当前位置:文档之家› 齿轮测量,齿轮噪音

齿轮测量,齿轮噪音

齿轮测量,齿轮噪音
齿轮测量,齿轮噪音

齿轮测量

一、齿轮的测量:

渐开线直齿圆柱齿轮的测量:

1.齿形:对电动工具而言,为影响噪音的次要指标;齿形严重超标时,会导致早期磨损加剧;

该指标超标到0.03以上时,会导致音量的明显增加,但其仍属于连续及平滑的噪音,虽音调较高,但不会导致杂音。齿形超标到0.05以上时,会导致早期磨损加剧;

电钻,曲线锯等小型机器的噪音指标,对齿形的敏感程度,不如电圆锯等重载机器敏感;

齿形评定的时候,要根据啮合关系,确定合理的评定长度,不能从最开始的点,一直评定到最结束的点。

齿形评定的分辨率要设定在0.002MM,太低的分辨率,将失去意义;

齿形评定时,会分解为“形状误差”和“角度误差”,那是做工艺分析用的。验收时,看总的数值就可以了。在汽车等其他领域,在做验收时,不仅要看总的数值,还要看形状误差,通常齿面“中凹”是不允许的。

我们目前还没有用到“修形齿形”。

2.齿向:影响齿轮配合的侧隙;

通常不导致“载荷沿齿宽方向分布不均”,而引起轮齿折断;

齿向超标严重时,如>0.04时,将导致啮合的齿轮没有侧向间隙,而导致剧烈连续性的尖叫。

判断齿向超标的简单方法是,如果齿向超标,则在同一轮齿上,磨合的光亮面,将分别侧重于两个齿面的两端。精确的测量方法,是用万能齿轮测量机进行测量。

检查齿向时,要注意“有效齿宽”,凡是“齿向曲线”突变方向的点,就是“有效齿宽”结束的位置。

齿向误差同样也可以分离为“形状误差”和“角度误差”,同样,其更多的也是指导工艺只有精密行业与场合,才需要分别要求这两点,对电动工具而言,更多的关注“角度误差”就可以了。

3.齿距:导致电动工具噪音的主要源头。

该项指标的超差,会引起明显杂音(可以表现为连续性的,也可以表现为不连续性的,主要取决于超标的程度,超标越重,越表现为不连续性噪音,且伴随强烈振动)。

衡量齿轮的指标有两个,一是“齿距误差”,另一个是“齿距累积误差”,其实两者是“正相关”的,通常我们以“齿距累积误差”为仲裁指标;

大小齿轮的“齿距误差/齿距累积误差”,如果能够控制在国标7级,则绝不会产生杂音;8级的“齿距/齿距累积”可以勉强使用,9级以上的精度,则杂音状况就很糟糕了。

小齿轮对“齿距误差/齿距累积误差”的噪音敏感程度,要远高于大齿轮的敏感程度;

利用齿轮测量机,我们可以很准确地评判该项指标,如果没有齿轮测量机,则可以用“单

啮仪”,“双啮仪”,“齿跳仪”来间接评判。

一般而言,对于轴齿等小齿轮,Fr的指标应该按照如下原则控制:

电钻/冲击钻/电圆锯:Fr<0.03;(这类机器的小轮转速在20000-30000RPN);

曲线锯:Fr<0.045;(因为曲线锯对噪音不敏感);

砂带机:Fr<0.05(其转速在10000RPN以下);

对于大齿轮,Fr控制在7级以下,就很好了,8级勉强使用。9级以上就很糟糕了。

1.齿顶圆,齿根圆:

因为电动工具的齿轮都是大变位的齿轮,所以必须控制这两个参数。但是因为制造的问题和齿轮设计齿顶间隙的问题,这两个尺寸,存

在(+-0.03MM)的误差,也是可以接受得的。超得更多,就要予以注意了。

2.侧隙:为了储存润滑油和补偿由于温度、弹性变形、制造误差及安装误差引起的尺寸变动,防止齿轮在长期工作过程中不被卡死,轮齿啮合必须有一定的间隙。一般控制在0.15-0.20之间。

