当前位置:文档之家› 植物生理实验报告

植物生理实验报告

植物生理实验报告
植物生理实验报告

学号:

.

植物生理学实验报告

学院名称:生物科学与技术

年级班别:硕-植物11班

姓名:张敏

2011年3月7号

实验一红外线CO2气体分析仪测定光合速率

一、实验目的

1. 学习并掌握微量红外气体分析仪的工作原理和使用方法。

2. 使用微量红外气体分析仪测定植物光合速率。

二、实验原理

在密闭的系统中,由于同化室中的叶片进行光合后,系统中的CO2浓度不断下降,可用单位时间内同化室中CO2浓度的减少量或CO2浓度减少量所需的时间,根据叶片面积、同化室体积,计算光合速率。

许多由异原子组成的气体分子对红外线都有特异的吸收带。CO2的红外吸收带有四处,其吸收峰分别在2.69μm、2.77μm、4.26μm和14.99μm处,其中只有4.26μm的吸收带不与H2O的吸收带重叠,红外仪内设置仅让4.26μm红外光通过的滤光片,当该波长的红外光经过含有CO2的气体时,能量就因CO2的吸收而降低,降低的多少与CO2的浓度有关,并符合朗伯—比尔定律(A=lg(1/T)=Kbc 其中A为吸光度,T为透射比,是透射光强度比上入射光强度,c为吸光物质的浓度,b为吸收层厚度)。分别供给红外仪含与不含CO2的气体,红外仪的检测器便可通过检测红外光能量的变化而输出反映CO2浓度的电讯号。

三、分析检测原理

红外线通过两个气室,一个是充以不断流过的被测气体的测量室,另一个是充以无吸收性质的背景气体的参比室。工作时,当测量室内被测气体浓度变化时,吸收的红外线光量发生相应的变化,而基准光束(参比室光束)的光量不发生变化。从二室出来的光量差通过检测器,使检测器产生压力差,并变成电容检测器的电信号。此信号经信号调节电路放大处理后,送往显示器以及总控的CRT显示。该输出信号的大小与被渊组分浓度成比例。接收室内充以样气中的待测组分,两个接收室中间用一个薄的金属膜隔开,在两测压力不同时膜片可以变形产生位移,膜片的一侧放一个固定的圆盘型电极。可动膜片与固定电极构成了一个电容变进器的两极。整个结构保持严格的密封,两接收气室内的气体为动片薄膜隔开,但在结构上安置一个大小为百分之几毫米的小孔,以使两边的气体静态平衡。辐射光束通过参比室、测量室后,进入检测器的接收室。被接收室里的气体吸收,气体温度

升高,气体分子的热运动加强,产生的热膨胀形成的压力增大。当测量室内通入零点气(N2)时,来自两气室的光能平衡,两边的压力相等,动片薄膜维持在平衡位置,检测器输出为零。当测量室内通入样气时,测量边进入接收室的光能低于参比边的,使测量边的压力减小,于是薄膜发生位移,故改变了两极板问的距离,也改变了电容量C。于是输出一个与待测组分浓度成比例的电信号。

四、材料与方法

1. 植物材料:百合竹(Dracaena reflexa),龙舌兰科。

2. 使用仪器:微量红外气体分析仪(图1)。图中仪器型

号FF1-FQ-B。

图1 微量红外线气体分析仪3. 实验步骤:

(1)按要求将参比管和工作管气路系统交叉连接起来,一端接到气泵,一端连接到充满NaOH颗粒的透明玻璃长管,使气路闭合。

(2)将作用开关打到A(预热档),接通电源,打开红外仪电源预热一段时间,打开气泵电源,仪表盘指示的CO2浓度缓慢下降,直到零点附近,如果偏离零点,需要将作用开关达到C(工作档/调零档)调零。仪表盘上由上向下分别标有4套刻度值,其最大数值依次为600ppm,300ppm,150ppm和75ppm,它们在步进开关分别对准1,2,3和4时使用,误差从5ppm,2.5ppm,1.25ppm到0.75ppm。调零校准仪器时需要由粗到细,再由细到粗。(3)调零后,将参比管进气口和出气口相连以封闭参比管,将工作管进气口接高浓度CO2气(接外界大气),另一端接气泵,再通入密闭透明同化室,使气流流过同化室中的植物,最后回到仪器中检测。未照射强光,稳定一段时间测定CO2浓度C1。

(4)照射光强约6000Lux的强光,观察CO2浓度变化,并测定CO2稳定时的浓度C2。

五、实验结果

外界大气压刚刚充入时,在没有照光情况下,测得CO2浓度C1为243ppm。照射强光后,3min 后CO2浓度C2下降到190ppm,5min 后CO2浓度C2下降到170ppm,10min

后CO2浓度C2下降到158ppm。根据:

Pn=ΔC×V×273×P/[Δt×S×22.4×(273+t)×0.1013]

其中Pn为光合速率(μmol/m2s),ΔC为CO2浓度差C1-C2(ppm),Δt为测定时间(s),S为叶片面积(m2),V为封闭同化室(包括气路系统)体积(L),t为同化室的温度,P 为大气压(Mpa),按照同化室体积15*15*30cm3,空气大气压1个标准大气压0.1MPa,测定时间30min,叶面积单叶(10*2*0.958cm2,其中叶面积指数取花生的0.958)与整株植物叶片数量(约300)乘积,同化室温度25℃测算,得出百合竹的光合速率为3.98μmol/m2s。

六、分析与讨论

在没有照光情况下,测得CO2浓度C1为243ppm。照射强光后,3min 后CO2浓度C2下降到190ppm,5min 后CO2浓度C2下降到170ppm,10min后CO2浓度C2下降到158ppm,说明在光照过程中CO2不停地被消耗,植物光合作用吸收了CO2。吸收的CO2量能够反应植物光合作用的状况。进而通过相关公式计算出其光合作用速率。说明了CO2的消耗是与光合作用速率相关的。

利用这种方法测定植物光合速率时需要考虑同化室体积,因为同化室体积与植物株型不符,如同化室远大于植物,则测算出的光合速率可能偏高。测定时间并不是越长越好,因为长时间处于密闭的同化室,叶片蒸腾、光呼吸等生理变化会对测量产生干扰,比如强光照射时间长可能产生一定热量,使同化室温度上升。另外气路的密闭性也能造成测量误差,因为如果仪器气路漏气,会使同化室中植物吸收量计算值偏大,导致过高估计植物光合速率。

实验二离心薄层色谱法分离叶绿素

一、实验目的

1.学习并掌握植物叶绿素提取、分离和吸收光谱曲线的绘制。

2.学习并掌握旋转薄层层析法。

二、实验原理

离心薄层色谱(centrifugal thin layer chromatography,CTLC)属于薄层色谱的一种,又叫旋转薄层色谱,是一种离心型连续洗脱的环形薄层色谱分离技术,主要是在经典的薄层色谱基础上运用离心力促使流动相加速流动。离心力用于分离,可以减少破坏,对沸点高、分子量大的化合物有利,可用于分离100mg左右的样品。

植物叶绿素a和叶绿素b在有机溶剂中溶解度不同,根据叶绿素a和b在固定相和流动相之间的吸附、分配作用的不同,再加上离心加速度的作用,使两组分之间原有的比移率(如果溶剂从原点渗透到距离a,位于原点的物质从原点向前移动到b,那么b/a值为这种物质的比移率)差异加大,从而提高了分离效果。

三、实验材料与方法

1. 植物材料:油松(Pinus tabulaeformis),松科。(图1)

2. 使用仪器:圆板薄层仪(图2)。

图1 油松图2 圆板薄层仪

3. 实验步骤:

(1)叶绿素提取。称取油松10g,剪碎,放入研钵中,加入少许CaCO3和石英砂,再加

入适量丙酮充分研磨,静置,浸提液过滤到分液漏斗中,加入30ml石油醚,100ml 10%NaCl 溶液使两相均匀混合,静置分层后弃下层,重复萃取1次,色素提取液备用。

(2)硅胶板制备。称取30g硅胶,1.2g石膏70ml水,充分混匀后制版。室温下放置12h,放80℃烘箱烘3h,取出层析板,冷却后刮板,除去中心及边缘多余硅胶,板固定在旋转薄层仪上,固定好板后盖上玻璃,卡住。

