1AM-12、BCR8KM、BCR08AM等等。 双向:Bi-directional(取第一个字母) 三端:Triode(取第一个字母) 由以上两组单词组合成“BT”,也是对双向可控硅产品的型号命名,典型的生产商如:意法ST公司、荷兰飞利浦-Philips公司,均以此来命名双向可控硅。 代表型号如:PHILIPS的BT131-600D、BT134-600E、BT136-600E、BT138-600E、BT139-600E、等等。这些都是四象限/非绝缘型/双向可控硅; Philips公司的产品型号前缀为“BTA”字头的,通常是指三象限的双向可控硅。 而意法ST公司,则以“BT”字母为前缀来命名元件的型号并且在“BT”后加“A”或“B”来表示绝缘与非绝缘组合成:“BTA”、“BTB”系列的双向可控硅型号,如: 三象限/绝缘型/双向可控硅:BTA06-600C、BTA12-600B、BTA16-600B、BTA41-600B等等; 四象限/非绝缘/双向可控硅:BTB06-600C、BTB12-600B、BTB16-600B、BTB41-600B等等; ST公司所有产品型号的后缀字母(型号最后一个字母)带“W”的,均为“三象限双向可控硅”。如“BW”、“CW”、“SW”、“TW”;代表型号如:BTB12-600BW、BTA26-700CW、BTA08-600SW、、、、等等。 至于型号后缀字母的触发电流,各个厂家的代表含义如下:PHILIPS公司:D=5mA,E=10mA,C=15mA,F=25mA,G=50mA,R=200uA或5mA, 型号没有后缀字母之触发电流,通常为25-35mA; PHILIPS公司的触发电流代表字母没有统一的定义,以产品的封装不同而不同。 意法ST公司:TW=5mA,SW=10mA,CW=35mA,BW=50mA,C=25mA,B=50mA,H=15mA,T=15mA,注意:以上触发电流均有一个上下起始误差范围,产品PDF文件中均有详细说明 一般分为最小值/典型值/最大值,而非“=”一个参数值

双向可控硅选型表要点

双向可控硅为什么称为“TRIAC”? 三端:TRIode(取前三个字母) 交流半导体开关:AC-semiconductor switch(取前两个字母) 以上两组名词组合成“TRIAC”,或“TRIACs”中文译意“三端双向可控硅开关”。 由此可见“TRIAC”是双向可控硅的统称。 另: 双向:Bi-directional(取第一个字母) 控制:Controlled (取第一个字母) 整流器:Rectifier (取第一个字母) 再由这三组英文名词的首个字母组合而成:“BCR”,中文译意:双向可控硅。 以“BCR”来命名双向可控硅的典型厂家如日本三菱,如:BCR1AM-12、BCR8KM、BCR08AM 等等。 -------------- 双向:Bi-directional (取第一个字母) 三端:Triode (取第一个字母) 由以上两组单词组合成“BT”,也是对双向可控硅产品的型号命名,典型的生产商如:意法ST公司、荷兰飞利浦-Philips公司,均以此来命名双向可控硅. 代表型号如:PHILIPS 的BT131-600D、BT134-600E、BT136-600E、BT138-600E、BT139-600E、、等。这些都是四象限/非绝缘型/双向可控硅;Philips公司的产品型号前缀为“BTA”字头的,通常是指 三象限的双向可控硅。三象限的品种主要应用于电机电路、三相市电输入的电路、承受的瞬间浪涌电流高。 ------------------- 而意法ST公司,则以“BT”字母为前缀来命名元件的型号,并且在“BT”后加“A”或“B”来表示绝缘与非绝缘。组成:“BTA”、“BTB”系列的双向可控硅型号,如: 四象限、绝缘型、双向可控硅:BTA06-600C、BTA08-600C、BTA10-600B、BTA12-600B、BTA16-600B、BTA41-600、、、等等; 四象限、非绝缘、双向可控硅:BTB06-600C、BTB08-600C、BTB10-600B、BTB12-600B、BTB16-600B、BTB41-600、、、等等; ST公司所有产品型号的后缀字母(型号最后一个字母)带“W”的,均为“三象限双向可控硅”。如“BW”、“CW”、“SW”、“TW”; 代表型号如:BTB12-600BW、BTA26-700CW、BTA08-600SW、、、、等等。 至于型号后缀字母的触发电流,各个厂家的代表含义如下: PHILIPS公司:D=5mA,E=10mA,C=15mA,F=25mA,G=50mA,R=200uA或5mA,型号没有后缀字母之触发电流,通常为25-35mA; PHILIPS公司的触发电流代表字母没有统一的定义,以产品的封装不同而不同。 意法ST公司:TW=5mA,SW=10mA,CW=35mA,BW=50mA,C=25mA,B=50mA,H=15mA,T=15mA, 注意:以上触发电流均有一个上下起始误差范围,产品PDF文件中均有详细说明,一般分为最小值/典型值/最大值,而非“=”一个参数值。 对于产品类别、品种系列的名词国际上通用的命名有:

可控硅参数名词解释

晶闸管参数名词解释 1. 反向重复峰值电压(VRRM):反向阻断晶闸管两端出现的重复最大瞬时值反向电压,包括所有的重复瞬态电压,但不包括所有的不重复瞬态电压。 注:反向重复峰值电压(VRRM)是可重复的,值大于工作峰值电压的最大值电压,如每个周期开关引起的毛疵电压。 2. 反向不重复峰值电压(VRSM):反向阻断晶闸管两端出现的任何不重复最大瞬时值瞬态反向电压。 1)测试目的:在规定条件下,检验晶闸管的反向不重复峰值电压额定值。 2)测试条件:a)结温:25℃和125℃;b)门极断路;c)脉冲电压波形:底宽近似10mS 的正弦半波;d)脉冲重复频率:单次脉冲;e)脉冲次数:按有关产品标准规定;f)测试电压:反向不重复峰值电压 注:反向不重复峰值电压(VRSM)是外部因素偶然引起的,值一般大于重复峰值电压的最大值电压。通常标准规定VRSM =1.11VRRM。应用设计应考虑一切偶然因素引起的过电压都不得超过不重复峰值电压。 3. 通态方均根电流(IT(RMS)):通态电流在一个周期内的方均根值。 4. 通态平均电流(IT(AV)):通态电流在一个周期内的平均值。 5. 浪涌电流(ITSM):一种由于电路异常情况(如故障)引起的,并使结温超过额定结温的不重复性最大通态过载电流。 1)测试目的:在规定条件下,检验晶闸管的通态(不重复)浪涌电流额定值。 2)测试条件:a)浪涌前结温:125℃;b)反半周电压:80%反向重复峰值电压;d)每次浪涌的周波数:一个周波,其导通角应在160度至180度之间 6. 通态电流临界上升率(di/dt):在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。 1)测试目的:在规定条件下,检验晶闸管的通态电流临界上升率额定值。 2)测试条件:a)加通态电流前结温:125℃;b)门极触发条件:IGM =3~5IGT;c)开通前断态电压VDM=2/3VDRM ;d)开通后通态电流峰值:2 IT(AV)~3IT(AV);e)t1≥1us;f)重复频率:50HZ;g)通态电流持续时间:5s。 7. I2t值:浪涌电流的平方在其持续时间内的积分值。 1)测试目的:在规定条件下,检验和测量反向阻断三级晶闸管的I2t值 2)测试条件:a)浪涌前结温:125℃;b)浪涌电流波形:正弦半波; 3) I2t测试实质是持续时间小于工频正弦波(1-10ms范围)的一种不重复浪涌电流测试。通过浪涌电流it对其持续时间t积分∫it2dt,即可求得I2t值。 8. 门极平均值耗散功率(PG(AV)):在规定条件下,门极正向所允许的最大平均功率。 1) 测试目的:在规定条件下,检验反向阻断三级晶闸管的门极平均功率额定值 2) 测试条件:a)结温:125℃;b)门极功率:额定门极平均功率;c)测试持续时间:3S;d)主电路条件:阳,阴极间断路。 3)测量程序:a)被测器件加热到规定结温;b)从零缓慢调整电源的输出,使电流表和电压表指示的数字的乘积达到额定门极平均功率PG(AV),并保持3S时间,然后将电源的输出调回零;c)测试后,进行门极触发电流和电压测量,如无异常,则PG(AV)额定值得到确认。 9. 反向重复峰值电流(IRRM):晶闸管加上反向重复峰值电压时的峰值电流。 10. 断态重复峰值电流(IDRM):晶闸管加上断态重复峰值电压时的峰值电流。

