当前位置:文档之家› 高中物理直线运动专题复习 精品

高中物理直线运动专题复习 精品

高中物理直线运动专题复习 精品
高中物理直线运动专题复习 精品

直线运动专题复习

直线运动是最基本最简单的运动形式,是研究复杂运动的基础,也是贯穿物理学的基础。由于概念多、公式多,求解问题的思路和方法多,备考时要倍加注意。

一、考纲解读

《考纲》在本单元中共有4个考点,其中质点和参考系为Ⅰ级要求,位移、速度和加速度;匀变速直线运动及其公式和图象为Ⅱ级要求,研究匀变速直线运动为实验考点。本单元的内容在每年的高考中均有体现,或单独命题,或渗透在动力学问题中考查相关概念和规律,尤其是物体运动的x-t图、v-t图等是常考的热点内容。新课标背景下常以选择题、填空题或计算题的形式展现,强调试题的基础性、新颖性及应用性。

例1.(11年全国课标卷)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。在第一段时间间隔内,两辆汽车的加速度大小不变,汽车乙的加速度大小是甲的两倍;在接下来的相同时间间隔内,汽车甲的加速度大小增加为原来的两倍,汽车乙的加速度大小减小为原来的一半。求甲乙两车各自在这两段时间间隔内走过的总路程之比?

解析:设时间间隔为t0,甲车第一个t0秒末的速度为V,行驶的路程为x1,加速度为a,在第二个t0内行驶的路程为x2。有,,成立

设乙车在第一个t0秒末的速度为,在第二段时间内行驶的路程分别为、。同样有,,成立,联立得。

二、知识梳理

1.质点:质点是用来代替物体具有质量的几何点,它是科学和抽象是理想化的模型。一般地,当物体的形状大小对研究问题的影响可以忽略时可将物体视为质点。

2.参考系:为判断一个物体是否作机械运动而选作为参考标准的物体叫做参考系。参考系的选择具有任意性,选取不同的参考系来观察同一物体的运动,其结果不一定相同,在具体问题的研究中选择参考系应根据实际需要决定,尽可能使问题的讨论简单化。

3.加速度:加速度是表示速度变化快慢程度的物理量,是速度的改变量与对应时间的比值,是一个矢量,它与同向,且与和均无关,只与有关。

4.匀变速直线运动是加速度恒定的直线运动,常用x、t、a、v0、v t来描述,其间的关

系为,,,。这五个参量中只有三个是独立的,若两个匀变速直线运动有三个物理量相等,则另外两个物理量也一定相等。

5.匀变速直线运动中的推论

⑴任意相邻相等时间内的位移差相等,还可推广到。

⑵匀变速直线运动,中间时刻的速度。中间位置的速度。可以证明,无论匀加速还是匀减速都有。

⑶初速度为零(或末速度为零)的匀变速直线运动遵循下列规律

①前1秒、前2秒、前3秒……内的位移之比为1∶4∶9∶……

②第1秒、第2秒、第3秒……内的位移之比为1∶3∶5∶……

③前1米、前2米、前3米……所用的时间之比为1∶∶∶……

④第1米、第2米、第3米……所用的时间之比为1∶∶()∶……

对末速为零的匀变速直线运动,倒过来可以相应的运用这些规律。

6.自由落体运动:物体只在重力作用下从静止开始下落的运动叫自由落体运动。自由落体的a=g,其运动规律为,,。

三、高频考点

1.对基本概念的考查

直线运动中的质点、位移、速度、加速度等基本概念贯穿了整个物理学,也是比较难于理解的几个物理量,备考时要深刻理解各个概念的内涵和外延,消灭各个错误观点,才能为解题铺平道路。

例2.下列说法中正确的有( )

高中物理直线运动专项训练100(附答案)

高中物理直线运动专项训练100(附答案) 一、高中物理精讲专题测试直线运动 1.倾角为θ的斜面与足够长的光滑水平面在D 处平滑连接,斜面上AB 的长度为3L ,BC 、 CD 的长度均为3.5L ,BC 部分粗糙,其余部分光滑。如图,4个“— ”形小滑块工件紧挨在一起排在斜面上,从下往上依次标为1、2、3、4,滑块上长为L 的轻杆与斜面平行并与上一个滑块接触但不粘连,滑块1恰好在A 处。现将4个滑块一起由静止释放,设滑块经过D 处时无机械能损失,轻杆不会与斜面相碰。已知每个滑块的质量为m 并可视为质点,滑块与粗糙面间的动摩擦因数为tan θ,重力加速度为g 。求 (1)滑块1刚进入BC 时,滑块1上的轻杆所受到的压力大小; (2)4个滑块全部滑上水平面后,相邻滑块之间的距离。 【答案】(1)3sin 4 F mg θ=(2)43d L = 【解析】 【详解】 (1)以4个滑块为研究对象,设第一个滑块刚进BC 段时,4个滑块的加速度为a ,由牛顿第二定律:4sin cos 4mg mg ma θμθ-?= 以滑块1为研究对象,设刚进入BC 段时,轻杆受到的压力为F ,由牛顿第二定律: sin cos F mg mg ma θμθ+-?= 已知tan μθ= 联立可得:3 sin 4 F mg θ= (2)设4个滑块完全进入粗糙段时,也即第4个滑块刚进入BC 时,滑块的共同速度为v 这个过程, 4个滑块向下移动了6L 的距离,1、2、3滑块在粗糙段向下移动的距离分别为3L 、2L 、L ,由动能定理,有: 21 4sin 6cos 32)4v 2 mg L mg L L L m θμθ?-??++= ?( 可得:v 3sin gL θ= 由于动摩擦因数为tan μθ=,则4个滑块都进入BC 段后,所受合外力为0,各滑块均以速度v 做匀速运动; 第1个滑块离开BC 后做匀加速下滑,设到达D 处时速度为v 1,由动能定理:

