当前位置:文档之家› java写定时任务 定时任务、定时器详细示例

java写定时任务 定时任务、定时器详细示例

java写定时任务 定时任务、定时器详细示例
java写定时任务 定时任务、定时器详细示例

第5章习题解答

第5章思考题及习题5参考答案 一、填空 1.如果采用晶振的频率为3MHz,定时器/计数器T x(x=0,1)工作在方式0、1、2下,其方式0的最大定时时间为,方式1的最大定时时间为,方式2的最大定时时间为。 答:32.768ms,262.144ms,1024μs 2.定时器/计数器用作计数器模式时,外部输入的计数脉冲的最高频率为系统时钟频率的。 答:1/24 3.定时器/计数器用作定时器模式时,其计数脉冲由提供,定时时间与有关。 答:系统时钟信号12分频后,定时器初值 4.定时器/计数器T1测量某正单脉冲的宽度,采用方式可得到最大量程?若时钟频率为6MHz,求允许测量的最大脉冲宽度为。 答:方式1定时,131.072ms。 5. 定时器T2 有3种工作方式:、和,可通过对寄存器中的相关位进行软件设置来选择。 答:捕捉,重新装载(增计数或减计数),波特率发生器,T2CON 6. AT89S52单片机的晶振为6MHz,若利用定时器T1的方式1定时2ms,则(TH1)= ,(TL1)= 。 答:FCH,18H。 二、单选 1.定时器T0工作在方式3时,定时器T1有种工作方式。 A.1种 B.2种 C.3种D.4种 答:C 2. 定时器T0、T1工作于方式1时,其计数器为位。 A.8位 B.16位 C.14位 D.13位 答:B 3. 定时器T0、T1的GATE x=1时,其计数器是否计数的条件。

A. 仅取决于TR x状态 B. 仅取决于GATE位状态 C. 是由TR x和INT x两个条件来共同控制 D. 仅取决于INT x的状态 答:C 4. 定时器T2工作在自动重装载方式时,其计数器为位。 A.8位 B. 13位 C.14位 D. 16位 答:D 5. 要想测量INT0引脚上的正单脉冲的宽度,特殊功能寄存器TMOD的内容应为。 A.87H B. 09H C.80H D. 00H 答:B 三、判断对错 1.下列关于T0、T1的哪些说法是正确的。 A.特殊功能寄存器SCON,与定时器/计数器的控制无关。对 B.特殊功能寄存器TCON,与定时器/计数器的控制无关。错 C.特殊功能寄存器IE,与定时器/计数器的控制无关。错 D.特殊功能寄存器TMOD,与定时器/计数器的控制无关。错 2.定时器T0、T1对外部脉冲进行计数时,要求输入的计数脉冲的高电平或低电平的持 续时间不小于1个机器周期。特殊功能寄存器SCON与定时器/计数器的控制无关。错 3.定时器T0、T1对外部引脚上的脉冲进行计数时,要求输入的计数脉冲的高电平和低电平的持续时间均不小于2个机器周期。对 四、简答 1.定时器/计数器T1、T0的工作方式2有什么特点?适用于哪些应用场合? 答:方式2为初值自动装入的8位定时器/计数器,克服了在循环定时或循环计数应用时就存在用指令反复装入计数初值影响定时精度的问题。 2.TH x与TL x(x=0,1)是普通寄存器还是计数器?其内容可以随时用指令更改吗?更改后的新值是立即刷新还是等当前计数器计满后才能刷新? 答:THx与TLx(x = 0,1)是计数器,其内容可以随时用指令更改,但是更改后的新值要等当前计数器计满后才能刷新。 3.如果系统的晶振的频率为24MHz,定时器/计数器工作在方式0、1、2下,其最大定时时间各为多少? 答:晶振的频率为24MHz, 机器周期为0.5μs。

Spring提供的三种定时任务机制及其比较

Spring提供的三种定时任务机制及其比较 定时任务的需求在众多应用系统中广泛存在,在Spring中,我们可以使用三种不同的定时机制,下面一一描述并加以比较 1. 基于Quartz的定时机制