(3)先使用上样泵(调到10)吸取纯石油醚,润湿薄板。当由圆心润湿到圆板的1/3时,吸取石油醚和丙酮8:2混合液,将上样泵调到5上样。经过约30min,可见叶绿素a和b 分开,并分别收集叶绿素a和b谱带的洗脱产物。

(4)在分光光度计下测量,绘制出叶绿素a和b的吸收曲线。

四、实验结果

在叶绿素提取中叶绿素提取液在有机相,蛋白等杂质在水相,经分液漏斗弃下层水相就得到墨绿色的叶绿素溶液,在薄层仪上展层较好,叶绿素a、叶绿素b、叶黄素和胡萝卜素分离清晰,最外层为叶绿素a。洗脱下来的色素用试管收集,叶绿素a和b颜色具有明显差别,叶绿素a为蓝绿色,叶绿素b为黄绿色。

根据标准的叶绿素吸收光谱图(图3),其中实线为叶绿素a曲线,虚线为叶绿素b曲线,看到它们各有两个明显的吸收峰。叶绿素a最大吸收峰在430nm左右,另一吸收峰在662nm;叶绿素b最大吸收峰在450nm左右,另一吸收峰在642nm。

图3 叶绿素在乙醚中的吸收曲线

图4 测定叶绿素的吸收曲线

五、分析与讨论

从叶绿素提取的全过程以及分离得到的叶绿素a和b的流出液颜色判断,叶绿素提取浓度高,分离效果好。但是分光光度计测定的吸收曲线中,叶绿素b的吸收峰出现位置与实际不符,叶绿素吸收峰值也不符合实际情况。

叶绿素a和叶绿素b提取浓度低的可能原因:一是提取过程中丙酮加入量不大适合,在研磨过程中叶绿素没有很好地溶解到丙酮中,最终只有少量叶绿素进入下一步操作;二是可能由于在研磨过程中加入的石英砂较少,材料又不易研磨,导致研磨不充分,在丙酮提取完后发现残渣颜色依旧很深,说明叶绿素提取不很成功。

实验三压力室法测定植物PV曲线

一、实验目的

1. 学习并掌握压力室法测定植物水势的原理和方法。

2. 用植物PV曲线研究质壁分离时植物水势状况,可用于植物抗旱性的测定。

二、实验原理

植物内水势由根系向地上部分的茎、叶逐渐递减,叶肉细胞中水势高于大气水势,由于水势的梯度,植物不断从根向地上部分输送水分,使根内水势下降,根从土壤中吸收水分。植物蒸腾作用不断失水,产生蒸腾拉力,蒸腾拉力与根压共同作为植物吸水的动力。水势等于溶质势(渗透势)、衬质势和压力势之和。由于导管中水溶质势与张力比很低,水分在导管中的运输渗透势接近零,因此导管中水势近似等于水的压力势。

当枝条被剪断,导管中连续的水柱被截断,剪口上部水柱在蒸腾拉力作用下上移,剪口下的水柱受重力以及大气压的力液面下降。压力室法就是将植物剪口上部枝条倒着竖直固定在密闭压力室中,通过外加高压气体将水柱压出枝条。当压力不断增大,压出的水的总体积也不断增加,直到难以压出水来,称量得到排空导管水的枝条鲜重以及烘干的干重,绘制枝条中水分体积对外加压力的曲线,称为植物PV曲线。植物PV曲线是指植物枝叶样品吸水饱和后,随压力室中连续加压渗透水量的体积与相应平衡压倒数之间的变化曲线。

应用PV曲线可测定植物细胞在膨压为0(质壁分离)时的渗透势、相对水含量和相对渗透水含量,以及饱和含水时的渗透势、束缚水含量、膨压随叶水势下降而降低的速率b值和组织细胞总体弹性模量等水分参数。这些PV曲线的水分参数能够指示植物对干旱逆境的响应,为植物抗旱生理机制研究提供依据。

三、材料与方法

1. 植物材料:红掌(Anthurium andraeanum),天南星科。

2. 使用仪器:便携式植物水势压力室。(图1)

图1 便携式植物水势压力室图2 压力室剖面图

3. 实验步骤:

(1)取样:自红掌植株上采集鲜样。

(2)数据获得:确认压力室开关和仪器进气口关闭,然后打开高压气瓶,待气压升到2000pa 时关闭气瓶。

(3)将植物枝条倒着直立固定在压力室中,旋紧压力室盖子。将仪器的高压气开关打开,观察枝条断面发生的变化,直到枝条中的水被高压挤压出来,读取压力表盘上数值,此时的压力值为初始平衡压。

(4)接着测定不同压力下的累积水体积。测量时压力在1.0Mpa以下,每次增加0.2Mpa,1.0Mpa以上,每次增加0.5Mpa。每次加压后停留5min,并用事先称量干重的棉花棒吸收挤压出的水,然后放掉压力室中的气体,重新将压力打到之前的数值,再停止5min。每个压力下测量结束,称量吸收了从植物中挤压出的水的棉花棒,并记录。这样逐一测量,直到压力增加到4Mpa。

(5)由于除了自由水,植物枝叶中还有束缚水,因此测量结束后必须称取枝条不含自由水的鲜重,并将其放入烘箱,80℃烘干24h,至恒重。

(6)绘制V-P曲线,用图解法求出渗透水原初含量、初始质壁分离渗透势、充分紧张组织中的原始渗透势、平均膨压、非渗透水量和体积弹性模量。

4. 数据分析:

以平衡压的倒数为纵坐标,不同平衡压下的渗透水量为横坐标,渗透水量数据输入x 轴列,将所有平衡压的倒数值输入y1列,将进行直线回归的平衡压的倒数值(变幅相近的最后几个连续观测数据和紧邻的一个明显发生拐离的数据组成,这样既满足了幂函数和回归直线拐点的数学性质,又能得到比较满意的结果)输入y2列渗透水量相应的位置,作散点图,然后分别拟合幂函数和线性函数并得出拟合方程和决定系数。

四、实验结果

植物的总重为3.7877g,烘干之前为3.0331g,烘至恒重为1.1896g。根据上述实验步骤测定的PV曲线如图3,渗出水原初含量为-0.10Mpa,初始质壁分离渗透势为-1.50Mpa,根据最后5个点进行线性回归,得到回归曲线(图4),在横轴的截距即为所有的自由水的量,经过计算自由水为1.1299g。烘干得到恒重为1.1896g,经过计算,束缚水为1.4682g。植物组织含水量:68.59%。

图3 大叶黄杨PV曲线

图4 大叶黄杨PV曲线(线性回归部分)

五、分析和讨论

由PV曲线看出细胞质壁分离之前植物组织排出水的体积随外界压力变化呈幂函数关系变化,质壁分离发生后二者关系为线性。因为未发生质壁分离时,细胞壁对细胞具有一定压力,细胞水势等于这细胞壁压力和渗透压之和。质壁分离后,细胞壁对细胞的压力消失,细胞渗透势只与外界压力有关,细胞失去水的体积随外界压力的增加而增大,且变化为线性的。不同植物或同一植物不同器官在不同的环境水分状况下具有不同的PV曲线,其中反映出的相关参数能够说明植物耐干旱的程度,水分亏缺后恢复的等情况。细胞质壁分离出现的快慢、发生质壁分离所需的渗透压,以及细胞体积弹性模量能够反应植物对水分胁迫的适应能力和水分亏缺后的恢复能力。

实验四生物氧测定仪测定生物呼吸速率

一、实验目的

1. 学习并掌握生物氧测定仪的原理及操作过程。

2. 制作生物氧测定仪测定植物呼吸速率图谱。

二、实验原理

氧电极是为测定水中溶解氧含量而设计的一种极谱电极。目前通用的是薄膜氧电极,又称Clark电极,由镶嵌在绝缘材料上的银极(阳极)和铂极(阴极)构成,电极表面覆盖一层厚约20~25μm的聚四氟乙烯或聚已烯薄膜,电极和薄膜之间充以KCl溶液作为支持电解质。