备战2020年高考物理计算题专题复习《向心力的计算》(解析版)

《向心力的计算》 一、计算题 1.如图所示,长为L的细绳一端与一质量为m的小球可看成质点 相连,可绕过O点的水平转轴在竖直面内无摩擦地转动.在最 低点a处给一个初速度,使小球恰好能通过最高点完成完整的圆 周运动,求: 小球过b点时的速度大小; 初速度的大小; 最低点处绳中的拉力大小. 2.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直 轨道相切,半径,物块A以的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨上P处静止的物块B碰撞,碰后粘在一起运动。P点左侧轨道光滑,右侧轨道呈粗糙段,光滑段交替排列,每段长度都为。物块与各粗糙段间的动摩擦因数都为,A、B的质量均为重力加速度g 取;A、B视为质点,碰撞时间极短。 求A滑过Q点时的速度大小V和受到的弹力大小F; 若碰后AB最终停止在第k个粗糙段上,求k的数值; 求碰后AB滑至第n个光滑段上的速度与n的关系式。

3.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管 道内径的小球,小球在管道内做圆周运动,从B点脱离后做平抛运动,经过秒后又恰好垂直与倾角为的斜面相碰到。已知圆轨道半径为,小球的质量为,g取求 小球在斜面上的相碰点C与B点的水平距离 小球经过圆弧轨道的B点时,受到轨道的作用力的大小和方向? 小球经过圆弧轨道的A点时的速率。 4.如图所示,倾角为的粗糙平直导轨与半径为R的光 滑圆环轨道相切,切点为B,整个轨道处在竖直平面内。一 质量为m的小滑块从轨道上离地面高为的D处无初速 下滑进入圆环轨道,接着小滑块从圆环最高点C水平飞出, 恰好击中导轨上与圆心O等高的P点,不计空气阻力。求: 小滑块在C点飞出的速率; 在圆环最低点时滑块对圆环轨道压力的大小; 滑块与斜轨之间的动摩擦因数。

高中物理专题复习-电路

专题复习------电路 本专题是高中物理的主干知识之一,是历年高考的热点内容。涉及到电流、电阻、电动势、电功、电功率、交变电流的“四值”等基本概念,涉及到欧姆定律、闭合电路的欧姆定律、电阻定律、焦耳定律以及串并联电路的性质等基本规律,涉及到电路结构分析、电路的动态分析、电路故障分析、含容电路分析、含理想变压器的动态分析等技巧。命题题材广泛,一般以选择题形式命题。 一、恒定电流 1、 电路的动态分析: 当电路中开关的开闭、滑动变阻器滑片的移动、热敏(光敏、压敏、磁敏等)电阻阻 值变化或者某处出现故障,都会引起电路中的电流、电压发生变化,可谓“牵一发而动全身”。 分析一个闭合电路,我们既要弄清楚外电路的串、并联结构,还要确定电流表、电压表测量的对象。 当外电路中的某处发生变化时,我们首先要知道这一变化对总电阻的影响,无论是串联还是并联,只要其中一个电阻增大(减小),总电阻就增大(减小)。再根据闭合电路的欧姆定律r R E I +=干来判断干路电流的增减,根据r 干I E U -=,确定路端电压的增减,最后根据串并联的电路特点、欧姆定律和有关物理公式判断电表示数的变化、灯泡亮度的变化以及其他物理量的变化。 例1、如图1所示的电路,a 、b 、c 为三个相同的灯泡,其电阻大于电源内阻,两电表均为理想电表,当变阻器R 的滑动触头P 向上移动时,下列判断中正确的是( )., A .A 、V 两表示数都变大 B .A 表示数增大,V 表示数减小 C .三个灯泡都变亮 D .a 、b 两灯变亮,c 灯变暗 解法:电路结构分析:干路元件有电源、电流表、A 灯泡,并联部分有两条支路,一条由b 灯泡和滑动变阻器串联,一条只有灯泡c ;电流表测干路电流,电压表测路端电压。 动态分析:在变阻器R 的滑动触头P 向上移动的过程中,R 连入电路的阻值逐渐变小,导致负载的总电阻R 外减小,由r R E I +=外干可得,干路上的电流增大,即A 表示数增大,由r 干I E U -=可得,路端电压减小,即V 表示数减小,选项A 错误,选项B 正确;由)a R r I E U +-=(干并可得,U c 变小,根据欧姆定律可得I c 变小,由c c c I U P =可知,c 灯 V A 图1

高中物理专题复习之运动学

高中物理专题复习——运动学 [知识要点复习] 1.位移(s):描述质点位置改变的物理量,是矢量,方向由初位置指向末位置,大小是从初位置到末位置的直线长度。 2.速度(v):描述物体运动快慢和方向的物理量,是矢量。 做变速直线运动的物体,在某段时间内的位移与这段时间的比值叫做这段时间内平均速度。 它只能粗略描述物体做变速运动的快慢。 瞬时速度(v):运动物体在某一时刻(或某一位置)的速度,瞬时速度的大小叫速率,是标量。 3.加速度(a):描述物体速度变化快慢的物理量,它的大小等于 矢量,单位m/s2。 4.路程(L ):物体运动轨迹的长度,是标量。 5.匀速直线运动的规律及图像 (1)速度大小、方向不变 (2)图象 6.匀变速直线运动的规律 (1)加速度a 的大小、方向不变

