当前位置:文档之家› 基于主成分分析和层次分析法的某市投资环境评价模型建立

基于主成分分析和层次分析法的某市投资环境评价模型建立

基于主成分分析和层次分析法的某市投资环境评价模型建立
基于主成分分析和层次分析法的某市投资环境评价模型建立

基于主成分分析和层次分析法的某市投资环境评价模型建立研究

1 关于因子分析

围绕浓缩原有变量提取因子的核心目标,因子分析主要涉及以下内容: 1.1因子分析的前提条件;

1.2因子载荷矩阵的求解和因子提取;

1.3因子命名

1.4计算因子得分。

2层次分析法

运用层次分析法建模,大体上可按下面四个步骤进行:

2.1建立递阶层次结构模型;

2.2构造出各层次中的所有判断矩阵;2.3层次单排序及一致性检验;

2.4层次总排序及一致性检验。

3指标体系的建立与评价模型的构建

3.1指标体系的建立X市投资环境评价分为三个层次:第一层是目标层;第二层准则层包括发展与效率综合指标、基础设施与配套能力综合指标、人力资源与社会责任综合指标、环境保护与节能减排综合指标、技术创新综合指标等五个二级指标;第三层是具体的评估指标。按照指标选取的全面性、科学性、目的性、可操作性以及最少性的原则,本研究引入22个指标变量以反映综合投资环境水平。 3.2评价模型的构建

3.2.1准则层评价模型的构建

为把各具体投资环境评价指标项聚合成为准则层的综合得分,采用主成分分析法进行处理。使用主成分法作综合评价时,主成分量选择的原则是其累计概率≥85%。在主成分分析法确定各综合评价因子权重的基础上,构造评价模型,即:

pj=∑U

i=1mi?Vj(j=1,2,3,4,5) (1)

其中pj代表各子竞争力得分,Ui为各子竞争力相应的因子的主成分得分,Vi为各子竞争力相应的因子的权重值(即为主成分贡献率),m为综合因子数。

3.2.2目标层评价模型的构建

在已求得的准则层综合得分的基础上,我们选择层次分析法(AHP)来确定准则层的权重。本研究运用层次分析法建模时,具体步骤为:第一步,建立层次分析模型;第二步,构造判断矩阵A;第三步,计算层次权重及一致性检验。

目标层投资环境评价模型为:

S=∑Ij?Pj (2)

j=1n

其中S为研究对象投资环境评价综合得分,Ij为准则层各综合指标的权重值,Pj为准则层各综合指标得分,n为5。

4 某市投资环境评价的实证分析

4.1利用主成分分析计算各准则层综合得分

利用SPSS软件对准则层其下属指标层各变量系统进行主成分分析,其综合得分及排名如表1所示。

以准则层发展与效率指标为例,利用SPSS软件来实现该系统变量的主成分分析。第一,采用Z-Score方法对原始数据进行标准化处理[6]。本文采用SAS软件中的proc、s

tandard命令对数据进行标准化处理,变换后所得的新数据,mean=0,std=1,变化幅度大大缩小,从而实现了对原始数据的标准化处理。

第二,建立指标之间的相关系数矩阵R。由SPSS程序输出结果知c1与c2、c3、c4、c5这些指标之间存在很强的相关性,所以必须在这些具有重复性情报信息的变量中,选择能够说明大部分情报信息的几个主成分。

第三,计算相关矩阵R的特征值λi和特征向量hj及方差贡献率(如表2所示)。表2是SPSS 程序输出样本相关矩阵的特征值、差值、贡献率以及累积贡献率的结果。Eigenvalue是样本相关矩阵的特征值(即主成分的方差),Difference为相关矩阵的差值,Proportion为各主成分的贡献率,Cumulative为主成分的累积贡献率。主成分方差越大,主成分的贡献率越大,则主成分对情报的说明力越强,从表2我们可以看出,第一主成分的特征值是4.91845091,而第一主成分的贡献率也已达到了54.65%。

第四,确定主成分个数。由表2知前四个主成分的累计贡献率已达到93.70%,说明前四个主成分基本包含了全部指标具有的信息,即完全能够反映大部分情报,所以取前四个主成分即可,并计算出相应的特征向量(即主成分负载值,见表3)

第五,利用公式Ci=eiZ=e1iZ1+e2iZ2+K+eπZp计算各主成分得分。其中ei为个主成分负载值,Z为原始数据经过标准化后的数据(各主成分得分结果略)。

第六,数据解释。各地区得分有负值出现,这是因为在主成分分析中,由于各指标均进行了标准化处理,得分无满分概念,综合得分数值的大小只是反映了样本在经济及产业结构竞争力水平的高低,31个地区的平均水平为零,正分为高出平均水平的程度,负分为低于平均水平的的程度。

4.2利用AHP计算综合竞争力得分1.构造判断矩阵

首先,组织专家利用T.L.Saaty提出的(1~9)九标度方法对四大子竞争力系统进行打分,然后在此基础上,再构造判断矩阵,并由此计算出比较元素间的相对权重[5]。判断矩阵如表4所示。在判断矩阵的基础上,利用Matlab软件计算矩阵最大特征值λmax及相应的特征向量(各子系统的相应权重),结果如下:λmax=4.1022,W%i=(w1,w2,w3,w4)=(0.4965,0.3132,0.1393,0.0509)。

2.一致性检验

对判断矩阵的一致性检验的步骤如下:

(1)计算一致性指标CI。CI=λmax-n

n-1=4.1022-43=0.03406

(2)查找相应的平均随机一致性指标RI。对n=1,Λ,9,Saaty给出了RI的值,如表5所示。

(3)计算一致性比例CR。当CR<0.10时,认为判断矩阵的一致性是可以接受的,否则应对判断矩阵作适当修正。

本文中,CR=CIRI=0.034060.9=0.03785<0.10

所以,矩阵A满足一致性检验,即各子系统权重W%i=(w1,w2,w3,w4)=(0.4965,0.3132,0.1393,0.0509)是成立的。 3 确定河北省综合竞争力得分及排名

利用评价模型式2计算中国31省市综合竞争力得分及排名,如表6所示。

5.3结果分析

上述31省市综合竞争力得分及排名结果基本上反应了我国地区竞争力的格局。其中,第一集团包括上海、广东、北京、江苏、浙江、天津、山东、辽宁、福建9个地区,这9个地区得分均为正数,说明竞争力处于平均水平之上,而该9地区的前6名得分更是高于1,是中国省域竞争力

实力的领跑者。第二集团主要包括重庆、内蒙古、河北、湖北、吉林、山西、河南、湖南、四川等12个地区,该集团主要特点就是地区得分相差不大,综合竞争力水平不相上下。第三集团包括新疆、江西、甘肃、贵州等10地区,由得分可知,该类地区竞争力水平较低,从地理位置上看,这一阵营的地区基本上都是属于我国西部地区,因此,国家还是应该继续加大力度支持西部,以缩小地区之间差距。

由表6可知,河北省综合竞争力在中国31省市中排名第12位,处于第二集团,属于中等发展水平。但是,虽然河北省竞争力名次不太落后,而得分却只有-0.488分,说明竞争力实力水平处于序列域的平均水平之下,发展水平仍需提高。下面我们就各子系统竞争力做详细分析。经济及产业结构竞争力,河北省得分-0.645,

排名第15位。按照国际惯例,三次产业之间的协调

比例应为1∶4∶5,而河北省这一比例为1.5∶5.2

∶3.3,与上述要求还有距离,因此,产业结构需要进

一步调整与优化。

国际竞争力,河北省得分-0.645,排名第10

位,较其它子竞争力有相对优势,这主要是因为河北

省地处环京津、环渤海经济圈,位于渤海地区的中心

地带,与日本、韩国隔海相望,是中国东北地区与国

内其它省区联系的通道和西北诸省区的北方出海通

道,具有较好的地区优势。

科学文化竞争力,河北省得分-0.245,排名第

6位,是四个子系统中竞争实力最弱的一个。地区

的文化是城市可持续发展和有效竞争的保障,而科学技术则是地区竞争力的直接推动力,地区的发展

潜力取决于地区的文化和科技竞争力,由此可见科

教文化的重要性。因此,河北省应该加大力度发展

科教文化事业,以推动区域竞争力的尽快提升。

基础设施与环境竞争力,河北省得分0.041,排

名第11位,是四个子系统竞争力中唯一一个竞争实

力高于平均水平的系统。基础设施是地区社会经济

活动的基本载体,是社会经济发展的基本前提和保

证,最近几年以来,河北省努力发展城市建设事业,

不断提高城镇化发展水平,使得河北省的环境竞争

力发展水平有了很大提高。

综上所述,河北省竞争力虽有值得肯定的地方,

但是总体来说,其在经济发展水平、产业结构、科技

文化事业、基础设施等诸多方面与发达地区如上海、

广东的差距明显。在现代化建设的今天,一个地区

的竞争力水平很大程度上反映了该地区社会经济的

发展。因此,面对知识经济时代的挑战,应如何抓住

机遇,努力提高竞争力发展水平是河北省目前经济

发展的首要问题。

参考文献:

[1]鲁继通.国内区域竞争力问题研究综述[J].科技风,2008(2).

[2]金浩.经济统计分析与SAS的应用[M].北京:经济科学出版社,2002.[3]左继红,胡树华.区域竞争力的指标体系及评价模型研究[J].商业研究,2005(16).[4]余瑞娟,吴广谋.基于主成分分析的区域产业竞争力评价[J].价值工程.2008(7).

[5]王连月,韩立红.AHP法在区域竞争力综合评价中的应用[J企业经济,2004(6).[6]中华人民共和国统计局.中国统计年鉴[M].北京:中国统计出版社,2009.

主成分分析法

一、概述 在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点: 主成分个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 主成分能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 主成分之间应该互不相关 通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。

主成分具有命名解释性 总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。 二、基本原理 主成分分析是数学上对数据降维的一种方法。其基本思想是设法将原来众多的具有一定相关性的指标X1,X2,…,XP(比如p个指标),重新组合成一组较少个数的互不相关的综合指标Fm来代替原来指标。那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。 设F1表示原变量的第一个线性组合所形成的主成分指标,即 ,由数学知识可知,每一个主成分所提取的信息量可用其方差来度量,其方差 Var(F1)越大,表示F1包含的信息越多。常常希望第一主成分F1所含的信息量最大,因此在所有的线性组合中选取的F1应该是X1,X2,…,XP的所有线性组合中方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来p个指标的信息,再考虑选取第二个主成分指标F2,为有效地反映原信息,F1已有的信息就不需要再出现在F2中,即F2与F1要保持独立、不相关,用数学语言表达就是其协方差Cov(F1, F2)=0,所以F2是与F1不相关的X1,X2,…,XP的所有线性组合中方差最大的,故称F2为第二主成分,依此类推构造出的F1、F2、……、Fm为原变量指标X1、X2……XP第一、第二、……、第m个主成分。 根据以上分析得知:

层次分析法模型

二、模型的假设 1、假设我们所统计和分析的数据,都是客观真实的; 2、在考虑影响毕业生就业的因素时,假设我们所选取的样本为简单随机抽样,具有典型性和普遍性,基本上能够集中反映毕业生就业实际情况; 3、在数据计算过程中,假设误差在合理范围之内,对数据结果的影响可以忽略. 三、符号说明