下面详细解释这个类图中涉及的关键类及其使用场景 1.1. SchedulerFactoryBean 这是Spring中基于Quartz的定时机制入口,只要Spring容器装载了这个类,Quartz定时机制就会启动,并加载定义在这个类中的所有trigger Spring配置范例: [xhtml]view plaincopy 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 1.2. CronTriggerBean 实现了Trigger接口,基于Cron表达式的触发器 这种触发器的好处是表达式与linux下的crontab一致,能够满足非常复杂的定时需求,也容易配置

Spring配置范例: [xhtml]view plaincopy 1. 2. 3. 4. 1.3. SimpleTriggerBean 该类也实现了Trigger接口,基于配置的定时调度 这个触发器的优点在于很容易配置一个简单的定时调度策略 Spring配置范例: [xhtml]view plaincopy 1. 2. 3. 4. 5. 6.3600000 7. 8. 9.86400000 10. 11.

作业习题 中断及定时器

中断及定时器、串行口习题 一、填空 1.MCS-51的Po口作为输出端口时,每位能驱动个SL型TTL负载. 2.MCS-51有个并行I\O口,其中P0~P3是准双向口,所以由输出转输入时必须先 写入 3.设计8031系统时,_ 口不能用作一般I\O口. 4.MCS-51串行接口有4种工作方式,这可在初始化程序中用软件填写特殊功能寄存 器__ _加以选择. 5.当使用慢速外设时,最佳的传输方式是。 6.当定时器To工作在方式时,要占定时器T1的TR1和TF1_两个控制位. 7.MCS-51有个中断源,有2 个中断优先级,优先级由软件填写特殊功能寄存器加以选择.. 8.用串口扩并口时,串行接口工作方式应选为方式。 9.在串行通信中,有数据传送方向、、三种方式. 10.外部中断入口地址为_ 。 二、判断 1.MCS-51的5个中断源优先级相同。() 2.要进行多机通信,MCS-51串行接口的工作方式应为方式1。() 3.MCS-51上电复位时,SBUF=00H。()。 4.MCS-51有3个中断源,优先级由软件填写特殊功能寄存器IP加以选择.. () 5.用串口扩并口时,串行接口工作方式应选为方式1. () 6.外部中断INTO 入口地址为_0013H() 7.MCS-51外部中断0的入口地址是0003H。(). 8.TMOD中的GATE=1时,表示由两个信号控制定时器的启停。()。 9.使用8751且=1时,仍可外扩64KB的程序存储器。() 10.PC存放的是当前执行的指令。() 11.MCS-51的特殊功能寄存器分布在60H~80H地址范围内。() 12.MCS-51有4个并行I\O口,其中P0~P3是准双向口,所以由输出转输入时必须先写入"0"() 三、选择 1.在中断服务程序中,至少应有一条( ) (A)传送指令(B)转移指令(C)加法指法(D)中断返回指令 2.要使MCS-51能够响应定时器T1中断、串行接口中断,它的中断允许寄存器IE的内容应是() (A)98H (B)84H (C)42 (D)22H 3.D MCS-51在响应中断时,下列哪种操作不会发生( ). (A)保护现场(B)保护PC (C)找到中断入口若悬河(D)保护PC转入中断入口 4.用MCS-51串行接口扩展并行I\O口时,串行接口工作方式应选择( ) (A)方式0 (B)方式1 (C)方式2 (D)方式3 5.MCS-51有中断源() (A)5个(B)2个(C)3个(D)6个 6.MCS-51响应中断时,下面哪一个条件不是必须的() (A)当前指令执行完毕(B)中断是开放的确 (C)没有同级或高级中断服务须(D)必须有RET1指令 7.使用定时器T1时,有几种工作模式() (A)1种(B)2种(C)3种(D)4种 8.计算机在使用中断方式与外界交换信息时,保护现场的工作方式应该是( ) (A)由CPU自动完成(B)在中断响应中完成功之路 (C)应由中断服务程序完成(D)在主程序中完成 9.下面哪一种传送方式适用于处理外部事件( ) (A)DMA (B)无条件传递进(C)中断(D)条件传递 四、编程 1. 1. 8225A控制字地址为300FH,请按:A口方式0输入,B口方式1输出,C口高位输出,C口低位输入,确定8225A控制字并编初始化程序. 2. 2. 编定一个软件延时1S和1min的子程序.设fosc=6Hz,则一个机器周期1μs。

