当前位置:文档之家› 某煤矿供电系统设计计算示例

某煤矿供电系统设计计算示例

某煤矿供电系统设计计算示例
某煤矿供电系统设计计算示例

某煤矿供电系统设计计算示例

一、供电系统的拟定

1、地面主供电线路(详见供电系统图)

根据《煤矿规程》第四百四十一条规定,结合五一煤矿的实际情况,现拟定矿井供电线路为两条,一是由永安变电站向五一煤矿地面配电室输送的6KV供电线路;二是由元门坝变电站向五一煤矿地面配电室输送的6KV供电线路。

2、矿井主供电线路详见供电系统图)

根据《煤矿规程》第四百四十一条规定,结合五一煤矿的实际情况,现拟定矿井供电线路为两条,

第一条:采用ZLQ50mm2铠装电缆从地面10KV站向+510中央变电所供6000V电源,电缆长度为1200m。

第二条:采用ZLQ35mm2铠装电缆从地面10KV站向+350中央变电所供6000V电源,电缆长度为1700m。

第三条:采用ZLQ35mm2铠装电缆从地面10KV站向+200中央变电所供6000V电源,电缆长度为2200m;从+200中央变电所采用VUZ35mm2铠装电缆向南翼采区变电所供6000V电源,电缆长度为2300m。

2、联络电缆供电情况:

+510水平中央变电所与+350水平中央变电所联络供电采用ZLQ35mm2铠装电缆,电缆长度为500m;+350水平中央变电所与+200水平中央变电所的联络供电采用ZLQ35mm2铠装电缆,电缆长度为

500m。

二、各中央变电所变压器容量的计算

1、+510中央变电所变压容量的计算

P510=ΣPeKx÷Cosψpj

其中ΣPe=P1+P2+P3,

P1=130KW为2m绞车负荷;

P2=75KW为1.2m人车负荷;

P3=30KW为照明等其它负荷。则

ΣPe=130+75+30=255KW;Kx=0.7,Cosψpj=0.7

P510=235×0.7÷0.7

=235KVA>180KVA。

由于考虑到1.2m绞车是专提升人员用,故该变电所采用两台变压器分别向2m绞车和1.2m绞车供电。即一台180KVA和一台100KVA 的变压器。因此完全能够满足生产需要。

2、目前+350水平中央变电所变压器容量的计算

P350前=ΣPeKx÷Cosψpj

其中ΣPe=P1+P2+P3+P4+P5,

P1=250KW为D280×43×5的主排水泵负荷;

P2=155KW为150D30×7排水泵的负荷;

P3=130KW为压风机负荷;

P4=110KW为1.6m人车负荷;

P5=15×2=30KW为充电设备及照明等其它负荷;则

ΣPe=250+155+130+110+30=675KW;Kx=0.85,Cosψpj=0.8

P350前=675×0.85÷0.8

=717.8KVA。

由于该中央变电所,目前有比较多的大容量设备,因此,选用三变压器,两台320KVA和一台200KVA的变压器。其中一台320KVA的变压器供200D43×5的水泵250KW电动机的电;另一台320KVA的变压器供压风机130KW和1.6m人车130KW电动机的电;一台200KVA的变压器供两台150D30×7的水泵155KW电动机的电,两台水泵一台排水,一台备用。

3、南翼投产后+350中央变电所变压器的容量计算

由于南翼投产后两台压风机已搬至南翼采区变电所,因此,+350中央变电所的负荷发生变化,其变化后的情况如下:

P350后=ΣPeKx÷Cosψpj

其中ΣPe=P1+P2+P3+P4,

P1=250KW为D280×43×5的主排水泵负荷;

P2=155KW为150D30×7的排水泵负荷;

P3=110KW1.6m人车负荷;

P4=15×2=30KW为充电设备及照明等其它负荷;则

ΣPe=250+155+110+30=545KW;Kx=0.85,Cosψpj=0.8

P350后=545×0.85÷0.8

=579KVA。

由于该中央变电所有比较多的大容量设备,而且又有主排水设

备,因此,选用两台320KVA变压器。其中一台320KVA的变压器供200D43×5的水泵250KW电动机的电;另一台320KVA的变压器供1.6m 人车110KW电动机的电和两台150D30×7的水泵155KW电动机的电;两台水泵一台排水,一台备用。

4、+200水平中央变电所变压器容量的计算

P200=ΣPeKx÷Cosψpj

其中ΣPe=P1+P2+P3,

P1=250KW为D280×43×5的主排水泵负荷;

P2=155KW为150D30×7的排水泵负荷;

P3=70KW为充电设备及照明等其它负荷;则

ΣPe=250+155+70=475KW;Kx=0.85,Cosψpj=0.8

P200=475×0.85÷0.8

=504.7KVA。

由于该中央变电所担负着南翼主排水任务。因此,选用两台315KVA变压器,其中一台315KVA的变压器供200D43×5的水泵250KW 电动机的电;另一台315KVA的变压器供两台150D30×7的水泵155KW 电动机的电,两台水泵一台排水,一台备用。

5、南翼采区变电所变压器容量的计算

P南翼=ΣPeKx÷Cosψpj

其中ΣPe=P1+P2+P3+P4+P5+P6,

P1=130KW为压风机负荷;

P2=40×2=80KW为两个采煤工作面40型电刮板运输机的负荷;

P3=30×2=60KW为两个采煤工作面泵站的负荷;

P4=17×2=34KW为两个掘进碛头装岩机的负荷;

P5=25×2=50KW为两个掘进碛头内齿轮绞车的负荷;

P6=70KW为各工作面和掘进碛头的干变、水泵、煤电钻、局扇以及硐室照明等其它负荷;则

ΣPe=130+88+60+34+50+70=432KW;Kx=0.7,Cosψpj=0.8

P南翼=432×0.7÷0.8

P南翼 =378KVA。

由于该采区变电所担负着南翼主生产任务。因此,选用一台320KVA变压器和一台180KVA的变压器,320KVA的变压器供压风机及充电设备的电;180KVA的变压器供两个掘进碛头和采煤工作面所有设备的电。

三、按经济电流密度校验各主输电电缆载面

1、+510中央变电所主输电电缆截面的校验

①、+510中央变所两台压器无功功率的计算

Q510=Q1+Q2

Q1=I0%×Pe÷100+ux%×Pe(P÷Pe)2÷100 式中:I0%=6,Pe=180,ux%=4.5,P=130

Q1=6×180÷100+4.5×180(130÷180)2÷100

=10.8+4.225

=15.025

Q2=I0%×Pe÷100+ux%×Pe(P÷Pe)2÷100 式中:I0%=6,Pe=100,

ux%=4.5,P=75

Q2=6×100÷100+4.5×100(75÷100)2÷100

=6+2.53

=8.53

Q510=Q1+Q2

=15.025+8.53

=23.56(千乏)

②、计算+510中央变电所的最大长时负荷电流

Ig510=√(P5102+Q5102 )÷(√3 ×U ) 式中:P510=235KW,Q510=23.56千乏,

U=6

Ig510 =√(2352+23.562)÷(√3 ×6)

=236 ÷10.39

=22.7(A)

③、按经济电流密度校验电缆截面

S510=Ig510÷Jn 式中:Ig510=22.7A,Jn =1.15

S510=22.7÷1.15

=19.7(A)

