当前位置:文档之家› 大跨度桥梁实用几何非线性分析(1).

大跨度桥梁实用几何非线性分析(1).

大跨度桥梁实用几何非线性分析(1).
大跨度桥梁实用几何非线性分析(1).

大跨度桥梁实用几何非线性分析(1)

本文从简单实用的角度论述了空间杯系结构的几何非线性分析理论。文中分析了非线性有限元方法的求解过程,特别强调决定几何非线性收敛结果的关键问题,即由节点位移增量计算单元的内力增量。通过引入随转坐标系,论述了平面和空间梁单元小应变变形时单元内力增量的计算问题。用本文方法可以分析大跨度桥梁结构的六位移大旋转问题。并且用实桥算例进行了验证。

关键词:大跨度桥梁几何非线性实用分析非线性有限元小应变理论江阴长江大桥. 引言.

现代大跨度桥梁等工程结构的柔性特征已十分明显,对于这些结构考虑几何非线性的影响己必不可少。并且,计算机能力的大大提高也使得分析大型复杂结构的非线性问题成为可行。80年代国外对几何非线性问题的发展已相当完善[1,2],国内在这方面也做了不少的工作[4- 6]

在工程结构几何非线性分析中,按照参考构形的不同可分为TL (Total Lagranrian) 法和UL ( Updated Lagrangian) 法[1]。后来,引入随转坐标系后又分别得出CR (Co-rotational)-TL 法和CR- LU法[2,3],在工程中UL(或

CR-UL法应用较多。以前的文献大都对结构的几何刚度矩阵进行了复杂而详细的推导。从文中的分析可以发现,结构几何刚度矩阵的精确与否并不实质性地影响迭代收敛的最终结果,求解几何非线性问题的关键在于如何由节点位移增量准确地计算出单元的内力增量,而这一点以前文献都没有提到过。因此,本文的重点放在论述单元内力增量的计算上。

工程上很早就开始使用拖动坐标系来求解大跨度桥梁结构的大挠度问题,本文则把它应用到单元内力增量的计算中。从实质上说,这里的拖动坐标系与上面提到的随转坐标系没有区别。因此,在理论方法上,目前文中的方法可以归类到CR- UL法。但由于本文重点不在于详细介绍这种方法的理论体系,所以论述中均不再使用该名词。本文的目的主是通过简化复杂的几何非线性分析方法,推广该方法在实际工程中的应用。

二、非线性商限元求解过程对于工程结构的非线性问题,用有限元方法求解时的非线性平衡方程可写成以下的一般形式:

Fs( S) -P0 (S) =0 (l ) 其中,为节点的位移向量;Fs( S )为结构的等效节点抗力向量,它随节点位移及单元内力而变化;PO(S)为外荷载作用的等效节点荷载向量,为方便起见,这里暂时假定它不随节点位移而变化。

由于式( l )中的等效节点抗力一般无法用节点位移显式表示,故不可能直接对非线性平衡方程进行求解。但实际结构的整体切向刚度容易得到,所以通常应用Newton-

Raphson 迭代方法求解该问题。结构的整体切向刚度矩阵

KT 可表示

如下 dP8 KTdS (2) 式中,KT = KE 十KG 其中KE 为结构的整体弹性刚度矩阵,KG 为几何刚度矩 阵。

用混合Newton- Raphson 迭代方法求解结构非线性问题的基本过程如下: (1 )将等效节点荷载PO 分成n 步,△P0=PO/n ,计算并组集结构的整体切向 刚度矩阵,进入加载步循环;

(2) 求解节点位移增量;

(3) 计算各单元内力增量,修正单元内力;

(4) 更新节点坐标,计算节点不平衡力 R ;

⑸ 判断节点不平衡力R 是否小于允许值,如满足条件,则进入下一个加载步; 如不满足条件,重新计算结构的整体切向刚度矩阵,用

R 代替△ P0,回到第2

步; (6 )全部加载步完成之后,结束。

从上述求解过程中可见,最为关键的一步是第 3 步,即由节点位移增量计算单 元的内力增量。也可以说是由这一步决定了最终的收敛结果,以下将对此着重 论述。其实结构的整体切向刚度矩阵对结果并无实质性的影响,修正的 NetwRa phson 方法正是利用这一点来节省迭代计算的时间。

以前的文献对空间梁单元几何刚度矩阵的推导方面论述较多,都建立在一些假 定的基础上,这里就不详细说明。考虑到结构的整体切向刚度矩阵精确与否并 不改变最终结果,仅影响迭代收敛的速度,并且不是越精确的整体切向刚度矩 阵迭代收敛越快。

三、小应变时单元内力增百计算 在一般情况下,工程结构的几何非线性都属于小应变大位移(大平移、大转 动)问题。对于这类问题,单元内力增量的计算比较简单。平面梁单元是空间 梁单元发展的基础,故这里先分析平面梁单元的情况。

平面梁单元在整体坐标系(OXY 下从t 到t 十△t 时刻的变形情况。定义随转 坐标系

(oxy )的原点固定在单元的一端(i 端),x 轴始终保持沿i Tj 的直线 方向。可见,在随转坐标系中平面梁单元的自由度减少为三个( ux 0 i 0 j )。 从随转坐标系中的三个自由度可以看出,它们反映的是单元的真实变形情况, 与单元所经历的刚性位移无关。在用有限元方法求解非线性问题时,只将单元 尺寸划分得适当小,整体坐标系下的小应变大位移问题在单元随转坐标系中就 转化为小应变小位移问题,这一点可从非线性连续介质力学给出证明。这样, 随转坐标系下的受力变形情况就可近似地接线性处理,单元内力增量的计算也 就与线性情况一样,这里不再赘述。同时也正说明了工程中常用拖动坐标法计 算平面结构大变形问题的正确性。

止日0 步是

四、算例分析结合以上论述,编制了相应的非线性有限元计算程序。为验证本文方法和有限元程序,下面首先分析了45 度弯梁空间弯扭大位移问题。大跨度悬索桥在施工阶段的几何非线性比较明显,因此,必须准确地考虑,否则计算结果可能不正确。作为实桥算例,对江阴长江大桥在20%拼装率施工阶段的几何非线性问题进行了分析,并与Ansys 程序的计算结果相比较。

1.45 度弯梁空间弯扭六位移分析本例是ADINA中的45度弯梁大位移分析考题。该梁位于X一y平面内,梁根固定,在自由端沿Z方向受一个集中荷载的作用,梁因此发生空间弯扭大变形。

分析时将梁划分为8个单元,每步加载量为10.0。分别用ADINA AnsyS和本文程序计算了60 个加载步,各计算结果均基本上一致。梁自由端无量纲位置坐标在初始时刻,加载30 步与加载60步时的比较列于表1,可见三者相互较吻合。为了进行对比,都没有考虑剪切影响。为简洁起见,这里不指定专门的量纲单位。

