当前位置:文档之家› 神奇的石墨烯——石墨烯研究进展

神奇的石墨烯——石墨烯研究进展

神奇的石墨烯——石墨烯研究进展
神奇的石墨烯——石墨烯研究进展

神奇的石墨烯

——石墨烯的研究进展

石墨烯简介

石墨烯(Graphene),又称单层石墨,是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。

石墨烯一直被认为是假设性的结构,无法单独稳定存在[1],直至2004年,英国曼彻斯特大学物理学家安德烈?海姆和康斯坦丁?诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”为由,共同获得2010年诺贝尔物理学奖。

石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光";导热系数高达5300 W/m?K,高于碳纳米管和金刚石,常温下其电子迁移率*超过15000 cm2/V?s,又比纳米碳管或硅晶体*高,而电阻率只约10-6 Ω?cm,比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。

石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。

石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。石墨烯的命名来自英文的graphite(石墨) + -ene(烯类结尾),也可称为“单层石墨”。石墨烯被认为是平面多环芳香烃原子晶体。

石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42?。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。另外,石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯内部电子受到的干扰也非常小。石墨烯是构成下列碳同素异形体的基本单元:石墨,木炭,碳纳米管和富勒烯。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。

石墨烯卷成圆桶形可以用为碳纳米管;另外石墨烯还被做成弹道晶体管(ballistic transistor)并且吸引了大批科学家的兴趣。在2006年3月,佐治亚理工学院研究员宣布, 他们成功地制造了石墨烯平面场效应晶体管,并观测到了量子干涉效应,并基于此结果,研究出以石墨烯为基材的电路.

石墨烯的问世引起了全世界的研究热潮。它是已知材料中最薄的一种,质料非常牢固坚硬,在室温状况,传递电子的速度比已知导体都快。石墨烯的原子尺寸结构非常特殊,必须用量子场论才能描绘。

既然石墨烯这么的神奇,有这么多的特性,那它的制备会不会特别难呢?

事实表明现在大规模的制造石墨烯还比较困难,但小规模的制造用于科研还是比较容易

的。最初制造的方法甚至简单的让你认为有点儿戏。

石墨烯的制备

1、机械剥离法

1.1、原始机械剥离法

用机械剥离法将普通的石墨片层减至最薄的努力可以追溯到1960年,当时委内瑞拉电镜学家HumbertoFem6ndez.Mor丘n试图寻找一种具有足够强度的、对电子束透明的并且质地均一的材料作为样品的支持膜,他成功地从石墨晶体中剥离出了厚度为5 nm(约15层石墨烯)的石墨片层。“但从那以后,机械剥离法减薄石墨片层的研究几乎停滞了。1990年以后,随着富勒烯和碳纳米管的发现,关于石墨烯的研究再次兴起。研究者发现当原子力显微镜(AFM)的探头在高定向热解石墨(HOPG)的表面摩擦后,可以掀起厚度在4 nm左右的石墨烯纳米带并可以将其在HOPG的表面上折成几折,如图1所示。但是当时研究者并未将石墨烯纳米片层从HOPG的表面上转移到其它的衬底上Ⅲ1。

1999年,Rodlaey S.Ruoff等将HOPG上刻蚀出的石墨柱在硅衬底上涂抹,得到了厚度小于10 nm的石墨片层。具体的做法是:首先在HOPG的表面上镀一层SiO,,然后在SiO:的表

面涂上一层光刻胶,在光刻胶上光刻后用氧氟酸(HF)将不受光刻胶保护的SiO:除去,再将剩余的光刻胶除净。这样留下的岛状SiO:就会像

面具一样保护HPOG不受氧等离子刻蚀的影响,而未受保护的地方将会受到刻蚀。在除去剩余的SiO:后,最终在HPOG的表面上留下排列规整的石墨柱,如图2所示值得注意的是,这些石墨柱的高度可以通过调节氧等离

在Ruoff方法的基础之上,Philip Kim等发展出一种更为精细的剥离方法¨“。在HOPG的表面上刻蚀出石墨柱之后,用精密操作手将其转移到AFM的悬臂上固定好,然后以悬臂上安装的石墨柱为针尖,在SiO:/Si衬底上进行接触模式(Contact Mode)下的操作。假设石墨与衬底之间的摩擦系数约为l,则从石墨晶体的顶部剥离面积约为I斗m2的石墨片层需要的力大约为300 nN2.

1.2、新的机械剥离法(微机械剥离法)

Manchester 大学Geim领导的研究组2004 年在Science 上发表论文, 报道了他们用机械剥离法(mechanical exfoliation)制备得到了最大宽度可达10μm 的石墨烯片(图2). 其方法主要是用氧等离子束在高取向热解石墨(HOPG)表面刻蚀出宽20 μm-2mm、深5 μm 的槽面, 并将其压制在附有光致抗蚀剂的SiO2/Si 基底上, 焙烧后, 用透明胶带反复剥离出多余的石墨片, 剩余在Si 晶片上的石墨薄片浸泡于丙酮中, 并在大量的水与丙醇中超声清洗, 去除大多数的较厚片层后得到厚度小于10 nm 的片层, 这些薄的片层主要依靠范德华力或毛细作用力(capillary forces)与SiO2 紧密结合, 最后在原子力显微镜下挑选出厚度仅有几个单原子层厚的石墨烯片层. 此方法可以得到宽度达微米尺寸的石墨烯片, 但不易得到独立的单原子层厚的石墨烯片, 产率也很低,因此, 不适合大规模的生产及应用.随后, 这一方法得到了进一步研究并成为制备石墨烯的重要方法之一, Novoselov等用这种方法

制备出了单层石墨烯, 并验证了其能够独立存在;随后Meyer 等将机械剥离法制备的含有单层石墨烯的Si 晶片放置于一个经过刻蚀的金属架上, 用酸将Si 晶片腐蚀掉, 成功制备了由金属支架支撑的悬空的单层石墨烯, 他们研究后发现单层石墨烯并不是一个平整的平面, 而是平面上有一定高度(5-10nm)的褶皱; Schleberger 等用该方法在不同基底上制备出石墨烯, 将常用的SiO2 基底更换为其它的绝缘晶体基底(如SrTiO3, TiO2, Al2O3 和CaF2 等), 所制得的石墨烯单层厚度仅为0.34 nm, 远远小于在SiO2 基底上制得的石墨烯, 该方法还有利于进一步研究石墨烯与基底的相互作用.

2、氧化石墨-还原法

石墨先经化学氧化得到边缘含有羧基、羟基,层间含有环氧及羰基等含氧基团的石墨氧化物(graphite oxide), 此过程可使石墨层间距离从0.34nm 扩大到约0.78 nm, 再通过外力剥离(如超声剥离)得到单原子层厚度的石墨烯氧化物(graphene

oxide), 进一步还原可制备得到石墨烯. 这种方法制备的石墨烯为独立的单层石墨烯片, 产量高, 应用广泛.石墨的氧化方法主要有Hummers、Brodie和Staudenmaier三种方法, 它们都是用无机强质子酸(如浓硫酸、发烟HNO3 或它们的混合物)处理原始石墨, 将强酸小分子插入石墨层间, 再用强氧化剂(如KMnO4、KClO4 等)对其进行氧化. Hummers 氧化法的优点是安全性较高; 与Hummers 法及Brodie法相比, Staudemaier法由于使用浓硫酸和发烟硝酸混合酸处理石墨, 对石墨层结构的破坏较为严重. 氧化剂的浓度和氧化时间对制备的石墨烯片的大小及厚度有很大影响, 因此, 氧化剂浓度及氧化时间需经过仔细筛选, 才能得到大小合适的单层氧化石墨烯片.制备的石墨氧化物均需经过剥离、还原等步骤才能得到单层的石墨烯. 剥离的方法一般用超声剥离法, 即将石墨氧化物悬浮液在一定功率下超声一定的时间. 超声波在氧化石墨悬浮液中疏密相间地辐射, 使液体流动而产生数量众多的微小气泡, 这些气泡在超声波纵向传播的负压区形成、生长, 而在正压区迅速闭合, 在这种被称之为“空化”效应的过程中, 气泡闭合可形成超过1.0×108 Pa 个大气压的瞬间高压, 连续不断产生的高压就象一连串小“爆炸”不断地冲击石墨氧化物, 使石墨氧化物片迅速剥落生成单层石墨氧化物(即石墨烯氧化物). 另外, 石墨烯氧化物片的大小可以通过超声功率的大小及超声时间的长短进行调节.制备的石墨氧化物也可通过LB(Langmuir-Blodgett)膜技术组装成石墨烯氧化

物片, 先将石墨氧化物在水-甲醇的混合溶液中超声约30 min, 离心(8000 r·min-1)除去少量的副产物与较小的石墨氧化物片层后, 重新分散于水-甲醇溶液中, 进一步离心(2500 r·min-1)去除较大的石墨氧化物片, 最后可获得宽度为5-20 μm 的石墨氧化物片. 将上述过程制得的石墨氧化物用玻璃注射器按100 μL·min-1的速度注入填满二次水的水槽里, 由张力计监控表面压力, 压制速率为20 m2·min-1. 随着甲醇的蒸发, 石墨氧化物在水中形成单层. 此法可获得厚度约为1nm, 面积较大的石墨烯氧化物片层.最后, 制__备的单层石墨烯氧化物还需经还原后才能得到石墨烯, 还原的方法有化学还原法、热还原法、电化学还原法等. 化学还原法中常用的还原剂有硼氢化钠、肼等, 化学还原法可有效地将石墨烯氧化物还原成石墨烯, 除去碳层间的各种含氧基团, 但得到的石墨烯易产生缺陷, 因而其导电性能达不到理论值. 除化学还原外, 也可通过电化学方法将石墨氧化物还原成石墨烯, 将涂覆有石墨氧化物片的基底(如石英)置于磷酸盐缓冲溶液中(pH=4.12), 将工作电极(玻碳电极)直接与7 μm 厚的石墨氧化物片膜接触, 控制扫描电位从-0.6 至-1.2 V 进行线性伏安扫描, 即可将石墨氧化物还原成石墨烯, 该方法所得到的石墨烯中C 和O 的原子比为4.23%, 低于化学还原法制得的石墨烯中C 和O 的原子比(约为7.09%).热还原法是在N2 或Ar气气氛中对石墨氧化物进行快速高温热处理, 一般温度约为1000 ℃,升温速率大于2000 ℃·min-1, 使石墨氧化物迅速膨胀而发生剥离, 同时可使部分含氧基团热解生成CO2, 从而得到石墨烯. 该方法制备的石墨烯中的C和O 的比一般约为10, 高于用化学还原法制备的石墨烯中C 和O 的比.除上述方法外, 还可通过在光催化剂TiO2 的存在下紫外光照射还原以及N2 气氛下氙气灯的快速闪光光热还原石墨氧化物得到石墨烯.

附:

1.1原料

天然鳞片石墨(。74岬);高锰酸钾。浓硫酸,水合肼(50%),均为化学纯,市售;5%H202溶液,0.05t001.L-'HCI溶液,体系的pH值用0.1mol·L‘1 NaOH溶液调节.