根据计算电流19.7A查电工手册可选取电缆截面为10mm2电缆,允许电流为65A,而现使用的电缆截面为50mm2,允许电流为135A,能继续使用,但不经济。

2、目前+350中央变电所主输电电缆截面的校验

①、+350中央变所三台压器无功功率的计算

Q350前=Q1+Q2+Q3

Q1=I0%×Pe÷100+ux%×Pe(P÷Pe)2÷100 式中:I0%=5.5,Pe=320,ux%=4.5,P=310

Q1=5.5×320÷100+4.5×320(310÷320)2÷100

=17.6+13.5

=31.1

Q2=I0%×Pe÷100+ux%×Pe(P÷Pe)2÷100 式中:I0%=5.5,Pe=320,ux%=4.5,P=260

Q2=5.5×320÷100+4.5×320(260÷320)2÷100

=17.6+13.5

=31.1

Q3=I0%×Pe÷100+ux%×Pe(P÷Pe)2÷100 式中:I0%=5.5,Pe=200,ux%=4.5,P=185

Q3=5.5×200÷100+4.5×200(185÷200)2÷100

=11+7.7

=18.7

Q350前=Q1+Q2+Q3

=31.1+31.1+18.7

=80.9(千乏)

②、计算目前+350中央变电所的最大长时负荷电流

Ig350前=√(P350前2+Q350前2 )÷(√3 ×U ) 式中:P350前

=717.8KW,

Q350前=80.9千乏,

U=6

P3=70KW为充电设备及照明等其它负荷;则

ΣPe=250+155+70=475KW;Kx=0.85,Cosψpj=0.8

P200=475×0.85÷0.8

=504.7KVA。

由于该中央变电所担负着南翼主排水任务。因此,选用两台315KVA变压器,其中一台315KVA的变压器供200D43×5的水泵250KW 电动机的电;另一台315KVA的变压器供两台150D30×7的水泵155KW 电动机的电,两台水泵一台排水,一台备用。

5、南翼采区变电所变压器容量的计算

P南翼=ΣPeKx÷Cosψpj

其中ΣPe=P1+P2+P3+P4+P5+P6,

P1=130KW为压风机负荷;

P2=40×2=80KW为两个采煤工作面40型电刮板运输机的负荷;

P3=30×2=60KW为两个采煤工作面泵站的负荷;

P4=17×2=34KW为两个掘进碛头装岩机的负荷;

P5=25×2=50KW为两个掘进碛头内齿轮绞车的负荷;

P6=70KW为各工作面和掘进碛头的干变、水泵、煤电钻、局扇以及硐室照明等其它负荷;则

ΣPe=130+88+60+34+50+70=432KW;Kx=0.7,Cosψpj=0.8

P南翼=432×0.7÷0.8

P南翼 =378KVA。

由于该采区变电所担负着南翼主生产任务。因此,选用一台320KVA变压器和一台180KVA的变压器,320KVA的变压器供压风机及充电设备的电;180KVA的变压器供两个掘进碛头和采煤工作面所有设备的电。

三、按经济电流密度校验各主输电电缆载面

1、+510中央变电所主输电电缆截面的校验

①、+510中央变所两台压器无功功率的计算

Q510=Q1+Q2

Q1=I0%×Pe÷100+ux%×Pe(P÷Pe)2÷100 式中:I0%=6,Pe=180,ux%=4.5,P=130

Q1=6×180÷100+4.5×180(130÷180)2÷100

=10.8+4.225

=15.025

Q2=I0%×Pe÷100+ux%×Pe(P÷Pe)2÷100 式中:I0%=6,Pe=100,ux%=4.5,P=75

Q2=6×100÷100+4.5×100(75÷100)2÷100

=6+2.53

=8.53

Q510=Q1+Q2

=15.025+8.53

=23.56(千乏)

②、计算+510中央变电所的最大长时负荷电流

Ig510=√(P5102+Q5102 )÷(√3 ×U ) 式中:P510=235KW,Q510=23.56千乏,

U=6

Ig510 =√(2352+23.562)÷(√3 ×6)

=236 ÷10.39

=22.7(A)

③、按经济电流密度校验电缆截面

S510=Ig510÷Jn 式中:Ig510=22.7A,Jn =1.15

S510=22.7÷1.15

=19.7(A)

根据计算电流19.7A查电工手册可选取电缆截面为10mm2电缆,允许电流为65A,而现使用的电缆截面为50mm2,允许电流为135A,能继续使用,但不经济。

2、目前+350中央变电所主输电电缆截面的校验

①、+350中央变所三台压器无功功率的计算

Q350前=Q1+Q2+Q3

Q1=I0%×Pe÷100+ux%×Pe(P÷Pe)2÷100 式中:I0%=5.5,Pe=320,ux%=4.5,P=310

Q1=5.5×320÷100+4.5×320(310÷320)2÷100

=17.6+13.5

=31.1

Q2=I0%×Pe÷100+ux%×Pe(P÷Pe)2÷100 式中:I0%=5.5,Pe=320,ux%=4.5,P=260

Q2=5.5×320÷100+4.5×320(260÷320)2÷100

=17.6+13.5

=31.1

Q3=I0%×Pe÷100+ux%×Pe(P÷Pe)2÷100 式中:I0%=5.5,Pe=200,ux%=4.5,P=185

Q3=5.5×200÷100+4.5×200(185÷200)2÷100

=11+7.7

=18.7

Q350前=Q1+Q2+Q3

=31.1+31.1+18.7

=80.9(千乏)

②、计算目前+350中央变电所的最大长时负荷电流

Ig350前=√(P350前2+Q350前2 )÷(√3 ×U ) 式中:P350前=717.8KW,

Q350前=80.9千乏,

U=6

Q200=51.1千乏,U=6,Ig南=36.6

Ig200=√(5042+51.12)÷(√3 ×6)+36.6

=85.3(A)

③、按经济电流密度校验电缆截面

S200=Ig200÷Jn 式中:Ig200=Ig200+Ig南=48.7+36.6=85.3A,Jn =1.15

S200=85.3÷1.15

=74.2(A)

根据计算电流74.2A查电工手册可选取电缆截面为25mm2电缆,允许电流为95A,而现使用的电缆截面为35mm2,允许电流为105A,能继续使用,但不经济。

6、按经济电流密度校验+510与+350联洛电缆的载面

①、根据+510或+350水平的经济电流密度校验联络电缆截面

若因向+510或+350主供电电缆任何一路出现电缆故障时,启用联络电缆,这时联络电缆则担分别任+510或+350水平的负荷。

根据计算电流 Ig510= 22.7A;Ig350前=69.5A;Ig350后=65A;查电工手册可选取电缆截面为25mm2电缆,其长时允许电流为95A;而现使用的联络电缆截面为35mm2,其长时允许电流为105A;因此,现使用ZLQ35mm2铠装联络电缆符合供电要求,可以继续使用,但不经济。

②、根据经济电流密度校验+510、+350主输电电缆的截面

若因向+510或+350主供电电缆任何一路出现电缆故障时,启用联络电缆,这时任何路主输电电缆就要担负+510和+350两个水平的全部负荷,则主输电电缆电流为两个水平高压电流之和。