2)图像 7.自由落体运动只在重力作用下,物体从静止开始的自由运动。 8.牛顿第一运动定律一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止,这叫牛顿第一运动定律。 惯性:物体保持原匀速直线运动状态或静止状态的性质叫惯性,因此牛顿第一定律又叫惯性定律。惯性是物体的固有属性,与物体的受力情况及运动情况无关;惯性的大小由物体的质量决定,质量大,惯性大。 9.牛顿第二运动定律物体加速度的大小与所受合外力成正比,与物体质量成反比,加速度的方向与合外力的方向相同。 10.牛顿第三运动定律两个物体之间的作用力和反作用力总是大小相等、方向相反,作用在一条直线上。作用力与反作用力大小相等,性质相同,同时产生,同时消失,方向不同、作用在两个不同且相互作用的物体上,可概括为“三同,两不同”。 11.超重与失重:当系统具有竖直向上的加速度时,物体对支持物的压力或对悬挂物的拉力大于其重力的现象叫超重;当系统具有竖直向下的加速度时,物体对支持物的压力或对悬挂物的拉力小于其重力的现象叫失重。 12. 曲线运动的条件物体所受合外力的方向与它速度方向不在同一直线,即加速度方向与速度方向不在同一直线。 若用θ表示加速度a 与速度v0的夹角,则有:0°<θ<90°,物体做速率变大的曲线运动;θ=90°时,物体做速率不变的曲线运动;90° <θ<180°时,物体做速率减小的曲线运动。 13.运动的合成与分解 (1)合运动与分运动的关系 a.等时性:合运动与分运动经历的时间相等; b.独立性:一个物体同时参与了几个分运动,各分运动独立进行,不受其它分运动的影响。 c.等效性:各分运动叠加起来与合运动规律有完全相同的效果。 (2)运动的合成与分解的运算法则遵从平行四边形定则,运动的合成与分解是指位移、速度、加速度的合成与分解。 (3)运动分解的原则

高中物理3-3《热学》计算题专项练习题(含答案)

高中物理3-3《热学》计算题专项练习题(含 答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

热学计算题(二) 1.如图所示,一根长L=100cm、一端封闭的细玻璃管开口向上竖直放置,管内用h=25cm长的水银柱封闭了一段长L1=30cm的空气柱.已知大气压强为75cmHg,玻璃管周围环境温度为27℃.求: Ⅰ.若将玻璃管缓慢倒转至开口向下,玻璃管中气柱将变成多长? Ⅱ.若使玻璃管开口水平放置,缓慢升高管内气体温度,温度最高升高到多少摄氏度时,管内水银不能溢出. 2.如图所示,两端开口、粗细均匀的长直U形玻璃管内由两段水银柱封闭着长度为15cm的空气柱,气体温度为300K时,空气柱在U形管的左侧. (i)若保持气体的温度不变,从左侧开口处缓慢地注入25cm长的水银柱,管内的空气柱长为多少? (ii)为了使空气柱的长度恢复到15cm,且回到原位置,可以向U形管内再注入一些水银,并改变气体的温度,应从哪一侧注入长度为多少的水银柱气体的温度变为多少(大气压强P0=75cmHg,图中标注的长度单位均为cm) 3.如图所示,U形管两臂粗细不等,开口向上,右端封闭的粗管横截面积是开口的细管的三倍,管中装入水银,大气压为76cmHg。左端开口管中水银面到管口距离为11cm,且水银面比封闭管内高4cm,封闭管内空气柱长为11cm。现在开口端用小活塞封住,并缓慢推动活塞,使两管液面相平,推动过程中两管的气体温度始终不变,试求: ①粗管中气体的最终压强;②活塞推动的距离。

4.如图所示,内径粗细均匀的U形管竖直放置在温度为7℃的环境中,左侧管上端开口,并用轻质活塞封闭有长l1=14cm,的理想气体,右侧管上端封闭,管上部有长l2=24cm的理想气体,左右两管内水银面高度差h=6cm,若把该装置移至温度恒为27℃的房间中(依然竖直放置),大气压强恒为p0=76cmHg,不计活塞与管壁间的摩擦,分别求活塞再次平衡时左、右两侧管中气体的长度. 5.如图所示,开口向上竖直放置的内壁光滑气缸,其侧壁是绝热的,底部导热,内有两个质量均为m的密闭活塞,活塞A导热,活塞B绝热,将缸内理想气体分成Ⅰ、Ⅱ两部分.初状态整个装置静止不动且处于平衡状态,Ⅰ、Ⅱ两部分气体的高度均为l0,温度为T0.设外界大气压强为P0保持不变,活塞横截面积为S,且mg=P0S,环境温度保持不变.求:在活塞A上逐渐添加铁砂,当铁砂质量等于2m时,两活塞在某位置重新处于平衡,活塞B下降的高度. 6.如图,在固定的气缸A和B中分别用活塞封闭一定质量的理想气体,活塞面积之比为S A:S B=1:2,两活塞以穿过B的底部的刚性细杆相连,可沿水平方向无摩擦滑动.两个气缸都不漏气.初始时,A、B 中气体的体积皆为V0,温度皆为T0=300K.A中气体压强P A=1.5P0,P0是气缸外的大气压强.现对A加热,使其中气体的体积增大V0/4,,温度升到某一温度T.同时保持B中气体的温度不变.求此时A中气体压强(用P 0表示结果)和温度(用热力学温标表达)