2.江阴长江大桥非线性分析

江阴长江大桥是我国目前建成的最大跨度悬索桥。主跨跨度为1385m主梁为

宽36.9m,高3.0m的扁平状闭口钢箱梁。主缆相距32.5米,吊杆间距为1.6m,矢跨比为I /10.5。桥塔为门式框架结构,南北桥塔高分别为187m和184m桥面波置为R= 27710m的竖曲线。

摘本文从简单实用的角度论述了空间杯系结构的几何非线性分析理论。文中分析了非线性有限元方法的求解过程

本篇论文是由3C0M文档频道的网友为您在网络上收集整理饼投稿至本站的,论文版权属原作者,请不用于商业用途或者抄袭,仅供参考学习之用,否者后果自负,如果此文侵犯您的合法权益,请联系我们。

根据设计资料,建立了江阴长江大桥的计算模型。在成桥状态下,单根主缆的水平内力约为23878t ,单根吊杆的内力约为144t ,考虑到悬索桥在施工时主缆与塔顶有相对位移,计算模型中主缆与塔顶在顺桥向可自由移动,而其他方向均耦联。

悬索桥施工过程中分段安装主梁,小拼装率时各主梁段之间相互饺接。由于悬索桥在成桥状态的位置和内力一般为已知,施工状态均从成桥状态通过拆除梁段的方法确定。江阴长江大桥在成桥状态拆除两端梁段后,但未发生变形之前20%拼装率的初始状态。由于该初始状态的节点位置和单元内力均为己知,用以上的非线性有限元程序可得出20%拼装率变形后的施工平衡状态。在变形后的施工平衡状态下,跨中梁段随主缆发生了较大的烧曲,主跨两端的主缆形状比成桥状态时变化较明显。跨中竖向向下的位移为

2.595m,塔顶处的主缆发生

向外0.669m的位移。为验证该程序的计算结果,对上述同样的工况用AnsyS程序进行了分析。计算结果中跨中向下的位移为2.581m,塔顶处主缆向外的位移0.664m。从本文方法的变形和内力结果与Ansys程序计算结果的比较发现,两者均较吻合,这就验证了本文方法和非线性有限元程序的可靠性和有效性。

五、结语以上从简单实用的角度论述了空间杯系结构的几何非线性分析理论。通过对有限元求解几何非线性问题过程的分析,特别强调了用选代方法求解杯系结构几何非线性问题中的关键问题,即由节点的位移增量计算单元内力增量的重性。在引人随转坐标系之后,论述了小应变问题中单元内力增量的计算。从论述中可知,随转坐标系下的受力变形情况可近似地接线性处理,单元内力增量的计算也与线性情况一样,同时也说明了工程中常用拖动坐标法计算大跨度桥梁结构大变形问题的正确性。

对空间杆系结构用数值算例对本文方法进行了验证。为保证分析结果的正确性,用多个程序进行相互校核。

对江阴长江大桥在20%拼装率施工阶段的几何非线性问题进行了分析,分析结果与

An syS程序的计算结果吻合。从分析中可见,在小拼装率施工阶段,悬索桥跨中梁段随主缆发生了较大的挠曲,主跨两端的主缆形状比成桥状态时变化比较明显。

桥梁概念设计与分析理论

桥梁概念设计与分析理论 一:桥梁属性与结构形式 1.1桥梁的属性 科学:分析实验 桥梁工程{ 技术:研发应用 艺术:创造美学 1.2 桥梁结构的分类 用途:人行桥,公路桥,铁路桥,公铁两用桥,城市桥,管道桥,明渠桥 材料:石桥,木桥,钢桥,混凝土桥,预应力混凝土桥(主跨90米,在中小跨度范围内已占绝对有优势,在大跨度范围内它正在同钢桥展开激烈竞争。它主要承重结构用预应力钢筋混凝土结构的桥梁。附加预应力混凝土:预应力混凝土,为了弥补混凝土过早出现裂缝的现象,在构件使用(加载)以前,预先给混凝土一个预压力,即在混凝土的受拉区内,用人工加力的方法,将钢筋进行张拉,利用钢筋的回缩力,使混凝土受拉区预先受压力。这种储存下来的预加压力,当构件承受由外荷载产生拉力时,首先抵消受拉区混凝土中的预压力,然后随荷载增加,才使混凝土受拉,这就限制了混凝土的伸长,延缓或不使裂缝出现,这就叫做预应力混凝土。)钢——混凝土组合结构桥 结构形式:梁桥拱桥斜拉桥悬索桥组合桥斜拉—悬

索协作体系 规模跨径:小桥(8~30米) 中桥(30~100) 大桥(100~1000) 特大桥(大于1000) 1.3桥梁结构形式与合理跨度范围 (1)梁桥 简支梁桥的跨度一般不超过70M,最有竞争力的跨度范围50M以下 等截面连续桥梁的合理跨度范围在30~110M,优势跨度范围50~80 变截面连续桥梁或连续钢结构桥的合理跨度50~350M,最有竞争力的跨度范围100~300M (2)~ (3)拱桥合理跨度范围600M以下,最有竞争力40~450M (4)系杆拱桥合理40~800M 最有竞争力150~1200M (5)斜拉桥合理80~1500M 最有竞争力150~1200M (6)悬索桥合理200以上,500以上最有竞争力 二:桥梁设计准则 2.1 桥梁设计的基本目标 安全实用经济美观 2.2安全性和试用性 (1)承载能力极限状态 1 结构或构件达到材料极限强度

大跨度桥梁实用几何非线性分析.