四、模型的分析与建立 1、问题背景的理解 随着我国改革开放的不断深入,经济转轨加速,社会转型加剧,受高校毕业生总量的增加,劳动用工管理与社会保障制度,劳动力市场的不尽完善,以及高校的毕业生部分择业期望过高等因素的影响,如今的毕业生就业形势较为严峻.为了更好地解决广大学生就业中的问题,就需要客观地、全面地分析和评价毕业生就业的若干主要因素,并将它们从主到次依秩排序. 针对不同专业的毕业生评价其就业情况,并给出某一专业的毕业生具体的就业策略. 2、方法模型的建立 (1)层次分析法 层次分析法介绍:层次分析法是一种定性与定量相结合的、系统化、层次化的分析方法,它用来帮助我们处理决策问题.特别是考虑的因素较多的决策问题,而且各个因素的重要性、影响力、或者优先程度难以量化的时候,层次分析法为我们提供了一种科学的决策方法. 通过相互比较确定各准则对于目标的权重,及各方案对于每一准则的权重.这些权重在人的思维过程中通常是定性的,而在层次分析法中则要给出得到权重的定量方法. 我们现在主要对各个因素分配合理的权重,而权重的计算一般用美国运筹学

家T.L.Saaty 教授提出的AHP 法. (2)具体计算权重的AHP 法 AHP 法是将各要素配对比较,根据各要素的相对重要程度进行判断,再根据计算成对比较矩阵的特征值获得权重向量k W . Step1. 构造成对比较矩阵 假设比较某一层k 个因素12,,,k C C C 对上一层因素ο的影响,每次两个因素i C 和j C ,用ij C 表示i C 和j C 对ο的影响之比,全部比较结果构成成对比较矩阵C ,也叫正互反矩阵. *()k k ij C C =, 0ij C >,1 ij ji C C =, 1ii C =. 若正互反矩阵C 元素成立等式:* ij jk ik C C C = ,则称C 一致性矩阵. 标度ij C 含义 1 i C 与j C 的影响相同 3 i C 比j C 的影响稍强 5 i C 比j C 的影响强 7 i C 比j C 的影响明显地强 9 i C 比j C 的影响绝对地强 2,4,6,8 i C 与j C 的影响之比在上述两个相邻等级之间 11 ,,29 i C 与j C 影响之比为上面ij a 的互反数 Step2. 计算该矩阵的权重 通过解正互反矩阵的特征值,可求得相应的特征向量,经归一化后即为权重向量 12 = [ , ,..., ]T k k k kk Q q q q ,其中的ik q 就是i C 对ο的相对权重.由特征方程 A-I=0λ,利用Mathematica 软件包可以求出最大的特征值 max λ 和相应的特征向 量. Step3. 一致性检验 1)为了度量判断的可靠程度,可计算此时的一致性度量指标CI :

主成分分析法总结

主成分分析法总结 在实际问题研究中,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。 因此,人们会很自然地想到,能否在相关分析的基础上,用较少的新变量代替原来较多的旧变量,而且使这些较少的新变量尽可能多地保留原来变量所反映的信息? 一、概述 在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点: ↓主成分个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 ↓主成分能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 ↓主成分之间应该互不相关 通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。 ↓主成分具有命名解释性 总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。 主成分分析的具体步骤如下: (1)计算协方差矩阵 计算样品数据的协方差矩阵:Σ=(s ij )p ?p ,其中 1 1()() 1n ij ki i kj j k s x x x x n ==---∑i ,j=1,2,…,p (2)求出Σ的特征值 i λ及相应的正交化单位特征向量i a Σ的前m 个较大的特征值λ1≥λ2≥…λm>0,就是前m 个主成分对应的方差,i λ对应的单 位特征向量 i a 就是主成分Fi 的关于原变量的系数,则原变量的第i 个主成分Fi 为:

层次分析法的优劣势

层次分析法的优劣势分析: 优势: 1.系统性的分析方法 层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。系统的思想在于不割断各个因素对结果的影响,而层次分析法中每一层的权重设置最后都会直接或间接影响到结果,而且在每个层次中的每个因素对结果的影响程度都是量化的,非常清晰、明确。这种方法尤其可用于对无结构特性的系统评价以及多目标、多准则、多时期等的系统评价。 2.简洁实用的决策方法 这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结合起来,使复杂的系统分解,能将人们的思维过程数学化、系统化,便于人们接受,且能把多目标、多准则又难以全部量化处理的决策问题化为多层次单目标问题,通过两两比较确定同一层次元素相对上一层次元素的数量关系后,最后进行简单的数学运算。即使是具有中等文化程度的人也可了解层次分析的基本原理和掌握它的基本步骤,计算也经常简便,并且所得结果简单明确,容易为决策者了解和掌握。 3.所需定量数据信息较少 层次分析法主要是从评价者对评价问题的本质、要素的理解出发,比一般的定量方法更讲求定性的分析和判断。由于层次分析法是一种模拟人们决策过程的思维方式的一种方法,层次分析法把判断各要素的相对重要性的步骤留给了大脑,只保留人脑对要素的印象,化为简单的权重进行计算。这种思想能处理许多用传统的最优化技术无法着手的实际问题。 劣势: 1.不能为决策提供新方案 层次分析法的作用是从备选方案中选择较优者。这个作用正好说明了层次分析法只能从原有方案中进行选取,而不能为决策者提供解决问题的新方案。这样,我们在应用层次分析法的时候,可能就会有这样一个情况,就是我们自身的创造能力不够,造成了我们尽管在我们想出来的众多方案里选了一个最好的出来,但其效果仍然不够人家企业所做出来的效果好。而对于大部分决策者来说,如果一种分析工具能替我分析出在我已知的方案里的最优者,然后指出已知方案的不足,又或者甚至再提出改进方案的话,这种分析工具才是比较完美的。但显然,层次分析法还没能做到这点。 2.定量数据较少,定性成分多,不易令人信服 在如今对科学的方法的评价中,一般都认为一门科学需要比较严格的数学论证和完善的定量方法。但现实世界的问题和人脑考虑问题的过程很多时候并不是能简单地用数字来说明一切的。层次分析法是一种带有模拟人脑的决策方式的方法,因此必然带有较多的定性色彩。这样,当一个人应用层次分析法来做决策时,其他人就会说:为什么会是这样?能不能用数学方法来解释?如果不可以的话,你凭什么认为你的这个结果是对的?你说你在这个问题上认识比较深,但我也认为我的认识也比较深,可我和你的意见是不一致的,以我的观点做出