侧隙偏大,通常不会导致噪音,也不会明显降低啮合强度;

通常检验时,靠控制“公法线长度”来间接控制侧隙。公法线的偏差通常在左右,以保证合理的齿轮配合侧隙(0.12-0.20)。

齿轮的安装精度越高,侧隙可以相应越小。

公法线超大时,会导致轮齿偏胖,侧隙减小,会增加导致尖叫噪音的风险,和齿轮“抱死”的风险,当然0.02MM以内的偏差,还不至于风险很大;

公法线偏小时,不会有很多不良影响,但如果超标到0.10MM,则会降低轮齿寿命。

3.齿轮的安装:

6.1中心距:

对于渐开线圆柱齿轮,中心距稍微偏大,不会导致噪音,也不会导致齿面滑移,增加磨损。通常偏大0.05MM不会有问题,但是不适合偏大0.10MM;

中心距不适合片小,否则会导致轮齿干涉,导致剧烈噪音和传动破坏。对于侧隙较大的电动工具来说,中心距偏小0.02MM,不至于带来明显破坏,但是如果超小0.05MM,则可以产生恶劣后果了。

6.2平行度:

两根轴线交错,将会最显著影响侧隙,容易导致挤齿尖叫;

两根轴线不平行,会在一定程度上影响侧隙,引起载荷沿齿款方向不均匀;

就侧隙而言,前者的影响程度为后者的2倍。

7 磕伤:

轮齿不能有磕伤,否则将导致剧烈的有节奏的,伴随强烈振动的杂音。一般用“双啮仪”来进行“磕伤”的挑选。

二、圆锥齿的测量:

1.工业界的两种测量方法:

1.1运用计量级三坐标测量机,CNC齿轮测量中心进行测量;

用三坐标测量机进行锥齿轮的测量,仅局限于航空航天等单件小批量生产领域,在精度上能够满足要求的也只有德国ZEISS,其他三坐标测量机也声称可以测量锥齿轮,但其只能测量大模数(模数2以上,以利于测头回退),低精度的场合(8,9级精度);

三坐标测量可以完成“齿形”,“齿向”,“齿距”等所有指标的测量,但是其测量过程非常缓慢,30颗轮齿,通常要花10来小时才能够扫描完成;

CNC齿轮测量中心主要应用于汽车等大批量生产领域,其测量精度高,效率高,能测量“齿形”,“齿向”,“齿距”等所有指标,其价格较贵,通常在300-400万RMB;

1.2常规测量方法:

象电动工具,缝纫机等民用领域,通常采取以下常规的测量方法进行检查验收:

齿圈跳动(Fr):更多地反映齿距精度;测量仪器:齿圈跳动测量

仪;

啮合区着色检查:以查核安装距,轴交角,偏置等指标;测量仪器:啮合仪;

单啮合仪:测量切向综合误差或一齿切向综合误差;测量仪器:啮合仪(带传感器)

双啮合仪:径向综合误差或一齿径向综合误差;测量仪器:啮合仪

实际测量时,可以根据需要在以上测量方法中进行组合,我司推荐的测量方法是:

1.运用啮合仪进行“啮合区着色检查”;(必选)

2.运用齿圈跳动测量仪进行“齿圈跳动(Fr)检查”;(可选)3.运用TTI-120E测量仪,进行“齿距检查”;(必选)

1.齿圈跳动Fr测量:

在齿圈跳动测量仪上进行Fr测量时,要注意侧头应垂直于“节锥”方向,测量点位于齿宽中部;

Fr值超大,只会带来冲击类杂音,且伴随明显齿轮箱振动;

Fr的限度值,可以参考圆柱齿轮部分,7级以下精度的跳动值,无论大,小轮,都不会带来冲击类噪音;

Fr值在很大程度上反映了“齿距精度”。所以在没有条件的场合,可以用更仔细的齿圈跳动来间接反映“齿距”精度。所谓“更仔细的齿圈跳动”是指:在测量齿圈跳动的过程中,除了观察总的跳动变化幅值以外,还要仔细观察:是否有突变的“跳动”及其“突变的幅度”。