大跨度桥梁实用几何非线性分析 一.引言.现代大跨度桥梁等工程结构的柔性特征已十分明显,对于这些结构考虑几何非线性的影响己必不可少。并且,计算机能力的大大提高也使得分析大型复杂结构的非线性问题成为可行。80年代国外对几何非线性问题的发展已相当完善[1,2],国内在这方面也做了不少的工作[4-6]在工程结构几何非线性分析中,按照参考构形的不同可分为TL(Total Lagranrian) 法和UL(Updated Lagrangian)法[1]。后来,引入随转坐标系后又分别得出 CR(Co-rotational)-TL法和CR-LU法[2,3],在工程中UL(或CR-UL)法应 用较多。以前的文献大都对结构的几何刚度矩阵进行了复杂而详细的推导。从文中的分析可以发现,结构几何刚度矩阵的精确与否并不实质性地影响迭代收敛的最终结果,求解几何非线性问题的关键在于如何由节点位移增量准确地计算出单元的内力增量,而这一点以前文献都没有提到过。因此,本文的重点放在论述单元内力增量的计算上。工程上很早就开始使用拖动坐标系来求解大跨度桥梁结构的大挠度问题,本文则把它应用到单元内力增量的计算中。从实质上说,这里的拖动坐标系与上面提到的随转坐标系没有区别。因此,在理论方法上,目前文中的方法可以归类到CR-UL法。但由于本文重点不在于详细介绍这种方法的理论体系,所以论述中均不再使用该名词。本文的目的主要是通过简化复杂的几何非线性分析方法,推广该方法在实际工程中的应用。二、非线性商限元求解过程对于工程结构的非线性问题,用有限元方法求解时的非线性平衡方程可写成以下的一般形式:Fs(δ)-P0(δ)=0 (l)其中,为节点的位移向量;Fs(δ)为结构的等效节点抗力向量,它随节点位移及单元内力而变化;PO(δ)为外荷载作用的等效节点荷载向量,为方便起见,这里暂时假定它不随节点位移而变化。由于式(l)中的等效节点抗力一般无法用节点位移显式表示,故不可能直接对非线性平衡方程进行求解。但实际结构的整体切向刚度容易得到,所以通常应用Newton-Raphson迭代方法求解该问题。结构的整体切向刚度矩阵KT可表示如下dPO=KTdδ (2)式中,KT= KE十KG,其中KE 为结构的整体弹性刚度矩阵,KG为几何刚度矩阵。用混合Newton-Raphson迭代方法求解结构非线性问题的基本过程如下:(1)将等效节点荷载PO分成n 步,ΔP0=PO/n,计算并组集结构的整体切向刚度矩阵,进入加载步循环;(2)求解节点位移增量;(3)计算各单元内力增量,修正单元内力;(4)更新节点坐标,计算节点不平衡力R;(5)判断节点不平衡力R是否小于允许值,如满足条件,则进入下一个加载步;如不满足条件,重新计算结构的整体切向刚度矩阵,用R代替ΔP0,回到第2步;(6)全部加载步完成之后,结束。从上述求解过程中可见,最为关键的一步是第3步,即由节点位移增量计算单元的内力增量。也可以说是由这一步决定了最终的收敛结果,以下将对此着重论述。其实结构的整体切向刚度矩阵对结果并无实质性的影响,修正的NetwRaphson方法正是利用这一点来节省迭代计算的时间。以前的文献对空间梁单元几何刚度矩阵的推导方面论述较多,都建立在一些假定的基础上,这里就不详细说明。考虑到结构的整体切向刚度矩阵精确与否并不改变最终结果,仅影响迭代收敛的速度,并且不是越精确的整体切向刚度矩阵迭代收敛越快。三、小应变时单元内力增百计算在一般情况下,工程结构的几何非线性都属于小应变大位移(大平移、大转动)问题。对于这类问题,单元内力增量的计算比较简单。平面梁单元是空间梁单元发展的基础,故这里先分析平面梁单元的情况。平面梁

大跨度桥梁设计复习题答案讲解

《大跨度桥梁设计》复习题 1.拱桥的受力特点? 拱桥按照是否对墩台产生水平推力,可分为有推力拱桥和无推力拱桥,有推力拱桥的主要承重构件是主拱肋(圈),受压为主;无推力拱桥也成为系杆拱桥,是梁—拱组合体系桥,其主要承重构件是拱肋与系杆,拱肋受压,系杆受压。拱脚处有水平推力,从而使拱主要受压,与梁桥比使拱内弯矩分布大为改变(减小)。 2.中承式拱桥的行车道位于拱肋的中部,桥面系(行车道、人行道、栏杆等)一部分用吊杆悬挂在拱肋下,一部分用钢架立柱支承在拱肋上。 3.简支梁和连续梁桥可自由收缩,收缩使结构只发生变形,但不产生内力;固定梁、连续刚构桥等超静定结构,混凝土收缩产生变形和内力。 4.大跨径混凝土连续梁桥采用悬臂施工法施工的过程中,墩梁临时固结,主梁从墩顶向两边同时对称分段浇筑或拼装,直至合龙;合龙之前,结构受力呈T构状态,属静定结构,梁的受力与悬臂梁相同。 5.大跨径桥梁按结构体系分类? 梁桥、拱桥、悬索桥、斜拉桥、及其他组合体系桥。 6.公路桥梁的车道荷载由哪两种荷载组成,当计算剪力效应时,集中荷载标准值应乘以什么系数? 车道荷载由均布荷载和集中荷载组成。 公路1级车道荷载的均布荷载标准值为q=10.5KN/m,集中荷载标准值为P kk按以下规定选取:桥涵计算跨径≤5m时,P=180 KN;桥涵计算跨径≥50m时,P=360 KN;桥涵计算跨径介kk于上述跨径之间时,采用直线内插法求得:P=(4l+160)KN。计算剪力效应时,上述集中荷载标准值应乘以k系数1.2. 公路2级车道荷载的均布荷载标准值q,集中荷载标准值P,为公路1级车道荷载的0.75倍。kk 车道荷载的均布荷载标准值应满布于使结构产生最不利荷载效应的同号影响线上,集中荷载标准值只有一个,作用于相应影响线的峰值处。 7.连续梁桥施工方法主要分为两大类:整体施工法和分段施工法。中小跨度桥梁施工方法主要采用整体施工法,包括满堂支架法、预制拼装法;大跨度桥梁主要采用分段施工法,包括悬臂施工法、逐跨施工法、顶推施工法、 转体施工法。桥梁分段施工有三种基本形式:纵向分段、横向分段(又称装配式桥梁施工,主要用于中小跨径桥)、竖向分层施工(用于组合桥梁施工,也用于大跨拱桥主拱肋的现浇或安装)。 8.悬浮体系斜拉桥的特点? 塔墩固结,塔梁分离,主梁除两端支承于桥台处,全部用斜拉索吊起,其结构形式相当于在单跨

大跨度桥梁的发展趋势

大跨度桥梁的发展趋势 随着人类交往的日益增加,人类文明成果更快更广泛的传播,加快了桥梁技术的进步,19世纪钢筋混领土的发明应用,使桥梁技术产生的革命性的飞跃,综观大跨径桥梁的发展趋势,可以看到世界桥梁建设必将迎来更大规模的建设高潮。 在中国国道主干线同江至三亚就有5个跨海工程、杭州湾跨海工程、珠江口伶仃洋跨海工程,以及琼州海峡工程。其中难度最大的有渤海湾跨海工程,海峡宽57公里,建成后将成为世界上最长的桥梁;琼州海峡跨海工程,海峡宽20公里,水深40米,海床以下130米深未见基岩,常年受到台风、海浪频繁袭击。 大跨度桥梁向更长、更大、更柔的方向发展 1、研究大跨度桥梁在气动、地震和行车动力作用下其结构的安 全和稳定性,拟将截面做成适应气动要求的各种流线型加劲梁,以增大特大跨度桥梁的刚度。 2、采用以斜缆为主的空间网状承重体系;采用悬索加斜拉的混合体系。 3、采用轻型而刚度大的复合材料做加劲梁,采用自重轻、强度高的碳纤维材料做主缆。 新材料的开发和应用 新材料应具有高强、高弹模、轻质的特点,研究超高强硅粉和聚合物混凝土、高强双相钢丝纤维增强混凝土、纤维塑料等一系列材