由于水中溶解氧能透过薄膜而电解质不能透过,因而排除了被测溶液中各种离子电极反应的干扰,两极间外加的极化电压超过氧分子的分解电压时,透过薄膜进入KCl溶液的溶解氧便在铂极上还原:O2+2H2O+4e-=4OH-;银极上则发生银的氧化反应:4Ag+4Cl-=4AgCl+4e-。此时电极间产生电解电流。由于电极反应的速度极快,阴极表面的氧浓度很快降低,溶液主体中的氧便向阳极扩散补充,使还原过程继续进行,但氧在水中的扩散速度则相对较慢,所以电极电流的大小受氧的扩散速度的限制,这种电极电流又称扩散电流。在溶液静止、温度恒定的情况下,扩散电流受溶液主体与电极表面氧的浓度差控制。

随着外加电压的加大,电极表面氧的浓度必然减小,溶液主体与电极表面氧的浓度差加大,扩散电流也随之加大。但当外加的极化电压达到一定值时,阴极表面氧的浓度趋近于零,于是扩散电流的大小完全取决于溶液主体中的氧的浓度。此时再增加极化电压,扩散电流基本不再增加,使极谱波(即电流-电压曲线)产生一个平顶。将极化电压选定在平顶的中部,可以使扩散电流的大小基本不受电压微小波动的影响。因此,在极化电压及温度恒定的条件下,扩散电流的大小即可作为溶解氧定量测定的基础。电极间产生的扩散电流信号可通过电极控制器的电路转换成电压输出,用自动记录仪进行记录。

三、实验材料与方法

1. 植物材料:萌发的绿豆(Vigna radiata),豆科、萌发的小麦(Triticum aestivum Linn),禾本科

2. 使用仪器:生物氧测定仪。

3. 实验步骤:

将仪器电源线、氧电极线接好,清洗反应室。打开仪器,进行仪器参数设定,然后用一定浓度的Na2SO3和蒸馏水进行O2浓度的调零和调满。进入测量菜单,建立新的文件名,将反应室中加入研磨好的绿豆,将反映体积康之灾6ml,开始采集数据。数据采集结束后,记录数据,彻底清洗反应室,再重复两次。之后将测量材料换为萌发的水稻,同样测量三次。也可以,待数据全部采集,将仪器关闭,接到电脑上,打开仪器进入数据管理菜单下,浏览数据,确认需要导出数据名称,操作计算机上预装的程序,仪器将自动导出需要的数据。

四、实验结果

五、分析与讨论

在植物萌发过程中,种子需要消耗氧气进行有氧呼吸,呼吸速率高。从实验测得的数据来看,我们发现,萌发的绿豆呼吸值稍微大于萌发的小麦的呼吸值,推测这种差异是由于物种差异导致的。

反应中每次测量开始前需要仔细清洗反应室和氧电极探头,放在不同测量之间的干扰。本实验中得到溶氧数据随时间有所变化说明,每次开始数值总要经过一段时间才能稳定。这可能与反应室没有清洗干净或氧电极探头出滤膜有关,或与反应室漏气有关。

实验五AP4气孔计测定植物蒸腾速率

一、实验目的

1. 熟练掌握AP4气孔计的工作原理以及操作方法。

2. 使用AP4气孔计测定草本与木本植物的气孔导度和气孔阻力,计算蒸腾速率。

二、实验原理

蒸腾速率与气孔导度、土壤含水量和叶片相对含水量关系密切。气孔导度可以用来评价城市大气污染状况,表征植物的生理状态,甚至可以用作抗旱植物、抗污染植物的筛选指标。AP4气孔计根据循环扩散的原理,由植物叶片表明湿度的变化进行测量计算,得到气孔导度、气孔阻力等数据,并计算出植物蒸腾速率。

三、植物材料与方法

1. 植物材料:百合竹(Dracaena reflexa),龙舌兰科

2. 使用仪器:AP4气孔计(图1)。

3. 实验步骤:

(1)将装满打开仪器,进入校准界面,对仪器进行

开机校准。首先进入校准菜单,将叶室夹张开,轻

轻晃动,测定环境中湿度值,然后使用铺好潮湿滤纸

的校准板,按照屏幕上的提示逐一校准6个点。仪器

根据测定情况自动提示曲线的拟合状况,一般拟合标

准在5%以内对测量影响不大,可以接受。若校准后,

匹配率大于5%,需要重新校准。

图1 AP4气孔计(2)校准后进入测量菜单,开始正式测量。每测量一个值,需要待取值稳定两次再记录,而且叶室夹带黑色胶圈一侧为测量端,与待测叶表面接触。

(3)进入预览选项查看所需数据,用数据线将仪器和电脑相连,导出数据。

四、实验结果

图2正反叶面气孔阻力及气孔导度

五、分析与讨论

不同土壤水分条件下,蒸腾速率均与光照强度和气孔阻力具有显著相关关系,正常水分处理下植物蒸腾速率还与气温显著相关。蒸腾作用常用气孔导度(气孔开度)来表示,也用气孔阻力表示,但是气孔开度与蒸腾强度呈正比,而气孔阻力则与蒸腾呈反比。多数木本植物叶正表面具有一些防止水分蒸腾的组织如腺毛,蜡质层等,当气温、光照适宜,植物尽量控制蒸腾,以免水分散失,但随着午后气温的持续升高,为确保植物不受高温伤害,蒸腾会更加强烈。因此,木槿叶片正面气孔阻力先升高后下降。爬山虎叶片正面气孔阻力缓慢下降,说明叶片蒸腾逐渐上升。两种植物叶片正面蒸腾速率表现差异可能与物种本身特性有关,也可能是仅测定了一天中某一段时刻的蒸腾,对植物蒸腾速率日变化没有全面了解,需要进一步研究才能比较出差异。

如上图所示,气孔开度与蒸腾强度呈正比,而气孔阻力则与蒸腾呈反比。实验数据说明,反面叶片的气孔阻力明显小于正面叶片的气孔阻力,说明正面叶片的蒸腾速率较小;而反面叶片的气孔导度则明显大于正面气孔的气孔导度,也可以说明正面叶片的蒸腾速率较小。这可能是由于叶片采集时间是当天午间,阳光照射强烈,正面叶片的气孔关闭,从而减少了蒸腾作用。

实验六Junior PAM测定F0’及叶绿素荧光诱导曲线

一、实验目的

1. 学习并掌握基础调制叶绿素荧光仪(Junior PAM)基本使用方法。

2. 使用Junior PAM测定植物的F0’以及绘制叶绿素荧光诱导曲线。

二、实验原理

叶绿素荧光是活体植物光合作用的探针。当叶绿素分子受到外加激发光激发后,能量主要以3种方式散失,即荧光、光化学反应和热耗散。这3种能量的总和相等,但彼此制约。光合作用具有两个光系统,光系统Ⅰ(PSI)和光系统(PSⅡ),它们之间具有蛋白或蛋白复合体组成的复杂的电子传递链,电子由最初的原初电子受体特殊对叶绿素a分子通过电子传递到达电子受体,生成NADPH和ATP的还原力,并最终将二氧化碳还原为有机物,同时生成氧气,将电能最终转化为稳定的化学能。调制叶绿素荧光仪考虑到光合作用生理过程以及植物自然状态下生长的昼夜节律,用光化光、远红光近似模拟出植物自然状态下的光照条件,用可调制频率的脉冲光唯一地指示叶绿素荧光信号,通过进行饱和脉冲分析和进行荧光诱导曲线的绘制等方法研究植物对光信号变化的应答及植物的光合特性等。

如图1所示,植物在黑暗或低光照条件下经过一定时间的暗适应,打开测量光后,植物显示一定的荧光信号F0,这是初始荧光值,该值大小与叶绿素浓度有关。然后给植物一个瞬间很强的饱和脉冲光,叶绿素分子激发出暗适应条件下的最大荧光值Fm,之后,荧光值缓慢下降。打开光化光之后,荧光值先上升,然后缓慢下降到近平衡,此时再给予饱和脉冲光,植物由激发出一个荧光高峰,这是光下的最大荧光Fm’,植物状态趋于平稳后关闭光化光同时打开远红光,荧光值瞬间降到低于F0处,然后逐渐恢复到新的平衡状态。因此,调制叶绿素荧光仪将调制叶绿素荧光技术以及饱和脉冲分析方法结合,通过不同光源的控制模拟改变自然光照条件,是研究植物光合特性及光适应的强大工具。

图1 植物叶绿素荧光特征曲线图2 基础调制叶绿素荧光仪

三、实验材料和方法

1. 植物材料:红掌(Anthurium andraeanum)。

2. 使用仪器:基础调制叶绿素荧光仪(Junior PAM)(图2),生产厂家:德国WALZ。

3. 实验步骤:

(1)首先连接好仪器各部分,打开预先安装好的WinControl-3软件。进行荧光产量测定的实验。

(2)在了解荧光仪提供的不同光源对荧光产生和产量的影响后,按实验指导上的步骤完成F0’的测定。

(3)在进行前两步之前,用暗适应叶夹对一片叶片某区域进行暗适应。本步中使用暗适应好的叶片,选择程序program中IC+Rec,程序自动运行,同时适时信号在绘图区显示。测定完毕,输出数据,并转换数据格式。选择需要的数据,在EXCEL中绘制表格。

四、实验结果

(1)荧光产量实验

暗适应后的植物给饱和脉冲光后激发出一个荧光峰值,随后缓慢下降(如图3A中空箭头所示),而人工荧光的值不会改变,是一条平直的直线(如图3A中实心箭头所示)。当改变光化光强度时,荧光值会先上升后下降(如图3A中椭圆标定区域所示)。如果在一定强度光化光下适应一段时间,将光化光强度降低,则呈现图3 B中所示。空心箭头表示在强光化光下达到平衡,而实心箭头显示光化光降低后达到新的平衡,说明光化光越强荧光信号值越强,即荧光产量越高。当将光化光瞬间关闭并打开远红光,则荧光会迅速下降到初始荧光值Fo以下。

(A)(B)

图3 荧光量子产量图

(2)F0’测定

暗适应条件下,先给饱和脉冲,得Fo,Fm值,然后在没有勾选Fo’-mode时打开

Act+Yield,此时出现图5中箭头所示的双峰。之后打开Fo’-mode,连续进行两次饱和脉冲分析,饱和脉冲激发出的荧光少,但开始有电子传递(图中圆点所示),饱和脉冲光后紧跟的远红光作用下,荧光值迅速下降,远红光撤销后逐渐回到初始位置,再重复一次饱和脉冲分析。将荧光仪测定数据导出,并转换格式到EXCEL中,根据数据作出F对时间的曲线如图6,可以清晰得看到光化光下F0’值为200μmol e?m-2?s-1。

图5 光下最小荧光产量

(3)荧光诱导曲线绘制。

如图6,

图6 荧光诱导曲线

①:PS Ⅱ荧光量子产量,②:电子传递速率ETR ,③:非光化学淬灭NPQ

五、分析与讨论

不同光源对荧光量子产量的实验和荧光诱导曲线的绘制实验中,充分体现了植物对环境光照因子改变的相对快速的应答以及相对缓慢的适应。相对快速的应答表现在:暗适应后给予饱和脉冲光,光下适应一段时间的植物给予饱和脉冲光,以及光化光关闭后立即给予远红光处理。植物对以上刺激均表现出迅速的应答和反应,当刺激一发出,可以观察到荧光曲线信号发生变化。相对缓慢的适应过程表现在:当植物受到一段较强的光化光照射后,再关闭光化光,等待植物恢复到接近初始暗适应的状态所用的时间较长。这说明了,环境对植物的短期影响植物能够产生应激的反应并有效的适应环境条件的骤然变化,但是环境刺激施加的强度越大,时间越久,植物需要越长的时间恢复或达到新的生理平衡状态,这对于植物保护和生态保护具有重要意义。环境恶化对植物的破坏可以完全在不察觉的情况下发生,但却需要很长时间才能看到破坏的后果,恢复遭到破坏的植被需要的时间更是难以估量的。

① ②

植物生理学实验课程

《植物生理学实验》课程大纲 一、课程概述 课程名称(中文):植物生理学实验 (英文):Plant Physiology Experiments 课程编号:18241054 课程学分:0.8 课程总学时:24 课程性质:专业基础课 前修课程:植物学、生物化学、植物生理学 二、课程内容简介 植物生理学是农林院校各相关专业的重要学科基础课,是学习相关后续课程的必要前提,也是进行农业科学研究和指导农业生产的重要手段和依据。本实验课程紧密结合理论课学习内容,加深学生对理论知识的理解。掌握植物生理学的实验技术、基本原理以及研究过程对了解植物生理学的基本理论是非常重要的。本大纲体现了植物生理学最实用的技术方法。实验内容上和农业生产实践相结合,加强学生服务三农的能力。实验手段和方法上,注重传统、经典技术理论与现代新兴技术的结合,提高学生对新技术、新知识的理解和应用能力。 三、实验目标与要求 植物生理学实验的基本目标旨在培养各专业、各层次学生有关植物生理学方面的基本研究方法和技能,包括基本操作技能的训练、独立工作能力的培养、实事求是的科学工作态度和严谨的工作作风的建立。开设植物生理学实验课程,不仅可以使学生加深对植物生理学基本原理、基础知识的理解,而且对培养学生分析问题、解决问题的能力和严谨的科学态度以及提高科研能力等都具有十分重要的作用。 要求学生实验前必须预习实验指导和有关理论,明确实验目的、原理、预期结果,操作关键步骤及注意事项;实验时要严肃认真专心操作,注意观察实验过程中出现的现象和结果;及时将实验结果如实记录下来;实验结束后,根据实验结果进行科学分析,完成实验报告。 四、学时分配 植物生理学实验课学时分配 实验项目名称学时实验类别备注 植物组织水势的测定3学时验证性 叶绿体色素的提取及定量测定3学时验证性 植物的溶液培养及缺素症状观察3学时验证性 植物呼吸强度的测定3学时设计性 红外CO2分析仪法测定植物呼吸速率3学时设计性选修 植物生长物质生理效应的测定3学时验证性 植物种子生活力的快速测定3学时验证性

数据挖掘实验报告

《数据挖掘》Weka实验报告 姓名_学号_ 指导教师 开课学期2015 至2016 学年 2 学期完成日期2015年6月12日

1.实验目的 基于https://www.doczj.com/doc/e98989955.html,/ml/datasets/Breast+Cancer+WiscOnsin+%28Ori- ginal%29的数据,使用数据挖掘中的分类算法,运用Weka平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。 2.实验环境 实验采用Weka平台,数据使用来自https://www.doczj.com/doc/e98989955.html,/ml/Datasets/Br- east+Cancer+WiscOnsin+%28Original%29,主要使用其中的Breast Cancer Wisc- onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 3.实验步骤 3.1数据预处理 本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size (均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。 该数据的数据属性如下: 1. Sample code number(numeric),样本代码; 2. Clump Thickness(numeric),丛厚度;

数据分析实验报告

数据分析实验报告 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

第一次试验报告 习题1.3 1建立数据集,定义变量并输入数据并保存。 2数据的描述,包括求均值、方差、中位数等统计量。 分析—描述统计—频率,选择如下: 输出: 统计量 全国居民 农村居民 城镇居民 N 有效 22 22 22 缺失 均值 1116.82 747.86 2336.41 中值 727.50 530.50 1499.50 方差 1031026.918 399673.838 4536136.444 百分位数 25 304.25 239.75 596.25 50 727.50 530.50 1499.50 75 1893.50 1197.00 4136.75 3画直方图,茎叶图,QQ 图。(全国居民) 分析—描述统计—探索,选择如下: 输出: 全国居民 Stem-and-Leaf Plot Frequency Stem & Leaf 5.00 0 . 56788 数据分析实验报告 【最新资料,WORD 文档,可编辑修改】

2.00 1 . 03 1.00 1 . 7 1.00 2 . 3 3.00 2 . 689 1.00 3 . 1 Stem width: 1000 Each leaf: 1 case(s) 分析—描述统计—QQ图,选择如下: 输出: 习题1.1 4数据正态性的检验:K—S检验,W检验数据: 取显着性水平为0.05 分析—描述统计—探索,选择如下:(1)K—S检验

结果:p=0.735 大于0.05 接受原假设,即数据来自正太总体。 (2 )W 检验 结果:在Shapiro-Wilk 检验结果972.00 w ,p=0.174大于0.05 接受原假设,即数据来自正太总体。 习题1.5 5 多维正态数据的统计量 数据:

数据挖掘实验报告(一)

