当前位置:文档之家› 高压直流输电用换流变压器_韩晓东

高压直流输电用换流变压器_韩晓东

高压直流输电用换流变压器_韩晓东
高压直流输电用换流变压器_韩晓东

文章编号:1001-1609(2002)03-0005-02

高压直流输电用换流变压器

韩晓东, 翟亚东

(西安西电变压器有限责任公司, 陕西 西安 710077)

C ONVERTER TRANSFORMER USE

D F OR HV DC TRANSMISSION

HAN Xiao-dong, ZHAI Ya-dong

(Xi'an XD Transformer Co.,Ltd., Xi'an 710077, China)

摘要: 简要分析了换流变压器设计中的难点和特殊要求,介绍了三峡—常州直流输电工程的换流变压器的结构和基本性能参数。

关键词: 高压直流输电; 换流变压器; 绝缘结构

中图分类号: TM40 文献标识码: B

A bstract: This paper briefly anal y ses the d ifficult points and spe-cial demands in the des ign of converter transformer,and presents the structure and basic performance parameters for converter trans-former used in Three Gorge-Changzhou HVDC Transmiss ion Project. Key words: HVDC trans mission;converter transformer;

insulation structure

1 引言

换流变压器是整个直流输电系统中必不可少的重要设备,其主要参数按直流系统的特殊要求确定。在整流站,用换流变压器将交流系统和直流系统隔离,通过换流装置将交流网络的电能转换为高压直流电能,利用高压直流输电线路传输;在逆变站,通过换流装置将直流电能转换为交流电能,再通过换流变压器送到交流电网;从而实现交流输电网络与高压直流输电网络的联络。另外,换流变压器还有下列功能:提供相位差为30°的12脉波交流电压,以降低交流侧谐波电流,特别是5次和7次谐波电流;作为交流系统和直流系统的电气隔离,削弱侵入直流系统的交流侧过电压;通过换流变压器的阻抗限制直流系统的短路电流进入交流系统;通过换流变压器可以实现直流电压较大幅度的分档调节。

2 换流变压器设计的特殊要求

设计换流变压器与普通电力变压器的主要区别:收稿日期:2002-01-30

(1)短路阻抗:当换流变压器桥臂短路时,为了限制过大的短路电流损坏换流阀,换流变压器应具有足够大的短路阻抗。但短路阻抗过大,会使换流变压器的无功分量增大,直流电压中换相压降过大,因此在设计中要兼顾。

(2)直流偏磁:如果换流阀触发脉冲间隔不等,会使换流变压器发生直流偏磁,导致换流变压器铁心周期性饱和,发出低频噪声,同时损耗和温升也将增加。因此,设计时要充分考虑直流偏磁的影响。

(3)谐波:在运行中,换流变压器直流侧和交流侧产生的谐波电流使换流变压器损耗和温升增加,产生局部过热,发出高频噪声,还会使交流电网中的发电机和电容器过热,对通讯设备产生干扰,使换流装置控制不稳定,有时会在电网中引发局部谐波过电压。通常,减小谐波的方法有两种。一是增加换流变压器的脉波数,但这会使换流变压器的接线非常复杂,且不经济,不适用于高压直流输电;二是在换流装置的交流侧用滤波器限制交流谐波,在直流侧用平波电抗器来限制直流谐波。

在换流变压器的设计中,要充分考虑谐波电流引起的损耗增加,在结构上还应采取有效的冷却措施,在套管升高座等有较强谐波通过的部位采用非导磁材料,在绕组两端和油箱壁上分别加磁屏蔽和电屏蔽,加强换流变压器和安装现场的吸音、减震结构等抑制可闻噪声措施,以减小谐波产生的影响。

(4)直流分量:由于换流阀的轮流导通,换流变压器阀侧绕组对地电位含有直流分量,这就要求换流变压器的绝缘结构远比普通电力变压器复杂。

在运行中,由于换流变压器阀侧绕组不仅受到交流电压而且受到直流电压的作用,此外,直流电压的极性还应根据需要进行反转,因此,阀侧绕组内部

·

5

·

2002年6月 高 压 电 器 第38卷 第3期

绝缘中的电位分布和场强与普通电力变压器不同,要采用全绝缘。换流变压器和普通电力变压器的内绝缘都采用变压器油和绝缘纸板的复合结构,但两者的绝缘纸板与变压器油的比例不同。在交流电压作用下,绝缘中的电场呈容性分布,与材料的介电系数成反比,由于绝缘纸板的介电系数约为变压器油的2倍,变压器油中的电场大于绝缘纸板中的电场,大部分电压由变压器油承担;在直流电压作用下,绝缘中的电场呈阻性分布,与材料的电导率成反比,而材料的电导率受温度、湿度、电场强度及电压加载时间的影响,一般绝缘纸板的电导率与变压器油的电导率之比约为1∶10~1∶500,变压器油中的电场远小于绝缘纸板中的电场,电压绝大部分由绝缘纸板承担;在极性反转时,绝缘中的电场基本按容性分布。因此,在设计中对油纸绝缘电气强度的校核,既要考虑交流电压的作用,又要考虑直流电压的作用和极性反转时的情况,应增加绝缘中绝缘纸板的比例。

3 三峡—常州直流工程的换流变压

器的结构参数

三峡—常州直流输电工程龙泉整流侧换流站换流变压器的基本结构为单相双柱双绕组结构,两柱并联。铁心为双柱带旁轭结构,在铁心柱外绑扎有半导体绑带,以加强铁心柱的整体强度,并减小铁心至线圈的距离;调压线圈为层式,网侧线圈为纠结—连续式,阀侧线圈为螺旋式(阀侧Y接)和纠结—连续式(阀侧D接),所有线圈按照计算的压紧力压装后进行线圈高度调节,保证线圈高度满足设计要求;在器身上下两端铁轭以外部分设有磁分路,用以吸收漏磁并导入铁轭,降低产品的杂散损耗;绝缘结构是根据交、直流电场的分布和绝缘材料的特性进行设计,器身通过油压涨管压紧,使整个器身形成一个整体,大大提高了变压器的抗短路能力;从线圈出头到套管以及两柱之间引线均用均压管屏蔽,改善了引线的电场。油箱采用桶式平箱盖结构,箱壁为平板,内侧有铜屏蔽,以减少箱壁中产生的杂散损耗,油箱壁采用高强度钢板,用槽形加强筋加强,保证油箱强度高,结构紧凑,满足铁路运输的外限尺寸要求。基本参数及主要技术性能列于表1。

表1 基本参数及主要技术性能

阀侧D接换流变压器阀侧Y接换流变压器额定容量/MV A297.5297.5

相数单单

频率/Hz5050

联接组标号Y/Y Y/D

冷却方式OF AF OFA F

额定网侧电压/kV525/3525/3

额定阀侧电压/kV210.4210.4/3

调压范围525/3

+25

-5

×1.25%525/3

+25

-5

×1.25%短路阻抗/%16.0±0.616.0±0.6

噪音/dB(A)