Ig=Ig350+Ig510 Ig350= 69.5A, Ig510 =22.7A

企业供电系统杜家村煤矿工程设计

信息与电气工程学院 课程设计说明书(2015/2016学年第一学期) 课程名称:企业供电系统工程设计 题目:杜家村煤矿35kV变电所设计 专业班级: 学生姓名: 学号: 指导教师: 设计周数: 1周 设计成绩: 2016年1月14日

目录 1 设计目的.................................................. 错误!未定义书签。 2 设计数据?错误!未定义书签。 2.1 给定数据............................................ 错误!未定义书签。 2.2 用电负荷数据?错误!未定义书签。 3 技术要求.................................................. 错误!未定义书签。 4 主要任务 (2) 5 变电所的设计?错误!未定义书签。 5.1 负荷计算?错误!未定义书签。 地面6kV高压:?2 5.2短路电流计算?错误!未定义书签。 5.2.1 35kV母线K1点短路......................... 错误!未定义书签。 5.2.2 6kV母线K2点短路:?错误!未定义书签。 5.2.3 6kV母线短路电流............................ 错误!未定义书签。 5.3 供配电系统的设计方案技术及经济性对比................ 错误!未定义书签。 5.4 供配电系统图的拟定和绘制?错误!未定义书签。 5.4.1 一次侧的设计................................... 错误!未定义书签。 5.4.2 二次侧的设计.................................. 错误!未定义书签。 5.5 变压器的选择........................................ 错误!未定义书签。 5.6 主要电气设备的选择.................................. 错误!未定义书签。 5.6.1 高压设备的选择?错误!未定义书签。 5.6.2 选隔离开关..................................... 错误!未定义书签。 5.6.3低压设备的选择?错误!未定义书签。 5.6.4 互感器的选择?错误!未定义书签。 5.6.5高压熔断器的选择?错误!未定义书签。 5.7线缆的选择?错误!未定义书签。 5.7.1 母线的选择?9 5.7.2 各负荷电缆的选择?错误!未定义书签。 6 心得体会.................................................. 错误!未定义书签。 7 参考文献.................................................. 错误!未定义书签。 8 指导教师评语?错误!未定义书签。

煤矿供电计算公式

煤矿供电计算公式 井 下 供 电 系 统 设 计 常 用 公 式 及 系 数 取 值

目录: 一、短路电流计算公式 1、两相短路电流值计算公式 2、三相短路电流值计算公式 3、移动变电站二次出口端短路电流计算 (1)计算公式 (2)计算时要列出的数据 4、电缆远点短路计算 (1)低压电缆的短路计算公式 (2)计算时要有计算出的数据 二、各类设备电流及整定计算 1、动力变压器低压侧发生两相短路,高压保护装值电流整定值 2、对于电子高压综合保护器,按电流互感器二次额定电流(5A)的1-9倍分级整定的计算公式 3、照明、信号、煤电钻综合保护装置中电流计算 (1)照明综保计算公式 (2)煤电钻综保计算公式 4、电动机的电流计算 (1)电动机额定电流计算公式 (2)电动机启动电流计算公式 (3)电动机启动短路电流 三、保护装置计算公式及效验公式 1、电磁式过流继电器整定效验 (1)、保护干线电缆的装置的计算公式 (2)、保护电缆支线的装置的计算公式 (3)、两相短路电流值效验公式 2、电子保护器的电流整定 (1)、电磁启动器中电子保护器的过流整定值 (2)、两相短路值效验公式 3、熔断器熔体额定电流选择 (1)、对保护电缆干线的装置公式 (2)、选用熔体效验公式 (3)、对保护电缆支线的计算公式 四、其它常用计算公式 1、对称三相交流电路中功率计算 (1)有功功率计算公式 (2)无功功率计算公式 (3)视在功率计算公式 (4)功率因数计算公式 2、导体电阻的计算公式及取值

3、变压器电阻电抗计算公式 4、根据三相短路容量计算的系统电抗值 五、设备、电缆选择及效验公式 1、高压电缆的选择 (1) 按持续应许电流选择截面公式 (2) 按经济电流密度选择截面公式 (3) 按电缆短路时的热稳定(热效应)选择截面 ①热稳定系数法 ②电缆的允许短路电流法(一般采用常采用此法) A、选取基准容量 B、计算电抗标什么值 C、计算电抗标什么值 D、计算短路电流 E、按热效应效验电缆截面 (4) 按电压损失选择截面 ①计算法 ②查表法 (5)高压电缆的选择 2、低压电缆的选择 (1)按持续应许电流选择电缆截面 ①计算公式 ②向2台或3台以上的设备供电的电缆,应用需用系数法计算 ③干线电缆中所通过的电流计算 (2)按电压损失效验电缆截面 ①干线电缆的电压损失 ②支线电缆的电压损失 ③变压器的电压损失 (3) 按起动条件校验截面电缆 (4) 电缆长度的确定 3、电器设备选择 (1)变压器容量的选择 (2)高压配电设备参数选择 ①、按工作电压选择 ②、按工作电流选择 ③、按短路条件校验 ④、按动稳定校验 (3)低压电气设备选择

设计用计算公式

计算公式 一、矿山服务年限计算 N=Q A(1 e) (a) 式中:N—矿山服务年限(a); Q—设计利用储量 η—矿石回采率 A—矿山年产量 e—废石混入率二、矿山生产能力计算 万t; %;(地下开采80%-90%,露天开采85%-95%) 万t/a; %;(地下开采10%,露天开采5%) 1、按采矿工程延深速度验证确定矿山生产能力(露天)A=P V H (1e) (a) 式中:A—矿山生产能力P—水平分层平均矿量V—采 矿工程年延深速度η—矿 石回收率H—阶段高度 e—废石混入率万t/a;万t;m/a;%;m;%; 2、根据矿山开采年下降速度计算和验证矿山生产能力(地下开采)A=V S 1 K1·K2·E(万t)

式中:A—矿山年生产能力万t/a;

V —回采工作面下降速度 S —矿体开采面积 —矿石体重 α—矿石回收率 β—废石混入率 m/a ;(浅孔留矿为 10-25 m/a) m ; t/m ; %;(80%-90%) %;(10%-20%) E —地质影响系数 (0.7-0.9); K 1—矿体倾角修正系数 K 2 —矿体厚度修正系数 (0.8-1.2) 3、矿山生产能力计算(地下开采) A= N Q K E 1 Z (万 t/a ) 式中:A —矿山生产能力 Q —矿块生产能力 N —分布矿块数 万 t/a ; 万 t/a ; 个; K —矿块利用系数 (0.1-0.4); E —地质影响系数 (0.7-0.9); Z —废石混入率 (10%-20%); 4、露天矿总生产能力计算 A α=A(1+n s ) (万 t/a ) 式中:A α—年矿岩总生产能力 t/a ; A —年矿石生产能力 t/a ; n s —生产剥采比 t/t ; 5、露天矿可能达到的生产能力 A=N·n·Q (t/a ) 2 3