AVR定时器中断初值计算方法

AVR定时器中断初值计算方法 使用芯片ATMega16外部晶振 定时器1(16位定时器)寄存器TCCR1B=0x04设定256预分频要利用定时器定时1秒 1,4000000/256=15625说明定时器每当1/15625秒就会触发一次中断 2,65535-15625=49910计算出要累加多少次才能在1秒后出发定时器1的溢出中断 3,49910<==>C2F6将计算后的值换算成16进制 4,TCNT1H=0xC2;对寄存器赋值 TCNT1L=0xF6; ================================================= 例如用16位定时器TIMER1,4MHZ晶振,256分频,100ms定时,如何求得初值赋给TCNT1 65536-(4M/256)*= 其中,4M是晶体频率,是定时时长单位秒。 对于8位的定时器 T=(2^8-计数初值)*晶振周期*分频数=(2^8-计数初值)/晶振频率*分频数计数初值=2^8-T/晶振周期/分频数=2^8-T*晶振频率/分频数

因为AVR一指令一周期 IARForAVR精确延时 C语言中,想使用精确的延时程序并不容易。IAR中有这样的一个函数__delay_cycles(),该函数在头文件中定义,函数的作用就是延时N个指令周期。根据这个函数就可以实现精确的延时函数了(但不能做到100%精确度)。 实现的方法: 建立一个的头文件: #ifndef__IAR_DELAY_H #define__IAR_DELAY_H #include<> #defineXTAL8//可定义为你所用的晶振频率(单位Mhz) #definedelay_us(x)__delay_cycles((unsignedlong)(x*XTAL)) #definedelay_ms(x)__delay_cycles((unsignedlong)(x*XTAL*1000)) #definedelay_s(x)__delay_cycles((unsignedlong)(x*XTAL*1000000 )) #endif

单片机定时器习题

单片机定时器/计数器、中断和串行口习题 一、填空题 1、若要启动定时器T0开始计数,则应将TR0的值设置为 1 。 2、定时器T1工作在方式0时,其定时时间为(8192-定时器初值)*2us 。方式1时定时时间又为(65536-定时器初值)*2us 。 3、串行通信有异步通信和同步通信两种基本通讯方式。 4、波特率是指每秒钟传递信息的位数。 5、如果要将现有的波特率加倍,可使用指令 MOV PCON,#80H 。 6、当串行口工作在方式1时,一帧信息共有10位,即起始位、8个数据位、停止位。 7、串行口工作在方式2时的波特率为 fosc/32或fosc/64 。 8、外部中断1的程序入口地址是 0013H 。 二、选择题 1、若要采用定时器0,方式1,如何设置TMOD__B__ D. 11H 2、单片机采用方式0时是13位计数器,它的最大定时时间是多少_B__ 3、以下哪项不是中断的特点 C A.分时操作 B.实时处理 C.在线编程 D.故障处理 4、外部中断响应时间至少需要__A个机器周期。 .2 C 5、通过串口发送和接受数据时,在程序中使用__A___指令。 BMOVX 6、以下哪个是中断优先级寄存器__B 7、串行口中断的程序入口地址是 C 。 A 0003H B 001BH C 0023H D 000BH 三、判断题 1、8051的两个定时器T0和T1都是16位的计数器。(对) 2、单片机的计数器最高检测频率为振荡频率的1/12。(错) 3、定时/计数器的方式2具有自动装入初值的功能。(对) 4、引起中断的原因或发出中断申请的来源称为中断源。(对) 5、中断可使CPU和外设同时工作。(对) 6、定时器的特殊功能寄存器TMOD是用作中断溢出标志,并控制定时计数器的启动和停止。(错) 7、定时器控制寄存器TCON可以位寻址。(对) 8、MCS-51系列单片机的5个中断源都是可屏蔽中断。(对) 四、综合题