2.啮合区着色检查:

4.1接触区的形成过程:将被测齿轮的各个齿面,用湿润的红丹粉涂抹均匀,然后与“标准齿轮”在正确的安装距下安装,用大齿轮驱动小齿轮,分别按照顺时针和逆时针旋转后,则在啮合的部位形成黑色的区域,其为啮合区。

4.2良好的接触区包含2个方面的要求:接触区位置,接触区大小。4.3啮合区的位置又包含2方面的要求:

沿齿宽方向的位置:斑点中心应位于齿宽中心略偏向小端的地方,即位于齿宽60%的位置(从大端量向小端);

沿齿高方向的位置:位于齿高中心略偏上的位置,位于齿高60%的位置(从齿根量向齿顶);

4.4啮合区大小:

沿齿宽方向的啮合区大小:约占全齿宽的60%;

沿齿高方向的啮合区大小:约占全齿高的40%-60%

4.5轮齿的两个齿面的啮合区都应满足以上要求,否则无法照顾“开

机”与“停机”两方面的噪音;

4.6对锥齿轮来讲,连续运转时,总是小齿轮的凹面去驱动大齿轮的凸面;

对电动工具而言,啮合区的位置严重影响齿轮副的寿命和噪音,啮合区的大小只次要影响噪音和寿命。

4.7配对运转的齿轮,在以下情况下,有以下结果。

啮合区偏向齿顶,容易导致齿轮早期实效,负载寿命将降为额定寿命的30%-10%;

啮合区偏向大端,将导致齿轮啮合干涉,出现轮齿边沿被啃碎的现象;这种情况下的噪音为打齿噪音,已经无法讨论其寿命了,因为机器声音恐怖,一刻也不能继续运转。

4.8啮合区往齿根或者小端偏移,通常导致噪音。

4.9啮合区除了往上下,左右偏离以外,有时还会沿齿面对角线发展,其常会导致噪音,并使寿命降低为额定寿命的70%-80%(已经不属于早期失效的范畴)。

4.10啮合区偏大,运转噪音的音量会较小(不导致杂音),但其对安装精度依赖性较高,否则不仅不会带来较小噪音,还会导致轮齿啮合时,在边沿干涉,导致“打齿”噪音和齿轮早期失效;

4.11啮合区偏小,常导致噪音音量偏大(不导致杂音),但其对安装精度依赖性不高,在噪音和寿命方面的风险较小。

5.齿距:和圆柱齿轮一样,齿距超标,也会导致杂音,也是噪音的主要来源;

其影响程度与原理与圆柱齿轮一致,不再重复。

1. EPG影响接触区位置的直接原因:

E是指大、小齿轮的轴线空间交错的距离;也即工程用语“正交”一词中的“交”字。

P是PINION的首字母缩写,自然代表“小齿轮位置”;

G是GEAR的首字母缩写, 代表“大齿轮位置”

E,通常导致接触区斜向发展,最终导致杂音;E控制在0.01以内是极好的,0.02以内可以接受,超大到0.05以上时,就不太能够使用了;P, 通常显著影响啮合区位置,多导致啮合区沿齿高方向变化;P的变化极限通常为MINUS-PLUS0.1MM,

G,会不显著地影响啮合区,主要用来调配齿轮啮合“侧隙”;锥齿轮的侧隙也应控制在0.15-0.20MM左右。

锥齿轮还有一个安装角度的问题,也即工程用语“轴交角”,“轴交角”的变化,会导致啮合区往大端或者小端偏移,影响噪音,和寿命。其影响

程度有待探索。

锥齿轮的安装,远比圆柱齿轮复杂和敏感,安装不对,常导致早期失效。绝大多数的早期失效均源自于安装不正确,而非热处理问题,即便是不经过热处理的齿轮,也不会发生30%额定寿