料取代目前桥梁用的钢和混凝土。 在设计阶段采用高度发展的计算机 计算机作为辅助手段,进行有效的快速优化和仿真分析,运用智能化制造系统在工厂生产部件,利用GPS和遥控技术控制桥梁施工。桥梁建成交付费用 使用后将通过自动监测和管理系统保证桥梁的安全和正常运行,一旦发生故障或损伤,将自动报告损伤部位和养护对策。 大型深水基础工程 目前世界桥梁基础尚未超过100米深海基础工程,下一步须进行100—300米深海基础的实践。 重视桥梁美学及环境保护 桥梁是人类最杰出的建筑之一,闻名遐尔的美国旧金山金门大桥、澳大利亚悉尼港桥、英国伦敦桥、日本明石海峡大桥、中国上海杨浦大桥、南京长江二桥、香港青马大桥等这些著名大桥都是一件件宝贵的空间艺术品,成为陆地、江河、海洋和天空的景观,成为城市标志性建筑。宏伟壮观的澳大利亚悉尼港桥与现代化别具一格的悉尼歌剧院融为一体,成为今日悉尼的象征。因此,21世纪的桥梁结构必将更加重视建筑艺术造型,重视桥梁美学和景观设计,重视环境保护,达到人文景观同环境景观的完美结合。

纸桥的结构与受力分析

纸桥的结构与受力分析 摘要:我国古代的桥,形式种类繁多发展演变过程漫长,近代以来由于高科技的勃然兴起,桥梁逐 渐成为一门专业学科,其技术进步更是突飞猛进,形式更为复杂多样。桥梁作为结构的一大主要应用,简洁地展现了力学之美。制作纸桥可以为今后桥梁施工技术提供思路。所以纸桥的制作、研究意义重大。本文对纸桥桥梁结构的特点以及影响桥梁的简单因素进行初步分析。 关键字:纸桥、桥梁结构、受力分析。 引言: 桥梁是架设在江河湖海上,使车辆,行人等能顺利通过的建筑物。桥梁一般由上部结构、下部结构和附属建筑物组成,上部结构主要指桥跨结构和支座系统;下部结构包括桥台、桥墩和基础;附属建筑物则指桥头搭板、锥形护坡、护岸、导流工程等。现在国内外的桥梁建设都处于快速发展阶段,像我国的武汉长江大桥,黄埔的跨海大桥等等都取得了非凡的成就,但桥梁的建设问题依然普遍存在,为此,我们要着重设计桥梁的结构,要设计出更加稳定的构造,解决桥梁中间垮塌和部分桥面出现断裂的问题。通过设计不同结构的纸桥,参考着经典大桥桥的优秀设计,并结合自己的思考和现代生活的特点,设计出简约、稳固、更加符合实际需求的大桥。

试验方法: 一、桥的整体结构设计:我们小组一共想出了三种桥梁的结构。一是三层的向两边分担压力的构型;二是拱形结构;三是中间穿插着连接起来的平桥。经过权衡利弊,我们小组决定选用第三种方案。该方案是在地面两侧建两个大型桥墩,在中间也同样建一个大型桥墩。然后通行部分是由长细纸筒做成。 二、前期实验:分别用一张打印纸从不同形式折成不同形状的单个桥体结构部分,然后在桥面上放砝码,记录数据。一次用不同形状折的单体进行实验,做成表格,比较各个的承重数据。最后得出最好的承重结构为由纸的对角叠成的圆柱套着三棱柱的单体,此单体结构承重效果在同等条件下经测试最好,并由此开始制作桥体。 三、制作步骤:首先制作长细纸筒:先把纸卷成细的卷,要卷紧。这个卷能承受的压力不会很大,而且越长承受的压力就越小,越易被压坏。但是卷能承受的拉力是很大的,调整结构把这些卷全变成受拉构件。在非要受压不可时,把纸卷截的短些,用很多细的纸卷在这个受压的地方共同承受压力。接着做短圆纸筒:以A4 纸的窄边为“母线”卷成。最后做底面:每张纸先用胶水加固(全部涂过后风干),再涂一次卷成纸卷再相互错开用胶水黏结。最后将底面与纸筒固定好,再将底面与桥面固定,分别固定在桥俩端及中间部分。大概步骤即是这样:先固定主要框架,然后是支架,其次是桥身上的各处桥梁,最后铺好桥面。

大跨度桥梁

大跨度桥梁 1.大跨度桥梁现状及未来发展趋势 1.1斜拉桥 斜拉桥是现代大跨度桥梁的重要结构形式,特别是在跨越峡谷、海湾、大江、大河等不易修筑桥墩和由于地质的原因不利于修建地锚的地方,往往选择斜拉桥的桥型。它的受力体系包括桥面体系,支承桥面体系的缆索体系,支承缆索体系的桥塔。斜拉桥不仅能充分利用钢材的抗拉性能、混凝土材料的抗压性能,而且具有良好的抗风性能和动力特性。它以其跨越能力大,结构新颖而成为现在桥梁工程中发展最快,最具有竞争力的桥型之一。 斜拉桥作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。 斜拉桥是我国大跨径桥梁最流行的桥型之一。目前为止建成或正在施工的斜拉桥共有30余座,仅次于德国、日本,而居世界第三位。而大跨径混凝土斜拉桥的数量已居世界第一。 中国至今已建成各种类型的斜拉桥100多座,其中有52座跨径大于200米。20世纪80年代末,我国在总结加拿大安那西斯桥的经验基础上,1991年建成了上海南浦大桥(主跨为423米的结合梁斜拉桥),开创了中国修建400米以上大跨度斜拉桥的先河。我国已成为拥有斜拉桥最多的国家。 今后斜拉桥的体系多以漂浮式或半漂浮为主。半漂浮式可用柔性墩或在塔上设水平拉索阻止桥面过分的漂浮,所有这些都是为了抵抗温度变形及地震。 斜拉桥的发展趋势主要表现在如下几个方面: 1)桥面继续轻型化,跨径继续增大,中小跨径也具有竞争力 2)塔架构的多样化 3)多跨多塔斜拉桥 1.2悬索桥 悬索桥是特大跨径桥梁的主要形式之一,除苏通大桥、香港昂船洲大桥这两座斜拉桥以外,其它的跨径超过1000m以上的都是悬索桥。如用自重轻、强度很大的碳纤维作主缆理论上其极限跨径可超过8000m。 迄今为止世界上已出现三个悬索桥大国,即美国、英国与日本。全球各类悬索桥的总数已超过100座。 美国在悬索桥的发展上花了将近100年的时间,技术上日趋成熟,为全球悬索桥的发展奠定了基础,并首先使悬索桥成为跨越千米以上的唯一桥型。美国的悬索桥由于出现较早,在风格上有与其时代相适应的特色,主要有一下各点: (1)主缆采用AS法架设。 (2)加劲梁采用非连续的钢桁梁,适应双层桥面,并在桥塔处设有伸缩缝。 (3)桥塔采用铆接或栓接钢结构。 (4)吊索采用竖直的4股骑跨式。 (5)索夹分为左右两半,在其上下采用水平高强螺栓紧固。 (6)鞍座采用大型铸钢件。 (7)桥面板采用RC构件。 英国的悬索桥由于出现较晚些,顾自成流派。其主要特点如下: (1)采用流线型扁平钢箱梁作为加劲梁。 (2)早期采用铰接斜吊索。 (3)索夹分为上下两半,在其两侧采用垂直于主缆的高强螺栓紧固。 (4)桥塔采用焊接钢结构或钢筋混凝土结构。