51单片机定时器初值的计算

51单片机定时器初值的计算 一。10MS定时器初值的计算: 1.晶振12M 12MHz除12为1MHz,也就是说一秒=1000000次机器周期。10ms=10000次机器周期。65536-10000=55536(d8f0) TH0=0xd8,TL0=0xf0 2.晶振11.0592M 11.0592MHz除12为921600Hz,就是一秒921600次机器周期,10ms=9216次机器周期。 65536-9216=56320(dc00) TH0=0xdc,TL0=0x00 二。50MS定时器初值的计算: 1.晶振12M 12MHz除12为1MHz,也就是说一秒=1000000次机器周期。50ms=50000次机器周期。65536-50000=15536(3cb0) TH0=0x3c,TL0=0xb0 2.晶振11.0592M 11.0592MHz除12为921600Hz,就是一秒921600次机器周期,50ms=46080次机器周期。 65536-46080=19456(4c00) TH0=0x4c,TL0=0x00 三。使用说明 以12M晶振为例:每秒钟可以执行1000000次机器周期个机器周期。而T 每次溢出 最多65536 个机器周期。我们尽量应该让溢出中断的次数最少(如50ms),这样对主程序的干扰也就最小。开发的时候可能会根据需要更换不同频率的晶振(比如c51单片机,用11.0592M的晶振,很适合产生串

口时钟,而12M晶振很方便计算定时器的时间),使用插接式比较方便。 51单片机12M和11.0592M晶振定时器初值计算 2011-01-04 22:25 at89s52,晶振频率12m 其程序如下: 引用代码:#include #include void timer0_init() { TMOD=0x01;//方式1 TL0=0xb0; TH0=0x3c; TR0=1; ET0=1; } void timer0_ISR(void) interrupt 1 { TL0=0xb0; TH0=0x3c;//50ms中断一次 single++; if(single==20) { kk++; single=0; } } void main() { int kk=0;//计数器 int single=0; timer0_init(); } TL0=0xb0; TH0=0x3c; 这两个是怎么算出来得

Java定时任务ScheduledThreadPoolExecutor

Timer计时器有管理任务延迟执行("如1000ms后执行任务")以及周期性执行("如每500ms执行一次该任务")。但是,Timer存在一些缺陷,因此你应该考虑使用ScheduledThreadPoolExecutor作为代替品,Timer对调度的支持是基于绝对时间,而不是相对时间的,由此任务对系统时钟的改变是敏感的;ScheduledThreadExecutor只支持相对时间。 Timer的另一个问题在于,如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以TimerTask抛出的未检查的异常会终止timer 线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被安排但尚未执行的TimerTask永远不会再执行了,新的任务也不能被调度了。 例子: packagecom.concurrent.basic; importjava.util.Timer; import java.util.TimerTask; public class TimerTest { private Timer timer = new Timer(); // 启动计时器 public void lanuchTimer() { timer.schedule(new TimerTask() { public void run() { throw new RuntimeException(); } }, 1000 * 3, 500); } // 向计时器添加一个任务 public void addOneTask() { timer.schedule(new TimerTask() { public void run() { System.out.println("hello world"); } }, 1000 * 1, 1000 * 5); }