煤矿供电设计参考

某煤矿(整合0.15Mt/a)供电设计 (仅供参考) 第一节供电电源 一、供电电源 某煤矿矿井双回路电源现已形成,其中:一回路电源由1#变电所10kV直接引入,LGJ-70型导线,距离矿区7公里;另一回路电源由2#变电所10kV直接引入,LGJ-120型导线,距离矿区20公里。 第二节电力负荷计算 经统计全矿井设备总台数84台,设备工作台数66台;设备总容量1079.64kW,设备工作容量696.34kW,计算负荷为: 有功功率:513.24 kW 无功功率:425.94 kVar 自然功率因数COSΦ=0.77 视在功率:666.96 kVA 考虑有功功率和无功功率乘0.9同时系数后: 全矿井用电负荷 有功功率:461.92 kW 无功功率:383.35 kVar 功率因数COSΦ=0.77 视在功率:600.27 kVA 矿井年耗电量约243.89万kW·h,吨煤电耗约16.26kW·h/t。 负荷统计见表1。 第三节送变电 一、矿井供电方案 根据《煤矿安全规程》要求,矿井应有两回电源供电,当任一回路发生故障停止供电时,另一回路应能担负矿井全部负荷。根据本矿井现有的电源条件,设计在本矿井工业场地内建10kV变电所。两回10kV电源分别引自10kV 1#变电所

和2#变电所。 二、10kV供电线路 设计对线路导线截面,按温升、经济电流密度、线路压降等校验计算如下: 1、根据经济电流密度计算截面积 导线通过的最大电流:(两回10kV线路,当一回故障检修时,另一回10kV线路向本矿供电时,导线通过的电流最大) I j=P/(3UcosΦ)=513.24/(1.732×10×0.77)=38.5A 导线经济截面: S=I j/J=38.5/0.9=42.8mm2(J为经济电流密度) 通过计算,实际选用的钢芯铝绞线截面满足要求。 2、按电压降校验 由10kV1#变电所和2#变电所向本矿工业场地10kV变电所供电的两回10kV线路供电距离分别为7km和20km,正常情况下两回线路同时运行,当两回10kV线路中一回线路事故检修时,由另外一回10kV线路向本矿供电。按正常情况及事故情况对两回电源线路分别做电压降校验如下:1)正常情况下 两回10kV线路同时运行,线路电压损失: ⑴1#变电所10kV供电线路电压损失: ΔU%=Δu%PL/2 =0.745×0.51324×7/2 =1.34%。 线路能满足矿井供电。 ⑵2#变电所10kV供电线路电压损失: ΔU%=Δu%PL/2 =0.555×0.51324×20/2 =2.85%。 线路能满足矿井供电。 2)事故情况下 单回10kV供电线路电压损失: ⑴1#变电所10kV供电线路电压损失:

矿山开采设计用计算公式

计算公式 一、矿山服务年限计算 N=) 1(e A Q -?η (a ) 式中:N —矿山服务年限 (a ); Q —设计利用储量 万t ; η—矿石回采率 %;(地下开采80%-90%,露天开采85%-95%) A —矿山年产量 万t/a ; e —废石混入率 %;(地下开采10%,露天开采5%) 二、矿山生产能力计算 1、按采矿工程延深速度验证确定矿山生产能力(露天) A=) 1(e H V P -??η (a ) 式中:A —矿山生产能力 万t/a ; P —水平分层平均矿量 万t ; V —采矿工程年延深速度 m/a ; η—矿石回收率 %; H —阶段高度 m ; e —废石混入率 %; 2、根据矿山开采年下降速度计算和验证矿山生产能力(地下开采) A=β αγ-???1S V K 1〃K 2〃E (万t ) 式中:A —矿山年生产能力 万t/a ; V —回采工作面下降速度 m/a ;(浅孔留矿为10-25 m/a)

S—矿体开采面积 m2; γ—矿石体重 t/m3; α—矿石回收率 %;(80%-90%)β—废石混入率 %;(10%-20%)E—地质影响系数(0.7-0.9); K1—矿体倾角修正系数 K2—矿体厚度修正系数(0.8-1.2)3、矿山生产能力计算(地下开采) A= Z E K Q N -? ? ? 1 (万t/a) 式中:A—矿山生产能力万t/a; Q—矿块生产能力万t/a; N—分布矿块数个; K—矿块利用系数(0.1-0.4); E—地质影响系数(0.7-0.9); Z—废石混入率(10%-20%); 4、露天矿总生产能力计算 Aα=A(1+n s)=Ak+nsAk (万t/a) 式中:Aα—年矿岩总生产能力 t/a; A—年矿石生产能力 t/a; n s—生产剥采比 t/t; 5、露天矿可能达到的生产能力 A=N〃n〃Q (t/a) 式中:A—露天矿矿石年产量 t/a;

矿山供电系统设计

9矿山生产系统设计 9.4 供电系统设计 9.4.1 概述 一供电的重要性和基本要求 电力是企业生产的主要能源。对企业应做到可靠、安全全和生产的需要,企业对供电提出以下基本要求:供电安全、供电可靠、供电优质、供电经济。 1.供电安全 在电能的供应、分配和使用过程中,不应发生人身伤亡和设备损坏事故。对于煤矿生产来说,由于主要是地下作业,工作环境特殊,供电线路和电气设备易受损坏,可能造成人身触电、电气火灾和电火花引起的瓦斯煤尘爆炸等事故,所以必须严格按照《煤矿安全规程》的有关规定进行供电,确保安全生产。 2.供电可靠 供电可靠就是要求供电具有连续可靠性。供电中断时不仅影响企业生产,而且可能损坏设备,产生废品,甚至发生人身伤亡事故。而煤矿一旦断电,不仅影响产量,还有可能引发瓦斯集聚、淹井、人身伤广和设备损坏,严重时将造成矿井的破坏。为了保证供电的可靠性,通常采用双电源。双电源可来自不同变电所或发电厂或同一变电所的不同母线上。对于煤矿,在一个电源发生故障的情况下,另一电源应能满足对主要个产设备的供电,以保证通风、排水以及生产的正常进行。 3.供电优质 在保证安全和可靠供电的前提下,还要保证供电的质量,用电设备在额定值下运行性能最好。因此要求供电质量方面有稳定的电压和频率,电压和频率足衡量电能质量的重要指标。 具体有以下4项指标: (1)电压:额定电压电压偏差不得超过允许值,电动机±5%,白炽灯+3%~-2.5。 (2)频率:额定频率50Hz,频率偏差不得大于±0.4%~±1%。 (3)波形:正弦波形,波形上不得有高次谐波产生的毛刺,以防造成电力污染。 (4)平衡度:三相电网电压平衡。 4.供电经济 一般考虑下列3个方面; (1)尽量降低企业变电所与电网的基本建设投资。 (2)尽量降低设备材料及有色金属的消耗量。 (3)注意降低供电系统的电能损耗及维护费用。 此外,企业还要求有足够的电能。这不仅要求电力系统或发电厂能提供充裕的电能而且要求企业供电系统的各项供电设施具有足够的供电能力。 二电力负荷分类 为了满足电力用户对供电可靠性的要求,即停电所造成的影响不同.同时又考虑到供电的经济件,根据用电设备在企业中所处的重要地位,以方便在不同情况下区别对待,通常将电力负荷分为3类。 1.一类负荷(一级负荷) 凡因突然小断供电,可能造成人身伤亡事故或重要设备损坏事故,给国民经济造成重大损失的或在政治上产生不良影响的负荷,均属于一类负荷。如钢厂炼