结构力学 桥梁结构分析

桥梁结构分析 桥梁结构分析 摘要:设计桥梁可有多种结构形式选择:石料和混凝土梁式桥只能跨越小河;若以受压的拱圈代替受弯的梁,拱桥就能跨越大河和峡谷;若采用钢桁架可建造重载铁路大桥;若采用主承载结构受拉的斜拉桥和悬索桥,不仅轻巧美观,而且是飞越大江和海峡特大跨度桥梁的优选形式。 关键词:梁式桥,拱式桥,悬索桥,桁架桥,斜拉桥 著名桥梁专家潘际炎说:“海洋,是孕育地球生命的产床;河流,是孕育人类文明的摇篮;而桥,则是联系人类文明的纽带。”这纽带越来越宏伟,越来越精致,越来越艺术!建国以

来中国的桥梁工程事业飞速发展。随着时代前进的步伐,人们对桥梁工程提出了更高的要求,对“适用、安全、经济、美观”的桥梁设计原则赋以更新的内容。桥梁工程无论是现在还是以后都不会停步的,它的发展前景会更广阔。通过半个学期的结构力学的学习,我对桥梁结构及他们的受力特点有了一定的认识。理论联系实际,我通过对各种结构的对比分析,进一步加深了印象,对以后的学习奠定了基础。 1.梁式桥 工程实例——洛阳桥,又称万安桥,在福建泉州市区东北郊洛阳江入海处,该桥是举世闻名的梁式海港巨型石桥,为国家重点文物保护单位,为国家重点文物保护单位。 梁式桥的主梁为主要承重构件,受力特点为主梁受弯。梁式桥的上部结构在铅垂荷载作用下,支点只产生竖向反力,支座反力较大,桥的跨中处截面弯矩很大。所以由于这种特性,梁式桥的跨度有限。简支梁桥合理最大跨径约20 米,悬臂梁桥与连续梁桥合宜的最大跨径约60-70 米。采用钢筋砼建造的梁桥能就地取材、工业化施工、耐久性好、适应性强、整体性好且美观;这种桥型在设计理论及施工技术上都发展得比较成熟。但是由于制造梁式桥的材料多为石料与混凝土,随跨度的增加其自重的增加也比较显著。因此梁式桥广泛用于中、小跨径桥梁中。 结构本身的自重大,约占全部设计荷载的30%至60%,且跨度越大其自重所占的比值更显著增大,大大限制了其跨越能力。随着跨度的增大,桥的内力也会急剧增大,混凝土的抗弯能力很低,较难满足强度要求。弯矩产生的正应力沿横截面高度呈三角分布,中性轴附近应力很小,没有充分利用材料的强度。 2.拱式桥 工程实例——赵州桥,坐落在河北省赵县洨河上。建于隋代,由著名匠师李春设计和建造,距今已有约1400年的历史,是当今世界上现存最早、保存最完善的古代敞肩石拱桥。1961年被国务院列为第一批全国重点文物保护单位。因赵州桥是重点文物,通车易造成损坏,所以不允许车辆通行。 拱式桥拱肋为主要承重构件,受力特点为拱肋承压、支承处有水平推力。从几何构造上讲,拱式结构可以分为三铰拱、两铰拱和无铰拱。分析三角拱的受力特点,在竖向荷载下,三角拱存在水平推力,因此,三角拱横截面的弯矩小于简支梁的弯矩。弯矩的降低,拱能更充分的发挥材料的作用,当跨度较大、荷载较重时,采用拱比采用梁更为经济合理。

大跨度桥梁考核作业详解

2016级大跨度桥梁考查题(每题10分,共100分) 一、简述悬索桥中主缆无应力索长的计算思路和方法? 答:悬索桥中、边跨中,各索股由索夹紧箍成一条主缆, 因而,通过求解主缆中线再 求索股的无应力长度。但是,悬索桥不同于其他的桥型,其主缆线形并不能由设计者人为确定,而需根据成桥状 态的受力而定。所以,先确定成桥状态主缆各控制点(IP 点和锚点)的位置、矢跨比和主缆的截面几何形状参数、材料参数等,再采取解析迭代法,确定主缆的线形,并求解主缆的缆力和主缆中线的有、无应力长度,然后进一步求解包括锚跨在内的索股长度。 主缆自由悬挂状态下,索型为悬链线。取中跨曲线最低点 为坐标原点,则对称悬链线方程为: 式中:c=H/q ;H 为索力水平投影;q 为主缆每延米重。 主缆自重引起的弹性伸长量为: 主缆无应力长度为: 210S S S S ?-?-= 根据成桥状态主缆的几何线型、桥面线型,求得各吊索的

有应力长度,扣除弹性伸长量,即得吊索无应力长度。 二、简述悬索桥中主索鞍为何要设置边跨方向的预偏? 答:在空缆状态,由于桥塔相邻跨主缆的无应力长度不同,导致相邻跨主缆水平分力不等。此时,若索鞍仍保持在成桥位置,会使主塔承受较大的不平衡力,需要通过桥塔自身变形来平衡。然而在实际情况中,靠主塔变形改变跨度,减小不平衡力是不现实的,需要通过索鞍的偏移或偏转来调整各跨主缆的张力,使相邻跨主缆在索鞍处保持平衡状态,此时的偏移量或偏转量就是索鞍的预偏量。 悬索桥桥塔设计的合理成桥状态是塔顶没有偏位,塔底没有弯矩,此时塔顶相邻跨主缆水平分力相等。在空缆状态,由于桥塔相邻跨主缆的无应力长度不同,导致相邻跨主缆水平分力不等。此时,若索鞍仍保持在成桥位置,会使主塔承受较大的不平衡力,需要通过桥塔自身变形来平衡。然而在实际情况中,靠主塔变形改变跨度,减小不平衡力是不现实的,需要通过索鞍的偏移或偏转来调整各跨主缆的张力,使相邻跨主缆在索鞍处保持平衡状态。 三、简述主缆和吊索的安全系数一般如何设计取值?