电力题全答案

电力电子技术复习题 题型 一. 填空题(每空2分,共20分) 二. 判断题(5小题,每小题2分,共10分) 三. 选择题(5小题,每小题2分,共10分) 四. 简答题(3小题,每小题10分,共30分) 五. 分析题(15分) 电路分析,电压电流波形,整流电路+续流二极管/二象限斩波电路+直流电机负载 六. 计算(15分) 整流电路电压电流/晶闸管的额定参数计算 总成绩: 平时(作业+练习+考勤)15%+实验(考勤+报告)15%+期终70% . 复习题 一,填空/判断/选择 1, 电力电子器件一般工作在_开关_状态。 2, 在通常情况下,电力电子器件功率损耗主要有_通态损耗_,而当器件开关频率较高时,功率损耗主要为开关损耗。 3, 电力二极管的主要类型有普通二极管、快恢复二极管、肖特基二极管。 4, 肖特基二极管的开关损耗明显低于快恢复二极管的开关损耗。 5, 晶闸管的基本工作特性可概括为门极正向有触发则导通、反向截止。 6, 对同一晶闸管,维持电流I H与擎住电流I L在数值大小上的关系是I L约为I H的2–4倍。7, 晶闸管断态不重复电压U DRM与转折电压U bo数值大小上的关系是U DRM

可控硅-晶闸管的几种典型应用电路

可控硅-晶闸管的几种典型应用电路 描述: SCR半波整流稳压电源。如图4电路,是一种输出电压为+12V的稳压电源。该电路的特点是变压器B将220V的电压变换为低压(16~20V),采用单向可控硅SCR半波整流。SCR的门极G从R1、D1和D2的回路中的C点取出约13.4V的电压作为SCR门阴间的偏置电压。电容器C1起滤波和储能作用。在输出CD端可获得约+12V的稳压。晶闸管,又称可控硅(单向SCR、双向BCR)是一种4层的(PNPN)三端器件。在电子技术和工业控制中,被派作整流和电子开关等用场。在这里,笔者介绍它们的基本特性和几种典型应用电路。 1.锁存器电路。图1是一种由继电器J、电源(+12V)、开关K1和微动开关K2组成的锁存器电路。当电源开关K1闭合时,因J回路中的开关K2和其触点J-1是断开的,继电器J不工作,其触点J-2也未闭合,所以电珠L不亮。一旦人工触动一下K2,J得电激活,对应的触点J-1、J-2闭合,L点亮。此时微动开关K2不再起作用(已自锁)。要使电珠L熄灭,只有断开电源开关K1使继电器释放,电珠L才会熄灭。所以该电路具有锁存器(J-1自锁)的功能。 图2电路是用单向可控硅SCR代替图1中的继电器J,仍可完成图1的锁存器功能,即开关K1闭合时,电路不工作,电珠L不亮。当触动一下微动开关K2时,SCR因电源电压通过R1对门极加电而被触发导通且自锁,L点亮,此时K2不再起作用,要使L熄灭,只有断开K1。由此可见,图2电路也具有锁存器的功能。图2与图1虽然都具有锁存器功能,但它们的工作条件仍有区别:(1)图1的锁存功能是利用继电器触点的闭合维持其J线圈和L的电流,但图2中,是利用SCR自身导通完成锁存功能。(2)图1的J与控制器件L完全处于隔离状态,但图2中的SCR与L不能隔离。所以在实际应用电路中,常把图1和图2电路混合使用,完成所需的锁存器功能。 2.单向可控硅SCR振荡器。图3电路是利用SCR的锁存性制作的低频振荡器电路。图中的扬声器LS(8Ω/0.5W)作为振荡器的负载。当电路接上电源时,由于电源通过R1对C1充电,初始时,C1电压很低,A、B端的电位器W的分压不能触发SCR,SCR不导通。当C1充得电压达到一定值时,A、B端电压升高,SCR被触发而导通。一旦SCR导通,电容器C1通过SCR和LS放电,结果A、B端的电压又下降,当A、B端电压下降到很低时,又使SCR截止,一旦SCR截止,电容器C1又通过R1充电,这种充放电过程反复进行形成电路的振荡,此时LS发出响声。电路中的W可用来调节SCR门极电压的大小,以达到控制振荡器的频率变化。按图中元件数据,C1取值为0.22~4μF,电路均可正常工作。 3.SCR半波整流稳压电源。如图4电路,是一种输出电压为+12V的稳压电源。该电路的特点是变压器B将220V的电压变换为低压(16~20V),采用单向可控硅SCR半波整流。SCR的门极G从R1、D1和D2的回路中的C点取出约13.4V的电压作为SCR门阴间的偏置电压。电容器C1起滤波和储能作用。在输出CD端可获得约+12V的稳压。电路工作时,当A点低压交流为正半周时,SCR导通对C1充电。当充电电压接近C点电压或交流输入负半周时,SCR截止,所以C1上充得电压(即输出端CD)不会高于C点的稳压值。只有储能电容C1输出端对负载放电,其电压低于C点电压时,在A点的正半周电压才会给C1即时补充充电,以维持输出电压的稳定。图4电路与电池配合已成功用于某设备作后备电源。该稳压电源,按图中参数其输出电流可达2~3A。