煤矿35KV地面变电所供电系统设计毕业论文

煤矿35KV地面变电所供电系统设计毕业论文 目录 摘要............................................................ 错误!未定义书签。ABSTRACT ......................................................... 错误!未定义书签。目录........................................................................... I 第一章概述.. (1) 1.1电源 (1) 1.2基本地质气象资料 (1) 第二章负荷计算及变压器选择 (1) 2.1负荷分析 (1) 2.1.1 负荷分类 (1) 2.2负荷曲线 (1) 2.3矿井用电负荷计算 (2) 2.3.1 设备容量确定 (2) 2.3.2 需用系数的含义 (2) 2.3.3 本系统的负荷计算 (3) 2.3.4 原始资料 (5) 2.4.1 计算负荷: (8) 2.4.2 全矿负荷统计 (12) 2.5无功功率的补偿 (12) 2.6主变压器的选择 (14) 2.6.1 主变压器容量的确定 (14) 2.6.2 主变压器台数的确定 (14) 2.7全矿总负荷的计算 (15) 2.7.1 变压器损耗计算 (15) 2.7.2 全矿总负荷 (15) 第三章电气主接线的设计 (16)

3.1 电气主接线的概述 (16) 3.2电气主接线的设计原则和要求 (16) 3.2.1 电气主接线的设计原则 (16) 3.2.2 电气主接线设计的基本要求 (17) 3.3电气主接线方案的比较 (18) 第四章短路电流的计算 (21) 4.1短路电流计算的一般概述 (21) 4.1.1 短路的原因 (21) 4.1.2 短路的危害 (21) 4.1.3短路的类型 (22) 4.2短路电流计算 (22) 第五章电气设备的选择与校验 (27) 5.1高压电器设备选择的一般原则 (27) 5.1.1 按正常工作条件选择高压电气设备 (27) 5.1.2 按短路条件校验 (29) 5.2电气设备的选择和校验 (30) 5.2.1 高压断路器的选择和校验 (30) 5.2.2 低压隔离开关的选择和校验 (31) 5.2.3 电流互感器的选择及校验 (31) 5.2.4 母线 (32) 5.2.5 高压开关柜的选择 (34) 第六章导线的选择与敷设 (36) 6.1导线选择的条件 (36) 6.2电缆型号的含义 (37) 6.3导线截面的选择 (37) 6.4电缆的选择与计算 (38) 第七章主变压器的继电保护 (40) 7.1继电保护的任务和基本要求 (40) 7.2保护的装设原则 (41) 7.2.1 电力变压器应装设的保护装置 (41) 7.2.2 保护形式 (42) 7.2.3 变电所的室外布置 (46) 第二部分采区变电所 (47) 第一章采区变电所的负荷统计 (47) 第二章变压器的选择 (49) 2.1变压器的选择 (49) 第三章采区电缆的选择 (52) 3.1电缆型号的确定 (52) 3.1.1电缆选择的基本原则 (52) 3.1.2 型号的确定 (52) 3.2电缆截面的选择 (52) 3.2.1 采区变电所6kv电源,电缆的选择 (52) 3.2.2按长时允许电缆流校验电缆截面: (53) 3.2.3 按电压损失校验。 (53) 3.2.4 按热稳定条件校验。 (54)

煤矿供电设计规范标准

一、负荷计算与变压器选择 工作面电力负荷计算是选择变压器和移动变电站台数、容量的依据,也是配电网络计算的依据之一。 1、负荷统计 按表1-1内容,把工作面的每一种负荷进行统计。 平均功率因数计算公式: en e e en en e e e e pj P P P P P P + + ++ + + = ... cos ... cos cos cos 2 12 2 1 1 ?? ? ? 加权平均效率计算公式: en e e en en e e e e pj P P P P P P + + ++ + + = ...... 2 12 2 1 1η η η η 注:负荷统计表的设计参考北京博超公司的负荷统计表的设计

2、负荷计算 1)变压器需用容量 b S 计算值为: pj e x b P K S ?cos ∑= ()KVA 2)单体支架各用电设备无一定顺序起动的一般机组工作面,按下式计算需用系数: ∑+=e x P P K max 714 .0286.0 3)自移式支架,各用电设备按一定顺序起动的机械化采煤工作面,按下式计算需用系数: ∑+=e x P P K max 6 .04.0 max P ——最大一台电动机功率,kw 。

二、高压电缆选择计算和校验 1、按长时负荷电流选择电缆截面 长时负荷电流计算方法:pj pj e x e g U k P I η?cos 3103 ??= ∑ ∑e P ——高压电缆所带的设备额定功率之和kw ; (见变压器负荷统计中的结果) x k ——需用系数;计算和选取方法同前。(见变压器负荷统计中的结果) e U ——高压电缆额定电压(V) V 10000、V 6000; pj ?cos ——加权平均功率因数; (见变压器负荷统计中的结果) pj η——加权平均效率。0.8-0.9 2、电缆截面的选择 选择要求是: g y I KI ≥ ―> 长时最大允许负荷电流应满足: K I I g y ≥ ,初步筛选出符合条件的电缆 g I ——电缆的工作电流计算值,A ; y I ——环境温度为C o 25时电缆长时允许负荷电流,A ; K ——环境温度校正系数。 不同环境温度下的电缆载流量修正系数K

2019煤矿矿井供电设计

新临江煤矿(水井湾矿井) 供电设计 (一)矿井电源 设计矿井采用两回电源线路供电,一回、二回电源来自大竹木头变电 站不同电源母线端,电压 10kV ,供电距离 2km ,采用一趟 LGJ-3×70 型架 空线路输送至地面变电所。 (二)电源线路安全载流量及电压降校核 1、按经济电流密度选择电源线路截面 ? A e = n = = 60.14 mm 2 e J 1.15 来自大竹县木头变电站的不同母线段导线型号均采用 LGJ-3×70。 60.14 mm 2 <70mm 2 ,满足供电要求,并留有余地。 式中:矿井最大有功负荷 1078.2kW 。 2、按长时允许负荷电流校验电缆截面 线路 LGJ-3×70 允许载流量:环境温度为 25℃时为 275A (查表),考 虑环境温度 40℃时温度校正系数 0.81,则 Ix=275×0.81=222.75(A ) Ix=222.75A>I=69.17A 3、电源线路压降校核 供电线路LGJ-3×70/10kV 单位负荷矩时电压损失百分数:当cos ∮=0.9 时为 0.644%/MW.km (查表) 则电源线路电压降为:△U 1%=1.0523×2×0.644%=1.36%<5% 式中:电源线路长取 2km 。 全矿计算电流: 1078.2 3 10 0.9 = 69.17(A )

来自大竹县木头变电站不同母线段两回电源线路电压降均符合要求。 (三)电力负荷 1、矿井采用机械化采煤,投产时期即为最大负荷时期。机电设备布置 及使用情况统计详见表 10-1。 设备总台数 47 台 设备工作台数 36 台 设备总容量 1653.25kW 设备工作容量 1421.65kW 有功负荷 1078.2kW 无功负荷 801.54kvar 视在功率 1346.33kVA 功率因数 0.82 按补偿后功率因数达到约 0.95,则所需补偿电容容量为 0.82 0.82 -1- 0.95 0.95 -1 =377.38kvar 考虑到电容易的配置及矿井负荷的变化情况,变电所电容易室安装 BFMR11-420-3W 型高压电容自动补偿装置 2 套,补偿无功功率 420kvar 。补 偿后: 无功功率: 381.54kvar 视在功率: 1145.24kVA 功率因数: 0.95 矿井投产时年耗电量:2632802kW.h ,吨煤电耗 29.24kW.h/t 。 Q =P cos 2 1 -1 1 -1 - cos 2 Q = 1078.2