(声压级)

基频7575

考虑谐波电流9696

考虑直流偏磁9898

空载损耗/k W136136

负载损耗/k W(考虑谐波分量)732732

雷电冲击耐压/kV

网侧首端:1550网侧首端:1550

阀侧首端:1175阀侧首端:1675

网侧末端:250网侧末端:250

阀侧末端:1175阀侧末端:1675操作冲击耐压/kV

网侧:1175 网侧:1175

阀侧:950 阀侧:1425 1min AC外施电压/kV网侧末端:95网侧末端:95

阀侧D C120min带局放测量的耐压试验/k V 424 810

阀侧极性反转电压(DC)/kV

-257(90mi n)-579(90min)

+257(90mi n)+579(90min)

-257(45mi n)-579(45min)阀侧60mi nAC外施试验电压/kV327600

作者简介:韩晓东(1970-),男,陕西西安市人,工程师,从事变压器电气设计和结构设计工作。

(上接第4页)

参考文献:

[1] 徐 政.含多个直流换流站的电力系统中交直流相互作用特

性综述[J].中国电力,1998,22(2):16-19.

[2] Yingjun Dai,Kaiping Tang.GeZhouBa Converter Station Operation Ex-

periences[A].The4t h International HVDC Operating Conference[C], Yichang,China,Septe mber6-8,2001.

[3] D J Christofers en,I Vancers,H Elahi,M G Bennett.A Survey of the

Reliability of HVD C Syste ms Throughout the World During1997~

1998[R].CIGR E R eport,No.14-102,2000CIGRE Ses sion. [4] D J Christofersen,H Elahi,M G Bennett.A Survey of the R eliabil ity of

HVDC Syste ms Throughout the World D uring1995~1996[R].CIGR E Report,No.14-102,1998CIGR E Session.[5] D J Chris tofersen,H Elahi,M G Bennett.A Survey of the Reliability of

HVDC Systems Throughout the World During1993~1994[R].CIGR E R eport,No.14-101,1996CIGR E Ses sion.

[6] D J Christ ofers en,H Elahi,M G Bennett.Survey of the Reliability of

HVDC Systems Throughout the World During1991~1992[R].CIGR E R eport,No.14-101,1994CIGR E Ses sion.

[7] L Ahl gren,O Skogkeim,V Burtnyk.Survey of the Reliability of HVDC

Syste ms Throughout the World During1989~1990[R].CIGRE Re-port,No.14-302,1992CIGRE Sess ion.

[8] IEEE1240-2000.IEEE Guide for the Evaluation of the Reliabilit y of

HVDC Converter Stations[S].

[9] 浙江大学.直流输电[M].北京:水利电力出版社,1985.

作者简介:刘海峰(1978-),男,硕士研究生,从事直流输电与柔性交流输电方面的研究。

·

6

·June2001 High Voltage Apparatus Vol38 No.3

油浸式变压器结构图解

结构图解 1-铭牌;2-信号式温度计;3-吸湿器;4-油标;5-储油柜;6-安全气道 7-气体继电器;8-高压套管;9-低压套管;10-分接开关;11-油箱; 12-放油阀门;13-器身;14-接地板;15-小车 电力变压器概述电力变压器是一种静止的电气设备,是用来将某一数值的交流电压(电流)变成频率相同的另一种或几种数值不同的电压(电流)的设备。当一次绕组通以交流电时,就产生交变的磁通,交变的磁通通过铁芯导磁作用,就在二次绕组中感应出交流电动势。二次感应电动势的高低与一二次绕组匝数的多少有关,即电压大小与匝数成正比。主要作用是传输电能,因此,额定容量是它的主要参数。额定容量是一个表现功率的惯用值,它是表征传输电能的大小,以kVA或MVA表示,当对变压器施加额定电压时,根据它来确定在规定条件下不超过温升限值的额定电流。现在较为节能的电力变压器是非晶合金铁心配电变压器,其最大优点是,空载损耗值特低。最终能否确保空载损耗值,是整个设计过程中所要考虑的核心问题。当在产品结构布置时,除要考虑非晶合金铁心本身不受外[3]力的作用外,同时在计算时还须精确合理选取非晶合金的特性参数。国内生产电力变压器较大的厂家有特变电工等。 供配电方式: 10KV高压电网采用三相三线中性点不接地系统运行方式。

用户变压器供电大都选用Y/Yno结线方式的中性点直接接地系统运行方式,可实现三相四线制或五线制供电,如TN-S系统。 电力变压器主要部件及作用①、普通变压器的原、副边线圈是同心地套在一个铁芯柱上,内为低压绕组,外为高压绕组。(电焊机变压器原、副边线圈分别装在两个铁芯柱上) 变压器在带负载运行时,当副边电流增大时,变压器要维持铁芯中的主磁通不变,原边电流也必须相应增大来达到平衡副边电流。 变压器二次有功功率一般=变压器额定容量(KVA)×0.8(变压器功率因数)=KW。 ②、电力变压器主要有: A、吸潮器(硅胶筒):内装有硅胶,储油柜(油枕)内的绝缘油通过吸潮器与大气连通,干燥剂吸收空气中的水分和杂质,以保持变压器内部绕组的良好绝缘性能;硅胶变色、变质易造成堵塞。 B、油位计:反映变压器的油位状态,一般在+20O左右,过高需放油,过低则加油;冬天温度低、负载轻时油位变化不大,或油位略有下降;夏天,负载重时油温上升,油位也略有上升;二者均属正常。

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 dt d N e Φ-=1 1 dt d N e Φ-=2 2 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器;

按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。 1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。

直流输电换流变压器基础知识

第一章换流变结构 一、换流变概述 通常,我们把用于直流输电的主变压器称为换流变压器。它在交流电网与直流线路之间起连接和协调作用,将电能由交流系统传输到直流系统或由直流系统传输到交流系统。换流变压器是超高压直流输电工程中至关重要的关键设备,是交、直流输电系统中换流、逆变两端接口的核心设备。 直流输电系统的接线方式有多种,目前常见的接线方式如图1-1所示。 图1-1 两个六脉冲换流桥构成一个单极十二脉动接线,这两个六脉冲换流桥分别由Yy与Yd联结的换流变压器供电。两个单极叠加在一起构成一个双极。每极所用的换流变压器可以由下述方式实现,两台三相双绕组变压器(一个Yy联结,一个Yd联结)或三台单相三绕

组变压器(一个网侧绕组和两个阀侧绕组,一个Y接,一个D接)或六台单相双绕组变压器(三个Yy 单相,三个Yd单相)。由建设规模的大小及直流电压等级可以确定换流变压器的大致型式。选择不同的型式主要受运输尺寸的限制,其次是考虑备用变容量的大小,当然,备用变容量越小越经济。 当直流输送容量较大时可采用每级两组基本换流单元的接线方式,此种接线方式有串联和并联两种方式。如目前在建的±800kv项目即采用了串联方式,其基本接线原理见图2。 800(HY) 600(HD) 400(L Y) 200(LD) 图1-2