数据挖掘实验报告(一) 数据预处理 姓名:李圣杰 班级:计算机1304 学号:1311610602

一、实验目的 1.学习均值平滑,中值平滑,边界值平滑的基本原理 2.掌握链表的使用方法 3.掌握文件读取的方法 二、实验设备 PC一台,dev-c++5.11 三、实验内容 数据平滑 假定用于分析的数据包含属性age。数据元组中age的值如下(按递增序):13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70。使用你所熟悉的程序设计语言进行编程,实现如下功能(要求程序具有通用性): (a) 使用按箱平均值平滑法对以上数据进行平滑,箱的深度为3。 (b) 使用按箱中值平滑法对以上数据进行平滑,箱的深度为3。 (c) 使用按箱边界值平滑法对以上数据进行平滑,箱的深度为3。 四、实验原理 使用c语言,对数据文件进行读取,存入带头节点的指针链表中,同时计数,均值求三个数的平均值,中值求中间的一个数的值,边界值将中间的数转换为离边界较近的边界值 五、实验步骤 代码 #include #include #include #define DEEP 3 #define DATAFILE "data.txt" #define VPT 10 //定义结构体 typedef struct chain{ int num; struct chain *next; }* data; //定义全局变量 data head,p,q; FILE *fp; int num,sum,count=0; int i,j; int *box; void mean(); void medain(); void boundary(); int main () { //定义头指针 head=(data)malloc(sizeof(struc t chain)); head->next=NULL; /*打开文件*/ fp=fopen(DATAFILE,"r"); if(!fp) exit(0); p=head; while(!feof(fp)){

数据挖掘实验报告资料

大数据理论与技术读书报告 -----K最近邻分类算法 指导老师: 陈莉 学生姓名: 李阳帆 学号: 201531467 专业: 计算机技术 日期 :2016年8月31日

摘要 数据挖掘是机器学习领域内广泛研究的知识领域,是将人工智能技术和数据库技术紧密结合,让计算机帮助人们从庞大的数据中智能地、自动地提取出有价值的知识模式,以满足人们不同应用的需要。K 近邻算法(KNN)是基于统计的分类方法,是大数据理论与分析的分类算法中比较常用的一种方法。该算法具有直观、无需先验统计知识、无师学习等特点,目前已经成为数据挖掘技术的理论和应用研究方法之一。本文主要研究了K 近邻分类算法,首先简要地介绍了数据挖掘中的各种分类算法,详细地阐述了K 近邻算法的基本原理和应用领域,最后在matlab环境里仿真实现,并对实验结果进行分析,提出了改进的方法。 关键词:K 近邻,聚类算法,权重,复杂度,准确度

1.引言 (1) 2.研究目的与意义 (1) 3.算法思想 (2) 4.算法实现 (2) 4.1 参数设置 (2) 4.2数据集 (2) 4.3实验步骤 (3) 4.4实验结果与分析 (3) 5.总结与反思 (4) 附件1 (6)

1.引言 随着数据库技术的飞速发展,人工智能领域的一个分支—— 机器学习的研究自 20 世纪 50 年代开始以来也取得了很大进展。用数据库管理系统来存储数据,用机器学习的方法来分析数据,挖掘大量数据背后的知识,这两者的结合促成了数据库中的知识发现(Knowledge Discovery in Databases,简记 KDD)的产生,也称作数据挖掘(Data Ming,简记 DM)。 数据挖掘是信息技术自然演化的结果。信息技术的发展大致可以描述为如下的过程:初期的是简单的数据收集和数据库的构造;后来发展到对数据的管理,包括:数据存储、检索以及数据库事务处理;再后来发展到对数据的分析和理解, 这时候出现了数据仓库技术和数据挖掘技术。数据挖掘是涉及数据库和人工智能等学科的一门当前相当活跃的研究领域。 数据挖掘是机器学习领域内广泛研究的知识领域,是将人工智能技术和数据库技术紧密结合,让计算机帮助人们从庞大的数据中智能地、自动地抽取出有价值的知识模式,以满足人们不同应用的需要[1]。目前,数据挖掘已经成为一个具有迫切实现需要的很有前途的热点研究课题。 2.研究目的与意义 近邻方法是在一组历史数据记录中寻找一个或者若干个与当前记录最相似的历史纪录的已知特征值来预测当前记录的未知或遗失特征值[14]。近邻方法是数据挖掘分类算法中比较常用的一种方法。K 近邻算法(简称 KNN)是基于统计的分类方法[15]。KNN 分类算法根据待识样本在特征空间中 K 个最近邻样本中的多数样本的类别来进行分类,因此具有直观、无需先验统计知识、无师学习等特点,从而成为非参数分类的一种重要方法。 大多数分类方法是基于向量空间模型的。当前在分类方法中,对任意两个向量: x= ) ,..., , ( 2 1x x x n和) ,..., , (' ' 2 ' 1 'x x x x n 存在 3 种最通用的距离度量:欧氏距离、余弦距 离[16]和内积[17]。有两种常用的分类策略:一种是计算待分类向量到所有训练集中的向量间的距离:如 K 近邻选择K个距离最小的向量然后进行综合,以决定其类别。另一种是用训练集中的向量构成类别向量,仅计算待分类向量到所有类别向量的距离,选择一个距离最小的类别向量决定类别的归属。很明显,距离计算在分类中起关键作用。由于以上 3 种距离度量不涉及向量的特征之间的关系,这使得距离的计算不精确,从而影响分类的效果。

生理学学生实验报告

昆明理工大学医学院 生理学实验报告 (供临床医学专业使用) 实验一坐骨神经-腓肠肌标本制备 [1] 实验目的 1.学习机能学实验基本的组织分离技术;

2.学习和掌握制备蛙类坐骨神经-腓肠肌标本的方法; 3.了解刺激的种类。 [2] 实验原理 蛙类的一些基本生命活动和生理功能与恒温动物相似,若将蛙的神经-肌肉标本放在任氏液中,其兴奋性在几个小时内可保持不变。若给神经或肌肉一次适宜刺激,可在神经和肌肉上产生一个动作电位,肉眼可看到肌肉收缩和舒张一次,表明神经和肌肉产生了一次兴奋。在机能学实验中常利用蛙的坐骨神经-腓肠肌标本研究神经、肌肉的兴奋、兴奋性,刺激与反应的规律和肌肉收缩的特征等,制备坐骨神经腓肠肌标本是机能学实验的一项基本操作技术。 [3] 实验对象 蛙 [4] 实验药品 任氏液 [5] 仪器与器械 普通剪刀、手术剪、眼科镊(或尖头无齿镊)、金属探针(解剖针)、玻璃分针、蛙板(或玻璃板)、蛙钉、细线、培养皿、滴管、电子刺激器。 [6] 实验方法与步骤 ①破坏脑、脊髓 取蛙一只,用自来水冲洗干净(勿用手搓)。左手握住蛙,使其背部向上,用大拇指或食指使头前俯(以头颅后缘稍稍拱起为宜)。右手持探针由头颅后缘的枕骨大孔处垂直刺入椎管(图3-1-1)。然后将探针改向前刺入颅腔内,左右搅动探针2~3次,捣毁脑组织。如果探针在颅腔内,应有碰及颅底骨的感觉。 再将探针退回至枕骨大孔,使针尖转向尾端,捻动探针使其刺入椎管,捣毁脊髓。此时应注意将脊柱保持平直。针进入椎管的感觉是,进针时有一定的阻力,而且随着进针蛙出现下肢僵直或尿失禁现象。若脑和脊髓破坏完全,蛙下颌呼吸运动消失,四肢完全松软,失去一切反射活动。此时可将探针反向捻动,退出椎管。如蛙仍有反射活动,表示脑和脊髓破坏不彻底,应重新破坏。