主成分分析法及其在SPSS中的操作

一、主成分分析基本原理 概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。从数学角度来看,这是一种降维处理技术。 思路:一个研究对象,往往是多要素的复杂系统。变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。 原理:假定有n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵, 记原变量指标为x 1,x 2,…,x p ,设它们降维处理后的综合指标,即新变量为 z 1,z 2,z 3,… ,z m (m ≤p),则 系数l ij 的确定原则: ①z i 与z j (i ≠j ;i ,j=1,2,…,m )相互无关; ②z 1是x 1,x 2,…,x P 的一切线性组合中方差最大者,z 2是与z 1不相关的x 1,x 2,…,x P 的所有线性组合中方差最大者; z m 是与z 1,z 2,……,z m -1都不相关的x 1,x 2,…x P , 的所有线性组合中方差最大者。 新变量指标z 1,z 2,…,z m 分别称为原变量指标x 1,x 2,…,x P 的第1,第2,…,第m 主成分。 从以上的分析可以看出,主成分分析的实质就是确定原来变量x j (j=1,2 ,…, p )在诸主成分z i (i=1,2,…,m )上的荷载 l ij ( i=1,2,…,m ; j=1,2 ,…,p )。 ?????? ? ???????=np n n p p x x x x x x x x x X 2 1 2222111211 ?? ??? ? ?+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z 22112222121212121111............

主成分分析法PCA的原理

主成分分析法原理简介 1.什么是主成分分析法 主成分分析也称主分量分析,是揭示大样本、多变量数据或样本之间内在关系的一种方法,旨在利用降维的思想,把多指标转化为少数几个综合指标,降低观测空间的维数,以获取最主要的信息。 在统计学中,主成分分析(principal components analysis, PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 2.主成分分析的基本思想 在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 对同一个体进行多项观察时必定涉及多个随机变量X1,X2,…,X p,它们之间都存在着相关性,一时难以综合。这时就需要借助主成分分析来概括诸多信息的主要方面。我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质。

(完整版)基于层次分析法的模糊综合评价模型

2016江西财经大学数学建模竞赛 A题 城市交通模型分析 参赛队员: 黄汉秦、乐晨阳、金霞 参赛队编号:2016018 2016年5月20日~5月25日

承诺书 我们仔细阅读了江西财经大学数学建模竞赛的竞赛章程。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C中选择一项填写): A 我们的参赛队编号为2016018 参赛队员(打印并签名) : 队员1. 姓名专业班级计算机141 队员2. 姓名专业班级计算机141 队员3. 姓名专业班级计算机141 日期: 2016 年 5 月 25 日

编号和阅卷专用页 江西财经大学数学建模竞赛组委会 2016年5月15日制定

城市交通模型分析 摘要 随着国民经济的高速发展和城市化进程的加快,我国机动车保有量及道路交通流量急剧增加,交通出行结构发生了根本变化,城市道路交通拥挤堵塞问题已成为制约经济发展、降低人民生活质量、削弱经济活力的瓶颈之一。本篇论文针对道路拥挤的问题采用层次分析法进行数学建模分析,讨论拥堵的深层次问题及解决方案。 首先建立绩效评价指标的层次结构模型,确定了目标层,准则层(一级指标),子准则层(二级指标)。 其次,建立评价集V=(优,良,中,差)。对于目标层下每个一级评价指标下相对于第m 个评价等级的隶属程度由专家的百分数u 评判给出,即U =[0,100]应用模糊统计建立它们的隶属函数A(u), B(u), C(u) ,D(u),最后得出目标层的评价矩阵Ri ,(i=1,2,3,4,5)。利用A,B 两城相互比较法,根据实际数据建立二级指标对于相应一级指标的模糊判断矩阵P i (i=1,2,3,4,5) 然后,我们经过N 次试验调查,明确了各层元素相对于上层指标的重要性排序,构造模糊判断矩阵P ,利用公式 1 ,ij ij n kj k u u u == ∑ 1 ,n i ij j w u ==∑ 1 ,i i n j j w w w == ∑ []R W R W R W R W R W W R W O 5 5 4 4 3 3 2 2 1 1 ,,,,==计算出权重值,经过一致性检验公式 RI CI CR = 检验后,均有0.1CR <,由此得出各层次的权向量()12,,T n W W W W =K 。然后后, 给出建立绩效评价模型(其中O 是评价结果向量),应用模糊数学中最大隶属度原则,对被评价城市交通的绩效进行分级评价。 接着在改进方案中,我们具体以交叉口为中心建立模型,其中包括道路长度、宽度、车辆平均长度、车速等等考虑因素。通过车辆排队长度可以间接判断交通拥堵情况,不需要测量车速、时间等因素而浪费的人力物力和财力,有效的提高了工作成本和效率。为管理城市交通要道提供了良好的模型和依据。 【关键字】交通拥堵 层次分析法 模糊综合评判 绩效评价 隶属度