桥梁设计存在的主要问题

桥梁设计存在的主要问题 桥梁设计存在的主要问题 现在,国内的结构设计过程中,有这样的倾向:设计中考虑强度多而考虑耐久性少;重视强度极限状态而不重视使用极限状态,而结构在整个生命周期中最重要 。 的问题包括材料强度不足和施工工艺不合格等;也有个别桥梁存在诸如偷工减料、以次充好等严重的管理问题,更是对桥梁安全造成致命的损害。 而大量的桥梁在远没有达到预期使用寿命时,出现了影响正常使用的病害与劣化;特别是一些桥梁在只使用了几年、甚至刚建成不久就出现严重的耐久性不足的问题,这也与施工质量低下有重要关系,典型的问题有钢筋保护层不足及目前

广泛存在于施工现场的严重的构件开裂问题(主要原因包括:水泥选用、混凝土配合比、振捣、养护不当及预应力施加不合理等)。这些施工上的缺陷虽然短期不会对桥梁的正常使用产生明显的影响,但却会对结构的长期耐久性产生非常不利的危害。 2)设计理论和结构构造体系不够完善 在承认施工存在问题的同时,也不可否认,在桥梁设计领域,特别是关于 和构造等方面的要求。规范再详细也不能包罗本应由设计人员解决的各种问题、规范更新得再快也适应不了新认识、新技术、新材料快速发展对结构提出的各种新的要求。因此,合理可靠的结构设计除了满足规范的要求外,还要求设计人员具有对结构本性的正确认识、丰富的经验和准确的判断。 需要改进和努力的方向

1)应该更加重视结构的耐久性问题 桥梁在建造和使用过程中,一定会受到环境、有害化学物质的侵蚀,并要承受车辆、风、地震、疲劳、超载、人为因素等外来作用,同时桥梁所采用材料的自身性能也会不断退化,从而导致结构各部分不同程度的损伤和劣化。在大跨桥梁领域,国内从上世纪80年代以来,修建了大量的斜拉桥;虽然迄今为止出现倒塌或 强调使结构易于检查、维修,以保证桥梁的安全使用、尽可能地减少维修费用,取得了较好的综合经济效益。实际上,国内外的研究和实践都表明,结构耐久性对于桥梁的安全运营和经济性起着决定性作用。 2)重视对疲劳损伤的研究 桥梁结构所承受的车辆荷载和风荷载都是动荷载,会在结构内产生循环变

城市大跨度桥梁施工的要点分析正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.城市大跨度桥梁施工的要点分析正式版

城市大跨度桥梁施工的要点分析正式 版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 摘要:随着城市经济的快速发展,大跨度桥梁在城市当中越来越多的出现,但是大跨度桥梁的施工技术要求高、难度大,对施工过程中的质量控制和管理提出了更高的要求,在施工过程中需要做好几何、应力、稳定和影响因素控制,但是大跨度桥梁本身就有很多种,这无疑增加了施工技术难度。本文根据已有的研究资料详细论述了大跨度桥梁施工过程中应该注意的一些问题,在详细分析影响其施工质量因素的基础上,提出了一些施工质量方面的对策建议,以期能够提高城市大跨度

桥梁的施工水平。 关键词:大跨度;桥梁;施工 1.影响大跨度桥梁施工质量的因素分析 从实践的角度来看,影响大跨度桥梁施工质量的因素有很多,这些因素主要表现在施工材料、技术管理、设备运行等方面上,在大型桥梁施工过程当中应该在做好施工质量控制与过程管理的基础上,要针对影响施工质量的一些重点因素,采取专门的施工管理措施,保障桥梁施工的各个重点控制部分的施工质量,保证整个施工过程中桥梁的质量都处于良好的控制状况。在大型桥梁施工当中,目前应力混凝土结构箱梁与灌注桩是桥梁施工应用最为

结构设计大赛之桥梁模型设计

结构设计大赛之桥梁模型设计戴洁 (广东交通职业技术学院,广东广州510650) 摘要:文中从结构设计大赛的模型要求及比赛加载方式分析入手,提出桥梁模型的设计方案构思,选择结 构方案.并进一步对模型进行了强度、刚度和稳定性受力分析。试验证明本次设计制作的桥梁模型非常坚固, 承受极限荷载接近于封顶值50 kg。 1桥梁模型设计 1.1模型要求及加载方式分析 结构设计大赛拟设计桥梁结构模型。桥梁结构模型设计尺寸要求为:桥面总长l 000 mln;桥面高不低于120 toni:桥面总宽160~180rnITl;桥面净空高度不小于200 toni:最大跨径不小于400 mm。尺寸要求体现了桥梁设计的桥下净空和桥面净空等功能要求。比赛加载方式为动静载结合方式,初赛要求徒手将一辆l5 kg的小车从桥头拉至最大跨的跨中位置.并在该位置停留不少于5 S 然后拉到桥部。模型不至于失效方可进入决赛。决赛采用跨中集中力加载方式,初始荷载为20 ,荷载增加梯度为5 k 次,封项荷载为50 。每次加载后停留5 S。模型不失效即加载成功。模型不失效的标准:模型强度足够、不失去整体承载力:模型跨中挠度不超过l5 mm。小小桥模型须承受l5~50 kg的重量,由此带来的跨中弯矩较大,承载亦不易。但更

难控制的还是弯曲变形,挠度不超出15 mln即要求模型具有足够的抗弯刚度。 1.2材料分析 参赛的结构模型要求采用组委会统一提供的绘图纸、棉线和乳胶。主体材料为绘图纸.辅助材料为棉线和乳胶。单张的绘图纸只能承受少量拉力,不能作为受弯、受压构件,即使多张绘图纸叠放具有抗弯强度.也不能提供足够的抗弯刚度。要使纸构件提供足够的强度和刚度.一种方法将纸卷成圆柱形.作成圆形梁和圆形柱:另一种方法将纸张切片叠成一定厚度并粘在一起.作成一定高度的薄梁.可以用作桥面的抗弯构件。但从整体结构上必须布置成纵、横梁网格系。棉线抗拉能力强,不能受压.只能用来做受拉构件,吊(拉)桥面或捆绑节点,增强节点强度。白乳胶主要起粘结作用。 1.3结构选型与方案构思 鉴于比赛的加载重量大。且挠度变形量控制严格,桥型结构不能采用单一的梁桥、拱桥、悬索桥,而必须采用组合体系桥梁。为使桥面平整,便于行车,主体结构采用梁式桥型。为了增强模型的整体抗弯强度和抗弯刚度.布置斜拉杆(索)或垂直吊杆(索)。用卷成圆柱形的纸杆作为刚性斜拉杆或吊杆.节点用棉线捆绑牢固,做成类似斜拉桥的板拉桥刚性拉杆。桥面下可用拱形结构支撑桥面.也可以采用桥墩加斜撑辅助支撑桥面。拱形结构受力合理.但制作困难。下部结构主要采用实心的圆柱形纸杆作桥墩.由于直径有限(直径大时耗材多),难以保证桥墩的稳定性,而空心纸卷制作起来有困难.也不能提供足够的抗压强度,所以桥墩结构上必须加强各杆件的横向联系.以增强桥梁的整体稳定性。主孔纵向设计为梁式桥结合“A” 型塔斜拉桥。主

大跨度桥梁实用几何非线性分析(1).