高中物理之热学专题复习与练习

高中物理之热学专题复 习与练习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第七章热学 一、主要内容 本章内容包括两部分,一是微观的分子动理论部分,一是宏观的气体状态变化规律。其中分子动理论部分包括分子动理论的基本观点、分子热运动的动能、分子间相互作用的势能和物体的内能等概念,及分子间相互作用力的变化规律、物体内能变化的规律、能量转化和守恒定律等基本规律;气体状态变化规律中包括热力学温度、理想气体和气体状态参量等有关的概念,以及理想气体的等温、等容、等压过程的特点及规律(包括公式和图象两种描述方法)。 二、基本方法 本章中所涉及到的基本方法是理想化的模型方法,其中在分子动理论中将微观分子的形状视为理想的球体,这是通过阿伏伽德罗常数对微观量进行估算的基础;在气体状态变化规律中,将实际中的气体视为分子没有实际体积且不存在相互作用力的理想气体,从而使气体状态变化的规律在误差允许的范围内得以大大的简化。 三、错解分析 在本章知识应用的过程中,初学者常犯的错误主要表现在:对较为抽象的分子热运动的动能、分子相互作用的势能及分子间相互作用力的变化规律理解不到位,导致这些微观量及规律与宏观的温度、物体的体积之间关系不能建立起正确的关系。对于宏观的气体状态的分析,学生的问题通常表现在对气体压强的分析与计算方面存在着困难,由此导致对气体状态规律应用出现错误;另外,本章中涉及到用图象法描述气体状态变化规律,对于p—V,p—T,V—T图的理解,一些学生只观注图象的形状,不能很好地理解图象上的点、线、斜率等的物理意义,因此造成从图象上分析气体温度变化(内能变化)、体积变化(做功情况)时出现错误,从而导致利用图像分析气体内能变化等问题时的困难。 例1 设一氢气球可以自由膨胀以保持球内外的压强相等,则随着气球的不断升高,因大气压强随高度而减小,气球将不断膨胀。如果氢气和大气皆可视为理想气体,大气的温度、平均摩尔质量以及重力和速度随高度变化皆可忽略,则氢所球在上升过程中所受的浮力将______(填“变大”“变小”“不变”) 【错解】错解一:因为气球上升时体积膨胀,所以浮力变大。 错解二:因为高空空气稀薄,所以浮力减小。

高中物理专题汇编直线运动(一)含解析

高中物理专题汇编直线运动(一)含解析 一、高中物理精讲专题测试直线运动 1.跳伞运动员做低空跳伞表演,当直升机悬停在离地面224m 高时,运动员离开飞机作自由落体运动,运动了5s 后,打开降落伞,展伞后运动员减速下降至地面,若运动员落地速度为5m/s ,取2 10/g m s =,求运动员匀减速下降过程的加速度大小和时间. 【答案】212.5?m/s a =; 3.6t s = 【解析】 运动员做自由落体运动的位移为2211 10512522 h gt m m = =??= 打开降落伞时的速度为:1105/50/v gt m s m s ==?= 匀减速下降过程有:22 122()v v a H h -=- 将v 2=5 m/s 、H =224 m 代入上式,求得:a=12.5m/s 2 减速运动的时间为:12505 3.6?12.5 v v t s s a --= == 2.如图所示,某次滑雪训练,运动员站在水平雪道上第一次利用滑雪杖对雪面的作用获得水平推力84N F =而从静止向前滑行,其作用时间为1 1.0s t =,撤除水平推力F 后经过2 2.0s t =,他第二次利用滑雪杖对雪面的作用获得同样的水平推力,作用距离与第一次相 同.已知该运动员连同装备的总质量为60kg m =,在整个运动过程中受到的滑动摩擦力大小恒为f 12N F =,求: (1)第一次利用滑雪杖对雪面作用获得的速度大小及这段时间内的位移大小. (2)该运动员(可视为质点)第二次撤除水平推力后滑行的最大距离. 【答案】(1)1.2m/s 0.6m ; (2)5.2m 【解析】 【分析】 【详解】 (1)根据牛顿第二定律得 1f F F ma -= 运动员利用滑雪杖获得的加速度为 21 1.2m /s a = 第一次利用滑雪杖对雪面作用获得的速度大小 111 1.2 1.0m /s 1.2m /s v a t ==?=