主成分分析分析法

第四节 主成分分析方法 地理环境是多要素的复杂系统,在我们进行地理系统分析时,多变量问题 是经常会遇到的。 变量太多, 无疑会增加分析问题的难度与复杂性, 而且在许多 实际问题中, 多个变量之间是具有一定的相关关系的。 因此,我们就会很自然地 想到,能否在各个变量之间相关关系研究的基础上, 用较少的新变量代替原来较 多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信 息?事实上, 这种想法是可以实现的, 本节拟介绍的主成分分析方法就是综合处 理这种问题的一种强有力的方法。 第一节 主成分分析方法的原理 主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法, 从数学角度来看, 这是一种降维处理技术。 假定有 n 个地理样本, 每个样本共有 p 个变量描述,这样就构成了一个 n ×p 阶的地理数据矩阵: 如何从这么多变量的数据中抓住地理事物的内在规律性呢?要解决这一问 题,自然要在 p 维空间中加以考察,这是比较麻烦的。为了克服这一困难,就需 要进行降维处理, 即用较少的几个综合指标来代替原来较多的变量指标, 而且使 这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息, 同时它们之 间又是彼此独立的。那么,这些综合指标(即新变量 ) 应如何选取呢?显然,其 最简单的形式就是取原来变量指标的线性组合, 适当调整组合系数, 使新的变量 指标之间相互独立且代表性最好。 如果记原来的变量指标为 x 1, 为 x 1,x 2,?, zm (m ≤p ) 。则 x 2 ,?, x p ,它们的综合指标——新变量指标

在(2)式中,系数l ij 由下列原则来决定: (1)z1 2与z j(i ≠j ;i ,j=1 ,2,?,m)相互无关; (2)z 1是x1,x2,?,x p的一切线性组合中方差最大者;z2是与z1不相关的x1,x2,?,x p的所有线性组合中方差最大者;??;z m是与z1,z2,??z m-1 都不相关的x1,x2,?,x p的所有线性组合中方差最大者。 这样决定的新变量指标z1,z2,?,zm分别称为原变量指标x1,x2,?,x p 的第一,第二,?,第m主成分。其中,z1在总方差中占的比例最大,z2,z3,?,z m的方差依次递减。在实际问题的分析中,常挑选前几个最大的主成分,这样既减少了变量的数目,又抓住了主要矛盾,简化了变量之间的关系。 从以上分析可以看出,找主成分就是确定原来变量x j(j=1 ,2,?,p)在诸主成分z i (i=1 ,2,?,m)上的载荷l ij (i=1 ,2,?,m;j=1 ,2,?,p),从数学上容易知道,它们分别是x1,x2,?,x p的相关矩阵的m个较大的特征值所对应的特征向量。 第二节主成分分析的解法 主成分分析的计算步骤 通过上述主成分分析的基本原理的介绍,我们可以把主成分分析计算步骤归纳如下:在公式(3)中,r ij (i ,j=1 ,2,?,p)为原来变量x i与x j的相关系数,其计 算公式为 因为R是实对称矩阵(即r ij =r ji ),所以只需计算其上三角元素或下三角元素即可。 1 计算相关系数矩阵 2 计算特征值与特征向量

最新复杂系统决策模型与层次分析法

复杂系统决策模型与层次分析法

费用居住饮食交通例3?科研课题 科研课題 承徳 可行性 实用价值学 术 意 义 人 才 培 养 §3.4复杂系统决策模型与层次分析法 Analitic Hierachy Process (AHP) T. L. Saaty 1970* —种定性和定量相结合的、系统化、层次化的分析方法。—?问题举例 1.在海尔、新飞、容声和雪花四个牌号的电冰箱中选购一种。要考虑品牌的信誉、冰箱的功能、价格和耗电量。 2.在泰山、杭州和承德三处选择一个旅游点。要考虑景点的景色、居住的环境、饮食的特色、交通便利和旅游的费用。 3.在基础研究、应用研究和数学教育中选择一个领域申报科研课题。要考虑成果的贡献(实用价值、科学意义),可行性(难度、周期和经费)和人才培养。 -?模型和方法 1.层次结构模型的构造 步骤一:确定层次结构,将决策的目标、考虑的因素(决策准则)和决策对象按它们之间的相互关系分为最高层、中间层和最低层,绘出层次结构图。 最高层:决策的目的、要解决的问题。 最低层:决策时的备选方案。 中间层:考虑的因素、决策的准则。 对于相邻的两层,称高层为目标层,低层为因素层。 例1.选购冰箱迭购冰箱步骤二:通过相互比较,确定下一 层各因素对上一层目标的影响的权重,将定性的判断定量化,即构 造因素判断矩阵。 例2.