可控硅参数列表

March 2008 Rev. 21/9 AN2703 Application note Parameter list for SCRs, TRIACs, AC switches, and DIACS Introduction All datasheet parameters are rated as minimum or maximum values, corresponding to the product parameter distribution. In each datasheet, two classes of parameters are available:■ Absolute ratings, corresponding to critical parameters, not to be exceeded for safe operation. If the absolute rating is exceeded, the component may be damaged.■Electrical, thermal and static characteristics, defining limits on product https://www.doczj.com/doc/ea14424284.html,

Parameters AN2703 1 Parameters 2/9

AN2703Parameters 3/9I GM Peak gate current This is the maximum peak current allowed through gate and cathode, defined for a 20 μs pulse duration. If the absolute rating is exceeded, the component may be damaged. P G(AV)Average gate power dissipation This is the maximum average power that can be dissipated by the gate junction. If the absolute rating is exceeded, the component may be damaged. V RGM Peak reverse gate voltage This parameter is only defined for SCRs. It is the maximum reverse voltage than can be applied across gate and cathode terminals, without risk of destruction of the gate to cathode junction. V GM Peak positive gate voltage (with respect to the pin "COM") This parameter is only defined for ACSs. It is the maximum voltage than can be applied across gate and COM terminals without risk of destruction of the gate to COM junction.Table 2.Electrical characteristics parameters Parameter Name and description P Average power dissipation This is the average power dissipated by current conduction through the device for one full cycle operation. I GT Triggering gate current This is the current to apply between gate and cathode (or gate and electrode A1 for TRIAC) to turn-on the device. This parameter defines the sensitivity of the component. For a SCR, the gate current has always to be sunk by the gate. For a TRIAC, I GT is define for 3 or 4 quadrants corresponding to the different polarities of A2, A1 and gate: - Q1: I g sunk by the gate, V A2-A1 > 0 - Q2: I g sourced by the gate, V A2-A1 > 0 - Q3: I g sourced by the gate, V A2-A1 < 0 - Q4: I g sunk by the gate, V A2-A1 < 0 The I GT value is higher in Q4 quadrant. For ACS types, I GT is defined in two quadrants (Q2 and Q3). V GT Triggering gate voltage This is the voltage to apply across gate and cathode (or gate and electrode A1 for TRIAC) to reach the IGT current and then to trigger the device. V GD Non-triggering gate voltage V GD is the maximum voltage which can be applied across gate and cathode (or gate and electrode A1 for TRIAC) without causing undesired turn-on. This parameter is specified, for the worst case scenario, at the maximum junction temperature.Table 1.Absolute ratings parameters (continued) Parameter Name and description