单片机第5章习题答案

第5章习题答案 1.8051定时器/计数器有哪几种工作模式?各有什么特点? 答:8051定时器/计数器有0,1,2,3四种工作模式。模式0为13位1定时器/计数器,模式1为16位1定时器/计数器,模式2为自动赋初值的8位定时器/计数器,模式3可以增加一个8位定时器(T1没有模式3)。 2.8051定时器作定时和计数时,其计数脉冲分别由谁提供? 答:8051定时器作定时器时,输入的记数脉冲是由晶体振荡器的输出经12分频后得到的,所以定时器可看作是对单片机机器周期的计数器。8051定时器作计数器时,则对外部事件进行计数。 3.8051定时器的门控信号GATE为1时,定时器如何启动? 答:8051定时器的门控信号GATE为1时,只有INT0(或INT1)引脚为高电平且TR0(或TR1)置1时,相应的T0或T1才能选通工作。 4.定时器/计数器0已预置为156,且选定用于模式2的计数方式,现在T0引脚上输入周期为1ms的脉冲,问: (1) 此时定时器/计数器0的实际用途是什么? (2) 在什么情况下,定时器/计数器0溢出? 答:(1)此时定时器/计数器0的实际用途是0.1S脉冲信号发生器。 (2)当T0每记数100次后定时器/计数器0溢出。 5.设f osc=12MHz,定时器0的初始化程序和中断服务程序如下: MAIN: MOV TH0, #9DH MOV TL0, #0D0H MOV TMOD, #01H SETB TR0 … 中断服务程序: MOV TH0, #9DH MOV TL0, #0D0H … RETI 问:(1) 该定时器工作于什么方式? (2) 相应的定时时间或计数值是多少? 答:(1)该定时器以模式1工作于定时方式。 (2)相应的定时时间为25.136ms. 6.8051单片机的f osc=6MHz,如果要求定时时间分别位0.1ms和5ms,当T0工作在模式0、模式1和模式2时,分别求出定时器的初值。 答:(1)定时时间分别位0.1ms时:模式0初值为8142、模式1初值为65486,模式2初值206。

Quartz+spring定时器实例用

Spring+Quartz定时器例子如下: 1. javabean类 在Test.QuartzJob中 1.package Test; 2. 3.public class QuartzJob { 4.public void work() 5. { 6. System.out.println("Quartz的任务调度!!!"); 7. } 8. } 1. 2. 7. 8. 9. 10. 11. 13. 14. 15. 16. 17. 18. 19.work 20. 21. 22. 23. 25. 26.

定时器定时时间的计算(SystemCoreClock与OS_TICKS_PER_SEC的关系)

定时器定时时间的计算(SystemCoreClock与OS_TICKS_PER_SEC的关系) 定时器定时时间的计算 xcj 2015/06/03 09:23 假设定时器的时钟频率为f,f已知。那么定时器每计数一次所用时间为1/f。1/f代表了定时器的定时的时间精度(或最小计时单位)。 往计数器写的初值为Ticks,就是经过Ticks个周期后,定时器值变为0,定时时间到了。 如果我们要定时的时间为T,那么计算公式为: T = ticks * (1/f) (1) 整理后可得 ticks = f * T (2) 举个例子,假如定时器的时钟为SystemCoreClock,要定时1mS。 那么 ticks = SystemCoreClock * 1mS =SystemCoreClock * 1 * 10^(-3)=SystemCoreClock/1000 换个思路,如果已知定时器的时钟频率为f,要用定时器产生一个频率为f1的定时中断(T=1/f1)。根据公式(2)有 ticks = f /f1 (3) 上面的式子中 f1

单片机定时器习题

单片机定时器/计数器、中断和串行 口习题 一、填空题 1、若要启动定时器T0开始计数,则应将TR0的值 设置为 1 。 2、定时器T1工作在方式0时,其定时时间为 (8192-定时器初值)*2us 。方式1时定时时间又 为(65536-定时器初值)*2us 。 3、串行通信有异步通信和同步通信两 种基本通讯方式。 4、波特率是指每秒钟传递信息的位数。 5、如果要将现有的波特率加倍,可使用指令 MOV PCON,#80H 。 6、当串行口工作在方式1时,一帧信息共有10位, 即起始位、8个数据位、停止位。 7、串行口工作在方式2时的波特率为 fosc/32或 fosc/64 。 8、外部中断1的程序入口地址是 0013H 。 二、选择题 1、若要采用定时器0,方式1,如何设置TMOD__B__ A.00H B.01H C.10H D. 11H 2、单片机采用方式0时是13位计数器,它的最大