1.2制备

氧化石墨制备:将10 g石墨、230 mL 98%浓硫酸混合置于冰浴中,搅拌30 min,使其充分混合.称取40 g KMnO。加入上述混合液继续搅拌l h后,移人40℃中温水浴中继续搅拌30 min:用蒸馏水将反应液f控制温度在100 cc以下)稀释至800.1 000mL后加适量5%H202,趁热过滤,用5%HCI和蒸馏水充分洗涤至接近中性,最后过滤、洗涤,在60℃下烘干。得到氧化石墨样品。

石墨烯制备:称取上述氧化石墨0.05 g,加入到100 mL pH=11的NaOH溶液中;在150 W下超声90 rain制备氧化石墨烯分散液:在4000 r·min’1下离心3 min 除去极少量未剥离的氧化石墨:向离心后的氧化石墨烯分散液中加入0.1 mL水合肼.在90℃反应2 h,得到石墨烯分散液,密封静置数天观察其分散效果。

3、化学气相沉积法

化学气相沉积(CVD)法提供了一种可控制备石墨烯的有效方法, 与制备CNTs 不同, 用CVD 法制备石墨烯时不需颗粒状催化剂, 它是将平面基底(如金属薄膜、金属单晶等)置于高温可分解的前驱体(如甲烷、乙烯等)气氛中, 通过高温退火使碳原子沉积在基底表面形成石墨烯, 最后用化学腐蚀法去除金属基底后即可得到独立的石墨烯片. 通过选择基底的类型、

生长的温度、前驱体的流量等参数可调控石墨烯的生长(如生长速率、厚度、面积等), 此方法已能成功地制备出面积达平方厘米级的单层或多层石墨烯, 其最大的优点在于可制备出面积较大的石墨烯片(图3).该方法已成功地用于在多种金属基底表面(如Ru(0001), Pt(111), Ir(111)等)制备石墨烯. 最近, Kong和Kim[40]研究组分别用CVD 法在多晶Ni 薄膜表面制备了尺寸可达到厘米数量级的石墨烯; Ruoff研究组在Cu 箔基底表面上采用CVD法成功地制备了大面积、高质量石墨烯, 而且所获得的石墨烯主要为单层结构.

CVD方法是上世纪60年代发展起来的一种制备高纯度、高性能固体材料的化学过程,早期主要用于合金刀具的表面改性,后来被广泛应用于半导体工业中薄膜的制备,如多晶硅和氧化硅膜的沉积。近年来,各种纳米材料尤其是碳纳米管、氧化锌纳米结构、氮化镓纳米线等的制备,进一步推动了CVD

方法的发展【-?。CVD法制备石墨烯早在20世纪70年代就有报道Ⅲ圳】,当时主要采用单晶Ni作为基体,但所制备出的石墨烯主要采用表面科学的方法表征,其质量和连续性等都不清楚。随后,人们采用单晶Co、Pt、Pd、Ir、Ru等基体旧1在低压和超高真窄中也实现了石墨烯的制备。但直到2009年初,麻省理工学院的J.Kong研究组旧1与韩国成均馆大学的B.H.Hong研究组Ⅲ1才利用沉积有多晶Ni膜的硅片作为基体制备出大面积少层石墨烯,并将石墨烯成功地从基体上完整地转移下来,从而掀起了CVD法制备石墨烯的热潮。石墨烯的CVD生长主要涉及三个方面:碳源、生长基体和生长条件(气压、载气、温度等)。

碳源:目前生长石墨烯的碳源主要是烃类气体,如甲烷(CH。)、乙烯(C:H。)、乙炔(C:H:)等。最近,也有报道使用固体碳源SiC生长石墨烯Ⅲ1。选择碳源需要考虑的因素主要有烃类气体的分解温度、分解速度和分解产物等。碳源的选择在很大程度上决定了生长温度,采用等离子体辅助等方法也可降低石墨烯的生长温度。生长基体:目前使用的生长基体主要包括金属箔或特定基体上的金属薄膜。金属主要有Ni、Cu、Ru训1以及合金等,选择的主要依据有金属的熔点、溶碳量以及是否有稳定的金属碳化物等。这些因素决定了石墨烯的生长温度、生长机制和使用的载气类型。另外,金属的晶体类型和晶体取向也会影响石墨烯的生长质量。除金属基体外,MgO一引等金属氧化物最近也被用来生长万方数据石墨烯,但所得石墨烯尺寸较小(纳米级),难以实际应用。生长条件:从气压的角度可分为常压、低压(105 Pa一10。3 Pa)和超低压(<10。Pa);据载气类型不同可分为还原性气体(H:)、惰性气体(Ar、He)以及二者的混合气体;据生长温度不同可分为高温(>8000c)、中温(600℃一800℃)和低温(<600 oC),主要取决于碳源的分解温度。下面就上述三个方面着重分析一下目前CVD 法制备石墨烯的主要进展。石墨烯的CVD法制备最早采用多晶Ni膜作为生长基体。麻省理工学院的J.Kong研究组心列通过电子束沉积的方法,在硅片表面沉积500am的多

晶Ni膜作为生长基体,利用CH。为碳源、H:为载气的CVD法生长石墨烯,生长温度为900 oc~1000 oc。韩国成均馆大学的B.H.Hong研究组Ⅲ1采用类似的CVD法生长石墨烯:生长基体为电子束沉积的300am的Ni膜,碳源为CH。,生长温度为10000c,载气为H2和m 的混合气,降温速度为10℃/s。图2为采用该生长条件制备的石墨烯的形貌图。

由于Ni生长石墨烯遵循渗碳析碳生长机制,因此所得石墨烯的层数分布很大程度上取决于降温速率。采用Ni膜作为基体生长石墨烯具有

以下特点:石墨烯的晶粒尺寸较小,层数不均一且难以控制,在晶界处往往存在较厚的石墨烯,少层石墨烯呈无序堆叠。此外,由于Ni与石墨烯的热膨胀率相差较大,因此降温造成石墨烯的表面含有大量褶皱。

由于采用Ni膜生长的石墨烯存在晶粒尺寸小、在晶界处存在多层石墨烯、层数难以控制等问题,美国德州大学奥斯汀分校的R.S.Ruoff研究组提出

了利用cu箔生长单层为主的大面积石墨烯∽j。他们采用CH。为碳源,用25¨厚的铜箔制备出尺寸可达厘米级的石墨烯(图3)。与Ni不同,Cu具有较低的溶碳量,石墨烯的生长遵循表面生长机制¨8|,所得石墨烯中单层石墨烯的含量达95%以上,其余为双层和三层石墨烯。他们还发现,单层石墨烯具有大的晶粒尺寸,并可以连续地跨过铜箔表面的台阶和晶界,而其中双层和三层石墨烯的尺寸不会随反应时问的延长而增大。韩国成均馆大学的B.H.Hong研究组进一步发展了该方法,他们利用铜箔柔韧可卷曲的特点,将30英寸的铜箔通过卷曲的方式放置到直径为8英寸的CVD反应炉中,结合热释放胶带的连续滚压转移方法制备出30英寸的石墨烯膜,其透光率可达97.4%[31 J,非常接近于单层石墨烯的97.7%¨?。目前大部分以cu为基体生长石墨烯的研究,均采用了低压(50Pa~5kPa)条

件旧扎川,温度在900 oC以上,基体为较高纯度的Cu箔(纯度>99%),载气为还原气体H:。采用该方法制备石墨烯,由于具有可控性好、铜箔价格低廉及易于转移和规模化制备等优点,有望在透明导电薄膜应用方面首先取得突破旧1|。

由于低压CVD对反应设备及体系压力要求高,一定程度上限制了石墨烯的低成本、规模化生产。最近,中国科学院金属研究所的成会明、任文才研究组旧2。和麻省理工学院的J.Kong 研究组旧列提出了利用铜箔作为基体的常压CVD法制备石墨烯,并发现通过调节载气的成分,可以有效地提高石墨烯的质量。图4是常压条件下在铜箔基体上生长的石墨烯。可以发现,通过降低生长过程中还原气体H:的比例,能够有效减少石墨烯岛的数量,显著加快石墨烯的生长速度和提高石墨烯的质量。在不添加H:的条件下,石墨烯的生长可在1 min之内完成,并且制备出的石墨烯薄膜在550 nm时的透光率为96.3%,平均表面电阻小于350彤口,除最近报道的采用改进转移方法及HNO,掺杂得到的超大石墨烯薄膜外旧1|,该结果优于采用Ni为基体的常压CVD以及采用Cu为基体的低压CVD制备的石墨烯薄膜的性能。他们认为:一方面,H:的存在可有效抑制甲烷的分解,进而影响石墨烯的成核、最初形成的石墨烯岛的数量以及最终得到的石墨烯薄膜中不同石墨烯岛间连接形成的缺陷的数量;另一方面,高温时溶入的H:在降温过程中会释放,进一步加剧了石墨烯褶皱的生成口2|。总之,采用Cu基体生长石墨烯,目前仍然是生长均匀单层石墨烯的最佳方法,对石墨烯的应用研究起到了极大的推动作用。

为了深入理解Cu上生长的石墨烯的质量,美国阿贡国家实验室的N.P.Guisinger研究组近期研究了在Cu(111)单晶表面生长的石墨烯的形貌ⅢJ。他们采用c:H。为生长碳源,温度为1 000 oC,生长气压为10‘3 Pa。研究结果表明:石墨烯的生长始于大量离散的单晶石墨烯岛,随着生长过程的进行,这些石墨烯岛逐渐长大,并最终相互连接成连续的石墨烯薄膜。这种生长模式是典型的表面生长过程,与在多晶铜箔上采用同位素标记的方法研究得到的结论相同|1 8|。图5给出了在单晶cu基片上生长的石墨烯的扫描隧道显微镜(STM)表征结果。对莫尔条纹和原子分辨率的STM像分析表明,形核在Cu单晶上的单晶石墨烯岛具有不同的晶体取向,从而导致片层的结合处形成线缺陷。这类似于三维材料中的晶界结构,因此有学者将此类石墨烯称为“多晶石墨烯”。从提高石墨烯质量的角度来说,进一步改进制备方法以增大单晶石墨烯岛的尺寸和减少晶界结构,具有极为重要的意义。

尽管CVD法制备石墨烯的研究时间很短,但其飞速的发展使笔者可以大胆预测:CVD法制备的石墨烯在未来两三年内很有可能获得应用。然而,采用CVD法制备高质量石墨烯的工作才刚刚起步。虽然目前CVD石墨烯的质量较高,有望满足在透明导电薄膜等方面的应用要求,但是对电子器件而言,与硅材料相比,现有的CVD法制备的石墨烯在电子迁移率等方面并不具有显著优势。因此,基于CVD方法大面积、高质量单晶石墨烯的制备有可能成为近期的研究热点。此外,如何实现石墨烯带以及石墨烯宏观体的制备,进而扩展石墨烯的性能和应用;如何实现石墨烯在聚合物等基体上的低温生长等,也是CVD方法的未来发展方向。

4、外延生长法

该方法一般是通过加热6H-SiC 单晶表面, 脱附Si(0001 面)原子制备出石墨烯. 先将6H-SiC 单晶表面进行氧化或H2 刻蚀预处理, 在超高真空下(1.33×10-8 Pa)加热至1000 ℃去除表面氧化物, 通过俄歇电子能谱(Auger electron spectroscopy)确认氧化物已完全去除后, 样品再加热至1250-1450 ℃并

恒温10-20 min, 所制得的石墨烯片层厚度主要由这一步骤的温度所决定, 这种方法能够制备出1-2碳原子层厚的石墨烯, 但由于SiC晶体表面结构较为复杂, 难以获得大面积、厚度均一的石墨烯.Berger 等利用该方法分别制备出了层和多层石墨烯并研究了其性能. 与机械剥

离法得到的石墨烯相比, 外延生长法制备的石墨烯表现出较高的载流子迁移率等特性, 但观测不到量子霍尔效应.

5、电化学方法

Liu 等通过电化学氧化石墨棒的方法制备了石墨烯. 他们将两个高纯的石墨棒平行地插入含有离子液体的水溶液中, 控制电压在10-20 V, 30 min后阳极石墨棒被腐蚀, 离子液体中的阳离子在阴极还原形成自由基, 与石墨烯片中的π电子结合, 形成离子液体功能化的石墨烯片, 最后用无水乙醇洗涤电解槽中的黑色沉淀物, 60 ℃下干燥2 h 即可得到石墨烯. 此方法可一步制备出离子液体功能化的石墨烯, 但制备的石墨烯片层大于单原子层厚度.