高中物理经典题库_力学计算题49个

四、力学计算题集粹(49个) 1.在光滑的水平面,一质量m=1kg的质点以速度v0=10m/s沿x轴正方向运动,经过原点后受一沿y轴正方向的恒力F=5N作用,直线OA与x轴成37°角,如图1-70所示,求: 图1-70 (1)如果质点的运动轨迹与直线OA相交于P点,则质点从O点到P点所经历的时间以及P的坐标;(2)质点经过P点时的速度. 2.如图1-71甲所示,质量为1kg的物体置于固定斜面上,对物体施以平行于斜面向上的拉力F,1s末后将拉力撤去.物体运动的v-t图象如图1-71乙,试求拉力F. 图1-71 3.一平直的传送带以速率v=2m/s匀速运行,在A处把物体轻轻地放到传送带上,经过时间t=6s,物体到达B处.A、B相距L=10m.则物体在传送带上匀加速运动的时间是多少?如果提高传送带的运行速率,物体能较快地传送到B处.要让物体以最短的时间从A处传送到B处,说明并计算传送带的运行速率至少应为多大?若使传送带的运行速率在此基础上再增大1倍,则物体从A传送到B的时间又是多少? 4.如图1-72所示,火箭平台上放有测试仪器,火箭从地面起动后,以加速度g/2竖直向上匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的17/18,已知地球半径为R,求火箭此时离地面的高度.(g为地面附近的重力加速度) 图1-72 5.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m·s2) 图1-73 6.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算: (1)飞机在竖直方向上产生的加速度多大?方向怎样? (2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2) (3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人体的什么部位? (注:飞机上乘客所系的安全带是固定连结在飞机座椅和乘客腰部的较宽的带子,它使乘客与飞机座椅

高中物理直线运动试题经典

高中物理直线运动试题经典 一、高中物理精讲专题测试直线运动 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 22 02v v aL -= 可解得:22 1002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv = -

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.质量为2kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的 图象如图所示取 m/s 2,求: (1)物体与水平面间的动摩擦因数; (2)水平推力F 的大小; (3)s 内物体运动位移的大小. 【答案】(1)0.2;(2)5.6N ;(3)56m 。 【解析】 【分析】 【详解】 (1)由题意可知,由v-t 图像可知,物体在4~6s 内加速度: 物体在4~6s 内受力如图所示 根据牛顿第二定律有: 联立解得:μ=0.2 (2)由v-t 图像可知:物体在0~4s 内加速度: 又由题意可知:物体在0~4s 内受力如图所示 根据牛顿第二定律有: 代入数据得:F =5.6N

高中物理磁场经典计算题专题

高中物理磁场经典计算 题专题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1、弹性挡板围成边长为L= 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向下,磁感应强度为B = 0.5T ,如图所示. 质量为m=2×10-4kg 、带电量为q=4×10-3C 的小球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2、如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF, DE 中点S 处有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示.发射粒子的电量为+q,质量为m,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大最短时间为多少 (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线通过等边三角形的 中心O ,且a=) 10133( L.要使S 点发出的粒子最终又回到S 点,带电粒子速度v 的大小应取哪些数值? 3、在直径为d 的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外.一电荷量为q ,质量为m 的粒子,从磁场区域的一条直径AC 上的A 点射入磁场,其速度大小为v 0,方向与AC 成 磁场区域圆周上D 点,AD 与AC 的夹角为β,如图所示.求该匀强磁场的磁感强度 a b c d A F D (a ) (b )

高中物理直线运动试题经典及解析

高中物理直线运动试题经典及解析 一、高中物理精讲专题测试直线运动 1.货车A 正在公路上以20 m/s 的速度匀速行驶,因疲劳驾驶,司机注意力不集中,当司机发现正前方有一辆静止的轿车B 时,两车距离仅有75 m . (1)若此时轿车B 立即以2 m/s 2的加速度启动,通过计算判断:如果货车A 司机没有刹车,是否会撞上轿车B ;若不相撞,求两车相距最近的距离;若相撞,求出从货车A 发现轿车B 开始到撞上轿车B 的时间. (2)若货车A 司机发现轿车B 时立即刹车(不计反应时间)做匀减速直线运动,加速度大小为2 m/s 2(两车均视为质点),为了避免碰撞,在货车A 刹车的同时,轿车B 立即做匀加速直线运动(不计反应时间),问:轿车B 加速度至少多大才能避免相撞. 【答案】(1)两车会相撞t 1=5 s ;(2)222 m/s 0.67m/s 3 B a =≈ 【解析】 【详解】 (1)当两车速度相等时,A 、B 两车相距最近或相撞. 设经过的时间为t ,则:v A =v B 对B 车v B =at 联立可得:t =10 s A 车的位移为:x A =v A t= 200 m B 车的位移为: x B = 2 12 at =100 m 因为x B +x 0=175 m

2020年高中物理计算题专题复习 (3)

2020年高中物理计算题专题复习 (3) 1.如图所示,坐标平面第Ⅰ象限内存在大小为、方向水平向左的匀强电场,在 第Ⅱ象限内存在方向垂直纸面向里的匀强磁场比荷的带正电的粒子,以初速度从x轴上的A点垂直x轴射入电场,,经偏转电场后进入磁场,在磁场中发生偏转,轨迹恰好与x轴相切,不计粒子的重力求: 粒子在电场中运动的加速度大小 求粒子经过y轴时的位置到原点O的距离 求磁感应强度B 2.如图甲所示为倾斜的传送带,正以恒定的速度v,沿顺时针方向转动,传送带的倾角为。一 质量的物块以初速度vo从传送带的底部冲上传送带并沿传送带向上运动,物块到传送带顶端的速度恰好为零,其运动的图像如图乙所示,已知重力加速度为,,求: 内物块的加速度a及传送带底端到顶端的距离x;