各种规格型号可控硅晶闸管

KK200A/600V, KK200A/800V, KK200A/1000V, KK200A/1200V, KK200A/1400V, KK200A/1600V, KK200A/1800V, KK200A/2000V, KK200A/2500V, KK200A/3000V, KK300A/600V, KK300A/800V, KK300A/1000V, KK300A/1200V, KK300A/1400V, KK300A/1600V, KK300A/1800V, KK300A/2000V, KK300A/2500V, KK300A/3000V, KK500A/600V, KK500A/800V, KK500A/1000V, KK500A/1200V, KK500A/1400V, KK500A/1600V, KK500A/1800V, KK500A/2000V, KK500A/2500V, KK500A/3000V,KK800A/600V, KK800A/800V, KK800A/1000V, KK800A/1200V, KK800A/1400V, KK800A/1600V, KK800A/1800V, KK800A/2000V, KK800A/2500V, KK800A/3000V, KK1000A/600V, KK1000A/800V, KK1000A/1000V, KK1000A/1200V, KK1000A/1400V, KK1000A/1600V, KK1000A/1800V, KK1000A/2000V, KK1000A/2500V, KK1000A/3000V, KK1000A/3300V, KK1000A/3800V, KK1000A/4000V, KK1200A/600V, KK1200A/800V, KK1200A/1000V, KK1200A/1200V, KK1200A/1400V, KK1200A/1600V, KK1200A/1800V, KK1200A/2000V, KK1200A/2500V, KK1200A/3000V, KK1200A/3300V, KK200A/600V, KK200A/800V, KK200A/1000V, KK200A/1200V, KK200A/1400V, KK200A/1600V, KK200A/1800V, KK200A/2000V, KK200A/2500V, KK200A/3000V, KK300A/600V, KK300A/800V, KK300A/1000V, KK300A/1200V, KK300A/1400V, KK300A/1600V, KK300A/1800V, KK300A/2000V, KK300A/2500V, KK300A/3000V, KK500A/600V, KK500A/800V, KK500A/1000V, KK500A/1200V, KK500A/1400V, KK500A/1600V, KK500A/1800V, KK500A/2000V, KK500A/2500V, KK500A/3000V,KK800A/600V, KK800A/800V, KK800A/1000V, KK800A/1200V, KK800A/1400V, KK800A/1600V, KK800A/1800V, KK800A/2000V, KK800A/2500V, KK800A/3000V, KK1000A/600V, KK1000A/800V, KK1000A/1000V, KK1000A/1200V, KK1000A/1400V, KK1000A/1600V, KK1200A/1600V, KK1200A/1800V, KK1200A/2000V, KK1200A/2500V, KK1200A/3000V, KK1200A/3300V, KK1200A/3800V, KK1200A/4000V, KK1500A/600V, KK1500A/800V, KK1500A/2000V,KK1500A/2500V KK1500A/1000V, KK1500A/1200V, KK1500A/1400V, KK1500A/1600V, KK1500A/1800V, KK1500A/2000V, KK1500A/2500V, KK1500A/3000V, KK1500A/3300V, KK1500A/3800V, KK1500A/4000V, KK1600A/600V, KK1600A/800V, KK1600A/1000V, KK1600A/1200V, KK1600A/1400V, KK1600A/1600V, KK1600A/1800V, KK1600A/2000V, KK1600A/2500V, KK1600A/3000V, KK1600A/3300V, KK1600A/3800V, KK1600A/4000V, KK2000A/600V, KK2000A/800V, KK2000A/1000V, KK2000A/1200V, KK2000A/1400V, KK2000A/1600V, KK2000A/1800V, KK2000A/2000V, KK2000A/2500V, KK2000A/3000V, KK2000A/3300V, KK2000A/3800V, KK2000A/4000V, KK2500A/600V, KK2500A/800V, KK2500A/1000V, KK2500A/1200V, KK2500A/1400V, KK2500A/1600V, KK2500A/1800V, KK2500A/2000V, KK2500A/2500V, KK2500A/3000V, KK2500A/3300V, KK2500A/3800V, KK2500A/4000V, KK3000A/600V, KK3000A/800V, KP3000A/1000V, KK3000A/1200V, KK3000A/1400V, KK3000A/1600V, KK3000A/1800V, KK3000A/2000V, KK3000A/2500V, KK3000A/3000V KK3000A/3500V,KK3500A/3000V,KK3000A/4000V,KK3500A/3000V,KK3500A/3500V,KK3500A/4000V KK3500A/4500V,KK3500A/5000V,KK3500A/5500V,KK3500A/6000V,KK4000A/3000V,KK4000A/3500V KK4000A/4000V,KK4000A/4500V,KK4000A/5000V,KK4000A/5500V,KK4000A/6000V,KK4000A/6500V KK5000A/3000V,KK5000A/3500V,KK5000A/4000V,KK5000A/4500V,KK5000A/5000V,KK5000A/5500V KP5000A/6000V,KP5000A/6500V,KP5500A/3000V,KP5500A/4000V,KP5500A/4500V,KP5500A/5000V KK5000A/6000V,KK5000A/6500V,KK5500A/3000V,KK5500A/4000V,KK5500A/4500V,KK5500A/5000V KP1000A/1800V, KP1000A/2000V, KP1000A/2500V, KP1000A/3000V, KP1000A/3300V, KP1000A/3800V, KP1000A/4000V, KP1200A/600V, KP1200A/800V, KP1200A/1000V, KP1200A/1200V, KP1200A/1400V, KP1200A/1600V, KP1200A/1800V, KP1200A/2000V, KP1200A/2500V, KP1200A/3000V, KP1200A/3300V, KP1200A/3800V, KP1200A/4000V, KP1500A/600V, KP1500A/800V, KP1500A/2000V,KP1500A/2500V KP1500A/1000V, KP1500A/1200V, KP1500A/1400V, KP1500A/1600V, KP1500A/1800V, KP1500A/2000V, KP1500A/2500V, KP1500A/3000V, KP1500A/3300V, KP1500A/3800V, KP1500A/4000V, KP1600A/600V, KP1600A/800V, KP1600A/1000V, KP1600A/1200V, KP1600A/1400V, KP1600A/1600V, KP1600A/1800V,