花的结构和解剖

(五)花的解剖结构 典型的被子植物的一朵花是由花萼、花冠、雄蕊和雌蕊组成的。 具有上述4部分的花称为完全花,如桃、梅等;缺少其中一部分的花称为不完全花,如桑、榉等。从进化角度来分析,花实际上是一种适应于生殖的变态短枝,而花萼、花冠、雄蕊和雌蕊是变态的叶。 1.花梗和花托 花梗(柄)是花与茎的连接部分,主要起支持和输导作用。花梗的顶端是着生花的花托。花托的形状因植物种类的不同而各式各样,如玉兰的花托呈圆锥形,蔷薇花托呈杯状等等。 2.花被 花被是花萼和花冠的总称。 (1)花萼 位于花的外侧,通常由几个萼片组成。有些植物具有两轮花萼,最外轮的为副萼,如木槿、扶桑等。花萼随花脱落的称为早落萼,如桃、梅等;花萼在果实成熟时仍存留的称为宿存萼,如石榴、柿子等。各萼片完全分离的称离萼,如玉兰、毛茛等;花萼连为一体的称合萼,如石竹等。 (2)花冠 位于花萼内侧,由若干花瓣组成,排列为一轮或数轮,对花蕊有保护作用。由于花瓣中含有色素并能分泌芳香油与蜜汁,所以花冠颜色艳丽,具有芳香,能招引昆虫,起到传粉作用。 花冠的类型 A—十字形花冠;B—蝶形花冠;C—管状花冠;D一舌状花冠; E—唇形花冠;F—有距花冠;G一喇叭状花冠;H—漏斗状花冠 (A、B为离瓣花;C~H为合瓣花) l一柱头;2—花柱;3—花药;4一花冠; 5一花丝;6一冠毛;7—胚珠;8一子房 花冠形态因植物种类的不同而千姿百态,按花瓣离合程度,花冠可分为离瓣花冠与合瓣花冠两类(如上图所示)。①离瓣花冠:花瓣基部彼此完全分离,这种花冠称为离瓣花冠,常见有以下几种: 蔷薇型花冠:由5个(或5的倍数)分离的花瓣排列成,如桃、梨等。 十字型花冠:由4个花瓣十字型排列组成,如二月兰、桂竹香等。 ②合瓣花冠:花瓣全部或基部合生的花冠称为合瓣花冠,常见有以下几种:

数据分析实验报告

《数据分析》实验报告 班级:07信计0班学号:姓名:实验日期2010-3-11 实验地点:实验楼505 实验名称:样本数据的特征分析使用软件名称:MATLAB 实验目的1.熟练掌握利用Matlab软件计算均值、方差、协方差、相关系数、标准差与变异系数、偏度与峰度,中位数、分位数、三均值、四分位极差与极差; 2.熟练掌握jbtest与lillietest关于一元数据的正态性检验; 3.掌握统计作图方法; 4.掌握多元数据的数字特征与相关矩阵的处理方法; 实验内容安徽省1990-2004年万元工业GDP废气排放量、废水排放量、固体废物排放量以及用于污染治理的投入经费比重见表6.1.1,解决以下问题:表6.1.1废气、废水、固体废物排放量及污染治理的投入经费占GDP比重 年份 万元工业GDP 废气排放量 万元工业GDP 固体物排放量 万元工业GDP废 水排放量 环境污染治理投 资占GDP比重 (立方米)(千克)(吨)(%)1990 104254.40 519.48 441.65 0.18 1991 94415.00 476.97 398.19 0.26 1992 89317.41 119.45 332.14 0.23 1993 63012.42 67.93 203.91 0.20 1994 45435.04 7.86 128.20 0.17 1995 46383.42 12.45 113.39 0.22 1996 39874.19 13.24 87.12 0.15 1997 38412.85 37.97 76.98 0.21 1998 35270.79 45.36 59.68 0.11 1999 35200.76 34.93 60.82 0.15 2000 35848.97 1.82 57.35 0.19 2001 40348.43 1.17 53.06 0.11 2002 40392.96 0.16 50.96 0.12 2003 37237.13 0.05 43.94 0.15 2004 34176.27 0.06 36.90 0.13 1.计算各指标的均值、方差、标准差、变异系数以及相关系数矩阵; 2.计算各指标的偏度、峰度、三均值以及极差; 3.做出各指标数据直方图并检验该数据是否服从正态分布?若不服从正态分布,利用boxcox变换以后给出该数据的密度函数; 4.上网查找1990-2004江苏省万元工业GDP废气排放量,安徽省与江苏省是 否服从同样的分布?

数据挖掘实验报告-关联规则挖掘

数据挖掘实验报告(二)关联规则挖掘 姓名:李圣杰 班级:计算机1304 学号:1311610602

一、实验目的 1. 1.掌握关联规则挖掘的Apriori算法; 2.将Apriori算法用具体的编程语言实现。 二、实验设备 PC一台,dev-c++5.11 三、实验内容 根据下列的Apriori算法进行编程:

四、实验步骤 1.编制程序。 2.调试程序。可采用下面的数据库D作为原始数据调试程序,得到的候选1项集、2项集、3项集分别为C1、C2、C3,得到的频繁1项集、2项集、3项集分别为L1、L2、L3。

代码 #include #include #define D 4 //事务的个数 #define MinSupCount 2 //最小事务支持度数 void main() { char a[4][5]={ {'A','C','D'}, {'B','C','E'}, {'A','B','C','E'}, {'B','E'} }; char b[20],d[100],t,b2[100][10],b21[100 ][10]; int i,j,k,x=0,flag=1,c[20]={0},x1=0,i1 =0,j1,counter=0,c1[100]={0},flag1= 1,j2,u=0,c2[100]={0},n[20],v=1; int count[100],temp; for(i=0;i=MinSupCount) { d[x1]=b[k]; count[x1]=c[k]; x1++; } } //对选出的项集中的元素进行排序 for(i=0;i

植物生长调节剂对植物生长的影响-植物生理学综合实验报告

植物生理综合实验报告植物生长调节剂对植物生长的影响 学院: 专业年级: 姓名: 学号: 指导老师: 完成日期:

烯效唑浸种对小麦幼苗生长的影响 摘要:[目的]研究不同浓度烯效唑浸种对小麦幼苗生长的影响。[方法]以小麦品种川育20号为实验材料,分别用0、15、30、45mg/l烯效唑浸种处理,研究其对小麦幼苗形态指标和生理指标的影响。[结果]与对照相比,烯效唑能影响小麦种子呼吸强度,促进其根系活力,并促进根的发育,此外,烯效唑还能使叶绿素含量增多,丙二醛含量减少,增强幼苗抗性。但是,不同浓度烯效唑对幼苗的影响也有不同。[结论]小麦生产过程中,烯效唑使用浓度以15mg/l为宜,该研究可以进一步拓展烯效唑在大田作物上的开发应用前景提供理论依据。关键词:小麦幼苗;烯效唑;形态指标;生理指标;生长 Abstract: [Objective] the aim was to study the different concentrations of Uniconazole on wheat seedling growth effects. [Methods] in wheat varieties from Sichuan Education No. 20 as the experimental material, were treated with 0,15,30,45mg/l Uniconazole treatment and Research on wheat seedling morphological and physiological indexes of influence. [results] and compared to controls, Uniconazole can affect wheat seed respiration and promote the root vigor, and promote root development. In addition, Uniconazole can enable the content of chlorophyll increased and MDA content decreased, enhance seedling resistance. However, effects of different concentrations of Uniconazole on seedling also different. [Conclusion] the production of Wheat , the use of the concentration of 15mg/l is appropriate, the study can further expand the application prospects of the development and application of the application of the effect of the application of the field in the field of crops to provide a theoretical basis. Key words: wheat seedling; the effect of the form index; the physiological index; the growth of the 前言: 烯效唑(S-3307)又名特效唑、高效唑,化学名(E)-1-对氯苯基-2-(1,2,4-三唑-1-基)-4,4-二甲基-1-戊烯-3-醇,烯效唑作为一种广谱、高效的植物生长

大数据挖掘weka大数据分类实验报告材料

一、实验目的 使用数据挖掘中的分类算法,对数据集进行分类训练并测试。应用不同的分类算法,比较他们之间的不同。与此同时了解Weka平台的基本功能与使用方法。 二、实验环境 实验采用Weka 平台,数据使用Weka安装目录下data文件夹下的默认数据集iris.arff。 Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java 写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 三、数据预处理 Weka平台支持ARFF格式和CSV格式的数据。由于本次使用平台自带的ARFF格式数据,所以不存在格式转换的过程。实验所用的ARFF格式数据集如图1所示 图1 ARFF格式数据集(iris.arff)