2019煤矿矿井供电设计

新临江煤矿(水井湾矿井) 供电设计 (一)矿井电源 设计矿井采用两回电源线路供电,一回、二回电源来自大竹木头变电站不同电源母线端,电压10kV ,供电距离2km ,采用一趟LGJ-3×70型架空线路输送至地面变电所。 (二)电源线路安全载流量及电压降校核 1、按经济电流密度选择电源线路截面 全矿计算电流: ) (A 17.699 .01032 .1078=??= I 14.6015 .117.69===J I A n e 2mm 来自大竹县木头变电站的不同母线段导线型号均采用LGJ-3×70。 2 mm <702 mm ,满足供电要求,并留有余地。 式中:矿井最大有功负荷。 2、按长时允许负荷电流校验电缆截面 线路LGJ-3×70允许载流量:环境温度为25℃时为275A (查表),考虑环境温度40℃时温度校正系数,则Ix=275×=(A ) Ix=>I= 3、电源线路压降校核 供电线路LGJ-3×70/10kV 单位负荷矩时电压损失百分数:当cos ∮=时为%/(查表) 则电源线路电压降为:△U 1%=×2×%=%<5% 式中:电源线路长取2km 。 来自大竹县木头变电站不同母线段两回电源线路电压降均符合要求。 (三)电力负荷 1、矿井采用机械化采煤,投产时期即为最大负荷时期。机电设备布置及使用情况统计详见表10-1。 设备总台数 47台 设备工作台数 36台 设备总容量 设备工作容量 有功负荷 无功负荷 视在功率 功率因数 按补偿后功率因数达到约,则所需补偿电容容量为 ??? ? ??---=1cos 11cos 1202??P Q ??? ? ??-?--?=195.095.01 182.082.012.1078Q = 考虑到电容易的配置及矿井负荷的变化情况,变电所电容易室安装BFMR11-420-3W 型高压电容自动补偿装置2套,补偿无功功率420kvar 。补偿后: 无功功率: 视在功率:

(试行)高压供电设计步骤及公式、系数等参数说明

高压供电设计步骤及公式、参数说明(试行)

地面供电系统高压供电设计程序、步骤 一、供电设计报告说明 1-1矿井概述 1-2矿井供电系统概述 1-2-1矿井地面供电系统 1-2-2矿井井下供电系统 1-3电气安全技术措施 二、矿井负荷统计(每条线路) 2-1地面电源线路负荷参数统计 2-2供电线路负荷参数统计(供单台变压器可按其容量计算) 三、短路电流、电压损失计算 3-1短路电流计算 (绘制图、表,供井下变电所设计、计算时采用)3-2电压损失计算 (矿井高压供电线路最远的两个点) 四、矿井电源线路及高压电气设备选择、校验 4-1矿井电源线路选择、校验 4-2高压电气设备选择、校验 五、整定保护 (整定值列表汇总并与上级整定核对、防止下级整定大于上级整定。)5-1 注:高压供电设计要求有目录,页码

井下变电所高压供电设计程序、步骤 (建议由末级变电所向上逐级设计、计算)一、供电设计报告说明 1-1变电所概述 1-2变电所供电系统概述及高压供电系统确定 1-3电气安全技术措施 二、负荷统计 (列表说明) 三、高压电气设备的选择、校验 四、高压电缆的选择、校验 五、继电保护整定计算(计算结果、整定情况列表标明)

采用的公式、系数等参数说明 变压器的容量选择及校验 一、采区负荷统计及变电站台确定 负荷统计表 名称 设备型号 台数 电 动 机 备 注 额定功率kW 额定电压kV 额定 电流 A 注:启动电流、功率因数、额定效率、负荷系数等按实际情况进行选取 二、 变压器容量、型号的确定 移动变电站负荷统计: S b =dj K P x e φcos ?∑(KVA ) (煤矿电工手册—矿井供电(下)式10-3-1 ) ∑? +=e X P P K max 6.04.0 (煤矿电工手册—矿井供电(下)式10-3-3 ) 式在:S ——所计算的电力负荷总的视在功率,KVA ; ∑P ——参加计算的所有用电设备(不包括备用)额定功率之和,KW ; Φcos ——参加计算的电力的平均功率因数;参照表10-3-1综采工作面取0.7; X K ——需用系数;其中: P max ——最大电动机的功率,KW ; 三、选用变压器的主要技术数据表 型号 额定容量kVA 额定电流(A ) 额定电压kV 损耗K W 阻抗电压% 备注 高压 低压 空载 负载 四、变电站电压损失:(低压供电设计中已经计算,可省略)

浅谈煤矿供电系统存在的问题和解决办法

浅谈煤矿供电系统存在的问题和解决办法 文章在分析淮南矿业集团现有大型煤矿供电系统现状的基础上,指出了继电保护整定困难、谐波污染严重、系统谐振、电气连接部分发热、电压波动范围大是煤矿供电系统存在的主要问题,并给出了具体的解决方法。这些方法已在各新建矿井应用,取得了较好的效果。 标签:煤矿供电系统继电保护谐波谐振 0 引言 煤矿生产中比较关键的辅助系统就是煤矿供电系统,煤矿供电系统安全、可靠的运营对煤矿的正常生产及运行有十分重要的意义。目前,煤炭生产技术的迅速发展,大大提高了矿井煤炭的产量,煤矿作业中也运用了大功率采煤机组和运输设施,井下供电系统承担的负荷就越来越多,这就要求整个供电系统必须提高供电质量。笔者根据淮南矿业集团现有煤矿供电系统的现状,分析了煤矿供电系统中常见的问题,并给出了具体的解决方法。 1 矿井供电系统存在的问题 目前,大功率采煤机组和运输设备被广泛采用,也获得了很好的发展,这就要求整个煤矿供电系统应该提升自身的供电质量。 同时,新设备的广泛运用也为煤矿供电系统制造了困扰,比如井下压降过大、系统谐波和谐振、电力设备发热以及继电保护整定值配合等问题。在某些情况下,这些问题会威胁到整个矿井的安全生 产。 1.1 继电保护整定困难 继电保护的整定及配置技术在目前的电力部门的输配电系统中的应用已相当成熟。煤矿供电系统在自身的运营结构及方法的基础上,适当引进了供电部门配电系统的继电保护整定和配置原则,但煤矿供电系统的运行结构和方式都有自己的特点,如井下线路级数多、每条线路相对要短、负荷量大等。 1.2 谐波污染加重 电力电子技术在最近几年获得较快的发展,很多功率较大、性能较高的开关器件被广泛应用于煤矿生产活动中。其中,很多电力电子设施也被逐步采用,如变频器、可控硅等,但同时也制造了很多谐波,造成电网电压产生波形畸变。很多变电所供电系统注入3次、5次、7次、11次谐波电流超标。