6、电弧法

石墨烯还可以通过电弧放电的方法制备, 在维持高电压、大电流、氢气气氛下, 当两个石墨电极靠近到一定程度时会产生电弧放电, 在阴极附近可收集到CNTs 以及其它形式的碳物质, 而在反应室内壁区域可得到石墨烯, 这可能是氢气的存在减少了CNTs 及其它闭合碳结构的形成. Rao等[51]通过电弧放电过程制备了2-4 单原子层厚的石墨烯. 此法也为制备p 型、n 型掺杂石墨烯提供了一条可行途径.

7、有机合成法

Qian等运用有机合成法制备了具有确定结构而且无缺陷的石墨烯纳米带. 他们选用四溴酰

亚胺(tetrabromo-perylenebisimides)作为单体, 该化合物在碘化亚铜和L-脯氨酸的活化下可以发生多分子间的偶联反应, 得到了不同尺度的并酰亚胺,

实现了含酰亚胺基团的石墨烯纳米带的高效化学合成; 他们还通过高效液相分离出了两种三并酰亚胺异构体(图4), 并结合理论计算进一步阐明了它们的结构.

8、原位自生模板法

该方法是利用含有丰富极性基团的聚合物和生物质为碳源,通过Fe(II)的充分作用形成致密的层状络合结构,在低温热解的过程中原位形成渗碳铁以及碳层和铁层,进一步热处理即可获得石墨烯。通过控制碳源基团种类和数量及其与二价铁的络合作用程度即可实现低缺陷、高导电性石墨烯的制备。所制备的石墨烯材料易于形成在水中或其它极性溶剂中高度稳定的分散体系,可以使Pt均匀的负载制备Pt/graphene催化剂。研究结果表明这种阳极催化剂在DMFC中具有较高的活性,电流密度为商业催化剂Pt/Vulcan的1.6 倍;经过恒电流放电一小时后,仍具有较高的剩余电流密度(为Pt/Vulcan的2.6 倍),进一步证明我们制备的催化剂具有较好的稳定性。此外,阻抗测试表明制备的催化剂具有较小的电阻,说明该催化剂具有良好的电导率,因此具有较高的活性。Pt/graphene催化剂在DMFC中展现了优越的性能,为提高燃料电池阳极催化剂材料性能提供了新的思路。

9、其它方法

除以上一些制备方法外, 还有一些其它的方也能用于制备石墨烯. 如Hamilton 等将石墨在邻二氯苯(ODCB)中超声分离得到了石墨烯. ODCB 作为分散剂, 具有沸点高, 与石墨烯之间存在的π-π相互作用使其表面张力(36.6×10-3 J·m-2)与石墨剥离时所需的张力((40-50)×10-3 J·m-2)相近等优点, 在超声的辅助下, 可以很容易地从微晶人造石墨、热膨胀石墨以及高取向热解石墨等表面剥离开石墨烯片,但该法很难制备出单层的石墨烯.

Jiao 等将CNTs“剪开”并铺展开后得到了石墨烯. 首先, 他们将CNTs 分散于质量分数为1%Tween 20(聚氧乙烯山梨糖醇酐单月桂酸酯, 一种非离子型表面活性剂)水溶液中, 离心去除聚集物后沉积于经3-氨丙基三乙氧基硅烷预处理的Si 基底上,晾干后置于350 ℃下10 min, 除去Tween 20, 再将甲基丙烯酸甲酯(PMMA)旋涂在经上述处理过的CNTs 上, 加热后(约10 min), 在5.32 Pa 压力下用10 W 的Ar等离子体刻蚀“剪开”CNTs, 最后去除PMMA 即可得到带状石墨烯. 此法制得的石墨烯片量少, 不适合工业大规模应用.

Zhang 等通过含碳源的有机物自组装法制备了石墨烯(图5). 该制备方法的起始原料为(TEOS/PyC12Lys/NaOH/H2O)层状物, 其中TEOS(四乙氧基硅烷)作为硅源, PyC12Lys(1-吡咯十二烷基赖氨酸)为层状结构指示剂与碳源. 将层状物分散在含有FeCl3、乙醇的氯仿中, 在N2 气氛下, 氧化剂FeCl3 可使紧密排列的PyC12Lys 吡咯部分转变为单层的石墨烯片, 最后用HF 去除二氧化硅框架, 二次水与丙酮洗涤后产物即是石墨烯.

现在已经有这么多的方法可以制造出石墨烯,虽然离量产还有点距离,但对石墨烯的研究已经很方便了,经过了一定时间的研究,科学家们了解了石墨烯的各种表征。

石墨烯的表征

在发现石墨烯以前,大多数物理学家认为,热力学涨落不允许任何二维晶体在有限温度下存在。所以,它的发现立即震撼了凝聚态物理界。虽然理论和实验界都认为完美的二维结构无法在非绝对零度稳定存在,但是单层石墨烯在实验中被制备出来。这些可能归结于石墨烯在纳米级别上的微观皱纹。

石墨烯还表现出了异常的整数量子霍尔效应。其霍尔电导=2e2/h,6e2/h,10e2/h.... 为量子电导的奇数倍,且可以在室温下观测到。这个行为已被科学家解释为“电子在石墨烯里遵守相对量子力学,没有静质量”。

2007年,先后三篇文章声称在石墨烯的p-n或p-n-p结中观察到了分数量子霍尔效应行为。物理理论家已经解释了这一现象。2009年,美国两个实验小组分别在石墨烯中观测到了填充数为1/3的分数量子霍尔效应。

1、石墨烯的结构

石墨烯是一种从石墨材料中剥离出的单层碳原子面材料。这种石墨晶体薄膜的厚度只有0.335纳米(一个原子的直径,10的-10次方),把20万片薄膜叠加到一起,也只有一根头发丝那么厚。石墨烯在原子尺度上结构非常特殊,必须用相对论量子物理学才能描绘。

碳原子中的四个绕核电子轨道分布在一个平面上。碳分子是几个碳原子在平面上的连接和展开,所以,碳分子与碳原子的薄度相似,只是平面更大了一些而已。碳原子或碳分子中的绕核电子只是在碳原子核的径方向面上存在着和运动着,就像土星中的光环,土星的两极方向是没有光环的,即,碳原子核两极的轴方向上是没有绕核电子的。

单层石墨由交替的单双键构成,类似于有机中的多烯烃,故得名。其实这是一种习惯命名。烯是烃的一种,烃指的是碳氢化合物,而石墨烯明显不含氢元素。但我们可以看到,苯,C6H6,在经典价键理论中可以被命名为1,3,5-环己三烯,两个苯环共边形成了萘(卫生球),C10H8,三个苯环共边形成了蒽和菲,C14H10,分子中氢元素的含量在不断下降,当这种形式无限扩展时,整个分子都由这种共边的苯环构成,边缘的氢分子几乎可以忽略,也就形成了石墨烯的结构。换句话说,石墨烯是由基本的烃的无限延伸的产物,所以也称之为烯。同样,前几年流行的C60,C70等被称为富勒烯也是这个原因。

2、稳定性及硬度

石墨烯中碳原子均由共价键相连,共价键的键能是相对比较高的,相对于分子间作用力、氢键、金属键等,共价键不易被破坏。由于石墨烯的结构其实是一个大的离域π键,其C-C键的强度要高于金刚石的单键,我们也可以从热力学的角度看到石墨的熔点为3850℃左右,金刚石的熔点仅为3550℃左右,不难发现,石墨比金刚石更加稳定,石墨烯完美的晶格结构,常被误认为很僵硬,但事实并非如此。石墨烯各个碳原子间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形。这样,碳原子就不需要重新排列来适应外力,这也就保证了石墨烯结构的稳定,使得石墨烯比金刚石还坚硬,同时可以像拉橡胶一样进行拉伸。这种稳定的晶格结构还使石墨烯具有优秀的导电性。石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于其原子间作用力非常强,在常温下,即使周围碳原子发生挤撞,石墨烯中的电子受到的干扰也非常小。

石墨烯被证实是世界上已经发现的最薄、最坚硬的物质。美国哥伦比亚大学James Hone 等人最近发现,铅笔石墨中一种叫做石墨烯的二维碳原子晶体,竟然比钻石还坚硬,强度比世界上最好的钢铁还要高上100倍。这种物质为“太空电梯”超韧缆线的制造打开了一扇“阿里巴巴”之门,让科学家梦寐以求的2.3万英里长(约合37000千米)太空电梯可能成为现实。其厚度只有0.335纳米,把2000片薄膜叠加到一起,也只有一根头发丝那么厚。单层石墨烯几乎透明,其分子排列紧密,即使原子尺寸最小的氦也不能通过。美国机械工程师杰弗雷?基萨教授用一种形象的方法解释了石墨烯的强度:如果将一张和食品保鲜膜一样薄的石墨烯薄片覆盖在一只杯子上,然后试图用一支铅笔戳穿它,那么需要一头大象站在铅笔上,才能戳穿只有保鲜膜厚度的石墨烯薄层。

3、电子性质

石墨烯的性质与大多数常见的三维物质不同,纯石墨烯是一种半金属或零能隙半导体。理解石墨烯的电子结构是研究其能带结构的起始点。参阅前面能带结构图,科学家很早就察觉,对于低能量电子,在二维的六角形布里渊区的六个转角附近,能量-动能关系是线性关系;其中,是能量,是约化普朗克常数,是菲米速度,与分别为波矢量的x-轴分量与y-轴分量。这引至电子和空穴的有效质量(effective mass)都等于零。因为这线性色散关系,电子和空穴在这六点附近的物理行为,好似由狄拉克方程描述的相对论性自旋1/2粒子。所以,石墨烯的电子和空穴都被称为狄拉克费米子,布里渊区的六个转角被称为“狄拉克点”,又称为“中性点”。在这位置,能量等于零,载子从空穴变为电子,从电子变为空穴。

4、电子传输

电子传输测量结果显示,在室温状况,石墨烯具有惊人的高电子迁移率(electron mobility),其数值超过15,000 cm2V?1s?1。从测量得到的电导数据的对称性显示,空穴和电子的迁移率应该相等。在10 K和100 K之间,迁移率与温度几乎无关,可能是受限于石墨烯内部的缺陷所引发的散射。在室温和载子密度为1012 cm?2时,石墨烯的声子散射体造成的散射,将迁移率上限约束为200,000 cm2V?1s?1。与这数值对应的电阻率为10?6 Ω?cm,稍小于银的电阻率1.59 ×10?6 Ω?cm。在室温,电阻率最低的物质是银。所以,石墨烯是很优良的导体。对于紧贴在氧化硅基板上面的石墨烯而言,与石墨烯自己的声子所造成的散射相比,氧化硅

的声子所造成的散射效应比较大,这约束迁移率上限为40,000 cm2 V?1s?1。

虽然在狄拉克点附近,载子密度为零,石墨烯展示出最小电导率的存在,大约为数量级。造成最小电导率的原因仍旧不清楚。但是,石墨烯片的皱纹或在SiO2基板内部的离子化杂质,可能会引使局域载子群集,因而容许电传导。有些理论建议最小电导率应该为。但是,大多数实验测量结果为数量级,而且与杂质浓度有关。

在石墨烯内嵌入化学掺杂物可能会对载子迁移率产生影响,做实验可以探测出影响程度。有一组实验者将各种各样的气体分子(有些是施体有些是受体)掺入石墨烯,他们发觉,甚至当化学掺杂物浓度超过1012 cm?2时,载子迁移率并没有任何改变。另一组实验者将钾掺入处于超高真空(ultra high vacuum)、低温的石墨烯,他们发现钾离子的物理行为与理论相符合,迁移率会降低20倍。假若,将石墨烯加热,除去钾掺杂物,则迁移率降低效应是可逆的。

由于石墨烯的二维性质,科学家认为电荷分数化(低维物质的单独准粒子的表观电荷小于单位量子)会发生于石墨烯。因此,石墨烯可能是制造量子计算机所需要的任意子元件的合适材料。