图1-3 单相双绕组换流变压器外形 图1-4 单相三绕组换流变压器外形

图1-5 云广±800kV项目高端(800kV)换流变压器外形 二、绕组的常见类型 换流变中的绕组按照其连接的系统不同,通常可分为连接交流系统的网绕组及调压绕组;连接换流阀的阀绕组。绕组的排列方式通常有以下两种:铁心柱→阀绕组→网绕组→调压绕组;铁心柱→调压绕组→网绕组→阀绕组。 1.网绕组 目前,我公司的网绕组主要采用轴向纠结加连续式结构。与传统的纠结或内屏连续式不同,轴向纠结采用特殊的阶梯导线绕制n个双饼构成n/2个纠结单元。纠结绕制和换位示意见下图。

特高压换流变压器现场局部放电试验技术分析 田丰

特高压换流变压器现场局部放电试验技术分析田丰 发表时间:2018-06-25T16:23:05.960Z 来源:《电力设备》2018年第4期作者:田丰 [导读] 摘要:特高压换流变压器现场局部放电试验的技术是很多电力部门比较热衷的话题。 (保定天威保变电气股份有限公司河北保定 071056) 摘要:特高压换流变压器现场局部放电试验的技术是很多电力部门比较热衷的话题。本文针对这个问题分析了特高压换流变压器现场ACLD试验、特高压换流变压器现场局部放电检测干扰源及抗干扰措施,以期望对特高压换流变压器现场局部放电试验提供借鉴和参考。 关键词:特高压;换流变压器;局部放电试验 1 引言 直流输电系统中的重要设备是特高压换流变压器,特高压换流变压器的运行状态直接对整个系统的安全性产生影响,换流变压器的安全运行状态主要取决于换流变压器本身的绝缘性能。通过现场的长时交流感应耐压试验可以对换流变压器本身的运输和绝缘缺陷进行检测,例如可以检测气泡、杂质和悬浮电位的放电缺陷等,这些项目的检测对换流变压器的安全运行是非常重要的。 2 特高压换流变压器现场ACLD试验分析 在进行特高压换流变压器现场ACLD试验的时候要对现场的干扰因素进行充分的考虑,因为试验现场电压高、环境复杂,某种程度来说现场的干扰因素是决定试验成功与否的重要条件。特高压换流变压器现场ACLD试验局部放电测试中要对干扰信号进行充分识别,对干扰信号的传播途径进行研究并制定出抑制干扰进行的策略。 本文主要根据±800kv换流变压器现场ACLD试验局部放电检测干扰信号进行研究,并根据试验中出现的情况制定出相应的抗干扰措施。±800kv直流输电工程主要包括HY和HD两个换流现场,是ACLD试验中的重要试验场地,其中HY换流变从阀侧加压。现场ACLD试验可以在很大程度上避免出现现场拆装的施工过程,不仅规避了风险同时节约了工程费用。本文中的实验采用的是JFD-4000局部放电系统进行多端测量。 3 特高压换流变压器现场局部放电检测干扰源及抗干扰措施分析 3.1 空间电磁波干扰分析 电力系统中的载波通信、高频保护信号和无线电广播等空间电磁波会产生高频正弦波对正常的波形产生干扰,这些干扰波往往具有固定的谐振频率和频带宽度,此次试验通过对局部放电检测仪设置软硬件滤波系统控制空间电磁波的干扰。软件内部设置的FIR可以通过滤波器和减法器等实现自动滤波的功能,硬件上设置的高通滤波器低通滤波档位可以实现滤波的功能。现场测量时需要根据局部放实来对系统的灵敏度和背景噪声进行测量,从而系统就可以选择合适的低频和高频滤波档位,来对测量中的干扰信号进行避开。这个过程不适宜选择宽度小的测量频带,因为过窄的测量频带对有效放电信号可以产生一定的忽略,因此在选择局部放电检测仪测量带的宽度时候一般不得小于100kHz。 通过这个过程将数据采集系统采集到具有局部放电信号和周期性干扰信号的输入列输入一系列的多通带FIR滤波器,最后输出的就是具有周期性的干扰信号,然后再使用减法器对干扰信号与输入列进行相减,从而是系统可以最大限度地避免干扰频率,最终输出局部放电信号。 3.2 电晕干扰分析 试验中的回路如果处于高电位的导电部分就会产生电晕放电现象,例如试验中使用的法兰、金属盖帽、试验变压器和耦合电容器的端部都是特别容易产生电晕的部分。另外,如果试验回路中如果有地方的连接处接触不良地方也是特别容易产生电晕的部分。电晕干扰的特点是会随着试验电压的升高而增大的,在局部放电检测中电晕干扰是非常明显的。 对高压端电晕放电的抑制的最好方法是选用合适的屏蔽环、罩、球等。检查所有的连接部位,从而保证连接处的接触良好从此来消除系统中的接触放电的现象发生。在选用屏蔽罩的时候要检验屏蔽罩的上部是否为半球形、下部是否为单环形。屏蔽双环必须由两个圆形的单环组成,并且屏蔽罩和屏蔽双环表面的最大强度不得大于1.5MV/m。屏蔽罩场的计算可以通过相应的公式来计算。 采用的高压导线和连接线按防晕设计中导线和连接的直径必须足够大,从而保证表面的最大场强不得大于1.5MV/m,这里场强可以采用原著对平板电机的场强计算公式来计算。 3.3 脉冲型干扰分析 脉冲型干扰在时域上是持续时间较短的脉冲信号,在频域上则是频率成分的款待信号,因而脉冲型干扰具有局部放电信号的大部分特征。因而在进行局部放电试验中,高频脉冲型干扰的波形和频率特征与放电脉冲极为相似,甚至在一般状态下很难区分,唯有使用三维图谱观察才能比较明显地对脉冲型干扰进行区分。高频脉冲型干扰大致可以分为三类:固定相位的脉冲干扰;与电压相位有时间相关规律的干扰;随机出现的干扰脉冲。脉冲型干扰在时域上呈离散型,针对这一特性应该采用时域开窗法来进行抑制,时域开窗也有硬件和软件之分,硬件方法主要有差动平衡阀和脉冲鉴别法。两者都是利用两个测量点之间的脉冲差来对外部干扰进行抑制。但是在实际应用中,由于进入两脉冲的脉冲干扰的来源和途径具有差异性,因而脉冲干扰在相位和幅值上的差别也是非常大的,因而采用的单一的方法是无法对所有脉冲干扰进行抑制的,可以采用超声波来进行识别提高识别的精确性。 随机干扰出现的相位、次数和量值具有很大的不确定性,并且非常容易出现相位错乱与局部放电相混合的现象,但是这种脉冲具有一个特点就是次数和零值与相位相当。在检测的时候直接对相位进行检测就可以起到很好的检测效果。 3.4 检测阻抗引起的干扰分析 在对换流变压器现场局部放电进行试验的过程中由于施加在变压器套管上的电压会很高,如果流经局部放电检测的阻抗电流较小就容易产生超过其本身的电流,在这种情况下就会引起检测阻抗的磁饱和,因此在测量电压时要检测阻抗内的磁饱和会产生谐波的影响。相关的试验证明这种谐波的幅值与所选用的检测阻抗的通流强度有关,如果系统选用的检测阻抗具有较大的调节上限,那么系统中能够通过的电流能力就强,产生谐波的可能性就越小。如果局部放电检测回路的灵敏可测性降低,那么检测就必须根据局部放电试验的具体情况来做相应的调整。 现场试验的时候应该根据试验回路的等效调节电容来选用测量阻抗,从而对局部放电信号进行排除,可以提高系统的抗干扰水平。如果测量回路的相关系数一经确定,测量回路的谐振电容就可以通过相应的公式来计算。根据所计算出来的电容公式来对系统的电感和电流