供电设计计算

煤矿供电设计计算 煤矿供电设计计算 一、供电方案:见供电系统示意图 二、变压器选型计算 1﹑负荷统计与变压器的选择(动力): ⑴﹑负荷统计表 负荷名称安装台数安装容量额定电压额定电流功率因数需用系数备注 刮板输送机 3 55KW 660V 56.6 0.85 0.5 皮带 1 55KW 660V 56.6 0.85 0.5 (2)﹑变压器容量的选择: 变压器视在功率:S=∑Pe×Kx/cos¢ =732.4×0.5/0.85 =430.82KVA 所选变压器为一台KSGB-500/6进行供电,满足要求。 式中:∑Pe—所有设备的额定功率之和:732.4KW cosφ—平均功率因数:0.85 Pn.max—该组用电设备中最大一台电动机的额定功率,55KW; ∑Pn—该组用电设备的额定功率之和,183.4KW; Kx—需用系数:K x=0.286+0.714×Pn.max/∑Pn =0.286+0.714×55/183.4 =0.5

2﹑负荷统计与变压器的选择(主风机) ⑴﹑负荷统计表 序号负荷名称安装台数安装容量额定电压额定电流功率因数需用系数备注 1 风机(主)1台2×30KW 660V 69A 0.85 1 2 风机(其它)1台60KW 660V 69A 0.85 1 单台 (2)﹑变压器容量的选择: 变压器视在功率:S=∑Pe×Kx/cos¢ =240×1/0.85 =282.35KVA ∑Pe—所有设备的额定功率之和:282.35KW 所选变压器为:KSGB- 315/6 一台,满足要求。 需用系数(Kx):K x=1 ⑶﹑平均功率因数(cosφ):0.85 三、电缆的选择: 1﹑馈电开关(1#)到(8#)开关 ①按长时允许电流选择电缆 Ica=Kx×∑P e/√3×U e×COS¢ =1×60/1.732×0.66×0.85 =61.75(A) 选用MYP3×70+1×25电缆,70mm2电缆长时容许电流为215A

煤矿供电设计规范

煤矿供电设计规范 Jenny was compiled in January 2021

一、负荷计算与变压器选择 工作面电力负荷计算是选择变压器和移动变电站台数、容量的依据,也是配电网络计算的依据之一。 1、负荷统计 按表1-1内容,把工作面的每一种负荷进行统计。 表1-1 工作面负荷统计表格式 平均功率因数计算公式: en e e en en e e e e pj P P P P P P + + ++ + + = ... cos ... cos cos cos 2 12 2 1 1 ?? ? ? 加权平均效率计算公式: en e e en en e e e e pj P P P P P P + + ++ + + = ...... 2 12 2 1 1η η η η

注:负荷统计表的设计参考北京博超公司的负荷统计表的设计 2、负荷计算 1)变压器需用容量b S 计算值为: pj e x b P K S ?cos ∑= ()KVA 2)单体支架各用电设备无一定顺序起动的一般机组工作面,按下式计算需用系数: ∑+=e x P P K max 714 .0286.0 3)自移式支架,各用电设备按一定顺序起动的机械化采煤工作面,按下式计算需用系数: ∑+=e x P P K max 6 .04.0 max P ——最大一台电动机功率,kw 。

井下其它用电设备需用系数及平均功率因数表

二、高压电缆选择计算和校验 1、按长时负荷电流选择电缆截面 长时负荷电流计算方法:pj pj e x e g U k P I η?cos 3103 ??= ∑ ∑e P ——高压电缆所带的设备额定功率之和kw ;(见变压器负荷统计中 的结果) x k ——需用系数;计算和选取方法同前。(见变压器负荷统计中的结 果) e U ——高压电缆额定电压(V) V 10000、V 6000; pj ?cos ——加权平均功率因数; (见变压器负荷统计中的结果) pj η——加权平均效率。、电缆截面的选择 选择要求是: g y I KI ≥

某煤矿井下采区变电所供电系统设计

煤矿采区供电设计所需原始资料 煤矿采区供电设计所需原始资料 在进行井下采区供电设计时,必须首先收集以下原始资料,作为设计的依据。 (1)矿井的瓦斯等级,采区煤层走向、倾角,煤层厚度、煤质硬度、顶底板情况、支护方式。 (2)采区巷道布置,采区区段数目、区段长度、走向长度、采煤工作面长度,采煤工作面数目,巷道断面尺寸。 (3)采煤方法,煤、矸、材料的运输方式,通风方式。 (4)采区机械设备的布置,各用电设备的详细技术特征。 (5)电源情况。了解采区附近现有变电所及中央变电所的分布情况,供电距离、供电能力及高压母线上的短路容量等情况。 (6)采区年产量、月产量、年工作时数,电气设备的价格、当地电价、硐室开拓费用、职工人数及平均工资等资料。 此外,在做井下采区供电设计时还需要准备下述资料: 《煤矿安全规程》、《煤炭工业设计规范》、《煤矿井下供电设计技术规定》、《矿井低压电网短路保护装置整定细则》、《矿井保护接地装置安装、检查、测定工作细则》、《煤矿井下检漏继电器安装、运行、维护与检修细则》、《煤矿电工手册》第二分册(下)、《中国煤炭工业产品大全》、各类有关的电气设备产品样本、各类供电教材。煤矿采区供电设计供电系统的拟定

拟定采区供电系统,就是确定变电所内高、低压开关和输电线路及控制开关的数量。在拟定供电系统时,应考虑以下原则: (1)在保证供电安全可靠的前提下,力求所用的开关、起动器和电缆等设备最少; (2) 原则上一台起动器只控制一台低压设备;一台高压配电箱只控制一个变压器。当高压配电箱或低压起动器三台及以上时,应设置进线开关;采区为双电源供电时,应设置两台进线高压配电箱。 (3)当采区变电所的动力变压器多于一台时,应合理分配变压器的负荷,原则上一台变压器负担一个工作面的用电设备;且变压器最好不并联运行; (4)由工作面配电点到各用电设备宜采用辐射式供电,上山及顺槽的输送机宜采用干线式供电;供电线路应走最短的路线,但应注意回采工作面(机采除外)、轨道上下山等处不应敷设电缆,溜放煤、矸、材料的溜道中严禁敷设电缆,并尽量避免回头供电; (5)大容量设备的起动器应靠近配电点的进线端,以减小起动器间电缆的截面; (6)低瓦斯矿井掘进工作面的局部通风机,可采用装有选择性漏电保护装置的供电线路供电,或采用掘进与采煤工作面分开供电; (7)瓦斯喷出区域、高瓦斯矿井、煤(岩)与瓦斯(二氧化碳)突出矿井中,掘进工作面的局部通风机都应实行三专(专用变压器、专用开关、专用线路)供电; (8)局部通风机与掘进工作面的电气设备,必须装有风电闭锁装置。

煤矿地面供电系统设计

煤矿地面供电系统设计 目录 摘要 1 煤矿简介及负荷统计..........错误!未定义书签。 1.1煤矿简介 (4) 1.2负荷统计 (4) 2 负荷计算 (5) 2.1负荷分级与负荷曲线 (5) 2.1.1供电负荷分级 (5) 2.1.2负荷曲线 (5) 2.2 矿井用电负荷计算 (6) 2.2.1设备容量的确定 (6) 2.2.2多个用电设备组的计算负荷 (8) 2.2.3负荷计算 (9) 2.3 功率因数补偿 (12) 2.3.1提高功率因数补偿的意义 (12) 2.3.2提高功率因数的方法 (13) 3 变电所主变压器选择 (14) 3.1 变压器的选取原则 (14) 3.2 变压器选择计算 (14)