物块与传送带闻的动摩擦因数; 物块与传送带间由于摩擦而产生的热量Q。 3.如图所示,水平传送带AB足够长,质量为的木块随传送带一起以的速度 向左匀速运动传送带的速度恒定,木块与传送带的动摩擦因数。当木块运动到最左端A点时,一颗质量为的子弹,以的水平向右的速度,正对射入木块并穿出,穿出速度,设子弹射穿木块的时间极短,取。求: 木块遭射击后远离A端的最大距离; 木块遭击后在传送带上向左运动所经历的时间。 4.如图所示,圆心角的圆弧轨道JK与半圆弧轨道GH都固定在竖直平面内,在两者之间 的光滑地面上放置质量为M的木板,木板上表面与H、K两点相切,木板右端与K端接触,左端与H点相距L,木板长度。两圆弧轨道均光滑,半径为R。现在相对于J点高度为3R的P点水平向右抛出一可视为质点的质量为m的木块,木块恰好从J点沿切线进入圆弧轨道,然后滑上木板,木块与木板间的动摩擦因数;当木板接触H点时即被黏住,木块恰好能运动到半圆弧轨道GH的中点。已知,重力加速度为g。

高中物理专题:描述直线运动的基本概念

高中物理专题:描述直线运动的基本概念 一.知识点 质点参考系坐标系时间时刻路程位移平均速度瞬时速度平均速率瞬时速率加速度轨迹图像位移图像速度图像 二.典例解析 1.平均速度与平均速率的区别,平均到瞬时的过渡 平均速度: s v t =平均速率: l v t = ①路程一般大于位移的大小,故平均速率一般大于平均速度的大小. 当质点作单向直线运动时(不一定匀速),平均速率等于平均速度的大小. ②当t趋于0时,平均值转化为瞬时值(近似替代思想——极限法) 当t趋于0时,s的大小与L趋于相等(化曲为直思想——微元法) 【例1】光电门测速 用如图所示的计时装置可以近似测出气垫导轨上滑块的瞬时速 度.已知固定在滑块上的遮光条的宽度为4.0mm,遮光条经过光电门的遮光时间为0.040s.则滑块经过光电门位置时的速度大小为 A.0.10m/s B.100m/s C.4.0m/s D.0.40m/s 2.参考系和相对运动 巧选参考系;非惯性系中引进惯性力 【例2】水面追帽子 一小船在河水中逆水划行,经过某桥下时一草帽落入水中顺流而下,2分钟后划船人才发现并立即掉头追赶,结果在桥下游60米追上草帽,求水流速度.(设掉头时间不记,划船速度及水流速度恒定)(答案:0.5m/s,以帽子为参考系,小船来回做等速率运动,时间相等.另问:能求出划船的速度吗?) 【例3】竖直球追碰

如图所示,A 、B 两球在同一竖直线上,相距H=15m ,B 球离地面h. 某时刻释放A 球,1s 后释放B 球,要使A 球能在B 球下落的过程中追上B 球, 则h 应满足什么条件?重力加速度取g=10m/s 2(答案:不小于5m ) 如图所示,A 、B 两球在同一竖直线上,相距H ,B 球离地面h=5m.设B 球与地面碰撞过程中没有能量损失,若两球同时释放,要使A 球能在B 球反弹后上升的过程中与B 球相碰,则H 应满足什么条件?(答案:0

高中物理复合场专题复习(有界磁场)

习题课一 带电粒子在匀强磁场中的运动 一、带电粒子在直线边界磁场中的运动 1.基本问题 【例题1】如图所示,一束电子(电量为e)以速度V 垂直射入磁感应强度为B 、宽度为d 的匀强磁场,穿透磁场时的速度与电子原来的入射方向的夹角为300 .求: (1)电子的质量m (2)电子在磁场中的运动时间t 【小结】处理带电粒子在匀强磁场中的运动的方法: 1、 找圆心、画轨迹(利用F ⊥v 或利用弦的中垂线); 2、 定半径(几何法求半径或向心力公式求半径) 3、 求时间(t= 0360θ ×T或t= v s ) 注意:带电粒子在匀强磁场中的圆周运动具有对称性。 ① 带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向、出射速度方向与边界的夹角相等; ② 在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。 2.应用对称性可以快速地确定运动的轨迹。 【例题2】如图—所示,在y <0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸面外,磁感应强度为B.一带正电的粒子以速度υ0从O 点射入磁场,入射方向在xy 平面内,与x 轴正向的夹角为θ.若粒子射出磁场的位置与O 点的距离为l ,求该粒子的电量和质量之比 m q 。 【审题】本题为一侧有边界的匀强磁场,粒子从一侧射入,一定从边界射出,只要根据对称规律①画出轨迹,并应用弦切角等于回旋角的一半,构建直角三角形即可求解。 【解析】根据带电粒子在有界磁场的对称性作出轨迹,如图9-5所示,找出圆心A ,向x 轴作垂线,垂足为H ,由与几何关系得: R L s i n θ=1 2 ① 带电粒子在磁场中作圆周运动,由 qv B mv R 00 2 = 解得R mv qB = ② ①②联立解得 q m v LB =20sin θ 【总结】在应用一些特殊规律解题时,一定要明确规律适用的条件,准确地画出轨迹是关键。 2qBd m v = 303603d t T v π= =