齿轮噪音分析

在现代齿轮加工中,齿轮噪声控制已成为一个重要的质量控制环节,齿轮噪声控制水平不仅代表一个齿轮制造厂的质量水平,而且直接受到有关环保法规的制约。剃齿是一种广泛采用的齿轮精加工方法,特别在轿车齿轮加工中,90%以上的齿轮精加工均采用剃齿。这不仅因为剃齿具有较高的加工效率和较低的加工成本,可大幅度提高齿轮精度和表面粗糙度,而且剃齿能实现齿形修形及采取热处理变形补偿措施,从而降低齿轮传动噪声,提高齿轮承载能力和安全系数,延长齿轮工作寿命。 一、齿轮传动噪声的影响因素及控制方法 齿轮噪声更准确地应称为齿轮传动噪声,其声源为齿轮啮合传动中的相互撞击。齿轮传动中的撞击主要由齿轮啮合刚性的周期性变化以及齿轮传动误差和安装误差引起。 齿轮啮合刚性的周期性变化对传动噪声的影响啮合刚性的变化是指齿轮传动中因同时啮合齿数不同而引起的啮合轮齿承受载荷的变化,并由此引起轮齿变形量的变化。在直齿轮传动中,啮合线上的同时啮合齿数在1~2对之间变化,而其传动的扭矩近似恒定。因此,当一对轮齿啮合时,全部载荷均作用于该对轮齿,其变形量较大;当两对轮齿啮合时,载荷由两对轮齿共同承担,每对轮齿的负荷减半,此时轮齿变形量较小。这一结果使齿轮的实际啮合点并非总是处于啮合线的理论啮合位置,由此产生的传动误差使输出轴的运动滞后于输入轴

的运动。主、被动齿轮在啮合线外进入啮合时,其速度的瞬时差异造成在被动齿轮齿顶处产生撞击。在不同载荷下齿轮传动产生的噪声程度不同,其原因在于不同载荷下轮齿产生的变形量不同,造成的撞击程度不同。斜齿轮的啮合刚性取决于啮合轮齿的接触线总长度,故同时啮合齿数的变化对啮合刚性影响不大。 齿轮传动误差和安装误差对传动噪声的影响齿轮传动装置空载运行时,传动噪声的影响因素主要为齿轮的加工误差和安装误差,包括齿形误差、齿距误差、齿圈跳动、安装后齿轮的轴线度、平行度及中心距误差等。当然,这些误差对传动装置在负载下运行的传动噪声也有影响。a. 齿形误差会引起与啮合频率相同的传动误差及噪声,是引起啮合频率上噪声分量的主要原因。中凹齿形是不能接受的,加工中应尽量避免。b. 齿距误差为随机误差,产生的噪声频率与啮合频率不同,不会提高啮合频率上的噪声幅度,但会加宽齿轮噪声音频的带宽。c. 轴线在节平面上投影的不平行、齿向误差以及轴在传动负载下的变形会使轮齿在齿宽方向上的接触长度缩短,造成啮合刚性下降,由此产生的传动误差及齿轮传动啮合刚性的周期性变化是产生噪声的另一原因,其对斜齿轮传动影响更大。 控制齿轮噪声的有效途径——齿轮修缘齿轮传动中的撞击是产生噪声的主要原因,因此,消除或减小齿轮传动中的撞击是降低噪声的有效途径。采用齿轮修缘能有效减小齿轮传动中的撞击,从而控制齿轮