定时时间是多少?_B__ A.81.92ms B.8.192ms C.65.536ms D.6.5536ms 3、以下哪项不是中断的特点? C A.分时操作 B.实时处理 C.在线编程 D.故障处理 4、外部中断响应时间至少需要__A个机器周期。 A.3 B.2 C.4 D.8 5、通过串口发送和接受数据时,在程序中使用__A___ 指令。 A.MOV BMOVX C.MOVC D.SWAP 6、以下哪个是中断优先级寄存器?__B A.IE B.IP C.TCON D.SCON 7、串行口中断的程序入口地址是 C 。 A 0003H B 001BH C 0023H D 000BH 三、判断题 1、8051的两个定时器T0和T1都是16位的计数器。 (对) 2、单片机的计数器最高检测频率为振荡频率的 1/12。(错) 3、定时/计数器的方式2具有自动装入初值的功能。 (对) 4、引起中断的原因或发出中断申请的来源称为中断 源。(对) 5、中断可使CPU和外设同时工作。(对) 6、定时器的特殊功能寄存器TMOD是用作中断溢出 标志,并控制定时计数器的启动和停止。(错) 7、定时器控制寄存器TCON可以位寻址。(对) 8、MCS-51系列单片机的5个中断源都是可屏蔽中断。

Java每天定时执行任务

Java每天定时执行任务 java定时任务,每天定时执行任务。以下是这个例子的全部代码。 public class TimerManager { //时间间隔 private static final long PERIOD_DAY = 24 * 60 * 60 * 1000; public TimerManager() { Calendar calendar = Calendar.getInstance(); /*** 定制每日2:00执行方法***/ calendar.set(Calendar.HOUR_OF_DAY, 2); calendar.set(Calendar.MINUTE, 0); calendar.set(Calendar.SECOND, 0); Date date=calendar.getTime(); //第一次执行定时任务的时间 //如果第一次执行定时任务的时间小于当前的时间 //此时要在第一次执行定时任务的时间加一天,以便此任务在下个时间点执行。如果不加一天,任务会立即执行。 if (date.before(new Date())) { date = this.addDay(date, 1); } Timer timer = new Timer(); NFDFlightDataTimerT ask task = new NFDFlightDataTimerTask(); //安排指定的任务在指定的时间开始进行重复的固定延迟执行。 timer.schedule(task,date,PERIOD_DAY); } // 增加或减少天数 public Date addDay(Date date, int num) { Calendar startDT = Calendar.getInstance(); startDT.setTime(date); startDT.add(Calendar.DAY_OF_MONTH, num); return startDT.getTime(); }

8 STC15F2K60S2单片机的定时器计数器 例题

第8章STC15F2K60S2单片机的定时/计数器 例题 例8.1用T1方式0实现定时,在P1.0引脚输出周期为10mS的方波。 解:根据题意,采用T1方式0进行定时,因此,(TMOD)=00H。 因为方波周期是10mS,因此T1的定时时间应为5mS,每5mS时间到就对P1.0取反,就可实现在P1.0引脚输出周期为10mS的方波。系统采用12M晶振,分频系数为12,即定时脉钟周期为1μS,则T1的初值为: X = M -计数值= 65536 - 5000 = = 60536 =EC78H 即:TH1 = ECH,TL1 = 78H。 (1)查询方式实现: ORG 0000H MOV TMOD,#00H ;设T1为方式0定时模式 MOV TH1,#0ECH ;置5mS定时的初值 MOV TL1,#78H SETB TR1 ;启动T1 Check_TF1: JBC TF1,Timer1_Overflow ;查询计数溢出 SJMP Check_TF1 ;未到5mS继续计数 Timer1_Overflow: CPL P1.0 ;对P1.0取反输出 SJMP Check_TF1 ;未到1s继续循环 END (2)中断方式实现: ORG 0000H LJMP MAIN ;上电复位后,转MAIN ORG 001BH LJMP Timer1_ISR ;T1中断响应后,转Timer1_ISR ORG 0100H MAIN: MOV TMOD,#00H ;设T1为方式0定时模式 MOV TH1,#0ECH ;置5mS定时的初值 MOV TL1,#78H SETB ET1 154