换流变压器教学教材

换流变压器

精品文档 一、换流变压器 1、定义: 换流变压器(Converter Transformer) 接在换流桥与交流系统之间的电力变压器。采用换流变压器实现换流桥与交流母线的连接,并为换流桥提供一个中性点不接地的三相换相电压。换流变压器与换流桥是构成换流单元的主体。 2、换流变压器在直流输电系统中的作用: (1)、传送电力;(2)、把交流系统电压变换到换流器所需的换相电压;(3)、利用变压器绕组的不同接法,为串接的两个换流器提供两组幅值相等、相位相差30°(基波电角度)的三相对称的换相电压以实现十二脉动换流;(4)、将直流部分与交流系统相互绝缘隔离,以免交流系统中性点接地和直流部分中性点接地造成直接短接,使得换相无法进行;(5)、换流变压器的漏抗可起到限制故障电流的作用;(6)、对沿着交流线路侵入到换流站的雷电冲击过电压波起缓冲抑制的作用。 3、换流变压器的特点及要求: (1)漏抗 以往由于晶闸管的额定电流和过负荷能力有限,为了限制阀臂短路和直流母线短路的故障电流,换流变压器的漏抗一般比普通电力变压器的大,一般为15-20%, 有些工程甚至超过20%。随着晶闸管的额定电流及其承受浪涌电流能力的提高,换流变压器的漏抗可按对应的容量和绝缘水平合理选择,阻抗相应降低,通常为12-18%,因此,设备主参数、绝缘水平、换流器无功消耗及能耗等都可相应降低,同时,换流器的运行性能也有所改进。 为减少非特征谐波,换流变压器的三相漏抗平衡度要求比普通电力变压器高,通常漏抗公差不大于2%。如果运输条件允许,工程多采用单相三绕组换流变压器结构,进一步减少十二脉动换流单元中换流变压器六个阻抗值的差别。(2)绝缘 换流变压器阀侧绕组和套管是在交流和直流电压共同作用之下工作的,由于油、纸两种绝缘材质的电导系数与介电系数之比差别很大,油纸复合绝缘中直流场强按电导系数分布,交流场强则按介电系数分布。当直流电压极性迅速变化时,会使油隙绝缘受到很大的电应力。在套管与底座的连接部分,由于绝缘结构复杂,这一问题最为严重。越接近直流两极的阀侧绕组对地电压越高,在设计时必然增大绕组端部与铁芯轭部的距离,使绕组端部的辐向漏磁和局部损耗增加,因谐波漏磁而引起的损耗则增加更多。作为阀侧绕组外绝缘的套管,其爬电距离要考虑到直流电压的分量,为了避免雨天时在直流电压作用下,由于不均匀湿闪而造成的闪络故障,一般阀侧套管均伸入阀厅。干式合成套管已得到实际应用。为了抗震,套管法兰盘处一般装有振动阻尼装置。(3)谐波 换流变压器漏磁的谐波分量会使变压器的杂散损耗增大,有时可能使某些金属部件和油箱产生局部过热现象。在有较强漏磁通过的部件要用非磁性材料或采用磁屏蔽措施。谐波磁通所引起的磁致伸缩噪声处于听觉较为灵敏的频带,必要时要采取更有效的隔音措施。(4)直流偏磁 换流器触发时刻的间隔不等,交流母线正序二次谐波电压和与直流线路并行的交流线路的感应作用等将在换流变压器阀侧绕组电流中产生直流分量;接地极入地电流引起的地电位变化会在交流侧绕组电流中产生直流分量,二者共 收集于网络,如有侵权请联系管理员删除

油浸电力变压器的构造讲解

油浸式电力变压器 一、油浸式电力变压器的结构 器身:铁心、绕组、绝缘结构、引线、分接开关 油箱:油箱本体、箱盖、箱壁、箱底、绝缘油、附件、放油阀门、油样活门、接 地螺栓、铭牌 冷却装置:散热器和冷却器 保护装置:储油柜油枕、油位表、防爆管安全气道、吸湿器( 呼吸器) 、温度计、净油器、气体继电器瓦斯继电器 出线装置:高压套管、低压套管 1 、铁芯 铁芯在电力变压器中是重要的组成部件之一。它由高导磁的硅钢片叠积和钢夹夹紧而成铁心具有两个方面的功能。 在原理上:铁心是构成变压器的磁路。它把一次电路的电能转化为磁能又把该磁 能转化为二次电路的电能,因此,铁心是能量传递的媒介体。 在结构上:它是构成变压器的骨架。在它的铁心柱上套上带有绝缘的线圈,并且牢固地对它们支撑和压紧。铁心必须一点接地。 2、绕组 绕组是变压器最基本的组成部分,绕组采用铜导线绕制,它与铁心合称电力变压器本体,是建立磁场和传输电能的电路部分。电力变压器绕组由高压绕组、低压绕组,高压引线低压引线等构成。 3、调压装置 变压器调压是在变压器的某一绕组上设置分接头,当变换分接头时就减少或增加了一部分线匝,使带有分接头的变压器绕组的匝数减少或增加,其他绕组的匝数没有改变,从而改变了变压器绕组的匝数比。绕组的匝数比改变了,电压比也相应改变,输出电压就改变,这样就达到了调整电压的目的。 ⑴有载分接开关:有载分接开关的额定电流必须和变压器额定电流相配合。切换开关需要定期检查,检查时应易于拆卸而不损坏变压器油的密封。开关仅应在 运行 5~6年之后或动作了 5 万次之后才需要检查。 ⑵无励磁分接开关:无励磁分接开关应能在停电情况下方便地进行分接位 置切换。无励磁分接开关应能在不吊芯(盖)的情况下方便地进行维护和检修, 还应带有外部的操动机构用于手动操作。 4、油箱 电压等级高的变压器油箱应装设压力释放装置,根据保护油箱和避免外部 穿越性短路电流引起误动的原则,确定合理的动作压力。 油箱顶部应带有斜坡,以便泄水和将气体积聚通向气体继电器。通向气体继电器 的管道应有 1.5%的坡度。气体继电器应装有防雨措施,并将采气管引至地面。 5、绝缘油: 绝缘油采用环烷基油,绝缘油应为IEC 规范IA 号油,其闪点不低于140℃。制造厂除供应满足变压器标准油面线的油量( 含首次安装损耗 ) 以外,另加10%