齿轮传动噪声产生原因及控制

齿轮传动噪声产生原因及控制 摘要:结合多年的实际工作经验,分析齿轮传动噪音的产生的原因,同时,就如何控制和减少噪音,提出了一些比较实用的方法,仅供相关人士参考。 关键词:齿轮传动、噪音、消除、共振、渐开线 齿轮传动的噪音是很早以前人们就关注的问题。但是人们一直未完全解决这一问题,因为齿轮传动中只要有很少的振动能量就能产生声波形成噪音。噪音不但影响周围环境,而且影响机床设备的加工精度。由于齿轮的振动直接影响设备的加工精度,满足不了产品生产工艺要求。因此,如何解决变速箱齿轮传动的噪音尤为重要。下面谈谈机械设备设计和修理中消除齿轮传动噪音的几种简单方法。 1 噪音产生的原因 1.1 转速的影响 齿轮传动若转速较高,则齿轮的振动频率增高,啮台冲击更加频繁,高频波更高。据有关资料介绍,转速在1400转/分钟时产生的振动频率达5000H。产生的声波达88dB形成噪音软。一般光学设备变速箱输出轴的转速都较高。高达2000~2800转/分钟。因此,光学设备要解决噪音问题是需要研究的。 1.2 载荷的影响 我们将齿轮传动作为一个振动弹簧体系,齿轮本身作为质量的振动系统。那么该系统由于受到变化不同的冲击载荷,产生齿轮圆周方向扭转振动,形成圆周方向的振动力。加上齿轮本身刚性较差就会产生周期振幅出现噪音。这种噪音平稳而不尖叫。 1.3 齿形误差的影响 齿形误差对齿轮的振动和噪音有敏感的影响。齿轮的齿形曲线偏离标准渐开线形状,它的公法线长度误差也就增大。同时齿形误差的偏离量使齿顶与齿根互相干扰,出现齿顼棱边啮合,从而产生振动和噪音。 1.4 共振现象的影响 齿轮的共振现象是产生噪音的重要原因之一。所谓共振现象就是一个齿轮由于刚性较差齿轮本身的固有振动频率与啮合齿轮产生相同的振动频率,这时就会产生共振现象。由于共振现象的存在,齿轮的振动频率提高,产生高一级的振动噪音。要解决共振现象的噪音问题,只有提高齿轮的刚性。 1.5 啮合齿面的表面粗糙度影响 齿轮啮合面粗糙度会激起齿轮圆周方向振动,表面粗糙度越差,振动的幅度越大,频率越高,产生的噪音越大。 1.6 润滑的影响 对啮合齿轮齿面润滑良好可以减少齿轮的振动力,它与润滑的方法有关。据有关资料介绍,齿轮箱中企图增加润滑油的数量,提高润滑油面的高度或用润滑粘度较高的润滑油来减少齿轮箱的振动和噪音其收效甚少。若采用齿轮啮合面上充分注入润滑的方法进行强制性润

齿轮箱的故障类型及振动机理改

第2章齿轮箱的故障和振动信号 2.1齿轮箱故障的主要形式 齿轮箱系统是包含齿轮、轴承、传动轴及箱体等结构的复杂系统。其中主要故障发生在齿轮、轴承和传动轴上。在齿轮箱的诊断中,一般只给出是否产生故障及产生故障的位置,根据振动信号的特点,一般常见的典型故障形式有齿轮失效、轴和轴系失效、箱体共振和轴承疲劳脱落和点蚀等几种【5】。 在这些常见故障中,齿轮和滚动轴承的故障占齿轮箱故障的80%左右【4】。因此,对齿轮和滚动轴承的故障类型和振动机理进行剖析,对于识别齿轮箱故障类型有重要的意义。 2.1.1齿轮的故障类型及振动机理 (1)齿轮的故障类型齿轮的故障类型大致可分为以下两种类型: 1)由制造误差和装配误差引起的故障。具体的故障包括齿轮偏心、齿距偏差、齿形误差、轴线不对中、齿面一段接触等故障。齿轮制造时造成的主要缺陷有:偏心、齿距偏差和齿形误差等。齿轮装配不当,也会造成齿轮的工作性能恶化。当齿轮的这些误差较严重时,会引起齿轮传动中忽快忽慢的转动,啮合时产生冲击引起较大的振动和噪声等【5】。 2)运行中产生的故障齿轮除上述故障外,其在本身运行过程中也会形成许多常见的故障,例如断齿、齿根疲劳裂纹、齿面磨损、点蚀剥落、严重交合等等。齿轮预定寿命内不影响使用的磨损成文正常磨损,如果因使用不当、用材不当、接触面存在硬颗粒以及润滑油不足等原因引发早期磨损,将导致齿轮形变、重量损失、齿厚变薄、噪声增大等后果,甚至会导致齿轮失效。其中若润滑油不足,还会导致齿面胶合,胶合一旦发生,齿面状况变差,功耗增大,从而使得振动信号变强。 (2)齿轮的振动机理一对啮合齿轮,可以看作一个具有质量、弹簧和阻尼的振动系统,其力学模型如图2-1所示。 图2-1齿轮对的力学模型 其振动方程为【4】: M r X+CX+K t X=K t E1+K t E2(t)2-1式中 X——为沿作用线上齿轮的相对位移 K(t)——齿轮啮合刚度 M r——齿轮副的等效质量