晶闸管的基本检测方法

晶闸管的基本检测方法 1.判别单向晶闸管的阳极、阴极和控制极 脱开电路板的单向晶闸管,阳极、阴极和控制极3个引脚一般没有特殊的标注,识别各个脚主要是通过检测各个引脚之间的正、负电阻值来进行的。晶闸管各个引脚之间的阻值都较大,当检测出现唯一一个小阻值时,此时黑表笔接的是控制极(G),红表笔接的是阴极(K),另外一个引脚就是阳极(A)。 2.判别单向晶闸管的好坏 脱开电路板的单向晶闸管,阳极(A)、阴极(K)和控制极(G)明确标示;正常的单向闸管,阳极(A)、阴极(K)两个引脚之间的正、反向电阻,阳极(A)、控制极(G)两个引脚之间的正、反向电阻的阻值应该都很大,阴极(K)、控制极(G)两个引脚之间的正向电阻应该远小于反向电阻。并且阳极(A)、阴极(K)两个引脚之间的正向电阻越大,单向晶闸管阳极的正向阻断特性越好;反向电阻越大,单向晶闸管阳极的反向阻断特性越好。 3.判别双向晶闸管的好坏 脱开电路板的双向晶闸管,第一电极(T1)、第二电极(T2)、控制极(G)明确。判断双向晶闸管的好坏,主要是看短路前第二电极(T2)和第一电极(T1)之间阻值接近无穷大,第二电极(T2)与控制极(G)引脚短路,短路后晶闸管触发导通,第二电极(T2)·和第一电极(T1)之间的电阻变小,有固定值。可以断定该双向晶闸管具备双向触发能力,性能基本良好。 4.晶闸管的代换原则 晶闸管的品种繁多,不同的电子设备与不同的电子电路,采用不同类型的晶闸管。选用与代换晶闸管时,主要应考虑其额定峰值电压、额定电流、正向压降、门极触发电流及触发电压、开关速度等参数,额定峰值电压和额定电流均应高于工作电路的最大工作电压和最大工作电流1.5~2倍,代换时最好选用同类型、同特性、同外形的晶闸管替换。 普通晶闸管一般被用于交直流电压控制、可控整流、交流调压、逆变电源,开关电源保护等电路。 双向晶闸管一般被用于交流开关、交流调压、交流电动机线性凋速、灯具线性调光及固态继电器、固态接触器等电路。 逆导晶闸管一般被用于电磁灶、电子镇流器、超声波电路、超导磁能贮存系统及开关电源等电路。 光控晶闸管一般被用于光电耀合器、光探测器、光报警器、光计数器、光电逻辑电路及自动生产线的运行监控电路等。 BTC晶体管一般被用于锯齿波发生器、长时间延时器、过电压保护器及大功率晶体管触发电路等。 门极关断晶闸管一般被用于交流电动机变频调速、斩波器、逆变电源及各种电子开关电路等。