对于iris数据集,它包含了150个实例(每个分类包含50个实例),共有sepal length、sepal width、petal length、petal width和class五种属性。期中前四种属性为数值类型,class属性为分类属性,表示实例所对应的的类别。该数据集中的全部实例共可分为三类:Iris Setosa、Iris Versicolour和Iris Virginica。 实验数据集中所有的数据都是实验所需的,因此不存在属性筛选的问题。若所采用的数据集中存在大量的与实验无关的属性,则需要使用weka平台的Filter(过滤器)实现属性的筛选。 实验所需的训练集和测试集均为iris.arff。 四、实验过程及结果 应用iris数据集,分别采用LibSVM、C4.5决策树分类器和朴素贝叶斯分类器进行测试和评价,分别在训练数据上训练出分类模型,找出各个模型最优的参数值,并对三个模型进行全面评价比较,得到一个最好的分类模型以及该模型所有设置的最优参数。最后使用这些参数以及训练集和校验集数据一起构造出一个最优分类器,并利用该分类器对测试数据进行预测。 1、LibSVM分类 Weka 平台内部没有集成libSVM分类器,要使用该分类器,需要下载libsvm.jar并导入到Weka中。 用“Explorer”打开数据集“iris.arff”,并在Explorer中将功能面板切换到“Classify”。点“Choose”按钮选择“functions(weka.classifiers.functions.LibSVM)”,选择LibSVM分类算法。 在Test Options 面板中选择Cross-Validatioin folds=10,即十折交叉验证。然后点击“start”按钮:

植物生理学实验报告

首都师范大学生命科学学院实验报告 课程名称植物生理学实验成绩 姓名苗雪鹏班级 1班学号 1080800021 实验题目实验三植物体中N、P、K主要养分的速测 【实验目的】 1.了解植物体内N、P、K测定的意义和方法 2.掌握如何测定植物体中N、P、K的实验技能 【实验原理】 植物体主要由C、H、O、N、P、K、Ca、Mg、S、Fe等十几种元素组成,除 此以外还包括Ca、Zn、Mn、B、Mo,但需要量较少。 在通常条件下,植物利用太阳光能,从空气中获得C,从水中获得氢和氧, 而N、P、K等元素则是来源土壤肥力。在栽培过程中,能够知道植物的需要和 土壤内N、P、K变动的情况,对考虑施肥措施是有帮助的,因此测定土壤及植 物体内的N、P、K是很重要的。 硝态N测定:硝态N是硝酸的阴离子(NO 3 -),它是强氧化剂,所以鉴定N- 离子几乎都用氧化反应,用二苯胺(C 6H 5 ) 2 NH的方法,这个方法的原理是在NO 3 - 存在时二苯胺被硝酸氧化而显蓝色。 有效P和无机P测定:P与钼酸铵反应生成磷钼酸铵,然后以氧化亚锡作为还原剂时,使磷钼酸铵还原为“磷钼兰”(低价钼化合物混合物)溶液呈兰色。此法能测土壤有效P,过磷酸钙中有效P和植物体内的无机磷。 速效K的测定:四苯硼钠〔NaB(C 6H 5 ) 4 〕与钾离子生成白色沉淀为四苯硼酸 钾〔KB(C 6H 5 ) 4 〕 【实验材料和试剂】 在完全培养液、缺乏N、P、K、Fe的营养液中培养四周的玉米苗 硝态氮试剂、磷试剂Ⅰ、磷试剂Ⅱ、K试剂、标准溶液1、5、10、20、40ppm 【实验方法】 1.植物组织浸提液制备 将植物剪成小块,称取1g,迅速倒入已沸腾的蒸馏水(约10ml)烧杯中,用毛细玻璃棒经常搅动,小火煮十分钟,煮液倒入10ml容量瓶中,另加少量蒸馏水,继续小火煮植物材料5分钟,浸提液倒入上述容量瓶内,再以少量蒸馏水洗植物材料,使最后容量为10ml。 植物组织在计算含量时要乘以10,因每克鲜组织稀释了10倍。 2.硝态N测定 在白瓷板的凹内分别滴入1、5、10、20、40ppm的混合标准液1滴,然后将待测液(植物浸提液)分别滴入其他凹内,最后每个凹内各加5滴二苯胺硫酸溶

数据分析实验报告

数据分析实验报告 【最新资料,WORD文档,可编辑修改】 第一次试验报告 习题1.3 1建立数据集,定义变量并输入数据并保存。 2数据的描述,包括求均值、方差、中位数等统计量。 分析—描述统计—频率,选择如下: 输出:

方差1031026.918399673.8384536136.444百分位数25304.25239.75596.25 50727.50530.501499.50 751893.501197.004136.75 3画直方图,茎叶图,QQ图。(全国居民) 分析—描述统计—探索,选择如下: 输出: 全国居民Stem-and-Leaf Plot Frequency Stem & Leaf 9.00 0 . 122223344 5.00 0 . 56788 2.00 1 . 03 1.00 1 . 7 1.00 2 . 3 3.00 2 . 689

1.00 3 . 1 Stem width: 1000 Each leaf: 1 case(s) 分析—描述统计—QQ图,选择如下: 输出: 习题1.1 4数据正态性的检验:K—S检验,W检验数据: 取显着性水平为0.05 分析—描述统计—探索,选择如下:(1)K—S检验 单样本Kolmogorov-Smirnov 检验 身高N60正态参数a,,b均值139.00

标准差7.064 最极端差别绝对值.089 正.045 负-.089 Kolmogorov-Smirnov Z.686 渐近显着性(双侧).735 a. 检验分布为正态分布。 b. 根据数据计算得到。 结果:p=0.735 大于0.05 接受原假设,即数据来自正太总体。(2)W检验

数据挖掘实验报告1

实验一 ID3算法实现 一、实验目的 通过编程实现决策树算法,信息增益的计算、数据子集划分、决策树的构建过程。加深对相关算法的理解过程。 实验类型:验证 计划课间:4学时 二、实验内容 1、分析决策树算法的实现流程; 2、分析信息增益的计算、数据子集划分、决策树的构建过程; 3、根据算法描述编程实现算法,调试运行; 4、对所给数据集进行验算,得到分析结果。 三、实验方法 算法描述: 以代表训练样本的单个结点开始建树; 若样本都在同一个类,则该结点成为树叶,并用该类标记; 否则,算法使用信息增益作为启发信息,选择能够最好地将样本分类的属性; 对测试属性的每个已知值,创建一个分支,并据此划分样本; 算法使用同样的过程,递归形成每个划分上的样本决策树 递归划分步骤,当下列条件之一成立时停止: 给定结点的所有样本属于同一类; 没有剩余属性可以进一步划分样本,在此情况下,采用多数表决进行 四、实验步骤 1、算法实现过程中需要使用的数据结构描述: Struct {int Attrib_Col; // 当前节点对应属性 int Value; // 对应边值 Tree_Node* Left_Node; // 子树 Tree_Node* Right_Node // 同层其他节点 Boolean IsLeaf; // 是否叶子节点 int ClassNo; // 对应分类标号 }Tree_Node; 2、整体算法流程

主程序: InputData(); T=Build_ID3(Data,Record_No, Num_Attrib); OutputRule(T); 释放内存; 3、相关子函数: 3.1、 InputData() { 输入属性集大小Num_Attrib; 输入样本数Num_Record; 分配内存Data[Num_Record][Num_Attrib]; 输入样本数据Data[Num_Record][Num_Attrib]; 获取类别数C(从最后一列中得到); } 3.2、Build_ID3(Data,Record_No, Num_Attrib) { Int Class_Distribute[C]; If (Record_No==0) { return Null } N=new tree_node(); 计算Data中各类的分布情况存入Class_Distribute Temp_Num_Attrib=0; For (i=0;i=0) Temp_Num_Attrib++; If Temp_Num_Attrib==0 { N->ClassNo=最多的类; N->IsLeaf=TRUE; N->Left_Node=NULL;N->Right_Node=NULL; Return N; } If Class_Distribute中仅一类的分布大于0 { N->ClassNo=该类; N->IsLeaf=TRUE; N->Left_Node=NULL;N->Right_Node=NULL; Return N; } InforGain=0;CurrentCol=-1; For i=0;i