高中物理《功》专题计算

高中物理《功》专题计算 1、如图所示,斜面长为1米,倾角θ=37°,把一个质量为10千克 的物体从斜面底端匀速地位到斜面顶端.要使拉力做的功最大,拉力F 与 斜面的夹角α为多大?功的最大值为多少?要使拉力F 做的功最少,拉力F 与斜面的夹角a 又为多大?功的最小值为多大?已知物体与斜面的滑动摩擦 系数为.(g 取10米/秒2.) 2、倾斜传送带与水平方向的夹角θ=300,传送带以恒定 的速度v=10m/s 沿图示方向运动。现将一质量m =50kg 的物块 轻轻放在A 处,传送带AB 长为30m ,物块与传送带间的动摩擦因数为2 3= μ,且认为物块与传送带之间的最大静摩擦力等于滑动摩擦力,g =10m/s 2。则在物块从A 至B 的过程中: (1)开始阶段所受的摩擦力为多大? (2)共经历多长时间? (3)准确作出物块所受摩擦力随位移变化的函数图像; (4)摩擦力做的总功是多少? 3、如图所示,质量m=60kg 的高山滑雪运动员,从 A 点由静止开始沿滑雪道滑下,从 B 点水平飞出后又落 在与水平面成倾角θ=37?的斜坡上C 点.已知AB 两点间 的高度差为h=25m ,B 、C 两点间的距离为s=75m ,(取 g=10m/s 2,sin370=,求: (1)运动员从B 点飞出时的速度v B 的大小; (2)运动员从A 到B 过程中克服摩擦力所做的功. 4、如图所示,两个底面积分别为2S 和S 的圆 桶,放在同一水平面上,桶内部装水,水面高分别 是H 和h 。现把连接两桶的闸门打开,最后两水桶中 水面高度相等。设水的密度为ρ,问这一过程中重 力做的功是多少? 5、如图所示,光滑弧形轨道下端与水平传送带相接,轨道上的A 点到传送带的竖直距离及传送带地面的距离均为h=5m ,把一物体自A 点由静止释放,物体与传送带间的动摩擦因数2.0=μ。先让传送带不转动,物体滑上传送带后,从右端 B 水平飞离,落在地面上的P 点,B 、P 间的水平距离OP 为 x=2m ;然后让传送带顺时针方向转动,速度大小为 v=5m/s 。仍将物体自A 点由静止释放,求: (1)传送带转动时,物体落到何处? (2)先后两种情况下,传送带对物体所做功之比. 6、质量为m 的飞机以水平速度v 0飞离跑道后逐渐上O x /m f /N B θ A v y x l h o

《高中物理选修3-5》二轮专题复习

《高中物理选修3-5》二轮专题复习 一、考纲要求与考题特点分析 (一)经过一轮复习,大部分学生对本模块基本概念、基本规律都有较好的把握。尤其是动量守恒定律、光电效应、能级与光谱、核反应方程及规律等重点内容,有较强的得分能力。原子物理部分的相关选择题,只要是常规题,一般能得分。但这一部分知识点细而杂,涉及到的微观领域,学生又缺少直接经验;有关考题,跟物理学的前沿容易发生联系,如夸克、黑洞等,而且往往是多项选择题,会有部分学生因细节关注不够,造成不能拿满分。动量守恒定律部分内容,相对难度大些,且跟能量、电磁学的内容综合考查的概率很大,对于普通高中学生或者一些物理相对薄弱的学生来说,涉及动量的综合题,总是一筹莫展,甚至干脆放弃。而有关动量守恒的实验题也是高考热点,所以,争对3-5的二轮复习,重点内容还是要加强,细杂知识要突破、要点拨,加强解题方法、解题能力的指导和训练。力保学生不失基础题的分、不失中档题的分、少失难题的分。

(二)高考物理学科要考查的五个能力(理解能力、推理能力、分析综合能力、应用数学处理物理问题的能力、实验能力)的要求1.理解能力理解物理概念、物理规律的确切含义,理解物理规律的适用条件,以及它们在简单情况下的应用;能够清楚认识概念和规律的表达形式(包括文字表述和数学表述);能够鉴别关于概念和规律的似是而非的说法;理解相关知识的区别和联系。 2.推理能力能够根据已知的知识和物理事实、条件,对物理问题进行逻辑推理和论证,得出正确的结论或作出正确的判断,并能把推理过程正确地表达出来。 3.分析综合能力能够独立地对所遇的问题进行具体分析、研究,弄清其中的物理状态、物理过程和物理情境,找出其中起重要作用的因素及有关条件;能够把一个复杂问题分解为若干较简单的问题,找出它们之间的联系;能够提出解决问题的方法,运用物理知识综合解决所遇到的问题。 4.应用数学处理物理问题的能力能够根据具体问题列出物理量之间的关系式,进行推导和求解,并根据结果得出物理结论;必要时能运用几何图形、函数图像进行表达、分析。

高中物理必修一专题复习

高中物理必修一专题复习 一、参考系 课标要求:理解参考系选取在物理中的作用,会根据实际选定. 知识梳理: 参考系:在描述一个物体的运动时,选来作为标准的另外的物体. ①凡是被用作参考系的物体,我们都认为是静止的; ②参考系的选择是任意的,但应以观测方便和使运动的描述尽可能简单为原则.研究地面上物体的运动时,常选地面为参考系.有时为了研究问题方便,也可以巧妙地选用其它物体做参考系,甚至在分析某些较为复杂的问题时,为了求解简洁,还需灵活地转换参考系. ③物体的运动都是相对参考系而言的,这是运动的相对性.选择不同的参考系来观察同一运动,会有不同结果,要比较两个物体的运动情况,必须选择同一参考系. 【例1】“坐地日行八万里,巡看遥天一千河.”这一诗句表明() A.坐在地上的人是绝对静止的 B.坐在地上的人相对于地球以外的其他星体是运动的 C.人在地球上的静止是相对的,运动是绝对的 D.以上说法都是错误的 答案:BC 点评:基础题,考查物体运动与参考系的选取.参考系问题往往和我们的日常思维发生矛盾,因为我们生活在地球上,所以我们总是不自觉地以地球为参考系来描述物体的运动,我们处理这类问题时,一定要防止思维定势的影响. 【例2】(2010年广东学业水平考试单选I)在行汽车上的乘客,看到道路两旁的树木不断向后退,这是因为乘客