SETB EA ;开放中断 SETB TR1 ;启动T1 SJMP $ ;原地踏步,模拟主程序 Timer1_ISR: CPL P1.0 ;对P1.0取反输出 RETI ;中断返回,回到主程序执行SJMP $ END 155

STM32定时时间的计算

STM32 定时器定时时间的计算 假设系统时钟是72Mhz,TIM1 是由PCLK2 (72MHz)得到,TIM2-7是由 PCLK1 得到关键是设定时钟预分频数,自动重装载寄存器周期的值/*每1秒发生一次更新事件(进入中断服务程序)。RCC_Configuration()的SystemInit()的 RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2表明TIM3CLK为72MHz。因此,每次进入中断服务程序间隔时间为: ((1+TIM_Prescaler )/72M)*(1+TIM_Period )=((1+7199)/72M)*(1+9999)=1秒。定时器的基本设置如下: 1、TIM_TimeBaseStructure.TIM_Prescaler = 7199;//时钟预分频数例如:时钟频率=72/(时钟预分频+1)。 2、TIM_TimeBaseStructure.TIM_Period = 9999; // 自动重装载寄存器周期的值(定时时间)累计 0xFFFF个频率后产生个更新或者中断(也是说定时时间到)。 3、TIM_TimeBaseStructure.TIM_CounterMode=TIM1_CounterMode_Up; //定时器模式向上计数。 4、 TIM_TimeBaseStructure.TIM_ClockDivision = 0x0; //时间分割值。 5、 TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);//初始化定时器2。 6、 TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); //打开中断溢出中断。 7、 TIM_Cmd(TIM2, ENABLE);//打开定时器或者: TIM_TimeBaseStructure.TIM_Prescaler = 35999;//分频35999,72M/ (35999+1)/2=1Hz 1秒中断溢出一次。 8、 TIM_TimeBaseStructure.TIM_Period = 2000; //计数值2000 ((1+TIM_Prescaler )/72M)*(1+TIM_Period )=((1+35999)/72M)*(1+2000)=1秒。 9、注意使用不同定时器时,要注意对应的时钟频率。例如TIM2对应的是APB1,而TIM1对应的是APB2 通用定时器实现简单定时功能 以TIME3为例作为说明,简单定时器的配置如下: void TIM3_Config(void) { TIM_TimeBaseInitTypeDefTIM_TimeBaseStructure; TIM_DeInit(TIM3); //复位TIM2定时器 /* TIM2 clock enable [TIM2定时器允许]*/ RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); /* TIM2 configuration */ TIM_TimeBaseStructure.TIM_Period = 49; // 0.05s定时 TIM_TimeBaseStructure.TIM_Prescaler = 35999; // 分频36000 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; // 时钟分割TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数方向向上计数 TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); /* Clear TIM2 update pending flag[清除TIM2溢出中断标志] */

springquartz实现定时任务的配置方法

Spring+Quartz实现定时任务的配置方法 第一步:.导入相关的jar包 (1)spring.jar (2)quartz-1.6.0.jar (3)相关包 commons-collections-3.2.jar ; commons-logging-1.1.1.jar; log4j-1.2.16.jar 第二步:创建一个类来定义工作 定义Quartz工作的第一步是创建一个类来定义工作。要做到这一点,你需要从Spring 的QuartzJobBean中派生子类。 第三步:配置JobDetail