谈谈齿轮传动中的减振降噪

第3期水利电力机械?23? 收稿日期:2000-01-06 谈谈齿轮传动中的减振降噪 Discussion on vibration and noise reduction in gear transmission 邓小君1,杨自明2 (11河南职业技术学院,河南郑州 450004;21河南省劳动厅,河南郑州 450003) 摘 要:阐述了在齿轮转动过程中,齿轮的振动噪声问题。分析了齿轮振动噪声产生的机理和5种激励源,指出减振材料、齿轮参数、齿轮结构是影响减振降噪的主要因素。介绍了几种减振降噪的有效方法,从而可达到齿轮噪声由78分贝降至73分贝的良好效果。关键词:齿轮传动;振动与噪声;机理;减振降噪途径 中图分类号:T B53311∶TH132141 文献标识码:B 文章编号:1006-6446(2000)02-0023-03 0 引言 齿轮传动是依靠轮齿之间的交替啮合来完成动力传输的。在齿轮啮合过程中,由于轮齿制造、安装误差等因素的存在,不可避免会引起冲击、振动和噪声,并影响其工作精度。随着对机械传动在高速、大功率、轻量、小型、高效、高可靠性以及环保等方面要求的不断提高,齿轮的振动噪声问题日益突出,解决此问题日趋迫切。因此,本文拟对齿轮传动过程中振动噪声产生的机理进行分析,并提出一些减振降噪的途径和有效方法。 1 齿轮传动中振动噪声的产生 在齿轮啮合时,由于轮齿存在制造、安装误差和轮齿受力变形,使实际齿廓发生偏离,从而产生随时间变化的动态啮合力,必然导致振动和噪声。即使一对理论上完全共轭、无制造安装误差的齿轮啮合时,也会由于轮齿间的同时啮合对数、啮合位置、瞬间传动比的不断变化,使得轮齿刚度发生变化,进而引起轮齿在啮合过程中产生参激振动而向外辐射噪声。这些内 在因素就成为齿轮传动中振动噪声产生的主要原因。 对于渐开线圆柱齿轮传动,产生振动噪声的激励源主要有以下几个方面:(1)啮合刚度的变化;(2)传动误差;(3)轮齿的啮入、啮出的冲击;(4)动态啮合力;(5)由于摩擦力方向的改变而产生的节点冲击。 在以上5种激励源中,最主要的是啮合刚度的变化和传动误差的影响。在目前的齿轮动态特性研究中,人们大多关注啮合刚度的变化所产生的振动噪声,而对传动误差的研究较少。传动误差是任一瞬时输出齿轮的实际位置和理论上完全共轭啮合时输出齿轮位置之差,此差值可用角度计量或用沿啮合线方向的线性位移来表示。它是有关制造、安装误差及轮齿变形等因素综合作用的结果。在齿轮传动中,近似于锯齿波的传动误差,作为一种位移激励源影响齿轮的振动特性,引起动力学方程中的强迫激励项不连续,从而产生较大的振动噪声。因此,对其进行研究是很有必要的。研究结果表明:时变啮合刚度和传动误差对齿轮动态特性