步骤三:由矩阵的特征值确定判别的一致性;由相应的特征向量表示各因素的影响 权重,计算权向量。 步骤四:通过综合计算给出最底层(各方案)对最高层(总目标)影响的权重, 权重最大的方案即为实现目标的最由选择。 2. 因素判断矩阵 比较n 个因素y 二(y“兀,…,yJ 对目标z 的影响. 采用两两成对比较,用弘表示因素y :与因素力对目标z 的影响程度之比。 通常用数字r 9及其倒数作为程度比较的标度,即九级标度法 Xi/Xj 相当 较重要 重要 很重要绝对重要 Si ; 1 3 5 7 9 2, 4, 6, 8 居于上述两个相邻判断之间。 当弘> 1时,对目标Z 来说Xi 比X :重要,其数值大小表示重要的程度。 同时必有3二1/氐<1,对目标Z 来说X :比血不重要,其数值大小表示不重 要的程度。 称矩阵A = ( aij )为因素判断矩阵。 因为>0且a.i =1/ 故称A 二(% )为正互反矩阵。 例.选择旅游景点Z :目标,选择景点 y :因素,决策准则 如果a £j a jk =a ik i, j, k=l, 2,n.则称正互反矩阵A 具有一致性.这表明对 各个因素所作的两两比较是可传递的。 —致性互正反矩阵A=(如)具有性质: A 的每一行例)均为任意指定行(列)的正数倍数,因此wnk (A )二1. A 有特征值九二n,其余特征值均为零. 记A 的对应特征值九二n 的特征向量为w 二(w : w 2,…,wj 贝IJ a £j 二w, w ;1 如果在目标Z 中n 个因素y= (yi, y 2,…,yj 所占比重分别为w 二(w 】w?,…,wj, 则 =1,且因素判断矩阵为A=(w i w ;1) o 因此,称一致性正互反矩阵A 相应于特征值n 的归一化特征向量为因素 y= (yi> y?,…,yJ 对目标z 的权向量 4. 一致性检验与因素排序 定理1: n 阶正互反矩阵A 是一致性的当且仅当其最大特征值为n. 定理2:正互反矩阵具有模最大的正实数特征值九,其重数为1,且相应特征向量 为正向量. 为刻画n 阶正互反矩阵A=(如)与一致性接近的程度,定义一致性指标(Consensus index): 1 2 7 5 5 1/2 1 4 3 3 4 = 1/7 1/4 1 1/2 1/3 1/5 1/3 I 1 J/5 1/3 3 1 1 yi 费用, 景色, ys 居住, 3.—致性与权向量 yi 饮食,ys 交通

数学建模之层次分析法

第四讲层次分析法 在现实世界中,往往会遇到决策的问题,比如如何选择旅游景点的问题,选择升学志愿的问题等等。在决策者作出最后的决定以前,他必须考虑很多方面的因素或者判断准则,最终通过这些准则作出选择。 比如选择一个旅游景点时,你可以从宁波、普陀山、浙西大峡谷、雁荡山和楠溪江中选择一个作为自己的旅游目的地,在进行选择时,你所考虑的因素有旅游的费用、旅游地的景色、景点的居住条件和饮食状况以及交通状况等等。这些因素是相互制约、相互影响的。我们将这样的复杂系统称为一个决策系统。这些决策系统中很多因素之间的比较往往无法用定量的方式描述,此时需要将半定性、半定量的问题转化为定量计算问题。层次分析法是解决这类问题的行之有效的方法。层次分析法将复杂的决策系统层次化,通过逐层比较各种关联因素的重要性来为分析、决策提供定量的依据。 一、建立系统的递阶层次结构 首先要把问题条理化、层次化,构造出一个有层次的结构模型。一个决策系统大体可以分成三个层次: (1) 最高层(目标层):这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果; (2) 中间层(准则层):这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则; (3) 最低层(方案层):这一层次包括了为实现目标可供选择的各种措施、决策方案等。 比如旅游景点问题,我们可以得到下面的决策系统: 目标层——选择一个旅游景点 准则层——旅游费用、景色、居住、饮食、交通 方案层——宁波、普陀山、浙西大峡谷、雁荡山、楠溪江 二、构造成对比较判断矩阵和正互反矩阵 在确定了比较准则以及备选的方案后,需要比较若干个因素对同一目标的影响,从额确定它们在目标中占的比重。如旅游问题中,五个准则对于不同决策者在进行决策是肯定会有不同的重要程度,而不同的方案在相同的准则上也有不同的适合程度表现。层次结构反映了因素之间的关系,但准则层中的各准则在目标衡量中所占的比重并不一定相同,在决策者的

主成分分析法介绍(高等教育)

主成分分析方法 我们进行系统分析评估或医学上因子分析等时,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息?事实上,这种想法是可以实现的,本节拟介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。 第一节 主成分分析方法的原理 主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。假定有n 样本,每个样本共有p 个变量描述,这样就构成了一个n×p 阶的数据矩阵: 111212122212.....................p p n n np x x x x x x X x x x ?? ? ?= ? ? ??? (1)

如何从这么多变量的数据中抓住事物的内在规律性呢?要解决这一问题,自然要在p 维空间中加以考察,这是比较麻烦的。为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。那么,这些综合指标(即新变量)应如何选取呢?显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。 如果记原来的变量指标为p x x x ,,21 ,它们的综合指标——新变量指标为 21,z z ,m z (m≤p)。则 )2.........(..........22112222121212121111??? ??? ?+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z 在(2)式中,系数l ij 由下列原则来决定: (1)z i 与 z j (i≠j;i ,j=1,2,…,m)相互无关; (2)z 1是x 1,x 2,…,x p 的一切线性组合中方差最大者;z 2是与z 1不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者;……;z m 是与z 1,z 2,……z m-1都不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者。

层次分析法的优点

层次分析法的优点 系统性——将对象视作系统,按照分解、比较、判断、综合的思维方式进行决策。成为成为继机理分析、统计分析之后发展起来的系统分析的重要工具; 实用性——定性与定量相结合,能处理许多用传统的最优化技术无法着手的实际问题,应用范围很广,同时,这种方法使得决策者与决策分析者能够相互沟通,决策者甚至可以直接应用它,这就增加了决策的有效性; 简洁性——计算简便,结果明确,具有中等文化程度的人即可以了解层次分析法的基本原理并掌握该法的基本步骤,容易被决策者了解和掌握。便于决策者直接了解和掌握。 层次分析法的局限 囿旧——只能从原有的方案中优选一个出来,没有办法得出更好的新方案; 粗略——该法中的比较、判断以及结果的计算过程都是粗糙的,不适用于精度较高的问题。;主观——从建立层次结构模型到给出成对比较矩阵,人主观因素对整个过程的影响很大,这就使得结果难以让所有的决策者接受。当然采取专家群体判断的办法是克服这个缺点的一种途径。 层次分析法(AHP法) 是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。 层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同层次聚集组合,形成一个多层次的分析结构模型,从而最终使问题归结为最低层(供决策的方案、措施等)相对于最高层(总目标)的相对重要权值的确定或相对优劣次序的排定。