5、光学性质

根据理论推导,石墨烯会吸收的白光;其中是精细结构常数。一个单原子层物质不应该有这么高的不透明度,单层石墨烯的独特电子性质造成了这令人惊异的高不透明度。由于单层石墨烯不寻常的低能量电子结构,在狄拉克点,电子和空穴的圆锥形能带(conical band)会相遇,因而产生这结果。实验证实这结果正确无误,石墨烯的不透明度为,与光波波长无关。但是,由于准确度不够高,这方法不能用来决定精细结构常数的度量衡标准。

近来,有实验示范,在室温,通过施加电压于一个双闸极双层石墨烯场效晶体管,石墨烯的可以从0 eV调整至0.25 eV(大约5微米波长)。通过施加外磁场,石墨烯纳米带的光学响应也可以调整至太赫兹频域。

饱和吸收性

当输入的光波强度超过阈值时,这独特的吸收性质会开始变得饱和。这种非线性光学行为称为可饱和吸收(saturable absorption),阈值称为饱和流畅性(saturable fluency)。给予强烈的可见光或近红外线激发,因为石墨烯的整体光波吸收和零能隙性质,石墨烯很容易就可以变得饱和。石墨烯可以用于光纤镭射(fiber laser)的锁模(mode locking)运作。用石墨烯制备成的可饱和吸收器能够达成全频带锁模。由于这特殊性质,在超快光子学(photonics)里,石墨烯有很广泛的应用空间。

6、自旋传输

科学家认为石墨烯会是理想的自旋电子学材料,因为其自旋—轨道作用很小,而且碳元素几乎没有核磁矩(nuclear magnetic moment)。使用非局域磁阻效应,可以测量出,在室温状况,自旋注入于石墨烯薄膜的可靠性很高,并且观测到自旋相干长度超过1微米。使用电闸,可以控制自旋电流的极性。

英国曼彻斯特大学教授安德烈?海姆与其同事因制成石墨烯而荣获去年诺贝尔物理学奖。日前,他和同事又在新一期美国《科学》杂志上报告说,他们发现石墨烯能有效传导电子自旋,有望成为下一代基于电子自旋的电子元件材料。

目前的电子元件基本上都是利用电子具有电荷这种性质,电荷的传导能够形成电流并成为电

子元件工作的基础。然而,电子还具有另一种被称作自旋的性质,如果能够加以开发利用,可制造出比现有电子元件更小、更快的电子元件。但是,寻找能够有效传导自旋的材料成为一个难题。

海姆领导的国际研究小组报告说,他们发现如果给石墨烯施加一个特殊磁场,就可以在其中实现电子自旋的传导,而这种“自旋流”具有成为下一代电子元件工作基础的潜力。研究还显示,在石墨烯中产生的“自旋流”比在其他一些材料中更强烈并且更易控制。海姆表示,本次研究提供了一个新的机制,有助于推动基于电子自旋的下一代电子元件的研发。

7、异常量子霍尔效应

量子霍尔效应只发生于二维导体。这效应促成了一种新度量衡标准,称为电阻率量子(resistivity quantum);其中,是单位电量,是普朗克常数。垂直于外磁场的载流导线,其横向电导率会呈现量子化值。称这横向电导率为霍尔电导率(Hall conductivity),以方程表示为;

其中,是整数。

称为朗道能及指标(Landau level index),通常这霍尔电导率现象只能在非常低温(3K),非常高磁场,从非常干净的Si或GaAs固体观测出来,

处于外磁场,石墨烯的电导率的量子化行为显得特别有意思,会展现出异常量子霍尔效应,其阶梯序列与原本的阶梯序列相差,还添增了由双重峡谷和双重自旋简并产生的乘法因子。这值得注意的异常现象,在室温就可以测量出来。主要原因是,在石墨烯内部的零质量迪拉克费米子具有很高的回旋能隙。这些迪拉克费米子的能级为;其中,是费米速度,是磁场。假设磁场为,费米能处于基态与第一激发态之间,则能隙为,大约为室温热能的10倍。

8、表面性质的尺寸效应

当颗粒的尺寸进入纳米尺度后,纳米材料所具有的宏观块材所不具备奇异或反常的物理、化学特性,一般称为小尺寸效应。如半导体量子点随尺寸的变化而呈现出不同的颜色。目前精确地确定量子点中每个组分原子的位置还十分困难,所以还不能定量的建立量子点中结构与性质的关系。近几年来,研究人员发现,某些金属二维膜可以精确的控制其厚度,精度可以达到单原子层。他们还在这些形貌精确可控的膜中发现一系列有趣的性质,如超导温度、表面的化学反应特性随单原子层厚度变化出现振荡现象。由于这些金属膜只能在极低温度下稳定存在,大大限制了其广泛应用的前景。

石墨烯是2004年实验证实可以在室温以上稳定存在的单原子层厚度的二维理想材料,层与层之间以较弱的范德瓦尔斯力结合。一般认为这种较弱的力对其性质的影响不会很大,但是实验惊讶的发现:单层与双层石墨烯之间量子霍尔平台填充因子不同,呈现出奇异量子霍尔效应想象。那么,石墨烯的其他性质是否也会随着其厚度(层数)变化而呈现出不同呢?国家纳米科学中心孙连峰研究员及其合作者发现,当金蒸镀到不同层数的石墨烯上后,金膜的形貌与石墨烯的层数密切相关。通过一系列实验,他们提出,金在不同层数的石墨烯表面扩散系数及扩散势垒与层数密切相关,并计算出扩散势垒以及与层数的关系。而扩散势垒不同的原因可以归因于量子尺寸效应。同时,他们发现可以通过金膜的形貌辨别石墨烯的层数,与通常基于拉曼谱方法相比,具有空间分辨率高的优点,而且金膜可以通过热处理方法去掉。与基于AFM办法,速度快简便。这种通过金膜形貌方法识别层数的方法,对不同层数的石墨烯夹杂在一起的情形,具有特别的优点,而这也是传统拉曼和原子力显微镜的缺陷所在。

该项工作对于开展金属-石墨烯及其器件研究具有重要的指导意义,相关研究成果已经发表在著名期刊《美国化学会志》(JACS 132, 944(2010))上。并被Chemical &Engineering News以Gilded Graphene为题给予了报道。

9、石墨烯薄膜的摩擦学性能

石墨烯是单层碳原子紧密排列而形成的一种炭质新材料,具有单层二维蜂窝状(Honeycomb)晶格结构,是目前世界上公认的最薄的二维材料(厚度只有0.335 nm)。由于其特殊的微观结构,石墨烯具有极好的力学、热导性和电学性能,有望在微电子、信息、能源、材料和生物医药等领域具有重大的应用前景。但是,结构完整的石墨烯化学稳定性高,很难将其在器件上进行组装,从而限制了其深入应用。可喜的是,基于氧化石墨烯表面活性能团而开展的石墨烯功能化研究为其表面组装和修饰提供了可能。固体润滑国家重点实验室研究人员利用氧化石墨烯表面的活性环氧基、羧基与氨基的化学作用,将其组装到3-氨丙基三乙氧基硅烷自组装薄膜(APTES-SAMs)修饰的单晶硅基底表面,然后进行热还原处理,得到了还原的石墨烯氧化物。对制备的样品进行摩擦学性能表征,发现所获得的薄膜具有较低的摩擦系数和优异的抗磨损性能。该项研究有望为微/纳机电系统(MEMS/NEMS)提供一种新的润滑体系,具有十分重要的科学和现实意义。研究结果发表在近期的Langmuir上(2010,26(20),15830-15836)。该项研究得到了国家自然科学基金和中科院“百人计划”科研项目的支持。

10、机械特性

石墨烯之所以硬,是因为碳原子或的绕核电子只是在碳原子核的径方向面上存在着和运动着,碳原子核两极的轴方向上是没有绕核电子的,就是说,石墨烯表面上立的或排列的都是原子核,如果外部物质与它撞击,撞击的不是绕核电子而是直接撞击在原子核上,所以,石墨烯表面显示的非常硬。

11、石墨烯的磁性能

人们还发现了石墨烯的另一种独特性质。那就是不施加磁场,只需使石墨烯扭曲变形,就能像施加了极强磁场一样使石墨烯的电特性发生变化。

目前单层石墨烯(graphene)是国际上最热点的研究领域之一,它是一种带隙为零的非磁性金属材料,具有许多新奇的物理特性和广泛的应用前景。为了使graphene具有磁性,科学家提出了各种办法包括将它剪切成具有zigzag构型的零维或一维nano-ribbon结构、或产生缺陷和引入杂质原子等。现有的这些方法不但破坏了graphene的结构完整性,所产生的磁性呈非均匀分布,而且实验上难以控制。孙强教授研究组首次提出了通过半氢化的方法在graphene中实现铁磁性的思想,并将半氢化的graphene命名为graphone,这是在继graphene,graphane 之后所引入的新的结构形态。孙强教授研究组应用自旋极化的密度泛函理论,研究发现当氢原子吸附在石墨烯的部分碳原子上时,石墨烯的π键被破坏,导致每个没有被氢化的碳原子产生一个未配对的2p电子,它们之间长程交换耦合,形成稳定的铁磁性,其居里温度大约在278 ~ 417 K。这比目前已知的方法更具有可控性和可操作性,它不但能保持graphene 骨架结构的完整性和磁性的均匀分布,而且还能避免在组装nano-ribbon 的过程中所引起的磁性的粹灭。

12、石墨烯氧化物

通过对石墨烯进行氧化及化工处理,然后使他们漂浮在水中,石墨烯会剥落并形成有强力键的单层。这些被称为石墨烯氧化物(graphene oxide)的层状材料被测量到具有32GPa的拉伸模数。

通过化学途径制备的石墨烯氧化物(GO)是具有原子层厚度的石墨的衍生物,通常被用作制备石墨烯的前驱体,而最近由于其自身的性质越来越受到化学研究人员的重视。在石墨烯氧化物的面内和边界上均有共价键结合的大量含氧官能团,因此它是sp2和sp3杂花碳原子组成的混合体。用化学还原的方法来控制其尺寸、形状和sp2杂化区域的相对占比为进一步调制其光电子性质创造了机会。例如,原始合成的石墨烯氧化物通常是绝缘体,但是可控的去氧化可以获得在电学和光学上极其有用的导电性及透光性。而且,与纯的石墨烯不同的是,由于其非均一的电子结构,石墨烯氧化物在相对宽的波长范围里面具有荧光。由于石墨烯本身没有能带间隙,所以基本上不会发出荧光,除非被氧化。石墨烯氧化物以及部分还原的石墨烯氧化物则由于原子结构和电子结构的不均一性,可以在从紫外到近红外的区域发出荧光。而这荧光效应可以通过控制石墨烯氧化物被还原的程度以及纳米石墨烯氧化物的尺寸或溶液的PH值在很大的波长范围内或强度上实现可调控。石墨烯氧化物的荧光淬灭效应:石墨烯氧化物最有趣的性质是,尽管其本身具有荧光效应,同时它也可以用来淬灭荧光。这种看似矛盾的性质源自于其不均一的化学原子结构及电子性质。发挥荧光淬灭作用的是石墨烯氧化物中的sp2杂化的晶域,因此还原后的石墨烯氧化物的淬灭效果大幅度提高。这种淬灭效应也可以用在共振拉曼光谱上来抑制荧光从而提高信噪比。

石墨烯氧化物的非线性光学:如其他碳的同素异形体一样,石墨烯氧化物也具有优良的非线性光学效应,主要包含两方面,光限幅效应和饱和吸收效应。这两个非线性效应分别出现在光强很高和较低的情况下。前者可用于保护眼睛和光学器件,后者则可用于做饱和吸收体来产生脉冲激光。