齿轮异响分析

工艺

主持人:陈晓玉/ 工艺 、F b 、±F px 等几个评定指标控制;4)齿轮副侧隙,由 箱体中心距和齿厚减薄量控制。 对每一对齿轮都必须有上述4项基本要求,而且根据使用工作条件不同,这4项要求也各不相同。当然,这几个方面也并非单一条件起作用,它们之间既有一定联系,又有主次之分。就摩托车发动机而言,传动平稳性要求和齿轮幅侧隙要求应明显高于其它2个公差组的要求。2.1齿形的影响 用同一台发动机,在检测初级驱动齿轮完全合格的情况下,更换初级从动齿轮,在转速相同的条件下,判定噪声出现程度,分为无、轻微、中等、严重4级。 其结果为: 1)齿形误差影响最明显;2)齿形误差比齿向误差影响明显; 3)齿形误差比基节极限偏差影响明显。齿形参数对噪声的影响如表2所示。 表2 齿形、齿向、基节对噪声的影响组别 件号 f f F 对齿厚的影响:△E S =2△f a tg ?a?a3Y??3YD??? 2.6齿面粗糙度的影响 笔者在试验中还发现,个别齿轮在检测中虽各项检测参数均合格,齿形、齿向的检测曲线也在公差范围内,但曲线波动大,可见齿面粗糙度和磕碰、毛刺也是产生噪声异响的一个重要方面。 3解决措施 由于齿轮轮齿存在制造和安装误差、齿轮弹性变形、扭转变形、热变形等,均会使齿轮在啮合过程中产生冲击、振动和偏载,而靠提高齿轮制造和安装精度来改善齿轮的运转质量,又会增加齿轮的制造成本。过去人们总是力求使齿轮的精度尽可能地接近理论齿形,通过实践,采用齿顶和齿根修缘、齿向修形后,能有效地改善轮齿的啮合性能,提高运转平稳性及承载能力,降低噪声和振动,延长使用寿命。3.1从齿形方面入手3.1.1齿形的优化设计 齿形修形的基本原则:a )根据齿轮的材料、模数、负载大小及精度等,选取适当的修形量,一般在0.007~0.03mm 范围内[2]。修形量小,齿轮的制造误差大于齿形修形量,达不到目的;修形量大,重合度系数下降,适得其反。

齿轮噪声

齿轮噪声,剃齿加工及剃齿刀的修磨 作者:意大利桑浦坦斯利北京办事处徐振光 在现代齿轮加工中,齿轮噪 声控制已成为一个重要的质量控制环节,齿轮噪声控制水平不仅代表一个齿轮制造厂的质量水平,而且直接受到有关环保法规的制约。剃齿是一种广泛采用的齿轮精加工方法,特别在轿车齿轮加工中,90%以上的齿轮精加工均采用剃齿。这不仅因为剃齿具有较高的加工效率和较低的加工成本,可大幅度提高齿轮精度和表面粗糙度,而且剃齿能实现齿形修形及采取热处理变形补偿措施,从而降低齿轮传动噪声,提高齿轮承载能力和安全系数,延长齿轮工作寿命。 一、齿轮传动噪声的影响因素及控制方法 齿轮噪声更准确地应称为齿轮传动噪声,其声源为齿轮啮合传动中的相互撞击。齿轮传动中的撞击主要由齿轮啮合刚性的周期性变化以及齿轮传动误差和安装误差引起。 1) 齿轮啮合刚性的周期性变化对传动噪声的影响 啮合刚性的变化是指齿轮传动中因同时啮合齿数不同而引起的啮合轮齿承受载荷的变化,并由此引起轮齿变形量的变化。在直齿轮传动中,啮合线上的同时啮合齿数在1~2对之间变化,而其传动的扭矩近似恒定。因此,当一对轮齿啮合时,全部载荷均作用于该对轮齿,其变形量较大;当两对轮齿啮合时,载荷由两对轮齿共同承担,每对轮齿的负荷减半,此时轮齿变形量较小。这一结果使齿轮的实际啮合点并非总是处于啮合线的理论啮合位置,由此产生的传动误差使输出轴的运动滞后于输入轴的运动。主、被动齿轮在啮合线外进入啮合时,其速度的瞬时差异造成在被动齿轮齿顶处产生撞击。在不同载荷下齿轮传动产生的噪声程度不同,其原因在于不同载荷下轮齿产生的变形量不同,造成的撞击程度不同。斜齿轮的啮合刚性取决于啮合轮齿的接触线总长度,故同时啮合齿数的变化对啮合刚性影响不大。 2) 齿轮传动误差和安装误差对传动噪声的影响 齿轮传动装置空载运行时,传动噪声的影响因素主要为齿轮的加工误差和安装误差,包括齿形误差、齿距误差、齿圈跳动、安装后齿轮的轴线度、平行度及中心距误差等。当然,这些误差对传动装置在负载下运行的传动噪声也有影响。 a. 齿形误差会引起与啮合频率相同的传动误差及噪声,是引起啮合频率上噪声分量的主要原因。中凹齿形是不能接受的,加工中应尽量避免。 b. 齿距误差为随机误差,产生的噪声频率与啮合频率不同,不会提高啮合频率上的噪声幅度,但会加宽齿轮噪声音频的带宽。 c. 轴线在节平面上投影的不平行、齿向误差以及轴在传动负载下的变形会使轮齿在齿宽方向上的接触长度缩短,造成啮合刚性下降,由此产生的传动误差及