数学建模算法--复杂系统决策模型与层次分析法

数学建模算法--复杂系统决策模型与层次分析法 §3.4 复杂系统决策模型与层次分析法 Analitic Hierachy Process (AHP) T.L.Saaty 1970’ 一种定性和定量相结合的、系统化、层次化的分析方法。 一. 问题举例 1. 在海尔、新飞、容声和雪花四个牌号的电冰箱中选购一种。要考虑品牌的信誉、冰箱的功能、价格和耗电量。 2. 在泰山、杭州和承德三处选择一个旅游点。要考虑景点的景色、居住的环境、饮食的特色、交通便利和旅游的费用。 3. 在基础研究、应用研究和数学教育中选择一个领域申报科研课题。要考虑成果的贡献(实用价值、科学意义),可行性(难度、周期和经费)和人才培养。 二. 模型和方法 1. 层次结构模型的构造 步骤一:确定层次结构,将决策的目标、考虑的因素(决策准则)和决策对象按它们之间的相互关系分为最高层、中间层和最低层,绘出层次结构图。 最高层:决策的目的、要解决的问题。 最低层:决策时的备选方案。 中间层:考虑的因素、决策的准则。 对于相邻的两层,称高层为目标层,低层为因素层。 例 1. 选购冰箱 例2. 旅游景点 例3. 选购冰箱 品牌 功能 价格 耗电 海尔 新飞 容声 雪花 旅游景点 居住 景色 费用 饮食 交通 泰山 杭州 承德 科研课题 贡献 可行性 实 用 价 值 学 术 意 义 人 才 培 养 难 度 周 期 经 费 基础 应用 教育

步骤二: 通过相互比较,确定下一层各因素对上一层目标的影响的权重,将定性的判断定量化,即构造因素判断矩阵。 步骤三:由矩阵的特征值确定判别的一致性;由相应的特征向量表示各因素的影响权重,计算权向量。 步骤四: 通过综合计算给出最底层(各方案)对最高层(总目标)影响的权重,权重最大的方案即为实现目标的最由选择。 2. 因素判断矩阵 比较n 个因素y=(y 1,y 2,…,y n )对目标 z 的影响. 采用两两成对比较,用a ij 表示因素 y i 与因素y j 对目标z 的影响程度之比。 通常用数字 1~ 9及其倒数作为程度比较的标度, 即九级标度法 x i /x j 相当 较重要 重要 很重要 绝对重要 a ij 1 3 5 7 9 2, 4, 6, 8 居于上述两个相邻判断之间。 当a ij > 1时,对目标 Z 来说 x i 比 x j 重要, 其数值大小表示重要的程度。 同时必有 a ji = 1/ a ij ≤1,对目标 Z 来说 x j 比 x i 不重要,其数值大小表示不重要的程度。 称矩阵 A = ( a ij )为因素判断矩阵。 因为 a ij >0 且 a ji =1/ a ij 故称A = (a ij )为正互反矩阵。 例. 选择旅游景点 Z :目标,选择景点 y :因素,决策准则 y 1 费用,y 2 景色,y 3 居住,y 4 饮食,y 5 交通 3. 一致性与权向量 如果 a ij a jk =a ik i, j, k=1,2,…,n, 则称正互反矩阵A 具有一致性. 这表明对各个因素所作的两两比较是可传递的。 一致性互正反矩阵A=( a ij )具有性质: A 的每一行(列)均为任意指定行(列)的正数倍数,因此 rank(A)=1. A 有特征值λ=n, 其余特征值均为零. 记A 的对应特征值λ=n 的特征向量为w=(w 1 w 2 ,…, w n ) 则 a ij =w i w j -1 如果在目标z 中n 个因素y=(y 1,y 2,…,y n )所占比重分别为w=(w 1 w 2 ,…, w n ), 则 ∑i w i =1, 且因素判断矩阵为 A=(w i w j -1) 。 因此,称一致性正互反矩阵A 相应于特征值n 的归一化特征向量为因素y=(y 1,y 2,…,y n )对目标z 的权向量 4. 一致性检验与因素排序 定理1: n 阶正互反矩阵A 是一致性的当且仅当其最大特征值为 n. 定理2: 正互反矩阵具有模最大的正实数特征值λ1, 其重数为1, 且相应特征向量为正向量. 为刻画n 阶正互反矩阵A=( a ij )与一致性接近的程度, 定义一致性指标(Consensus index) : CI=(λ1-n)/(n-1) CI = 0, A 有完全的一致性。CI 接近于 0, A 有满意的一致性 。 Saaty 又引入平均随机一致性指标RT n 1 2 3 4 5 6 7 8 9 RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 当CR = CI / RI < 0.1 时, 认为A 有满意的一致性。 ????????????????=1133/15/11123 /15/13/12/114/17/133412/155 721A

层次分析法模型

二、模型的假设 1、假设我们所统计与分析的数据,都就是客观真实的; 2、在考虑影响毕业生就业的因素时,假设我们所选取的样本为简单随机抽样,具有典型性与普遍性,基本上能够集中反映毕业生就业实际情况; 3、在数据计算过程中,假设误差在合理范围之内,对数据结果的影响可以忽略、 三、符号说明