选择的参考系是( ) A .所乘坐的汽车 B .地面上的建筑物 C .道路旁的树木 D .路边站着的人 答案:A 点评:基础题,考查物体运动与参考系的选取. 【例3】甲、乙、丙三架观光电梯,甲中乘客看某幢高楼在向下运动;乙中乘客看甲在向下运动; 丙中乘客看甲、乙都在向上运动.这三架电梯相对地面的可能运动情况是( ) A .甲向上、乙向下、丙不动 B .甲向上、乙向上、丙不动 C .甲向上、乙向上、丙向下 D .甲向上、乙向上、丙也向上,但比甲、乙都慢 答案:BCD 点评:中难题,考查物体运动与参考系的选取.观察者看到的运动都是相对于自己的运动,明确这一点,一切问题就可迎刃而解了. 【例4】如图所示,ab 、cd 两棒的长度均为L=1m ,a 与c 相距s=20m ,现使两棒同时 开始运动,其中ab 自由下落,cd 棒以初速度v=20m/s 竖直上抛,设两棒运动时不 产生相撞问题,问它们从开始相遇到分开要经过多长时间? 解析:以ab 为参考系,认为ab 棒静止不动,则cd 棒相对于ab 棒做速度为v=20m/s 的匀速直线运动.两棒从开始相遇到分开相对位移为2L ,故所经历的时间为:t=2L/v=0.1s . 点评:中难题,考查巧选参考系解题.中学一般选择地面为参考系研究物体的运动,但有时适当选择参考系,能使运动的描述和研究更为简便. 专题训练一: b a c d

高中物理相互作用力10道计算题专题

高中物理相互作用力10道计算题专题学校:___________姓名:___________班级:___________考号:___________ 一、解答题 1.如图所示,竖直平面内有一半径为R的光滑半圆弧形轻杆,圆心为O,其直径AB 位于水平桌面上,原长为R的轻弹簧一端固定在A点,另一端连接着质量为m的小球, θ=?,重力小球套在弧形杆上的C点处于静止状态,已知OC与水平面之间的夹角60 加速度为g。求: (1)弧形杆对小球的弹力大小及方向; (2)弹簧的劲度系数。 2.如图所示,质量M=kg的木块套在水平杆上,并用轻绳与质量m kg的小 球相连,今用跟水平方向成α=30°角的力F=N拉着球带动木块一起向右匀速运动,运动中M、m相对位置保持不变,g取10N/kg,求: (1)运动过程中轻绳与水平方向夹角θ; (2)木块与水平杆间的动摩擦因数μ。 3.重250N的物体放在水平地面上,已知物体与水平地面间的最大静摩擦力为150N,动摩擦因数是0.5,物体的一端连一根劲度系数为4×103N/m的轻质弹簧.求: (1)将弹簧拉长2cm时,物体受到地面的摩擦力多大? (2)将弹簧拉长4cm时,物体受地面的摩擦力多大? 4.如图所示,用一轻弹簧竖直悬挂物体,现用力F=10.5N竖直向下拉物体,使物体处于静止状态,弹簧由原长5cm伸长到7.2cm。若将力F改为竖直向上拉物体,大小不变,物体仍处于静止状态,弹簧由原长缩短到3cm。求物体的质量和弹簧的劲度系数。(g

取10N/kg) 5.如图所示,一个半球形的碗放在桌面上,碗口水平,O点为其球心,碗的内表面及碗口是光滑的。一根细线跨在碗口上,线的两端分别系有A、B两个小球,其中B球质量为m,当它们处于平衡状态时,小球A与O点的连线与水平线的夹角为α=60°,求:小球A的质量大小。 6.如图所示,某人用轻绳牵住一只质量m=0.6kg的氢气球,因受水平风力的作用,系氢气球的轻绳与水平方向成37°角。已知空气对气球的浮力为15N,人的质量M=50kg,且人受的浮力忽略不计(g取10N/kg,sin37°=0.6,co s37°=0.8)。求: (1)水平风力的大小; (2)人对地面的压力大小; (3)若水平风力增强,人对地面的压力如何变化?(要求说明理由) 7.如图所示,物块A套在一根水平固定的直杆上,物块A与水平杆间的动摩擦因数 μ=,用轻绳将物块A与质量m=1 kg的小球B相连,轻绳与水平方向夹角为30°。 3 现用跟竖直方向成30°角的拉力F,拉着球B并带动物块A一起向左做匀速直线运动,运动中A、B相对位置保持不变,g=10 m/s2。求: (1)拉力F的大小;(结果可以用根式表示) (2)物块A的质量。

高中物理直线运动基础练习题及解析

高中物理直线运动基础练习题及解析 一、高中物理精讲专题测试直线运动 1.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求 (1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少? 【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为 3316 m 【解析】 试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N 由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2 代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s 从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s 此过程中A 相对小车的位移为L 1,则 2211211222mgL mv mv μ=-?解得:L 1=94 m 物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2

相关主题
文本预览
相关文档 最新文档