大跨度桥梁实用几何非线性分析(1) 本文从简单实用的角度论述了空间杯系结构的几何非线性分析理论。文中分析了非线性有限元方法的求解过程,特别强调决定几何非线性收敛结果的关键问题,即由节点位移增量计算单元的内力增量。通过引入随转坐标系,论述了平面和空间梁单元小应变变形时单元内力增量的计算问题。用本文方法可以分析大跨度桥梁结构的六位移大旋转问题。并且用实桥算例进行了验证。 关键词:大跨度桥梁几何非线性实用分析非线性有限元小应变理论江阴长江大桥 一. 引言. 现代大跨度桥梁等工程结构的柔性特征已十分明显,对于这些结构考虑几何非线性的影响己必不可少。并且,计算机能力的大大提高也使得分析大型复杂结构的非线性问题成为可行。80 年代国外对几何非线性问题的发展已相当完善[1,2],国内在这方面也做了不少的工作[4-6] 在工程结构几何非线性分析中,按照参考构形的不同可分为TL(Total Lagranrian) 法和UL(Updated Lagrangian) 法[1]。后来,引入随转坐标系后又分别得出CR (Co-rotational)-TL 法和CR- LU法[2,3],在工程中UL (或CR-UL法应用较多。以前的文献大都对结构的几何刚度矩阵进行了复杂而详细的推导。从文中的分析可以发现,结构几何刚度矩阵的精确与否并不实质性地影响迭代收敛的最终结果,求解几何非线性问题的关键在于如何由节点位移增量准确地计算出单元的内力增量,而这一点以前文献都没有提到过。因此,本文的重点放在论述单元内力增量的计算上。 工程上很早就开始使用拖动坐标系来求解大跨度桥梁结构的大挠度问题,本文则把它应用到单元内力增量的计算中。从实质上说,这里的拖动坐标系与上面提到的随转坐标系没有区别。因此,在理论方法上,目前文中的方法可以归类到CR- UL 法。但由于本文重点不在于详细介绍这种方法的理论体系,所以论述中均不再使用该名词。本文的目的主是通过简化复杂的几何非线性分析方法,推广该方法在实际工程中的应用。 、非线性商限元求解过程对于工程结构的非线性问题,用有限元方法求解时的非线性平衡方程可写成以下的一般形式: Fs( S) -P0 (S) =0 (l ) 其中,为节点的位移向量;Fs( S )为结构的等效节点抗力向量,它随节点位移及单元内力而变化;PO(S )为外荷载作用的等效节点荷载向量,

大型桥梁及施工外文翻译--大跨度桥梁

Large Span Bridge 1.Suspension Bridge The suspension bridge is currently the only solution in excess of 600 m, and is regarded as competitive for down to 300. The world’s longest bridge at present is the Verrazano Narrows bridge in New York. Another modern example is the Severn Bridge in England. The components of a suspension bridge are: (a) flexible cables, (b) towers, (c) anchorages, (d) suspenders, (e) deck and ,(f) stiffening trusses. The cable normally consists of parallel wires of high tensile steel individually spun at site and bound into one unit .Each wire is galvanized and the cable is cover with a protective coating. The wire for the cable should be cold-drawn and not of the heat-treated variety. Special attention should be paid to aesthetics in the design of the rowers. The tower is high and is flexible enough to permit their analysis as hinged at both ends. The cable is anchored securely anchored to very solid anchorage blocks at both ends. The suspenders transfer the load form the deck to the cable. They are made up of high tensile wires and are normally vertical. The deck is usually orthotropic with stiffened steel plate, ribs or troughs,floor beam, etc. Stiffening trusses, pinned at the towers, are providing. The stiffening system serves to control aerodynamic movements and to limit the local angle changes in the deck. If the stiffening system is inadequate, torsional oscillations due to wind might result in the collapse of the structure, as illustrated in the tragic failure in 1940 of the first Tacoma Narrows Bridge. The side span to main span ratio varies from 0.17 to 0.50 .The span to depth ratio for the stiffening truss in existing bridge lies between 85 and 100 for spans up to 1,000m and rises rather steeply to 177. The ratio of span to width of deck for existing bridges ranges from 20 to 56. The aerodynamic stability will have be to be investigated thoroughly by detailed analysis as well as wind tunnel tests on models. 2.The cable-stayed bridge During the past decade cable-stayed bridges have found wide application, s\especially in Western Europe, and to a lesser extent in other parts of the world. The renewal of the cable-stayed system in modern bridge engineering was due to the tendency of bridge engineering in Europe, primarily Germany, to obtain optimum structural performance from material which was in short supply-during the post-war years. Cable-stayed bridges are constructed along a structural system which comprises an

钢桁架桥的结构设计与分析

钢桁架桥的结构设计与分析 1、概述 钢桁架桥以其跨越能力强、施工速度快、承载能力强、耐久性好普遍应用于铁路桥梁。长期以来,由于钢材价格高,材料养护费用高,钢桁架桥梁在公路领域应用较少。近年来,随着我国炼钢水平的提高,国产的钢材品质已经完全能满足结构安全的需要,同时随着钢结构防腐技术的提高,钢结构桥梁越来越多的在公路工程领域得到应用。 相比较我国当前100m左右中等跨径常用的桥型如连续梁、系杆拱、矮塔斜拉桥等结构,钢桁架桥梁虽然建筑成本高,但刨去成本控制的因素,钢桁架桥具有以下的几点优越性:1.建筑高度低,由于钢桁架结构主桁主要由拉杆和压杆构成,对杆件界面的抗弯刚度要求不大,因此钢桁架的建筑高度由横梁控制,在桥梁宽度不是非常大时可极大的降低桥梁建筑高度,尤其适用于对桥梁建筑高度有严格限制的桥梁;2.施工周期短,速度快。钢桁架施工可在工厂制作杆件,运到现场拼装成桥,可采用顶推和支架拼装等方法,这使它在很多工期较紧的工程(如重要道路的桥梁改建)和跨越重要道路的跨线桥上成为桥型首选之一;3.随着钢结构防腐技

术的提高,钢桁架桥的耐久性大为提高,同时钢材作为延性材料,结构安全性较混凝土桥梁高。正因为钢桁架桥梁的这几方面的优点,桁架桥梁成为特定条件下的经济而合理的桥型选择。 2、结构设计 公路桥位于江苏省境内,正交跨越京杭大运河,河口宽95m,通航净空要求90x7m,桥梁主跨采用97m,由于桥梁中心至桥头平交处距离仅140余米,若采用其他结构纵坡将达到5%以上,经综合考虑,主桥采用97m下承式钢桁架结构。 2.1主桁 主桁采用带竖杆的华伦式三角形腹杆体系,节间长度5.35m,主桁高度8m,高跨比为1/12.04。两片主桁中心距为8.6m,宽跨比为1/11.2,桥面宽度为8m。