自从石墨烯发现以来,关于石墨烯的研究不断取得重要进展,其在微电子、量子物理、材料、化学等领域都表现出许多令人振奋的性能和潜在的应用前景。石墨烯的出现在科学界激起了巨大的波澜,人们发现,石墨烯具有非同寻常的导电性能、超出钢铁数十倍的强度和极好的透光性,它的出现有望在现代电子科技领域引发一轮革命。在石墨烯中,电子能够极为高效地迁移,而传统的半导体和导体,例如铜和硅远没有石墨烯表现得好。由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,目前一般的电脑芯片以这种方式浪费了70%~80%的电能,石墨烯则不同,它的电子能量不会被损耗,这使它具有了非同寻常的优良特性。科学家发现,石墨烯的这种特性尤其适合于高频电路。高频电路是现代电子工业的领头羊,一些电子设备,例如手机,由于工程师们正在设法将越来越多的信息填充在信号中,它们被要求使用越来越高的频率,然而手机的工作频率越高,热量也越高,于是,高频的提升便受到很大的限制。由于石墨烯的出现,高频提升的发展前景似乎变得无限广阔了。

石墨烯还可以以光子传感器的面貌出现在更大的市场上,这种传感器是用于检测光纤中携带的信息的,现在,这个角色还在由硅担当,但硅的时代似乎就要结束。去年10月,IBM的一个研究小组首次披露了他们研制的石墨烯光电探测器,接下来人们要期待的就是基于石墨烯的太阳能电池和液晶显示屏了。因为石墨烯是透明的,用它制造的电极比其他材料具有更优良的透光性。

碳原子之间的作用力很强,因此石墨烯的晶体结构总可以保持完整,这是电

子在石墨烯上畅通迁移的保证。和传统的硅材料半导体相比,石墨烯的电子迁移效率要高出几十倍乃至于上百倍,这也正是科学家们如此期待用石墨烯取代硅而成为未来超高频晶体管材料的缘故。依据“摩尔定律”,集成电路上可容纳的晶体管数量每隔18个月会增加一倍,性能也提高一倍,这个定律显示了信息技术进步的速度。然而现在这种速度已明显地降低了,因为硅材料已接近其极限,用硅制造的晶体管很难获得进一步发展的空间,而碳则在这个时候脱颖而出了。2008年4月,科学家宣布说,他们成功研制出了尺寸最小的石墨烯晶体管,其厚度仅为1个原子,截面为10个原子。尽管目前还缺乏真正以纳米精度切割材料的技术,大规模的石墨烯生产还无法进行,但仅仅如此就足以令人振奋了。人们清楚地看到,石墨烯很有可能取代硅成为下一代超高频晶体管的基础材料而广泛应用于高性能集成电路和新型纳米电子器件中。在未来,我们将会看到由石墨烯构成的全碳电路,它们将被广泛应用于人们的日常生活中…...

石墨烯的应用

1、可做“太空电梯”缆线

据科学家称,地球上很容易找到石墨原料,而石墨烯堪称是人类已知的强度最高的物质,它将拥有众多令人神往的发展前景。它不仅可以开发制造出纸片般薄的超轻型飞机材料、可以制造出超坚韧的防弹衣,甚至还为“太空电梯”缆线的制造打开了一扇“阿里巴巴”之门。美国研究人员称,“太空电梯”的最大障碍之一,就是如何制造出一根从地面连向太空卫星、长达23000英里并且足够强韧的缆线,美国科学家证实,地球上强度最高的物质“石墨烯”完全适合用来制造太空电梯缆线!

人类通过“太空电梯”进入太空,所花的成本将比通过火箭升入太空便宜很多。为了激励科学家发明出制造太空电梯缆线的坚韧材料,美国NASA此前还发出了400万美元的悬赏。

2、代替硅生产超级计算机

科学家发现,石墨烯还是目前已知导电性能最出色的材料。石墨烯的这种特性尤其适合于高频电路。高频电路是现代电子工业的领头羊,一些电子设备,例如手机,由于工程师们正在设法将越来越多的信息填充在信号中,它们被要求使用越来越高的频率,然而手机的工作频率越高,热量也越高,于是,高频的提升便受到很大的限制。由于石墨烯的出现,高频提升的发展前景似乎变得无限广阔了。这使它在微电子领域也具有巨大的应用潜力。研究人员甚至将石墨烯看作是硅的替代品,能用来生产未来的超级计算机。

3、光子传感器

石墨烯还可以以光子传感器的面貌出现在更大的市场上,这种传感器是用于检测光纤中携带的信息的,现在,这个角色还在由硅担当,但硅的时代似乎就要结束。去年10月,IBM 的一个研究小组首次披露了他们研制的石墨烯光电探测器,接下来人们要期待的就是基于石墨烯的太阳能电池和液晶显示屏了。因为石墨烯是透明的,用它制造的电板比其他材料具有

更优良的透光性。

4、单分子气体侦测

石墨烯独特的二维结构使它在传感器领域具有光明的应用前景。巨大的表面积使它对周围的环境非常敏感。即使是一个气体分子吸附或释放都可以检测到。这检测目前可以分为直接检测和间接检测。通过穿透式电子显微镜可以直接观测到单原子的吸附和释放过程。通过测量霍尔效应方法可以间接检测单原子的吸附和释放过程。当一个气体分子被吸附于石墨烯表面时,吸附位置会发生电阻的局域变化。当然,这种效应也会发生于别种物质,但石墨烯具有高电导率和低噪声的优良品质,能够探测这微小的电阻变化。

5、场效应管及其集成电路

石墨烯良好的电导性能和透光性能,使它在透明电导电极方面有非常好的应用前景。触摸屏、液晶显示、有机光伏电池、有机发光二极管等等,都需要良好的透明电导电极材料。特别是,石墨烯的机械强度和柔韧性都比常用材料氧化铟锡优良。由于氧化铟锡脆度较高,比较容易损毁。在溶液内的石墨烯薄膜可以沉积于大面积区域。

通过化学气相沉积法,可以制成大面积、连续的、透明、高电导率的少层石墨烯薄膜,主要用于光伏器件的阳极,并得到高达1.71%能量转换效率;与用氧化铟锡材料制成的元件相比,大约为其能量转换效率的55.2%。

6、石墨烯生物器件

由于石墨烯的可修改化学功能、大接触面积、原子尺吋厚度、分子闸极结构等等特色,应用于细菌探测与诊断器件,石墨烯是个很优良的选择。

科学家希望能够发展出一种快速与便宜的快速电子DNA定序科技。它们认为石墨烯是一种具有这潜能的材料。基本而言,他们想要用石墨烯制成一个尺寸大约为DNA宽度的纳米洞,让DNA分子游过这纳米洞。由于DNA的四个碱基(A、C、G、T)会对于石墨烯的电导率有不同的影响,只要测量DNA分子通过时产生的微小电压差异,就可以知道到底是哪一个碱基正在游过纳米洞。这样,就可以达成目的。

7、石墨烯半导体量子点能实现单分子传感器

有一种“石墨烯半导体量子点(graphene qua ntum dots)”能实现单分子传感器,也可能催生超小型晶体管或是利用半导体激光器所进行的芯片上通讯;美国莱斯大学(Rice University)日前即发表了该校进行这种技术研发的相关计划。

研究人员表示,半导体量子点是一个个能够禁锢激子(exciton)──也就是互相束缚的电子-电洞对(electron-hole pair)──的空缺(即阱状),能制作出在特性上优于目前那些大宗材料的半导体组件。而莱斯大学的发现是,能在量子阱的底部留下单层的碳。

称为石墨烯的石墨薄片通常会与单层氦结合,氦会让该种材料由导体转换为绝缘体;研究人员是透过移除石墨薄片两面的氦原子岛,做出以上的推论。被绝缘体包围的、微小的导

神奇的石墨烯——石墨烯研究进展

神奇的石墨烯 ——石墨烯的研究进展 石墨烯简介 石墨烯(Graphene),又称单层石墨,是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。 石墨烯一直被认为是假设性的结构,无法单独稳定存在[1],直至2004年,英国曼彻斯特大学物理学家安德烈?海姆和康斯坦丁?诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”为由,共同获得2010年诺贝尔物理学奖。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光";导热系数高达5300 W/m?K,高于碳纳米管和金刚石,常温下其电子迁移率*超过15000 cm2/V?s,又比纳米碳管或硅晶体*高,而电阻率只约10-6 Ω?cm,比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。 石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。石墨烯的命名来自英文的graphite(石墨) + -ene(烯类结尾),也可称为“单层石墨”。石墨烯被认为是平面多环芳香烃原子晶体。 石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42?。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。另外,石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯内部电子受到的干扰也非常小。石墨烯是构成下列碳同素异形体的基本单元:石墨,木炭,碳纳米管和富勒烯。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。 石墨烯卷成圆桶形可以用为碳纳米管;另外石墨烯还被做成弹道晶体管(ballistic transistor)并且吸引了大批科学家的兴趣。在2006年3月,佐治亚理工学院研究员宣布, 他们成功地制造了石墨烯平面场效应晶体管,并观测到了量子干涉效应,并基于此结果,研究出以石墨烯为基材的电路. 石墨烯的问世引起了全世界的研究热潮。它是已知材料中最薄的一种,质料非常牢固坚硬,在室温状况,传递电子的速度比已知导体都快。石墨烯的原子尺寸结构非常特殊,必须用量子场论才能描绘。 既然石墨烯这么的神奇,有这么多的特性,那它的制备会不会特别难呢? 事实表明现在大规模的制造石墨烯还比较困难,但小规模的制造用于科研还是比较容易

石墨烯研究现状及应用前景

石墨烯材料研究现状及应用前景 崔志强 (重庆文理学院材料与化工学院,重庆永川402160) 摘要:近几年来, 石墨烯材料以其独特的结构和优异的性能, 在化学、物理和材料学界引起了轰动。本文引用大量最新的参考文献,阐述了石墨烯的制备方法如机械剥离法、取向附生法、加热 SiC 法、爆炸法、石墨插层法、热膨胀剥离法、电化学法、化学气相沉积法、氧化石墨还原法、球磨法等,分析了各种制备方法的优缺点。论述了石墨烯材料在透明电极、传感器、超级电容器、能源储存、复合材料等方面的应用,同时简要分析了石墨烯材料研究的现实意义,展望了其未来的发展前景。 关键词:石墨烯材料;制备方法;现实意义;发展现状;应用前景 中图分类号: TQ323 文献标识码:A 文章编号: Research status and application prospect of graphene materials Cui Zhiqiang (Faculty of materials and chemical engineering, Chongqing Academy of Arts and Sciences, Yongchuan, Chongqing 402160) Abstract: In recent years, graphene has caused a sensation in chemical, physical and material science due to its unique structure and excellent properties. Cited in this paper a large number of the latest references, expounds the graphene preparation methods such as layer method, thermal mechanical stripping method, orientation epiphytic method, heating SiC method, explosion, graphite intercalation expansion stripping method, electrochemical method, chemical vapor phase deposition method, graphite oxide reduction method, ball milling method, and analyze the advantages and disadvantages of various preparation methods. This paper discusses the application of graphene materials in transparent electrodes, sensors, super capacitors, energy storage and composite materials, and briefly analyzes the practical significance of the study of graphene materials, and gives a prospect of its future development. Keywords: graphene materials; preparation methods; practical significance; development status; application prospect 0 引言 1985 年英美科学家发现富勒烯[1]和1991 年日本物理学家Iijima 发现碳纳米管[2],加之英国曼彻斯特大学科学家于2004 年成功制备石墨烯[3]之后,金刚石(三维)、石墨(三维)、石墨烯(二维)、碳纳米管(一维)和富勒烯(零维)组成了一个完整的碳系材料“家族”。从理论上说,石墨烯是除金刚石外所有碳晶体的基本结构单元,如果从石墨烯上“剪”出不同形状的薄片,进一步就可以包覆成零维的富勒烯,卷曲成一维的碳纳米管,堆叠成三维的石墨,如图1 所示[4]。由于石墨烯优异的电学、热学、力学性能,近年来各国科研人员对其的研究日益增长,已经是材料科学领域的研究热点之一。2010 年诺贝尔物理学奖揭晓[5-6]之后,人们对石墨烯的研究和关注越来越多,新的发现不断涌现。在不断深入研究石墨烯的制备方法和性质的过程中,其应用领域也在不断扩大。由于石墨烯缺乏带隙以及在室温下的超高电子迁移率、低于银铜的电阻率、高热导率[7]等,在光电晶体管、生化传感器、电池电极材料和复合材料方面有着很高