3.3 变压器损耗计算 (15) 3.4 35kV侧全矿负荷计算及功率因数校验16 3.5 变压器经济运行方案的确定 (16) 4 电气主接线设计 (17) 4.1 对主接线的基本要求 (17) 4.2 本所电气主接线方案的确定 (18) 4.2.1 确定矿井35kV进线回路 (18) 4.2.2 35kV、6kV主接线的确定 (18) 4.2.3下井电缆回数的确定 (18) 5短路电流计算 (19) 5.1 短路电流计算的目的 (19) 5.2 短路电流计算中应计算的数值 (19) 5.3 三相短路电流计算计算的步骤 (20) 5.4短路电流计算过程 (20) 5.5短路参数汇总表 (28) 5.6 负荷电流统计表 (30) 6变电所的防雷与接地 (31) 6.1变配电所的防雷设计 (31) 8.1.1 变电所的防雷措施 (31)

6.2接地装置的设计及计算 (34) 6.2.1 保护接地方案设计 (34) 6.2.2 保护接地装置计算 (34) 结论 (35) 致谢 (36) 参考文献 (37) 摘要 百灵煤矿已有百年多历史,许多设备都是原来引进国外的。随着企业的发展,目前的供电系统不能安全、可靠的进行工作。本次设计主要是现有的供电设计特点进行分析、改造来满足供电系统的可靠性。本次设计主要有负荷计算、地面变电所设计、短路电流计算、地面高压选择、保护装置及地面避雷装置的选择等。系统主线以最大方式计算,并对短路电流和方式进行计算。以完全确保百灵煤矿井上供电系统全面、稳定的供电。 关键词:百灵煤矿;短路电流计算;负荷计算

煤矿井下电力监测监控系统的设计方案

煤矿井下电力监测监控系统设计方案 一、系统组成 1.1 数据交换中心 此部分主要由数据采集服务器和两台互为冗余的网路交换机组成。 数据采集服务器:主要通过井下隔爆交换机把井下各个电力监控分站的数据采集汇总到此服务器,完成数据处理及数据备份。 选用了IBM X3500服务器一台,做了RAID5磁盘镜像。 网路交换机:采用了双交换机、冗余设计,保证了地面集控站与数据交换中心的数据链路安全。 选用了CISC029系列的两台网络交换机。 1.2 地面集控站 此部分主要配置包括两台互为双机热备的电力监控服务器(选用IBM X3500服务器)和两台操作员站(选用DELL工控机)。 主要根据采集的电网数据和友好的软件平台,实现电网的运行监视和控制管理。另外,地面集控站预留了视频及WEB接口,便于将来扩充视频服务器和WEB服务器。视频服务器主要用于将井下和地面的配电室及变电所现场安装的摄像头采集的视频信号进行监视和保存;WEB服务器则用于将系统采集的电网数据以网页的形式发布到公司的办公系统网络中,公司领导只要在自己的办公室打开电脑就可以观看到全矿的电网实时数据。 综述,以上体系结构符合集控系统的体系结构原理,满足了系统功能和性能要求,并且符合实时性、安全性和可靠性原则。关键设备用了冗余配置。 二、系统软件 2.1 系统组态软件 选用了具有良好的开放性和灵活性的SIMATIC WinCC组态软件,布置在地面集控站的监控服务器上,实现用户的监控需求。采用此软件主要有以下优点: (1)包括所有的SCADA功能在内的客户机/服务器系统。最基本的WINCC系统仍能够提供生成可视化任务的组件和函数,而且最基本的WINCC系统组件即涵盖了画面、脚本、报警、趋势和报表的各个编辑器。 (2)强大的标准接口。WINCC提供了OLC、DDE、ActiveX、OPC等接口,可以很方便地与其他应用程序交换数据。 (3)使用方便的脚本语言。WINCC可编写ANSI-C和Visual Basic脚本程序。 (4)具有向导的简易(在线)组态。WlNCC提供了大量的向导来简化组态工作。在调试阶段还可以进行在线修改。 2.2 系统数据库软件 系统选用了力控实时数据库,它以其强大的功能,为企业信息化建设提供了完整的实时管理工具,能够提供及时、准确、完整的产生和统计信息,为实施企业管控一体化提供稳固的基础和有力的保证。其性能主要有: (1)真正的分布式结构,同时支持C/S和B/S应用; (2)实时数据库系统具有高可靠性和数据完整性; (3)灵活的扩展结构可满足用户各种需求; (4)高速的数据存储和检索性能;

煤矿供电整定计算原则

新安煤矿供电系统整定计算原则 机电科张永杰 一、掘进头等带电机起动开关的整定计算: ①、整定原则:按电机额定电流整定,当计算出整定结果,保护器无相应档位时,可适当提高至高档位。 计算公式:Ie=1.15×Pe(kw) 例:当一台设备额定功率为90kw 时,具体整定结果如下: 1.15×90=103.5A 如开关保护器无103.5A 档位时,可适当提高,将其整定结果整定为105A 。 二、变电所内分开关整定计算: 整定原则:①、速断:满足正常最大负荷时的运行: Idz ≥1.15×最大设备功率×6(设备启动时最大电流倍数)+1.15×其他设备总功率 对于开拓工作面,按同一数值整定,确定整定Ie 稳定,不至于经常调整,对速断按两相短路进行效验: 5.1) 2(>Idz Id 即可 例如:变电所内某台分开所带设备负荷分别为:30kw 、20kw 、10kw ,其整定计算方法如下: 1.15×30×6+1.15×(20+10)=241.5A 速断用两相短路进行校验,需计算出两相短路电流: 已知我矿5#变电所最小运行方式下短路电流为2560A 。 效验:5.1) 2(>Idz Id =5.16.105.2412560>≈ 效验合格 所以,本台开关速断可整定为245A 。 具体数值查《煤矿三大保护》。 ②、过流:满足可能的最大负荷运行,不跳闸,延时按2档即可,具体查开关说明书。 ③、漏电:调至为功率型,延时可调至50V/0ms ,确定负荷侧出现漏电时,迅速跳闸,不越级。 三、变电所内变压器低压侧总开关计算整定 ①、速断:按变压器低压侧最大设备启动电流: 6Ie+其他设备额定电流 该整定计算后必须小于控制变压器高爆开关的速断整定值,且大于负荷侧分开关的速断整定值,必须用分开关负荷侧短路电流校验其可靠性。 例如:变电所内某台变压器低压侧总开关下所带设备负荷统计分别为:100 kw 、80 kw 、60 kw 、50 kw 、30kw ,其整定计算方法如下: 1.15×100×6+1.15×(80+60+50+30)=943A ②、过流:按变压器额定容量计算出二次侧允许的额定电流,取整定即可,延时取2~4档。其计算方法如下: 例如:变压器容量为500KV A ,电压等级为660V 。 Ie= S/3U=500/1.732×660=437A

相关主题
文本预览
相关文档 最新文档