数据挖掘实验报告三

实验三 一、实验原理 K-Means算法是一种 cluster analysis 的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。 在数据挖掘中,K-Means算法是一种cluster analysis的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。 算法原理: (1) 随机选取k个中心点; (2) 在第j次迭代中,对于每个样本点,选取最近的中心点,归为该类; (3) 更新中心点为每类的均值; (4) j<-j+1 ,重复(2)(3)迭代更新,直至误差小到某个值或者到达一定的迭代步 数,误差不变. 空间复杂度o(N) 时间复杂度o(I*K*N) 其中N为样本点个数,K为中心点个数,I为迭代次数 二、实验目的: 1、利用R实现数据标准化。 2、利用R实现K-Meams聚类过程。 3、了解K-Means聚类算法在客户价值分析实例中的应用。 三、实验内容 依据航空公司客户价值分析的LRFMC模型提取客户信息的LRFMC指标。对其进行标准差标准化并保存后,采用k-means算法完成客户的聚类,分析每类的客户特征,从而获得每类客户的价值。编写R程序,完成客户的k-means聚类,获得聚类中心与类标号,并统计每个类别的客户数

四、实验步骤 1、依据航空公司客户价值分析的LRFMC模型提取客户信息的LRFMC指标。

2、确定要探索分析的变量 3、利用R实现数据标准化。 4、采用k-means算法完成客户的聚类,分析每类的客户特征,从而获得每类客户的价值。

客户的k-means聚类,获得聚类中心与类标号,并统计每个类别的客户数 六、思考与分析 使用不同的预处理对数据进行变化,在使用k-means算法进行聚类,对比聚类的结果。 kmenas算法首先选择K个初始质心,其中K是用户指定的参数,即所期望的簇的个数。 这样做的前提是我们已经知道数据集中包含多少个簇. 1.与层次聚类结合 经常会产生较好的聚类结果的一个有趣策略是,首先采用层次凝聚算法决定结果

花的解剖结构详解

花的解剖结构 典型的被子植物的一朵花是由花萼、花冠、雄蕊和雌蕊组成的。 具有上述4部分的花称为完全花,如桃、梅等;缺少其中一部分的花称为不完全花,如桑、榉等。从进化角度来分析,花实际上是一种适应于生殖的变态短枝,而花萼、花冠、雄蕊和雌蕊是变态的叶。 1.花梗和花托 花梗(柄)是花与茎的连接部分,主要起支持和输导作用。花梗的顶端是着生花的花托。花托的形状因植物种类的不同而各式各样,如玉兰的花托呈圆锥形,蔷薇花托呈杯状等等。 2.花被 花被是花萼和花冠的总称。 (1)花萼 位于花的外侧,通常由几个萼片组成。有些植物具有两轮花萼,最外轮的为副萼,如木槿、扶桑等。花萼随花脱落的称为早落萼,如桃、梅等;花萼在果实成熟时仍存留的称为宿存萼,如石榴、柿子等。各萼片完全分离的称离萼,如玉兰、毛茛等;花萼连为一体的称合萼,如石竹等。 (2)花冠 位于花萼内侧,由若干花瓣组成,排列为一轮或数轮,对花蕊有保护作用。由于花瓣中含有色素并能分泌芳香油与蜜汁,所以花冠颜色艳丽,具有芳香,能招引昆虫,起到传粉作用。 花冠的类型 A—十字形花冠;B—蝶形花冠;C—管状花冠;D一舌状花冠; E—唇形花冠;F—有距花冠;G一喇叭状花冠;H—漏斗状花冠 (A、B为离瓣花;C~H为合瓣花) l一柱头;2—花柱;3—花药;4一花冠; 5一花丝;6一冠毛;7—胚珠;8一子房 花冠形态因植物种类的不同而千姿百态,按花瓣离合程度,花冠可分为离瓣花冠与合瓣花冠两类(如上图所示)。①离瓣花冠:花瓣基部彼此完全分离,这种花冠称为离瓣花冠,常见有以下几种: 蔷薇型花冠:由5个(或5的倍数)分离的花瓣排列成,如桃、梨等。 十字型花冠:由4个花瓣十字型排列组成,如二月兰、桂竹香等。 ②合瓣花冠:花瓣全部或基部合生的花冠称为合瓣花冠,常见有以下几种:

数据分析与挖掘实验报告

数据分析与挖掘实验报告

《数据挖掘》实验报告 目录 1.关联规则的基本概念和方法 (1) 1.1数据挖掘 (1) 1.1.1数据挖掘的概念 (1) 1.1.2数据挖掘的方法与技术 (2) 1.2关联规则 (5) 1.2.1关联规则的概念 (5) 1.2.2关联规则的实现——Apriori算法 (7) 2.用Matlab实现关联规则 (12) 2.1Matlab概述 (12) 2.2基于Matlab的Apriori算法 (13) 3.用java实现关联规则 (19) 3.1java界面描述 (19) 3.2java关键代码描述 (23) 4、实验总结 (29) 4.1实验的不足和改进 (29) 4.2实验心得 (30)

1.关联规则的基本概念和方法 1.1数据挖掘 1.1.1数据挖掘的概念 计算机技术和通信技术的迅猛发展将人类社会带入到了信息时代。在最近十几年里,数据库中存储的数据急剧增大。数据挖掘就是信息技术自然进化的结果。数据挖掘可以从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的,人们事先不知道的但又是潜在有用的信息和知识的过程。 许多人将数据挖掘视为另一个流行词汇数据中的知识发现(KDD)的同义词,而另一些人只是把数据挖掘视为知识发现过程的一个基本步骤。知识发现过程如下: ·数据清理(消除噪声和删除不一致的数据)·数据集成(多种数据源可以组合在一起)·数据转换(从数据库中提取和分析任务相关的数据) ·数据变换(从汇总或聚集操作,把数据变换和统一成适合挖掘的形式) ·数据挖掘(基本步骤,使用智能方法提取数

据模式) ·模式评估(根据某种兴趣度度量,识别代表知识的真正有趣的模式) ·知识表示(使用可视化和知识表示技术,向用户提供挖掘的知识)。 1.1.2数据挖掘的方法与技术 数据挖掘吸纳了诸如数据库和数据仓库技术、统计学、机器学习、高性能计算、模式识别、神经网络、数据可视化、信息检索、图像和信号处理以及空间数据分析技术的集成等许多应用领域的大量技术。数据挖掘主要包括以下方法。神经网络方法:神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。典型的神经网络模型主要分3大类:以感知机、bp反向传播模型、函数型网络为代表的,用于分类、预测和模式识别的前馈式神经网络模型;以hopfield 的离散模型和连续模型为代表的,分别用于联想记忆和优化计算的反馈式神经网络模型;以art 模型、koholon模型为代表的,用于聚类的自组

数据挖掘实验报告一

数据预处理 一、实验原理 预处理方法基本方法 1、数据清洗 去掉噪声和无关数据 2、数据集成 将多个数据源中的数据结合起来存放在一个一致的数据存储中 3、数据变换 把原始数据转换成为适合数据挖掘的形式 4、数据归约 主要方法包括:数据立方体聚集,维归约,数据压缩,数值归约,离散化和概念分层等二、实验目的 掌握数据预处理的基本方法。 三、实验内容 1、R语言初步认识(掌握R程序运行环境) 2、实验数据预处理。(掌握R语言中数据预处理的使用) 对给定的测试用例数据集,进行以下操作。 1)、加载程序,熟悉各按钮的功能。 2)、熟悉各函数的功能,运行程序,并对程序进行分析。 对餐饮销量数据进统计量分析,求销量数据均值、中位数、极差、标准差,变异系数和四分位数间距。 对餐饮企业菜品的盈利贡献度(即菜品盈利帕累托分析),画出帕累托图。 3)数据预处理 缺省值的处理:用均值替换、回归查补和多重查补对缺省值进行处理 对连续属性离散化:用等频、等宽等方法对数据进行离散化处理 四、实验步骤 1、R语言运行环境的安装配置和简单使用 (1)安装R语言 R语言下载安装包,然后进行默认安装,然后安装RStudio 工具(2)R语言控制台的使用 1.2.1查看帮助文档

1.2.2 安装软件包 1.2.3 进行简单的数据操作 (3)RStudio 简单使用 1.3.1 RStudio 中进行简单的数据处理 1.3.2 RStudio 中进行简单的数据处理

2、R语言中数据预处理 (1)加载程序,熟悉各按钮的功能。 (2)熟悉各函数的功能,运行程序,并对程序进行分析 2.2.1 销量中位数、极差、标准差,变异系数和四分位数间距。 , 2.2.2对餐饮企业菜品的盈利贡献度(即菜品盈利帕累托分析),画出帕累托图。

相关主题
文本预览
相关文档 最新文档