±1100kV直流换流变压器

±1100kV直流换流变压器 一、产品简介 ±1100kV特高压直流输电技术是一个全新的电压等级,也是目前世界输电技术的最高点,而且新疆电网已经以750kV交流电压等级和西北电网联网,若实现交直流并行输电,网侧电压将采用750kV,阀侧电压将达到±1100kV。此产品将依托国家电网公司准东送出±1100 kV 特高压直流输电工程开发研制。 ±1100kV直流系统拟采用每极双十二脉动换流器“550kV+550kV”串联的接线方案,如图1所示。额定直流电流:4750A。考虑投入备用冷却设备后、在当地最高环境温度下,直流系统的最大电流达到5000A。主回路考虑直流系统双极运行方式,1100kV直流额定输送功率 10450MW。 图1 “550kV+550kV”换流器接线方案 换流变压器电气接线与每个12 脉动阀组相连的有6台换流变压器,图1中的“换流变HY”和“换流变LY”各3台,换流变压器的阀

侧绕组采用星形连接,“换流变HD”和“换流变LD”各3台,阀侧绕组采用三角形连接。从高压端到低压端换流变压器阀侧绕组连接方式依次为星形接线-三角形接线-星形接线-三角形接线。 二、技术介绍 (一)产品技术特点 1、节能、环保、高效。 目前,我国电力电压等级最高的直流输电项目为±800kV特高压直流输变电工程,但新疆能源基地距离中东部用电负荷中心超过2400公里,若采用±800kV特高压直流输电技术,电力外送损耗可能超过10%,因此,±1100kV直流输电技术,是我国实现远距离大容量输电的重大战略举措,更加节能、环保、高效。 2、传输容量大,建设成本降低。 ±1100kV直流输电与±800kV直流输电、两个±500kV直流输电比较: 1)输送容量大幅提升。 2)占地面积小。 3)输电线路造价低, 输电用电缆与±800kV相近,比±800kV总体输送容量高,比两个±500kV输电线路造价少一半。 3、结构环保 ±1100kV直流换流变压器产品采用全密封结构,变压器油无渗漏的特点,对环境无污染,符合国家环保政策的要求。 (二)技术难点及解决方案 1、±1100kV换流变压器运输 ±1100kV换流变按两种运输方式考虑: 1) 线圈等组部件分散运输到现场,在换流站附件建设组装厂房,现场组装换流变压器。 2)“水路+公路”运输方式,长度13.0m、宽度5.2m、高度5.2m、最大运输重量480吨。

单相变压器的基本工作原理和结构

变压器是一种静止电器,它通过线圈间的电磁感应,将一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能. 3.1 变压器的基本工作原理和结构 3.2 单相变压器的空载运行 3.3 单相变压器的负载运行 3.4 变压器的参数测定 3.5 变压器的运行特性 隐形专家改编于2009-05

3.1 变压器的基本工作原理和结构 3.1.1 基本工作原理和分类 一、基本工作原理 变压器的主要部件是铁心和套在铁心上的两个绕组。两绕组只有磁耦合没电联系。在一 次绕组中加上交变电压,产生交链一、二次绕 组的交变磁通,在两绕组中分别感应电动势。 1 u 1 e 2 e 2u 1i 2 i Φ 1 U 2 U 1 u 2u L Z 1 2 12d Φe =-N dt d Φe =-N dt 只要(1)磁通有 变化量;(2)一、二次绕组的匝数不同,就能达到改变压的 目的。

二、分类 按用途分:电力变压器和电子变压器。 按绕组数目分:单绕组(自耦)变压器、双绕组变压器、三绕组变压器和多绕组变压器。 按相数分:单相变压器、三相变压器和多相变压器。 按铁心结构分:心式变压器、壳式变压器、环形变压器。 按工作频率分:低频(工频)与高频变压器

3.1.2基本结构 一、铁心 变压器的主磁路,为了提高导磁性能和减少铁损,用厚为 0.35-0.5mm、表面涂有绝缘漆的硅钢片叠成或卷绕而成。 二、绕组 变压器的电路,一般用绝缘铜线或铝线绕制而成。 三、胶心 胶心也可称骨架,用塑料压制而成,用来固定线圈。 四、固定夹 固定夹也可称牛夹,用铁板冲压而成,用来将变 压器固定在底板上。

换流变压器与交流系统的主变压器比较

换流变压器与交流系统的主变压器比较 超高压直流输电由于其特有的优点,越来越广范的得到应用。这些优点[1>包括:不须考虑稳定问题;线路故障恢复能力较强;调节作用利于交流系统的稳定;减少互联交流系统的短路容量;超过一定距离建设投资更经济等。我国目前已投运的超高压直流输电工程包括葛上直流、天广直流和三常直流等,在这些工程中所有的保护与控制系统都是国外进口设备。 换流变压器是直流输电系统中必不可少的重要设备。它可以提供相位差为30°的12脉波交流电压,降低交流侧谐波电流;作为交流系统和直流系统的电气隔离,提供阀的换相电抗;通过换流变压器可以在较大范围内调节交流电压,以使直流系统运行在较优的状态等。 换流变压器的投资在换流站中占有很大的比例,换流变压器的可靠安全运行是直流输电系统可靠安全运行的基础。因此对换流变压器提供完善的保护功能对直流输电系统的安全稳定可靠运行显得尤为重要。下面主要讨论换流变压器的特点、直流输电的各种运行工况对换流变压器保护的影响,并结合其特点提出相应的保护原理与方案。 1 换流变压器的特点以及对保护带来的影响

1.1 短路阻抗 直流输电中阀的换相过程实际上就是两相短路,为了将换向过程中的电流限制在一定范围内,换流变压器的短路阻抗要大于一般变压器。短路阻抗过大,会使换流变压器二次侧故障时短路电流较一般变压器小,因此保护配置与整定要在这方面予以考虑。 1.2 直流偏磁 当直流系统在使用大地回线的情况下,在一些运行工况下会有直流电流流入大地,如双极不平衡运行,单极大地回线方式等,使地电位发生变化,造成直流电流流入变压器原边绕组,使换流变压器发生直流偏磁,工作点偏移。如果此直流电流过大,会导致换流变压器铁心饱和,同时损耗和温升也将增加。因此,要配置相应的保护防止这种情况下对换流变压器造成的损坏。 1.3 谐波 由于换流器的非线性,在交流和直流系统中将出现谐波电压和电流。对于换流变压器,主要会流过特征谐波电流,即p*n 1次谐波电流(p为脉波数,n为任意正整数)。在运行中,谐波电流会使换流变压器损耗和温升增加,产生局部过热,发出高频噪声,还会使交流电网中的发电机和电容器过热,对通讯设备产生干扰。这些谐波电流应加以考虑,以免对保护装置造成影响。