多孔石墨烯材料的研究进展

多孔石墨烯材料的研究进展 摘要:多孔石墨烯材料同时结合了石墨烯和多孔材料的优点,具有独特的二维结构及优异的理化性质,是一种具备巨大应用潜力的新型纳米碳质材料。然而单一的石墨烯材料很难充分满足各个领域的应用需求,且石墨烯片层容易堆叠和团聚,制约了其实际应用的发展。通过掺杂、改性、组装和复合等手段制备石墨烯衍生物及石墨烯纳米复合物等石墨烯基材料可以丰富并优化石墨烯的性质,拓展并提升石墨烯的性能,对于促进石墨烯的实际应用具有重大意义。作为一种新型石墨烯衍生物,多孔石墨烯以其二维片状结构、超高比表面积、开放的能带间隙、丰富的活性位点等特性吸引了研究者的很大关注。 关键词:石墨烯;杂化;石墨烯衍生物 引言 如果以化学家的视角将人类和世界写成一本书,碳元素必将会跻身关键词之列:从碳基生命到无机碳素,从史前壁画到太空天梯,从钻木取火到蒸汽革命,再从笔墨纸砚书酒花到柴米油糖酱醋茶,碳的身影无处不在,不可替代。作为世界上最为普遍和奇妙的元素,碳变化多端的魅力归因于其电子轨道杂化方式的多样性及其特殊的成键能力和成键方式。碳原子含有四个价电子,往往以sp,sp2和sp3等杂化形式构成具有不同性质的单质或化合物。以碳单质为例,碳元素存在多种结构、性质迥异的同素异形体。其中sp杂化形式的卡宾碳异常活泼,不易单独稳定存在;sp3杂化的金刚石稳定、超硬、价高,化学修饰较困难;sp2杂化的石墨、石墨烯化学修饰较易且具有独特的电子共轭体系,此外还存在杂化形式介于sp2杂化和sp3杂化之间的富勒烯及包含多种杂化形式碳原子的无定形碳等等。碳家族的众多成员极大丰富了碳质材料的性质,为其在各领域的广泛应用奠定了基础[1]。 1石墨烯及石墨烯基材料 石墨烯即单层或少层石墨薄片,是sp2杂化碳原子按照蜂窝状六元环结构排列而成的二维平面网络结构。2004年,曼彻斯特大学的Novoselov和Geim教授研究组利用机械剥离法成功得到独立存在的单原子层石墨烯,两位物理学家因这一开创性的发现在2010年共同获得诺贝尔物理学奖。然而当我们认真地追根溯源时,会发现石墨烯并非一颗横空出世的新星,围绕石墨烯的讨论已经在科学界

石墨烯的结构、制备、性能及应用研究进展

. . .. . . 报告题目:石墨烯的结构、制备、性能及应用研究进展 一、书目信息: 二、评分标准 1.格式规、容简明扼要。报告中引用的数据、观点等要注明出处20分 2. 报告结构合理,表述清晰20分 3. 石墨烯的结构、性能、制备方法概述正确、新(查阅5篇以上的文献)20分 4. 石墨烯的应用研究进展概述(文献)全、新(查阅5篇以上的文献)20分 5. 心得及进一步的研究展望真实,无抄袭与剽窃现象20分 三、教师评语 请根据写作容给定成绩,填入“成绩”部分。 注1:本页由报告题目、书目信息有学生填写,其余由教师填写。提交试卷时含本页。学生从第二页开始写作,要求见蓝色字体部分。 注2:“阅卷教师评语”部分请教师用红色或黑色碳素笔填写,不可用电子版。无“评语”视为不合规。注3:不符合规试卷需修改规后提交。 摘要 碳是自然界中万事万物的重要组成物质,也是构成生命有机体的主要元素。石墨和金刚石是两种典型的单质碳,也是最早为人们所熟知的两种碳的三维晶体结构,属于天然矿

密封线 石。除石墨和金刚石外,碳材料还包括活性炭、碳黑、煤炭和碳纤维等非晶形式。煤是重 要的燃料。碳纤维在复合材料领域有重要的应用。20 世纪80 年代,纳米材料与技术获得 了极大的发展。纳米碳材料也是从这一时期开始进入历史的舞台。1985 年,由60 个碳原 子构成的“足球”分子:C60被三位英美科学家发现。随后,C70、C86等大分子相继出现, 为碳家族添加了一大类新成员:富勒烯。富勒烯是碳的零维晶体结构,它们的出现开启了 富勒烯化学新篇章。三位发现者于1996 年获诺贝尔化学奖。1991 年,由石墨层片卷曲 而成的一维管状纳米结构:碳纳米管被发现。如今,碳纳米管已经成为一维纳米材料的典 型代表。发现者饭岛澄男于2008 年获卡弗里纳米科学奖。2004 年,一位新成员:石墨 烯,出现在碳材料的“家谱”中。石墨烯的发现者,两位英国科学家安德烈·盖姆(Andre Geim)和康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)于2010 年获诺贝尔物理学 奖。 关键词:碳材料复合材料晶体结构 1 石墨烯的结构 石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。石墨烯是构成下列碳同素异型体的基本单元:例如:石墨,碳纳米管和富勒烯。石墨烯被认为是平面多环芳香烃原子晶体。 2 石墨烯的制备 2.1 物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得, 操作相对简单,合成的石墨烯的纯度高、缺陷较少。 2.1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt 等[1]于2004年用一种极为简单的微机械剥离法成功地从高定向热解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在 1 mm厚的高定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20 μm—2 mm、深 5 μm的微槽后,用光刻胶将其粘到玻璃衬底上,再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用德华力或毛细管力将单层石墨烯“捞出”。 2.1.2取向附生法—晶膜生长

石墨烯材料的研究进展论文

石墨烯材料的研究进展 摘要:石墨烯是近年被发现和合成的一种新型二维碳质纳米材料。由于其独特的结构 和新奇的物化性能,在改善复合材料的热性能、力学性能和电性能等方面具有很大的潜力,已成为纳米复合材料研究的热点。综述了石墨烯纳米复合材料的制备与应用研究进展,并对石墨烯纳米复合材料的发展前景进行了展望。 关键词:石墨烯;纳米复合材料;制备;应用 1,材料的基本情况 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的碳质材料,是构成其它碳同素异形体的基本单元。石墨烯的理论研究已有60多年的历史,一直被认为是假设性的结构,无法单独稳定存在。2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫用胶带反复剥离高定向热解石墨的方法,得到了稳定存在的石墨烯。石墨烯的出现颠覆了传统理论,使碳的晶体结构形成了从零维的富勒烯、一维的碳纳米管、二维的石墨烯到三维的金刚石和石墨的完整体系。 石墨烯的结构非常稳定。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。石墨烯是构成石墨,木炭,碳纳米管和富勒烯碳同素异形体的基本单元。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。石墨烯卷成圆桶形可以用为碳纳米管 石墨烯的出现在科学界激起了巨大的波澜,人们发现,石墨烯具有非同寻常的导电性能、超出钢铁数十倍的强度和极好的透光性,它的出现有望在现代电子科技领域引发一轮革命。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高于碳纳米管和金刚石,石墨烯是迄今为止世界上强度最大的材料,据测算如果用石墨烯制成厚度相当于普通食品塑料包装袋厚度的薄膜(厚度约100 纳米),那么它将能承受大约两吨重物品的压力,而不至于断裂,石墨烯是世界上导电性最好的材料。 常温下其电子迁移率比纳米碳管或硅晶体高,而电阻率比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 2,最热的应用合成 石墨烯的应用范围广阔。根据石墨烯超薄,强度超大的特性,石墨烯可被广泛应用于各领域. 根据其优异的导电性,使它在微电子领域也具有巨大的应用潜力。石墨烯有可能会成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,碳元素更高的电子迁移率可以使未来的计算机获得更高的速度。最小最快石墨烯晶体管。2011年4月7日IBM向媒体展示了其最快的石墨烯晶体管,该产品每秒能执行1550亿个循环操作,比之前的试验用晶体管快50%。 石墨烯材料还是一种优良的改性剂,在新能源领域如超级电容器、锂离子电池方面,由

石墨烯复合材料应用最新研究进展

2019年3月第46卷第3期 云南化工 Yunnan Chemical Technology Mar.2019 Vol.46,No.3 doi:10.3969/j.issn.1004-275X.2019.03.062 石墨烯复合材料应用最新研究进展 程扬帆 (湖北科技学院,湖北咸宁,437000) 摘要:介绍了石墨烯复合材料在国内外的应用前景及应用进展,着重介绍了利用石墨烯特性应用于电容储能、环境治理、导热散热性能和导电等多领域的研究。石墨烯复合材料的应用潜力巨大,具有非常广阔的市场前景。 关键词:石墨烯;复合材料;应用前景 中图分类号:TQ04文献标志码:A文章编号:1004-275X(2019)03-157-02 Recent Research Progress in the Application of Graphene Composites at Home and Abroad Cheng Yangfan (Hubei Institute of Science and Technology,Xianning,Hubei,437000) Abstract:This paper introduces the application p rospects and progress of graphene composites at home and abroad.It focuses on the application of graphene characteristics in capacitance energy storage, environmental management,thermal conductivity and heat dissipation,conductivity and other fields. Graphene composites have great potential and broad market prospects. Key words:Graphene;Compound material;Application prospect 1石墨烯复合材料及其应用前景 1.1定义与特性 石墨烯被称为“单层石墨片”。它是一种二维的结构,密集的碳原子与石墨的单原子层十分类似,是一种新型碳材料。石墨烯的多种优点造就它多种用途,比如它的比表面积大,可以用于吸附和环境治理;机械强度高可以用于航空航天等;载流子迁移率高可以用于半导体与电容等设备。应用的环境非常广泛,随着石墨烯新型材料国内外发展,石墨烯不但可以显著提升传统产业,还可以为高端制造业的发展提供推力。1.2国内外石墨烯复合材料发展趋势及应用前景 目前,世界上有很多关于石墨烯的讨论。2012年,有近2万篇关于石墨烯研究的论文被纳 入科学研究。中国和美国是前两个国家。与此同时,其他国家也积极参与石墨烯相关专利申请的布局。截至2013年6月,它已申请了3,000多项相关发明专利。从2006-2017年,国内和国际研究呈上升趋势。在“十一五”期间,石墨烯复合技术的发展还处于起步阶段,国内外研究的数量相对较少。在“十二五”期间,国外开展了研究,主要集中在石墨烯的制备和化合物的研究上。随后,石墨烯复合材料的研究进入了快速发展阶段。在过去两年中,研究数量已超过以前的总数。其中,国外研究数量急剧增加,工业化进程不断推进,国内则在重点领域不断扩展提升。 由于石墨烯的重要特性和巨大应用价值,全球多个国家将其定义到发展战略高度。比如亚太地区的日本和中国,美国、以及欧洲欧盟等区域国家。这其中不少国家投入的研究和开发金额达到十亿美元,专门用来研究用于石墨烯材料。美国科技发展战略同样包括石墨烯技术。各国企业也积极进行石墨烯产业的布局,相关开发和研究涉及多家公司,像比如洛克希德·马丁、波音、三星、IBM、杜邦、陶氏化学、索尼等巨头均在公司名单中[1]。 2石墨烯复合材料国内外应用进展 由于石墨烯具有多种独特的优点,将它作为复合材料的填充相,就可以增强材料的相应性能,这就为它的应用提供了多种方向。比如国内外相关研究应用于能量储存、液晶器件、电子器件,而在其他领域比如生物材料、传感材料和催化剂载体等也有较多的报道。随着对石墨烯复合材料研究的不断深入,它应用也越来越受到人们的重视。 2.1石墨烯储能复合材料应用 锂电池是当前用途最广泛的电池能源,锂电池整体性能提升的关键是开发新的电极材料。石墨烯作为一种新型碳质材料,加入到锂离子电池中能够大幅提高其导电性,因为它为锂离子电池解决了两个问题,大幅度提高能量密度与大幅度提高功率密度。相对应的,石墨烯就可以作为电池导电的添加剂了。国内也有报道将它作为复合电极材料的正负极[2]。 157--