四、模型的分析与建立 1、问题背景的理解 随着我国改革开放的不断深入,经济转轨加速,社会转型加剧,受高校毕业生总量的增加,劳动用工管理与社会保障制度,劳动力市场的不尽完善,以及高校的毕业生部分择业期望过高等因素的影响,如今的毕业生就业形势较为严峻、为了更好地解决广大学生就业中的问题,就需要客观地、全面地分析与评价毕业生就业的若干主要因素,并将它们从主到次依秩排序、 针对不同专业的毕业生评价其就业情况,并给出某一专业的毕业生具体的就业策略、 2、方法模型的建立 (1)层次分析法 层次分析法介绍:层次分析法就是一种定性与定量相结合的、系统化、层次化的分析方法,它用来帮助我们处理决策问题、特别就是考虑的因素较多的决策问题,而且各个因素的重要性、影响力、或者优先程度难以量化的时候,层次分析法为我们提供了一种科学的决策方法、 通过相互比较确定各准则对于目标的权重,及各方案对于每一准则的权重、这些权重在人的思维过程中通常就是定性的,而在层次分析法中则要给出得到权重的定量方法、 我们现在主要对各个因素分配合理的权重,而权重的计算一般用美国运筹学家T、L、Saaty教授提出的AHP法、 (2)具体计算权重的AHP 法 AHP法就是将各要素配对比较,根据各要素的相对重要程度进行判断,再根据 W、 计算成对比较矩阵的特征值获得权重向量 k

主成分分析法介绍教学文稿

主成分分析法介绍

主成分分析方法 我们进行系统分析评估或医学上因子分析等时,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息?事实上,这种想法是可以实现的,本节拟介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。 第一节 主成分分析方法的原理 主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。假定有n 样本,每个样本共有p 个变量描述,这样就构成了一个n×p 阶的数据矩阵: 11121212221 2 .....................p p n n np x x x x x x X x x x ?? ? ? = ? ? ??? (1)

如何从这么多变量的数据中抓住事物的内在规律性呢?要解决这一问题,自然要在p 维空间中加以考察,这是比较麻烦的。为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。那么,这些综合指标(即新变量)应如何选取呢?显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。 如果记原来的变量指标为p x x x ,,21 ,它们的综合指标——新变量指标为 21,z z ,m z (m≤p)。则 )2.........(..........22112222121212121111??? ?? ? ?+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z 在(2)式中,系数l ij 由下列原则来决定: (1)z i 与 z j (i≠j;i ,j=1,2,…,m)相互无关; (2)z 1是x 1,x 2,…,x p 的一切线性组合中方差最大者;z 2是与z 1不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者;……;z m 是与z 1,z 2,……z m-1都

层次分析法与模糊综合评价的区别

层次分析法与模糊综合判别的区别与联系 1、层次分析法 [ 参考文献:吋义成, 柯丽华, 黄德育. 系统综合评价技术及其应用[M]. 北京: 冶金工业出版社,2006] 人们在日常生活中经常要从一堆同样大小的物品中挑选出最重要的物品,如重量最大的物品,即至少要确定各物品的相对重量。这时,经验和常识告诉我们,可以利用两两比较的方法来达到目的。 若在没有称量仪器的条件下对一组物体的重量进行估计,则可以通过爱对比较这组物体相对重量的方法,得出每对物体相对重量比的判断,从而形成比较判断矩阵,再通过求解判断矩阵的最大特征根和它所对应的特征向量问题,就能计算出这组物体的相对重量。 将此方法应用到复杂的社会、经济和科学管理等领域中,就能确定各种方案、措施、政策等 相对于总目标的重要性排序情况,以供领导者决策。 一般的层次分析法模型由图5-1 所示,分为目标层、准则层、指标层、方案层组成。需要注意几点: (1)层次分析法的评价结构并非是上述部分一成不变的,其中的当指标层因素较少时准则层可以省去(图5-2 ),当某一准则对应的指标层元素过多时可以将其指标层细分为“子准则层和指标层”(图5-4 )。由于层次分析法是利用两两比较完成的,为了便于人的比较与判别,每层的元素个数在3~7 之间为佳,超过7 以后增加了比较判断的难度,因此当元素过多时,可以将其分类后分成两层或多层来判别。 (2)准则层与指标层之间的关系可以对比一下图5-1 和图5-4 ,即每个准则可能有独 用的指标体系,也可能是各准则之间共用某几个指标。 (3)层次分析法的特点是基于某个目标,对多个待评价方案进行评价,从而得到方案的重要性排序。具体到某个问题,其并无相应的数据。而模糊综合判别有相应的基础数据。两者可以结合一起用,比如常用的是模糊综合评判过程中,权重可以由层次分析法计算。 层次分析法的骤如下: 1)在作者建立评价模型后,根据经验对每层里的各个元素建立重要性判别矩阵,从判 别矩阵中可以得到某一层中各个指标的归一化权重(表5-1中的W B,W C1,W C2,W C3,W C4)。(表5-1和5-2 的数据为图5-1 模型的) 2)由层与层之间权重的传递可以得到最低层(具体指标层)的综合权重。如图5-1 所示的图中有得到各个C ij的综合权重W ij(表5-2第2列)。 3)最后,在指标层与方案层之间建立判别矩阵,针对每一个指标C ij 都需要建立一个各 方案A i的比较矩阵,判别A针对C j的重要性w A i (表5-2的每一行)。最后将指标C ij的综合权重W ij与W Ai进行乘法求和,从而得到方案A的最终综合权重刀(W ij心Ai),即为续表5-2的最后一行。

相关主题
文本预览
相关文档 最新文档