4731.±800kV特高压换流站换流变高压电气试验

±800kV特高压换流站换流变高压电气试验 摘要:本文详细介绍了±800kV特高压换流站中换流变的高压电气试验。 关键词:±800kV特高压换流站、换流变、高压电气试验 1引言 向家坝—上海±800kV特高压直流示范工程是“十一五”国家电网规划建设的金沙江一期送电华东直流输电工程,工程的建设符合国家能源战略,是进一步落实国家“西部大开发”战略,实现国家电网西电东送总体规划目标,促进资源优化配置的一项重要举措。也是“十一五”期间扩大川电外送规模,满足华东、华中用电需要的一项工程。向家坝-上海特高压直流示范工程是世界直流输电发展史上的里程碑工程,也是我国特高压输电技术的开创性工程。 ±800kV奉贤换流站工程换流部分采用双极、每极两个十二脉动换流器串联接线,电压配置为“400kV+400kV”,双极共安装24台工作换流变(4个换流器单元,每极高、低端各1组),4台备用换流变(每极高、低端各备用1台),共28台。每极安装Yo-Y-12接线及Yo- -11接线的换流变各2组,每组换流变均由3台容量为297.1MVA的单相油浸式双绕组换流变压器组成,换流变压器采用BOX-IN的封闭安装形式,阀侧套管直接插入阀厅。 2换流变主要高压电气试验项目及方法 2.1 绕组连同套管的直流电阻测量 2.1.1 试验仪器:变压器直流电阻测试仪,测试电流40A。 2.1.2 试验接线: 2.1.3 试验步骤: 被测绕组 a. 检查试验接线。 变压器直流电阻测试仪 测试直流电阻接线图

b. 测量高压绕组在各分接位置的直流电阻。 c. 测量低压绕组直流电阻。 d. 记录数据同时记录变压器的上层油温。 2.1.4 数据分析: a. 相间的最大不平衡率小于2%。 b. 换算到同一温度下,与出厂值比较相应变化小于2%。 c. 最大不平衡率计算公式:(%)=(Rmax-Rmin)/Rave。 d. 温度换算公式:R1=(235+t1)R2/(235+t2) 2.1.5 安全注意事项: a. 测试导线应有足够的截面; b. 测量过程中不得操作变压器的分接开关; c. 测量时应认真记录绕组温度; d. 更换试验接线时,一定要先断开试验电源; e. 变压器本体及高、低压侧出线上禁止有人工作。 2.2 检查所有分接头的电压比 2.2.1 试验仪器:数字式变压器变比测试仪。 2.2.2 试验接线: 将变压器高低压绕组对应接入变比电桥的相应接线端子。 2.2.3 试验步骤: a. 检查试验接线。 b. 按变比测试仪的使用说明书正确操作。 c. 测量各分接位置的变比误差。 2.2.4 数据分析: 实测变比与制造厂铭牌数据相比无明显差别,且应符合电压比的规律;电压比的允许误差在额定分接头位置时为±5% 。 2.2.5 安全注意事项: a. 变压器高、低压侧测试线不能接反; b. 变压器变比测试仪应接地; c. 更换试验接线时,一定要先断开试验电源;

特高压直流输电换流阀短路保护原理及特性研究

特高压直流输电换流阀短路保护原理及特性研究 摘要:随着特高压直流输电(UHVDC)技术的发展,直流输电已经成为了远距离大 容量输电的主要模式,直流输电已得到了越来越广泛的应用。在大电网时代,直 流输电不仅成为交流输电的一种有力补充,而且成为了电力系统中最具有重要经 济和技术意义的环节之一,成为了国内电力科研工作者研究的重要方向。换流器 是高压直流输电系统中最为关键、复杂且昂贵的元件,其故障形式和机理、保护 配置和原理与交流系统有着很大的不同。 关键词:特高压;直流输电;换流阀;短路保护;原理;分析 1导言 特高压直流输电系统以其更远的输送距离,更大的输送功率,更大区域的非 同步互联,更低的功率损耗,灵活的功率调节,更低的线路造价等优势而被越来 越多的应用在电力传输领域。特高压直流输电换流阀的本体,作为关键设备,其 运行稳定性、安全性、可靠性是通过设计、制造、安装、调试的全过程质量控制 才能得以实现的。特高压直流输电换流阀的安装过程,是换流阀从图纸和零部件 完成到实体阀的最后关键阶段,需要对整个安装过程中影响特高压换流阀性能的 关键节点进行合理控制,才能彻底保证特高压换流阀的优良品质,实现更好的长 期稳定运行。 2阀短路保护(VSCP)检测原理 为了保护换流阀免受由于换流变压器压器直流侧短路造成的过应力破坏,特 高压直流输电系统中均设置了阀短路保护;该保护主要通过测量换流变压器压器阀侧电流(IVY,IVD)和直流极母线电流(IDC1/2P)和中性线电流(IDC1/2N),并计算出最大的换流变压器压器电流和最大的直流电流,正常运行时这2个值是平衡的。当 换流变压器压器阀侧电流幅值高于直流电流则可作为阀短路或其他相间短路的判据,在交流侧电流过大时,换流器被立即跳闸。 3特高压直流输电换流阀 特高压直流输电工程通常采用双极十二脉动换流器单元系统,电压等级在 ±800kV及以上,电流可以从4000A到最高6250A。该特高压双极直流输电系统包括2个完整的可独立输电的单极直流系统,即极1直流系统和极2直流系统。每 个完整的单极系统包含2个单极换流器单元,分别安装在整流换流站和逆变换流站。每个换流站内的单极换流器单元由2个12脉动阀组串联组成。一个阀厅仅 包含一个12脉动阀组。因此每个换流站共分四个独立阀厅,即极1高压阀厅、 极1低压阀厅、极2高压阀厅、极2低压阀厅。锡盟站换流阀设备由西安西电电 力系统有限公司自主制造,换流阀采用空气绝缘、水冷却的户内悬吊式双重阀结构。每个阀厅换流阀阀组由6个双重阀阀塔组成。根据电流流向不同,双重阀阀 塔分为2种结构,即电流上结构和电流下结构。阀侧星形接法的3相双重阀阀塔 是其中一种结构,阀侧三角形接法的3相双重阀阀塔是另一种结构。每个阀厅换 流阀阀组通过冷却水管、管母金具、光纤分别与换流阀冷却系统、换流变压器、 换流阀控制单元对应连接。在换流阀整体设计中,综合考虑了各种相关的复杂因素,如过电压与绝缘配合、阀电子电路单元抗电磁干扰、主回路电气件合理布局 和散热、换流阀的防火和抗震等要求、机械性能和电气性能要求、安装维护便捷 要求等,按特定装配工艺,将换流阀的各个组成部件通过标准化作业组装在一起,具有安装快捷,维护方便的特点,有效保证了换流阀和整个直流输电系统的稳定性、可靠性及安全性。