前沿讲座石墨烯研究进展

石墨烯 世界2010年最大的科学笑话? 是“石墨薄片”获2010世界诺贝尔物理学奖? 获奖理由是说:获奖科学家用小学生使用的铅笔,在纸上涂抹下铅笔芯中的石墨粉,再用胶粘纸,进行反复粘贴,石墨粉变薄,而能创造出天下奇迹。也就是石墨粉越薄,强度越大,强得能超过钢铁100倍?越薄越能耐高温?越薄越有超导电性?而没有任何事实根据支持,竟然获奖。 “石墨薄片”获奖,被推荐和评选为2010世界最大笑的理由是:因为在宇宙间,在世界上找不到,永远也找不到,物质越薄,强度越大,越能耐高温,电阻越小的物质和事实存在,诺贝尔奖又是世界上的大事。而宇宙间有数不尽的大自然机器早已作了上百亿年的试验,证据事实数据堆山塞海。人类也进行了数不尽的物质材料验证实验,事实证据也无处不在。无不说明在地球上,人世间绝对没有,物质越薄强度越大……的物质和事实存在。难道宇宙和人类早已进行了千年,万年……. 的辛苦实验,还不如用铅笔在纸上毫无事实根据的胡乱画圈?而世界顶级的科学家们,则对大自然的事实视而不见,就此胡乱的相信和评选.....,还有我们更多无知的吹捧,难道不是天下的大笑话?如果您不相信可以去自作小学生的实验,去看一看变相批评瑞典皇家科学院,2010年物理学评审委员会的建议文章,就会更明白。当

然还有在自由的环境下,用“石墨诺贝尔笑话奖”这个题目就能看到成千上万的科学精英们,对此问题是怎么说的?又是怎么样去看?

科学家将石墨烯聚光能力提高20倍 据美国物理学家组织网8月30日报道,英国科学家表示,他们对石墨烯的最新研究表明,让石墨烯与金属纳米结构结合可将石墨烯的聚光能力提高20倍,改进后的石墨烯设备有望在未来的高速光子通讯中用作光敏器,让速度为现在几十倍的超高速互联网成为现实。相关研究发表于《自然—通讯》杂志上。 2010年,英国曼彻斯特大学的安德烈·盖姆和康斯坦丁·诺沃谢洛夫因在石墨烯研究领域的突出贡献而荣膺诺贝尔奖。现在,他们和剑桥大学科学家做出了这项最新发现,为提高互联网和其他通讯设施的速度铺平了道路。 此前科学家们就发现,将两根紧密排列的金属丝放在石墨烯上方,用光照射于其上会产生电力,这个简单的设备其实是一个基本的太阳能电池。更重要的是,因为石墨烯内的电子拥有高流动性和高速度等独特属性,石墨烯设备处理数据的速度可能是目前最快的互联网光缆的几十倍甚至几百倍。 然而,迄今为止,这些极富应用潜力的设备在实用过程中一直遭遇聚光效率低下这一瓶颈,石墨烯只能吸收照射于其上的3%的光线来产生电力,其余光线全成了“漏网之鱼”。

石墨烯的结构、制备、性能及应用研究进展

石墨烯的结构、制备、性能及应用研究进展

姓名:学号: 20150700 密封线 报告题目:石墨烯的结构、制备、性能及应用研究进展 一、书目信息: 二、评分标准

姓名:学号: 20150700 密封线

姓名:学号: 20150700 密封线 2. 报告结构合理,表述清晰 20分 3. 石墨烯的结构、性能、制备方法概述正确、 新(查阅5篇以上的文献) 20分 4. 石墨烯的应用研究进展概述(文献)全、新 (查阅5篇以上的文献) 20分 5. 心得及进一步的研究展望真实,无抄袭与剽窃现象 20分 三、教师评语 请根据写作内容给定成绩,填入“成绩”部分。

密封线 注1:本页由报告题目、书目信息有学生填写,其余由教师填写。提交试卷时含本页。学生从第二页开始写作,要求见蓝色字体部分。 注2:“阅卷教师评语”部分请教师用红色或黑色碳素笔填写,不可用电子版。无“评语”视为不合规范。注3:不符合规范试卷需修改规范后提交。 摘要 碳是自然界中万事万物的重要组成物质,也是构成生命有机体的主要元 素。石墨和金刚石是两种典型的单质碳,也是最早为人们所熟知的两种碳的 三维晶体结构,属于天然矿石。除石墨和金刚石外,碳材料还包括活性炭、 碳黑、煤炭和碳纤维等非晶形式。煤是重要的燃料。碳纤维在复合材料领域 有重要的应用。20 世纪80 年代,纳米材料与技术获得了极大的发展。纳米 碳材料也是从这一时期开始进入历史的舞台。1985 年,由60 个碳原子构成 的“足球”分子:C60被三位英美科学家发现。随后,C70、C86等大分子相继 出现,为碳家族添加了一大类新成员:富勒烯。富勒烯是碳的零维晶体结构, 它们的出现开启了富勒烯化学新篇章。三位发现者于1996 年获诺贝尔化学 奖。1991 年,由石墨层片卷曲而成的一维管状纳米结构:碳纳米管被发现。 如今,碳纳米管已经成为一维纳米材料的典型代表。发现者饭岛澄男于2008 年获卡弗里纳米科学奖。2004 年,一位新成员:石墨烯,出现在碳材料的“家 谱”中。石墨烯的发现者,两位英国科学家安德烈·盖姆(Andre Geim)和 康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)于2010 年获诺贝尔物理 学奖。 关键词:碳材料复合材料晶体结构 1 石墨烯的结构 石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。石墨烯是构成下列碳同素异型体的基本单元:例如:石

石墨烯材料研究进展

石墨烯材料研究进展 化学工程与工艺 0909403068 王月 摘要:石墨烯具有非凡的物理及电学性质,如高比表面积、高导电性、高机械强度、易于修饰及大规模生产等。2004年石墨烯的成功剥离,使石墨烯成为形成纳米尺寸晶体管和电路的“后硅时代”的新潜力材料,其产品研发和应用目前正在全球范围内急剧增加。本文通过对石墨烯的特性、制备和应用现状几方面进行了综述。 关键词:石墨烯制备应用进展 石墨烯是碳 原子紧密堆 积成单层二 维蜂窝状晶 格结构的一 种碳质新材 料,是构筑 零维富勒 烯、一维碳 纳米管、三 维体相石墨等sp2杂化碳(即碳以双键相连或连接其他原子)的基本结构单元,如图1所示。石墨烯的理论研究已有60多年的历史,但直至2004年,英国曼彻斯特大学物理学家安德烈〃海姆和康斯坦丁〃诺沃肖洛夫,

利用胶带剥离高定向石墨的方法获得真正能够独立存在的二维石墨 烯晶体,并发现了石墨烯载流子的相对论粒子特性,才引发石墨烯研 究热。这以后,制备石墨烯的新方法层出不穷,人们发现,将石墨烯 引入工业化生产的领域已为时不远了[1]。 1石墨烯的特性 石墨烯是零带隙半导体,有着独特的载流子特性,为相对论力学 现象的研 究提供了一条重要 途径;电子在石墨 烯中传输的阻力很 小,在亚微米距离 移动时没有散射,具 有很好的电子传输 性质;石墨烯韧性 好,它们每100nm 距离上承受的最大 压力可达2.9N [2],是迄今为止发现的力学性能最好的材料之一。石墨烯特有的 能带结构使空穴和电子相互分离,导致了新电子传导现象的产生,如 量子干涉效应、不规则量子霍尔效应。Novoselov 等观察到石墨烯具 有室温量子霍耳效应,使原有的温度范围扩大了10倍。石墨烯在很 多方面具备超越现有材料的特性,具体如图 2 [3]所示,日本企业的 一名技术人员形容单层石墨碳材料“石墨烯”是“神仙创造的材料”。 图2 石墨烯的特点

石墨烯力学性能研究进展

石墨烯力学性能研究进展* 韩同伟‘贺鹏飞2,t骆英‘张小燕“ 江苏大学土木工程与力学学院,江苏镇江212013 2同济大学航空航天与力学学院,上海200092 3江苏大学化学化工学院,江苏镇江212013 摘要石墨烯是近年来发现的由单层碳原子通过共价键结合而成的具有规则六方对称的理想二维晶体,是继富勒烯和碳纳米管之后的又一种新型低维碳材料.由于具有非凡的电学、热学和力学性能以及广阔的应用前景,石墨烯被认为是具有战略意义的新材料,近年来迅速成为材料科学和凝聚态物理等领域最为活跃的研究前沿.本文简要介绍了研究石墨烯力学性能的实验测试、数值模拟和理论分析方法,重点综述了石墨烯力学性能的最新研究进展,主要包括二维石墨烯的不平整性和稳定性,石墨烯的杨氏模量、强度等基本力学性能参数的预测,石墨烯力学性能的温度相关性和应变率相关性、原子尺度缺陷和掺杂等对力学性能的影响以及石墨烯在纳米增强复合材料和微纳电子器件等领域的应用,最后对石墨烯材料与结构的力学研究进行了展望. 关键词石墨烯,力学性能.分子动力学,缺陷 1引言 石墨烯(graphene),又称为二维石墨片,是由单层碳原子通过共价键(碳5pz杂化轨道所形成的二键、二键)结合而成的具有规则六方对称的理想二维晶体11-21,如图1所示,于2004年由英国曼彻斯特大学的安德烈·盖姆(Andre Geim)和康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)首先发现[fll,是继富勒烯(Cso)和碳纳米管(CNTs)之后的又一种新型低维碳材料,其厚度仅为头发丝直径的20万分之一。约为0.335 nm,是目前发现的最薄的层状材料. 在石墨烯中,每个碳原子通过很强的0键(自然界中最强的化学键)与其他3个碳原子相连接,这些很强的碳一碳键致使石墨烯片层具有极其优异的力学性质和结构刚性.碳原子有4个价电子,每个碳原子都贡献一个未成键的兀电子。这些兀电子与平面成垂直的方向可形成二轨道,二电子可在晶体中自由移动,赋予石墨烯良好的导电性.但这些面外离位的二键与相邻层内的二键的层间相互作用远远小于一个6键,即片层间的作用力较弱,因此石墨层间很容易互相剥离,形成薄的石墨片.石墨烯的碳基二维晶体是形成sp“杂化碳质材料的基元,它可以包裹起来形成零维的富勒烯(fullerene, Cso),卷起来形成一维的纳米碳管(carbon nanotube, CNT),层层堆积形成三维的石墨(graphite),石墨烯是构建众多碳质材料的基本结构单元[[3J,如图2所示. 由于独特的二维结构以及优异的晶体品质,石墨烯具有十分优异的电学、热学、磁学和力学性能fl-$1,有望在高性能纳米电子器件、复合材料、场发射材料、气体传感器、能量存储等领域获得广泛应用.石墨烯是零隙半导体,具有一般低维碳材料所无法比拟的载流子特性,是其备受关注的重要原因之一石墨烯成为凝聚态物理学中独一无二的描述无质量狄拉克一费米子(masslessDirac Fermions)的模型体系,这种现象导致了许多新奇的电学性质因此,石墨烯为相对论量子电动力学现象的研究提供了重要借鉴.研究还表明,石墨烯的热导率和机械强度(5kW}m-1}K-1和1.06 TPa)可与宏观石墨材料相媲美,断裂强度与碳纳米管相当f7-sl.此外,石墨烯为制备集超高导电、导热及机械性能等各种优越性能于一体的新型功能复合材料提供了一种理想的纳米填料[fl。一’‘].因此,石墨烯被誉为新一代战略材料,近年来迅速成为材料科学和凝聚态物理领域最为活跃的研究前沿[2,1“一’51. 2009年12月,Science杂志将石墨烯研究取得新进展”列为2009年十大科技进展之一2010年10月,英国曼彻斯特大学的两位科学家安德烈·盖姆和康斯坦丁.诺沃肖罗夫因在二维空间材料石墨烯方面的开创性实验而获得诺贝尔物理学奖,由此引发石墨烯新的研究热潮.