晶闸管参数说明

IEC标准中用来表征晶闸管、二极管性能、特点的参数有数十项,但用户经常用到的有十项左右,本文就晶闸管、二极管的主要参数做一简单介绍。 1.正向平均电流I F(A V)( 整流管) 通态平均电流I T(A V)( 晶闸管) 是指在规定的散热器温度THS或管壳温度T C时,允许流过器件的最大正弦半波电流平均值。此时,器件的结温已达到其最高允许温度Tjm。台基公司产品手册中均给出了相应通态电流对应的散热器温度THS或管壳温度T C值,用户使用中应根据实际通态电流和散热条件来选择合适型号的器件。 2.正向方均根电流I F(RMS)( 整流管) 通态方均根电流I T(RMS)( 晶闸管) 是指在规定的散热器温度THS或管壳温度TC 时,允许流过器件的最大有效电流值。用户在使用中,须保证在任何条件下,流过器件的电流有效值不超过对应壳温下的方均根电流值。3.浪涌电流I FSM(整流管)、I TSM(晶闸管) 表示工作在异常情况下,器件能承受的瞬时最大过载电流值。用10ms底宽正弦半波峰值表示,台基公司在产品手册中给出的浪涌电流值是在器件处于最高允许结温下,施加80% V RRM条件下的测试值。器件在寿命期内能承受浪涌电流的次数是有限的,用户在使用中应尽量避免出现过载现象。 4.断态不重复峰值电压V DSM 反向不重复峰值电压V RSM 指晶闸管或整流二极管处于阻断状态时能承受的最大转折电压,一般用单脉冲测试防止器件损坏。用户在测试或使用中,应禁止给器件施加该电压值,以免损坏器件。 5.断态重复峰值电压V DRM 反向重复峰值电压V RRM 是指器件处于阻断状态时,断态和反向所能承受的最大重复峰值电压。一般取器件不重复电压的90%标注(高压器件取不重复电压减100V标注)。用户在使用中须保证在任何情况下,均不应让器件承受的实际电压超过其断态和反向重复峰值电压。 6.断态重复峰值(漏)电流IDRM 反向重复峰值(漏)电流IRRM 为晶闸管在阻断状态下,承受断态重复峰值电压VDRM和反向重复峰值电压VRRM时,流过元件的正反向峰值漏电流。该参数在器件允许工作的最高结温Tjm下测出。 7.通态峰值电压V TM(晶闸管) 正向峰值电压V FM(整流管) 指器件通过规定正向峰值电流I FM(整流管)或通态峰值电流I TM(晶闸管)时的峰值电压,也称峰值压降。该参数直接反映了器件的通态损耗特性,影响着器件的通态电流额定能力。器件在不同电流值下的的通态(正向)峰值电压可近似用门槛电压和斜率电阻来表示: V TM=VTO+rT*I TM V FM=VFO+rF*I FM 台基公司在产品手册中给出了各型号器件的最大通态(正向)峰值电压及门槛电压和斜率电阻,用户需要时,可以提供该器件的实测门槛电压和斜率电阻值。 8.电路换向关断时间t q(晶闸管) 在规定条件下,在晶闸管正向主电流下降过零后,从过零点到元件能承受规定的重加电压而不至导通的最小时间间隔。晶闸管的关断时间值决定于测试条件,台基公司对所制造的快速、高频晶闸管均提供了每只器件的关断时间实测值,在未作特别说明时,其对应的测试条件如下: l 通态峰值电流ITM等于器件ITA V;