超高压直流系统中的换流变压器保护

编号:AQ-JS-02392 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 超高压直流系统中的换流变压 器保护 Converter transformer protection in UHVDC System

超高压直流系统中的换流变压器保 护 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 引言 超高压直流输电由于其特有的优点,越来越广范的得到应用。这些优点[1]包括:不须考虑稳定问题;线路故障恢复能力较强;调节作用利于交流系统的稳定;减少互联交流系统的短路容量;超过一定距离建设投资更经济等。我国目前已投运的超高压直流输电工程包括葛上直流、天广直流和三常直流等,在这些工程中所有的保护与控制系统都是国外进口设备。 换流变压器是直流输电系统中必不可少的重要设备。它可以提供相位差为30°的12脉波交流电压,降低交流侧谐波电流;作为交流系统和直流系统的电气隔离,提供阀的换相电抗;通过换流变压器可以在较大范围内调节交流电压,以使直流系统运行在最优的状

态等。 换流变压器的投资在换流站中占有很大的比例,换流变压器的可靠安全运行是直流输电系统可靠安全运行的基础。因此对换流变压器提供完善的保护功能对直流输电系统的安全稳定可靠运行显得尤为重要。下面主要讨论换流变压器的特点、直流输电的各种运行工况对换流变压器保护的影响,并结合其特点提出相应的保护原理与方案。 1换流变压器的特点以及对保护带来的影响 1.1短路阻抗 直流输电中阀的换相过程实际上就是两相短路,为了将换向过程中的电流限制在一定范围内,换流变压器的短路阻抗要大于一般变压器。短路阻抗过大,会使换流变压器二次侧故障时短路电流较一般变压器小,因此保护配置与整定要在这方面予以考虑。 1.2直流偏磁 当直流系统在使用大地回线的情况下,在一些运行工况下会有直流电流流入大地,如双极不平衡运行,单极大地回线方式等,使

换流变压器与电力变压器的比较分析示范文本

换流变压器与电力变压器的比较分析示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

换流变压器与电力变压器的比较分析示 范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 换流变压器是超高压直流输电工程中至关重要的关键 设备,是交、直流输电系统中的换流、逆变两端接口的核 心设备。它的投入和安全运行是工程取得发电效益的关键 和重要保证。换流变压器的关键作用,要求其具有高可靠 性和高技术性能。因为有交、直流电场、磁场的共同作 用,所以换流变压器的结构特殊、复杂,关键技术高难, 对制造环境和加工质量要求严格。开展换流变压器设计制 造关键技术的研究、攻克和制造条件改造工作,不断提高 试验手段,将有利于全面掌握换流变压器的设计制造技 术,实现换流变压器国产化,填补国内空白。同时可促进 国内交、直流输电设备设计制造水平的进一步提高和发

展,为特高压交、直流输变电设备的发展打下基础,做好前期准备,实现换流变压器国产化。 换流变压器(Converter Transformer) 接在换流桥与交流系统之间的电力变压器。采用换流变压器实现换流桥与交流母线的连接,并为换流桥提供一个中性点不接地的三相换相电压。换流变压器与换流桥是构成换流单元的主体。换流变压器在直流输电系统中的作用有:?传送电力;?把交流系统电压变换到换流器所需的换相电压;?利用变压器绕组的不同接法,为串接的两个换流器提供两组幅值相等、相位相差30°(基波电角度)的三相对称的换相电压以实现十二脉动换流;?将直流部分与交流系统相互绝缘隔离,以免交流系统中性点接地和直流部分中性点接地造成直接短接,使得换相无法进行;?换流变压器的漏抗可起到限制故障电流的作用;?对沿着交流线路侵入到换流站的

±800kV换流变压器关键技术研究

±800kV换流变压器关键技术研究 可行性报告 一、项目提出的目的及意义 在世界范围内,随着电力工业飞速发展,电力负荷的急剧增长,大型能源基地的建设和输电规模的扩大,电力和电工行业技术水平的提高,推动了特高压输变电技术的发展。 我国一次能源与生产力分布不均衡的格局决定了西电东送、北煤南运的能源流向。水能资源集中于西部和西南部地区,可开发容量占全国的82.9%;煤炭资源集中于华北和西北部地区,占全国的80%。西部地区的经济总量占全国18%,电力消费占22%;中部和东部沿海地区经济总量占全国82%,电力消费占78%。我国经济和社会的快速发展以及用电需求的迅速增长,使得电力供应和煤炭运输日趋紧张,电网的输电压力越来越大,实现电力资源在较大范围优化配置的任务十分紧迫。 当前电网建设面临的困难是:电力消费、装机成倍增长;500kV网络框架已相当密集,短路电流问题十分突出;站址、输电走廊越来越紧张;当前的联网方式、联网规模、输送能力都难以满足大电源集中开发实现远距离大容量输送的要求,更高一级电压输电技术的应用迫在眉睫。特高压输电工程的建设可以节省输电通道、减少占地,降低送电损耗,增加送电容量。大力推进西电东送、南北互济,实现全国联网,建立国家级电力市场,实现更大范围的资源优化配置。 发展特高压已成为我国一项重大技术装备政策,我国现已积累了多项±500kV直流输电工程的设计、建设和运行经验。750kV交流输变电示范工程也正在建设中。急需在±800kV直流特高压输电技术上有所突

破。作为国内仅有两家掌握±500kV直流输电工程设计的企业,特变电工沈变公司应义不容辞承担起这一攻关任务,因此,公司根据国家电网建设的需要,积极开展了特高压直流±800kV换流变压器基础研究和项目攻关,通过项目实施,最终形成适合特高压输变电设备的专有技术,拥有自主知识产权。同时,利用这些技术研制出合格的产品,实现特高压输变电设备国产化,产品推向国内市场,降低电网建设成本,进一步提升我国输变电制造业的整体水平。因此,该项目提出目的和意义重大。 二、与项目相关的国内外发展概况及市场需求分析 1. 国外发展概况 当今世界,各个国家电网的规模都向越来越大的方向发展,大电网、长距离输电、供电早已成为国际趋势。苏联、日本、意大利和美国等曾先后建成交流特高压输电工程及试验工程。前苏联从上世纪70年代末开始1150千伏特高压工程的建设,研制了变压器、电抗器、断路器等全套敞开式特高压设备,先后建成特高压线路2462公里,其中两段共900公里长的输电线路及3个特高压变电站从1985起相继投入商业运行,累计全压运行5年时间。日本自1973年开始研究特高压输电技术,从1990年至今共建成426公里同塔双回特高压输电线路,同时成功研制了全套1000千伏气体绝缘全封闭组合电器,在新榛名试验站累计进行全压考核近5年,运行情况良好。总体上看,经过30多年的研发,特别是国际上几个特高压工程的建设,特高压设备通过了型式试验,并投入试验或商业运行,经受了实际运行考验或长时间带电考核,解决了特高压设备的关键技术问题。 一段时期以来,国内对特高压电网存在巨大争议的一个重要原因就是前苏联和日本的特高压电网并未进入大规模的商业运行甚至降压运行。针对质疑,国际大电网会议秘书长科瓦尔曾说过“日本和前苏联的