石墨烯在锂电池中的应用研究

LUOYANG NORMAL UNIVERSITY 2015届本科毕业论文 石墨烯在锂离子电池材料中的应用研究 院(系)名称化学化工学院 专业名称化学工程与工艺 学生姓名雷丙丽 学号110644058 指导教师刘丰讲师 完成时间2015年04月

石墨烯在锂离子电池材料中的应用研究 摘要:石墨烯是单原子层紧密堆积的一种特殊石墨材料,在电学、热学、力学等方面具有独特的构造和优良的功能,可以发挥其重要的作用。因为石墨烯具有较高的电导率、超大的比表面积、高的化学稳定性等优良的化学和物理特性,所以它在锂离子电池材料中的研究引起了人们的广泛关注。文章不仅综述了石墨烯的结构和制备工艺以及改性方法,而且介绍了石墨烯作为锂离子电池材料的最新研究进展,还分析了石墨烯各制备和改性方法对锂离子电池材料的影响,并对石墨烯在锂离子电池材料中应用的发展趋势进行了展望。 关键词:石墨烯;锂离子电池材料;电化学 The application of graphene in lithium-ion battery materials research Abstract:Graphene is a single atomic layer close packing of a kind of special graphite material, such as electrical, thermal and mechanical aspects has unique structure and excellent performance, can play its important role. Because of properties of high electrical conductivity, large surface area, and chemical stability, graphene holds great promising for potential applications in electrode materials for lithium-ion battery, it is in the lithium-ion battery materials research has attracted widespread attention. Article summarizes the modification of graphene and graphene is introduced as a new research progress of the lithium-ion battery materials, graphene is analyzed the influence of the preparation and applications of graphene in lithium-ion battery material development trend is prospected. Keywords:graphene; the modification of graphene; lithium—ion battery material 1 引言 近几年来,为了进一步实现可持续发展,锂离子电池受到人们的普遍关注,世界

石墨烯的研究进展概述

龙源期刊网 https://www.doczj.com/doc/ea11912336.html, 石墨烯的研究进展概述 作者:兰耀海 来源:《建材发展导向》2014年第03期 摘要:由于石墨烯具有独特的结构和优越的性能,现己逐渐应用于电子材料、薄膜材 料、储能材料、液晶材料、催化材料等先进的功能材料领域。石墨烯复合材料是石墨烯应用研究中的重要领域,近年来已成为材料研究的热门领域。文章主要对石墨烯的物理化学性质、制备方法、石墨烯复合材料以及应用领域进行简单总结,并对未来石墨烯复合材料的发展做一展望。 关键词:石墨烯;复合材料;研究进展 1 石墨烯的物理化学性质 石墨烯是一种由碳原子构成的单层片状结构的新材料,是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,是只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直到2004年,英国科学家成功地在实验中从石墨中分离出石墨烯,从而证实它可以单独存在。石墨烯具有特殊的单原子层结构和奇特的物理性质:强度达130GPa、热导率约5000J/(m·K·S),禁带宽度几乎为零、载流子迁移率达到2×105cm2/(V·s),具有极高的透明度(约为97.7%)、表面积的理论计算值为2630m2/g,石墨烯的杨氏模量(1100GPa)和断裂强度(125GPa)与碳纳米管相当,它还具有分数量子霍尔效应、量子霍尔铁磁性和零载流子浓度极限下的最小量子电导率等一系列优良性质。 石墨烯是一种由碳原子构成的单层片状结构的新材料。是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收大约2.3%的光。石墨烯的物理性能优越可以翘曲成零维的富勒烯,卷成一维的碳纳米管或者堆垛成三维的石墨。石墨烯的基本结构单元为有机材料中最稳定的苯六元环,理想的石墨烯结构是平面六边形点阵,可以看作是一层被剥离的石墨分子,每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大π键,π电子可以自由移动,这赋予石墨烯良好的导电性。 2 石墨烯的制备方法 自从2004年曼彻斯特大学的研究小组发现了单层及薄层石墨烯以来,石墨烯的制备引起学术界的广泛关注。由于二维晶体结构在有限温度下是极不稳定,而考察石墨烯的基本性质并充分发挥其优异性能需要高质量的单层或薄层石墨烯,这就要求寻找一种石墨烯的制备方法来满足日益增长的研究及应用需求。 目前石墨烯的制备方法主要划分为三类:第一类为化学剥离法,这种方法通过制备氧化石墨作为前躯体,使用化学还原,溶剂热还原,热膨胀还原等手段得到对应的石墨烯。第二类为

我国石墨烯材料应用研究进展和发展前景

我国石墨烯材料应用研究进展和发展前景我国石墨烯材料应用研究进展和发展前景 中国粉体技术网 2015-09-21 11:55:24 阅读(620) 评论(0) 声明:本文由入驻搜狐媒体平台的作者撰写,除搜狐官方账号外,观点仅代表作者本人,不代表搜狐立场。举报 导读:手机充电只需几秒钟?史上最薄电灯泡?光驱动飞行器?关于石墨烯非凡应用的新闻不断出现在人们的视野当中,似乎石墨烯已经成为了无所不能的超级材料。石墨烯这种二维碳材料引起l人们的广泛关注。那么近几年来我国石墨烯研究进展和发展前景又如何呢? 手机充电只需几秒钟?史上最薄电灯泡?光驱动飞行器?关于石墨烯非凡应用的新闻不断出现在人们的视野当中,似乎石墨烯已经成为了无所不能的超级材料。2004年

英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖以来,石墨烯这种二维碳材料开始引起人们的广泛关注。那么近几年来我国石墨烯研究进展和发展前景又如何呢? “重庆造“石墨烯安全手机获2万套订单 继今年3月全球首批量产石墨烯手机在重庆市问世后,“重庆造”石墨烯手机又有新产品。重庆墨希科技有限公司(以下简称重庆墨希科技)与重庆华森心时代实业公司(以下简称华森心时代)日前签订《石墨烯商务安全手机采购协议》,根据协议,华森心时代计划向重庆墨希科技采购价值3800万元的2万套石墨烯商务安全手机。 根据相关公告显示,这批石墨烯手机是符合国家保密局等保四级标准的硬件加密安全手机。其机型名为“LT521”,是一款5.5寸全高清屏的五模4G手机,采用了石墨烯触控屏、石墨烯导热膜及石墨烯电池,采购单价为1900元/套,配置方面与目前市场上主流的安卓智能手机差不多。据了解,华森心时代采购的这批手机将主要面向金融业、政府部门和商务高端人士销售。 今年3月,重庆墨希科技发布全球首批量产石墨烯手机时表示,由于采用石墨烯触摸屏、石墨烯电池和石墨烯导热

基于石墨烯吸波材料的研究进展

Material Sciences 材料科学, 2018, 8(3), 222-234 Published Online March 2018 in Hans. https://www.doczj.com/doc/ea11912336.html,/journal/ms https://https://www.doczj.com/doc/ea11912336.html,/10.12677/ms.2018.83024 Research Progress of Microwave Absorbing Materials Based on Graphene Xingjun Lv, Yingrui Wu, Hang Li, Wei Li School of Civil Engineering, Dalian University of Technology, Dalian Liaoning Received: Mar. 2nd, 2018; accepted: Mar. 21st, 2018; published: Mar. 28th, 2018 Abstract Graphene, as a new type carbon material, due to its excellent physical and chemical properties, has become a research focus. In this paper, the electromagnetic wave absorbing properties and mechanism of graphene composites are reviewed. The development of graphene based composite absorbing materials is expected. Keywords Graphene, Absorbing Material, Composite 基于石墨烯吸波材料的研究进展 吕兴军,武应瑞,李航,李威 大连理工大学土木工程学院,辽宁大连 收稿日期:2018年3月2日;录用日期:2018年3月21日;发布日期:2018年3月28日 摘要 石墨烯作为一种新型的碳材料,由于其优良的物理化学性能成为研究的热点。本文综述了石墨烯复合材料的电磁波吸收性能和机理等,并对石墨烯基复合吸波材料的发展做了展望。 关键词 石墨烯,吸波材料,复合材料

石墨烯传感器研究进展

石墨烯传感器的研究进展 摘要 本文论述了石墨烯电化学和生物传感器的研究进展,包括石墨烯的直接电化学基础、石墨烯对生物小分子的电催化活性、石墨烯酶传感器、基于石墨烯薄膜 和石墨烯纳米带的实用气体传感器(可检测O 2、CO和NO 2 )、石墨烯DNA传 感器和石墨烯医药传感器(可用于检测扑热息痛)。 2004年,英国曼彻斯特大学AndreK.Geim等以石墨为原料,通过微机械力剥离法得到一系列叫作二维原子晶体的新材料———“石墨烯(Graphene)”。 石墨烯是碳纳米材料家族的新成员,具有二维层状纳米结构,室温下相当稳定。由于在石墨烯中碳原子呈sp2杂化,贡献剩余一个p轨道上的电子形成了大π键,π电子可以自由移动,使石墨烯具有优良的导电性、新型的量子霍尔效应以及独特的超导性能。石墨烯对一些酶呈现出优异的电子迁移能力,并且对一些小分子(如H2O2、NADH)具有良好的催化性能,使其适合做基于酶的生物传感器,即葡萄糖传感器和乙醇生物传感器。在电化学中应用的石墨烯大部分都是由还原石墨烯氧化物得到的,也称为功能化石墨烯片或者化学还原石墨烯氧化物,这种物质通常有较多的结构缺陷和官能团,在电化学应用上具有优势。 碳是电化学分析和电催化领域应用最广的材料。例如,碳纳米管在生物传感器、生物燃料电池和质子交换膜(PEM)燃料电池方面有着良好的性能。基于石墨烯的电极在电催化活性和宏观尺度的导电性上比碳纳米管更有优势。因此,在电化学领域,石墨烯就有了大展身手的机会。石墨烯在电化学传感器上的应用有以下优点:①体积小,表面积大;②灵敏度高;③响应时间快;④电子传递快; ⑤易于固定蛋白质并保持其活性;⑥减少表面污染的影响。 1石墨烯的电化学基础 为了更好地了解碳材料在电化学领域的应用,有必要研究决定碳电极的几种重要参数的基本电化学行为,即电化学位窗口、电子迁移速率、氧化还原电位等。 ZhouMing等报道称石墨烯在0.1mol/LPBS(pH为7.0)中具有大约2.5V的电化学电位窗口,这与石墨、玻碳、甚至掺杂硼的金刚石电极相似,但是,从交流阻抗谱来看,石墨烯对电荷迁移的阻力比石墨和玻碳电极对电荷迁移的阻力小。 Tang等通过氧化还原电对的循环伏安法研究了石墨烯的电子迁移行为,如具有良好氧化还原峰的3-/4-和3+/2+。在循环伏安法中所有阴阳两极的峰值电流都与扫描速率的平方根呈线性关系,表明石墨烯电极的氧化还原过程主要是由扩散控制的。在CVs(循环伏安法)中,石墨烯中一个电子迁移的氧化还原电对的峰值电位差(ΔEp)非常低,很接近于59mV的理想值,比玻碳电极的小很多;另外,3-/4-的峰值电位差为61.5~73mV

相关主题
文本预览
相关文档 最新文档