值得注意的是,在这里你并没有直接声明一个TopTenTask Bean,而是声明了一个JobDetailBean。这是使用Quartz时的一个特点。 JobDetailBean是Quartz的org.quartz.JobDetail的子类,它要求通过jobClass属性来设置一个Job对象。 使用Quartz的JobDetail中的另一个特别之处是TopTenTask的timeout属性是间接设置的。JobDetail的jobDataAsMap属性接受一个java.util.Map,其中包含了需要设置给jobClass的各种属性。 在这里,这个map包含了一个键值为timeout。当JobDetailBean实例化时,它会将5注入到EmailReportJob的timeout属性中。 第四步:配置Trigger 工作已经被定义好了,接下来你需要调度这个工作。 Quartz的org.quartz.Trigger类描述了何时及以怎样的频度运行一个Quartz工作。 Spring提供了两个触发器,SimpleTriggerBean和CronTriggerBean。 SimpleTriggerBean与ScheduledTimerTask类似。你可以用它来指定一个工作应该以怎样的频度运行,以及(可选地)在第一次运行工作之前应该等待多久。 例如,要调度报表工作每24小时运行一次,第一次在1小时之后开始运行,可以按照以下方式进行声明: 3600000 86400000 属性jobDetail装配了将要被调度的工作,在这个例子中是topTenTask Bean。属性repeatInterval告诉触发器以怎样的频度运行这个工作(以毫秒作为单位)。这里,我们

51单片机定时器初值的计算

51单片机定时器初值的计算一。10MS定时器初值的计算: 1.晶振12M 12MHz除12为1MHz,也就是说一秒=1000000次机器周期。10ms=10000次机器周期。 65536-10000=55536(d8f0) TH0=0xd8,TL0=0xf0 2.晶振11.0592M 11.0592MHz除12为921600Hz,就是一秒921600次机器周期,10ms=9216次机器周期。 65536-9216=56320(dc00) TH0=0xdc,TL0=0x00 二。50MS定时器初值的计算: 1.晶振12M 12MHz除12为1MHz,也就是说一秒=1000000次机器周期。50ms=50000次机器周期。 65536-50000=15536(3cb0) TH0=0x3c,TL0=0xb0 2.晶振11.0592M 11.0592MHz除12为921600Hz,就是一秒921600次机器周期,50ms=46080次机器周期。 65536-46080=19456(4c00)

TH0=0x4c,TL0=0x00 三。使用说明 以12M晶振为例:每秒钟可以执行1000000次机器周期个机器周期。而T 每次溢出 最多65536 个机器周期。我们尽量应该让溢出中断的次数最少(如50ms),这样对主程序的干扰也就最小。 开发的时候可能会根据需要更换不同频率的晶振(比如c51单片机,用11.0592M的晶振,很适合产生串口时钟,而12M晶振很方便计算定时器的时间),使用插接式比较方便。 对12MHz 1个机器周期1us 12/fosc = 1us 方式0 13位定时器最大时间间隔 = 2^13 = 8.192ms 方式1 16位定时器最大时间间隔 = 2^16 = 65.536ms 方式2 8位定时器最大时间间隔 = 2^8 = 0.256ms =256 us 定时5ms,计算计时器初值 M = 2^K-X*Fosc/12 12MHz 方式0: K=13,X=5ms,Fosc=12MHz 则M = 2^13 - 5*10^(-3)*12*10^6/12= 3192 = 0x0C78 THx = 0CH,TLx = 78H, 方式1: K=16,X=5ms,Fosc=12MHz 则M = 2^16 - 5*10^(-3)*12*10^6/12= 60536 = 0xEC78 THx = ECH,TLx = 78H,

java定时任务

Java定时任务的实现 一、通过java本身提供的接口实现 关键词:监听器(Listener)和定时器(Timer)任务(Task)。 方式: 首先:建立一个监听器 MyListener import java.util.Timer; import javax.servlet.ServletContextEvent; import javax.servlet.ServletContextListener; public class MyListener implements ServletContextListener { private Timer timer = null; public void contextInitialized(ServletContextEvent event) { timer = new Timer(true); //设置任务计划,启动和间隔时间 timer.schedule(new MyTask(), 0, 86400000); } public void contextDestroyed(ServletContextEvent event) { timer.cancel(); } } 监听器web.xml配置 com.fastunit.samples.listener.MyListener 任务MyTask import java.util.TimerTask; public class MyTask extends TimerTask { // 继承TimerTask public void run() { // 此处添加具体需要执行的任务代码 } } 上面的代码虽然简单实用,但是在web项目中的时候为了避免无法加载到的问题,在web

相关主题
文本预览
相关文档 最新文档