超高压直流系统中的换流变压器保护(新编版)

超高压直流系统中的换流变压器保护(新编版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0608

超高压直流系统中的换流变压器保护(新 编版) 引言 超高压直流输电由于其特有的优点,越来越广范的得到应用。这些优点[1]包括:不须考虑稳定问题;线路故障恢复能力较强;调节作用利于交流系统的稳定;减少互联交流系统的短路容量;超过一定距离建设投资更经济等。我国目前已投运的超高压直流输电工程包括葛上直流、天广直流和三常直流等,在这些工程中所有的保护与控制系统都是国外进口设备。 换流变压器是直流输电系统中必不可少的重要设备。它可以提供相位差为30°的12脉波交流电压,降低交流侧谐波电流;作为交流系统和直流系统的电气隔离,提供阀的换相电抗;通过换流变压器可以在较大范围内调节交流电压,以使直流系统运行在最优的状

态等。 换流变压器的投资在换流站中占有很大的比例,换流变压器的可靠安全运行是直流输电系统可靠安全运行的基础。因此对换流变压器提供完善的保护功能对直流输电系统的安全稳定可靠运行显得尤为重要。下面主要讨论换流变压器的特点、直流输电的各种运行工况对换流变压器保护的影响,并结合其特点提出相应的保护原理与方案。 1换流变压器的特点以及对保护带来的影响 1.1短路阻抗 直流输电中阀的换相过程实际上就是两相短路,为了将换向过程中的电流限制在一定范围内,换流变压器的短路阻抗要大于一般变压器。短路阻抗过大,会使换流变压器二次侧故障时短路电流较一般变压器小,因此保护配置与整定要在这方面予以考虑。 1.2直流偏磁 当直流系统在使用大地回线的情况下,在一些运行工况下会有直流电流流入大地,如双极不平衡运行,单极大地回线方式等,使

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器; 按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。

1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。 2.铁心形式 铁心是变压器的主磁路,电力变压器的铁心主要采用心式结构 。 二、绕组 1.绕组的材料 铜或铝导线包绕绝缘纸以后绕制而成。 2.形式

油浸式变压器

油浸式变压器 摘要 油浸式变压器一、产品选用指南 产品概述 配电变压器为工矿企业与民用建筑供配电系统中的重要设备之一,它将10(6)kV或35kV网络电压降至用户使用的230/400V 母线电压。此类产品适用于交流50(60)Hz,三相最大额定容量2500kVA(单相最大额定容量833kV A,一般不推荐使用单相变压器),可在户内(外)使用,容量在315kV A 及以下时可安装在杆上,环境温度不高于40℃,不低于-25℃,最高日平均温度30℃,最高年平均温度20℃,相对湿度不超过90%(环境温度25℃),海拔高度不超过1000m。若与上述使用条件不符时,应按GB6450-86的有关规定,作适当的定额调整。 1000kV A 及以上油浸式变压器,须装设户外式信号温度计,并可接远方信号。800kVA 及以上油浸式变压器应装气体继电器和压力保护装置,800kV A 以下油浸式变压器根据使用要求,与制造厂协商,也可装设气体继电器。干式变压器应按制造厂规定,装设温度测量装置,一般为630kV A 及以上变压器装设。 产品分类 油浸式变压器按外壳型式 1非封闭型油浸式变压器:主要有S8、S9、S10等系列产品,在工矿企业、农业和民用建筑中广泛使用。 2封闭型油浸式变压器:主要有S9、S9-M、S10-M 等系列产品,多用于石油、化工行业中多油污、多化学物质的场所。 3) 密封型油浸式变压器:主要有BS9、S9- 、S10- 、S11-MR、SH、SH12-M等系列产品,可做工矿企业、农业、民用建筑等各种场所配电之用。 工程设计及产品选用要点 1 根据负荷性质选择变压器 1) 有大量一级或二级负荷时,宜装设二台及以上变压器,当其中任一台变压器断开时,其余变压器的容量能满足一级及二级负荷的用电。一、二级负荷尽可能集中,不宜太分散。 2) 季节性负荷容量较大时,宜装设专用变压器。如大型民用建筑中的空调冷冻机负荷、采暖用电热负荷等。 3) 集中负荷较大时,宜装设专用变压器。如大型加热设备、大型X 光机、电弧炼炉等。 4) 当照明负荷较大或动力和照明采用共用变压器严重影响照明质量及灯泡寿命时,可设照明专用变压器。一般情况下,动力与照明共用变压器。 2 根据使用环境选择变压器 1) 在正常介质条件下,可选用油浸式变压器或干式变压器,如工矿企业、农业的独立或附建变电所、小区独立变电所等。可供选择的变压器有S8、S9、S10、SC(B)9、SC(B)10 等。 2根据用电负荷选择变压器 1) 配电变压器的容量,应综合各种用电设备的设施容量,求出计算负荷(一般不计消防负荷),补偿后的视在容量是选择变压器容量和台数的依据。一般变压器的负荷率85%左右。此法较简便,可作估算容量之用。 2) GB/T17468-1998《电力变压器选用导则》中,推荐配电变压器的容量选择,应根据GB/T15164-94《油浸式电力变压器负载导则》或GB/T17211-1998《干式电力变压器负载导则》及计算负荷来确定其容量。上述二导则提供了计算机程序和正常周期负载图来确定配电变压器容量。 二、施工、安装要点 配电变压器为变电所的重要组件,油浸式变压器一般安装在单独的变压器室内。 依靠油作冷却介质,如油浸自冷,油浸风冷,油浸水冷及强迫油循环等。一般升压站的主变都是油浸式的,变比20KV/500KV,或20KV/220KV,一般发电厂用于带动带自身负载(比如磨煤机,引风机,送风机、循环水泵等)的厂用变压器也是油浸式变压器,它的变比是20KV/6KV。 油浸式变压器采用全充油的密封型。波纹油箱壳体以自身弹性适应油的膨胀是永久性密封的油箱,油浸式变压器已被广泛地应用在各配电设备中。 油浸式变压器性能特点: a、油浸式变压器低压绕组除小容量采用铜导线以外,一般都采用铜箔绕抽的圆筒式结构;高压绕组采用多层圆筒式结构,使之绕组的安匝分布平衡,漏磁小,机械强度高,抗短路能力强。 b、铁心和绕组各自采用了紧固措施,器身高、低压引线等紧固部分都带自锁防松螺母,采用了不吊心结构,能承受运输的颠震。

相关主题
文本预览
相关文档 最新文档