最新大跨度桥梁中几何非线性综述1

大跨度桥梁中几何非线性综述1

大跨度桥梁中几何非线性综述 摘要:随着桥梁跨度的不断增加,非线性因素对结构的影响也越来越大。本文首先对三种非线性因素进行了较为详细的介绍,并且对斜拉桥、悬索桥和拱桥等受非线性影响较为明显的三种桥梁进行了非线性分析。文章的最后介绍了目前通用的七种有限元程序对于非线性问题的考虑程度。 关键词:大跨度桥梁、非线性、有限元分析 引言 桥梁(指悬索桥和斜拉桥)的几何非线性源于四个方面:1、恒载初始内力; 2、斜缆垂度效应; 3、梁一柱效应; 4、大变形效应。 普通的结构计算位移和内力时并不需要考虑自重的影响,但是对于这两种桥梁,恒载作用下,在索中产生巨大的拉力,对结构的整体刚度影响较大,从而对结构的位移、内力有影响,解决方法是:在刚度矩阵中考虑几何刚度项。 单元初内力对单元刚度矩阵的影响。一般情况下是指单元轴力对弯曲刚度的影响,有时也考虑弯矩对轴向刚度的影响,常通过引入稳定函数或单元几何刚度矩阵的方法来考虑。在大跨径桥梁结构分析中遇到的初应力(或初应变)问题,就是结构现有内力引起的结构刚度变化对本期荷载响应的影响问题。[1]关于缆索的垂度效应,它也是一种大变形效应,目前,一般都采用厄恩斯特(Ernst)公式来修正单元的弹性模量,用一等效的杆单元来模拟斜缆索;也有采用多根直连杆或曲线单元来模拟,曲线单元精度较高,但较复杂。 关于粱一柱效应,较精确的方法是用稳定函数法,它能考虑弯矩对轴力、轴力对弯矩、弯矩对扭转、剪力对轴力等影响。通常计人几何刚度的方法是稳定函数法的一阶近似。

关于大变形效应,采用T.L.法或U.L.法。 对桥梁的材料非线性动力问题研究得较多,但是对几何非线性的动力问题研究得较少且不成熟。[2][3] 目前,对于悬索桥、斜拉桥的几何非线性动力问题的处理。只限于恒载初始内力和缆索垂度效应,即考虑恒载产生的初始内力对刚度项的修正后,其它仍按线性分析计算。这样处理的原因在于:1、计算简单,动力问题的时程分析可以看作有限多个静力问题的集合,如果每个静力问题都按非线性处理,计算量将非常大;2、精度较好,恒载在结构外荷载中所占比例较大,桥梁在恒载作用下,缆索已被拉紧,再产生大的变形可能性较小。 但是,随着跨度的增加,结构柔性的增大,这种近似的处理方法有可能出现问题。如在进行悬索桥和斜拉桥的动力特性分析时,悬索桥考虑其恒载初始内力的影响,而斜拉桥则不考虑,但是当斜拉桥跨度超过500m 时,若其主梁采用混凝土材料,结构自重将在桥塔内产生非常大的轴压力,忽略其影响,将可能造成对结构抗震验算很重要的前几阶频率产生较大的误差。目前对于缆索非线性采用等效弹性模量法,随着缆索长度的增大,误差也会越来越大。另外,在时程分析中,忽略大变形的影响,将造成误差累计,最终计算结果可能偏离很大。这些问题都需要进一步研究。[4]

桥梁结构设计问题

桥梁结构设计问题探讨 摘要:近年来,随着科学技术的发展,桥梁结构设计也得到了相应的发展,但是我国的桥梁设计理论和结构构造体系仍不够完善。本文通过桥梁结构设计中应注意事项,对桥梁结构设计的理论及设计问题进行探讨。 关键词:桥梁结构;设计问题;分析 abstract: in recent years, with the development of science and technology, the bridge structure design also got the corresponding development, but china’’s bridge design theory and structure system is still not perfect. this article through the bridge structure design should note, bridge structure design theory and design issues were discussed. keywords: bridge structure; design problems; analysis 中图分类号:u443文献标识码:a 文章编号: 一、桥梁结构设计现状 目前的桥梁设计中,对于耐久性更多的只是作为一种概念受到关注,既没有明确提出使用年限的要求,也没有进行专门的耐久性设计。这些倾向在一定程度上导致了当前工程事故频发、结构使用性能差、使用寿命短的不良后果,也与国际结构工程界日益重视耐久性、安全性、适用性的趋势相违背,也不符合结构动态和综合经济性的要求。

大跨度桥梁结构理论专题研究之一--每人任选一题

大跨度桥梁结构理论专题研究之一?1.桥梁结构的可靠度研究(可选任一类桥梁,如梁、拱、索桥等) ?2.大跨桥梁的结构静、动力分析(可选任一类桥梁,如梁、拱、索桥等) ?3.桥梁结构全寿命耐久性设计的主要理论和方法及应用 ?4.钢桥的疲劳分析与试验研究及应用 ?5.新型材料在大跨桥梁中的应用 ?6.大跨桥梁检测与质量评定技术研究(可选任一类桥梁,如梁、拱、索桥等)7.大跨斜拉桥施工智能监控研究(悬臂灌注,悬臂拼装) ?8.大跨拱桥施工智能监控研究(悬臂拼装,转体施工) ?9.大跨桥梁健康监测与评估(可选任一类桥梁,如梁、拱、索桥等) ?10.钢桥合理刚度与冲击系数研究(高速铁路300km/h) ?11.局部稳定与整体稳定分析 ?12.高速铁路车桥共振的危险性分析研究(可选任一类桥梁,如梁、拱、索桥等) ?13.大跨度桥梁抗震设计减震隔震桥研究(可选任一类桥梁,如梁、拱、索桥等) ?14.斜拉桥拉索的风雨振与制减震措施研究 ?15.钢桥长效防腐涂装技术研究, ?16.大跨度桥梁深水基础工程的设计施工技术与监测分析研究 ?17. 国内外钢桥规范的对比研究(荷载与荷载谱的不同,抗弯构件,拉压构件,稳定,疲劳等; 中国,日本,美国,欧洲,俄罗斯) ?18. 自选与大跨桥相关的科研课题 ?19. 自列题目做一篇大跨桥梁的论文---与导师的研究方向相同或不同均可以。 课程报告要求: ?1、PPT文件,可报告10分钟左右,并负责研讨回答问题。 ?每人做一篇课题研究的报告,希望有一定深度;在课堂上交流! ?2、大跨度桥梁专题研究书面报告---上交老师和学校留存记分! ?书面打印稿格式要求(word 文档A4纸,空白左边2.5cm,上下右均为2cm;1.25倍行间距); 字体要求: 报告大标题: 宋体2 号字 第一层次标题: 宋体小 3 号字 第二层次标题: 宋体 4 号字 第三层次标题: 宋体小4 号字 正文字体: 宋体 5 号字 标题:排序号: 1. 1.1, 1.2,… 1.1.1, 1.1.2 ,… 1) 2),…; (1),(2),.. ①,②,… 提交给老师电子版WORD和书面打印稿(书面打印稿上交学院研究生科---计入课程成绩)雷老师的电子邮箱: jqlei@https://www.doczj.com/doc/ea13482299.html,, 电子版WORD 请发送这个邮箱.

相关主题
文本预览
相关文档 最新文档