晶闸管参数名词解释

晶闸管参数名词解释 1.反向重复峰值电压(V RRM):反向阻断晶闸管两端出现的重复最大瞬时值反向电压,包 括所有的重复瞬态电压,但不包括所有的不重复瞬态电压。 注:反向重复峰值电压(V RRM)是可重复的,值大于工作峰值电压的最大值电压,如每个周期开关引起的毛疵电压。 2.反向不重复峰值电压(V RSM):反向阻断晶闸管两端出现的任何不重复最大瞬时值瞬态 反向电压。 1)测试目的:在规定条件下,检验晶闸管的反向不重复峰值电压额定值。 2)测试条件:a)结温:25℃和125℃;b)门极断路;c)脉冲电压波形:底宽近似10mS 的正弦半波;d)脉冲重复频率:单次脉冲;e)脉冲次数:按有关产品标准规定;f)测试电压:反向不重复峰值电压 注:反向不重复峰值电压(V RSM)是外部因素偶然引起的,值一般大于重复峰值电压的最大值电压。通常标准规定V RSM=1.11V RRM。应用设计应考虑一切偶然因素引起的过电压都不得超过不重复峰值电压。 3.通态方均根电流:通态电流在一个周期内的方均根值。 4.通态平均电流:通态电流在一个周期内的平均值。 5.浪涌电流(I TSM):一种由于电路异常情况(如故障)引起的,并使结温超过额定结温 的不重复性最大通态过载电流。 1)测试目的:在规定条件下,检验晶闸管的通态(不重复)浪涌电流额定值。 2)测试条件:a)浪涌前结温:125℃;b)反半周电压:80%反向重复峰值电压;d)每次浪涌的周波数:一个周波,其导通角应在160度至180度之间 6.通态电流临界上升率(di/dt):在规定条件下,晶闸管能承受而无有害影响的最大通态 电流上升率。 1)测试目的:在规定条件下,检验晶闸管的通态电流临界上升率额定值。 2)测试条件:a)加通态电流前结温:125℃;b)门极触发条件:I GM=3~5I GT;c)开通前断态电压V DM=2/3V DRM ;d)开通后通态电流峰值:2 I T(A V)~3I T(AV);e)t1≥1us;f)重复频率:50HZ;g)通态电流持续时间:5s。 7.I2t值:浪涌电流的平方在其持续时间内的积分值。 1)测试目的:在规定条件下,检验和测量反向阻断三级晶闸管的I2t值 2)测试条件:a)浪涌前结温:125℃;b)浪涌电流波形:正弦半波; 3) I2t测试实质是持续时间小于工频正弦波(1-10ms范围)的一种不重复浪涌电流测试。 通过浪涌电流i t对其持续时间t积分∫i t2dt,即可求得I2t值。 8.门极平均值耗散功率(P G(A V)):在规定条件下,门极正向所允许的最大平均功率。 1)测试目的:在规定条件下,检验反向阻断三级晶闸管的门极平均功率额定值 2)测试条件:a)结温:125℃;b)门极功率:额定门极平均功率;c)测试持续时间:3S; d)主电路条件:阳,阴极间断路。 3)测量程序:a)被测器件加热到规定结温;b)从零缓慢调整电源的输出,使电流表和电压表指示的数字的乘积达到额定门极平均功率P G(A V),并保持3S时间,然后将电源的输出调回零;c)测试后,进行门极触发电流和电压测量,如无异常,则P G(A V)额定值得到确认。 9.反向重复峰值电流(I RRM):晶闸管加上反向重复峰值电压时的峰值电流。 10.断态重复峰值电流(I DRM):晶闸管加上断态重复峰值电压时的峰值电流。 1)测试目的:在规定条件下,测量晶闸管的断态重复峰值电压下的断态重复峰值

可控硅参数说明(精)

符号说明: VRRM--反向重复峰值电压:在控制极断路和额定结温的条件下,可以重复加在可控硅上的交流电压。此电压小于反向最高测试电压100V。反向最高测试电压,规定为反向漏电流急速增加,反向特性曲线开始弯曲时的电压。 V RSM--反向不重复峰值电压;在控制极断路和额定结温的条件下,不允许加在可控硅上的交流电压。 V DRM――断态重复峰值电压;断态重复峰值电压是在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压.国标规定重复频率为50H,每次持续时间不超高10ms。规定断态重复峰值电压V DRM为断态不重复峰值电压(即断态最大瞬时电压UDSM的90%.断态不重复峰值电压应低于正向转折电压Ubo。 IT(AV/ IF(AV--通态/正向平均电流;在环境温度+40℃和额定结温下,导通角不小于170°阻性负载电路中,允许通过的50Hz正弦半波电流的平均值。 I T(RMS, I F(RMS――通态/正向方均根电流;是指在额定结温,允许流过器件的最大有效电流值,用户在使用中须保证,在任何条件下流过器件的电流有效值,不超过对应壳温下的方均根电流值 I TSM,I FSM--通态/正向浪涌电流;指由于电路异常情况引起的并使结温超过额定结温的不重复性最大正向过载电流(半个正弦波t=10ms, 50Hz I2t--表示可控硅所通过的电流产生的能量,是电流的平方乘以时间,表示可控硅的发热特性。 P GM--门极峰值功率;门极触发电压与最大触发电流的乘积; P G(AV --门极平均功率;门极触发电压与正常触发电流的乘积; di/dt--通态电流临界上升率;指在额定结温下,可控硅能承受的最大通态电流上升率(如果电流上升太快,可能造成局部过热而使可控硅损坏

相关主题
文本预览