齿轮传动噪声形成的主要原因及对策

齿轮传动噪声形成的主要原因及对策 传统衡量齿轮传动性能的两个主要因素是:负载能力和疲劳寿命,往往将传动噪音与传动精度忽略掉。随着ISO14000、ISO18000两项标准的相继颁布,控制齿轮传动噪音这一因素的重要性日趋明显,工业发展与需求对高精密设备的传动误差的要求也越来越严格(齿轮传动侧隙)。目前已知的齿轮噪音形成因素,大致可从设计、制造、安装、使用维护等几个方面分析。 设计原因及对策 1. 齿轮精度等级 齿轮传动系统设计时,设计者往往从经济因素考虑,尽可能比较经济的确定齿轮精度等级,殊不知精度等级是齿轮产生噪声等级与侧隙的标记。美国齿轮制造协会曾通过大量的齿轮研究,确定高精度等级齿轮比低精度等级齿轮产生的噪声要小的多。因此,在条件允许的情况下,应尽可能提高齿轮的精度等级,来减小齿轮噪声,减少传动误差。 2. 齿轮宽度 在齿轮传动系统允许时,增加齿宽,可以减少恒定扭矩下的单位负荷。降低轮齿挠曲,减少噪声激励,从而降低传动噪声。德国H奥帕兹的研究表明,扭矩恒定时,小齿宽比大齿宽噪声曲线梯度高。同时增长齿宽能加大齿轮的承载能力。 3. 齿距和压力角 小齿距能保证有较多的轮齿同时接触,齿轮重叠增多,减少单个齿轮挠曲,降低传动噪声,提高传动精度。较小的压力角由于齿轮接触角和横向重叠比都比较大,因此运转噪声小、精度高。 4. 运转速度 根据德国H奥帕兹的试验研究表明,随着齿轮运转速度增加,噪声等级升高。 5. 齿轮箱结构 试验研究表明,采用圆筒形箱体对减震有利,在其他条件相同的情况下,普通结构齿轮箱体的噪声级比圆筒形箱体噪声级平均高6dB。对齿轮箱体进行共振测试,找出共振位置,增加适当的筋条(板),可以明显地减少振动,降低噪声。多级齿轮传

噪音与振动控制方案

施工现场噪音与振动控制方案 为认真贯彻落实《建设工程文明施工管理规定》和《扬尘污染防治管理办法》以及重大工程建设的有关文明施工管理规定,实现文明施工现场达到相关标准,特编制本施工噪声与振动控制专项方案。 一、编制依据 1、《中华人民共和国环境噪声污染防治法》; 2、《建筑施工场界噪声限值》GB 12523-90 3、《江苏省环境保护条例》; 4、《江苏省建设工程文明施工管理规定》; 5、《江苏省重大工程文明施工管理考核办法(试行)》 二、工程概况 丹徒新城恒顺大道改造工程位于宜城大道以东,G312以西区域,整体呈东西向。路线起于与宜城大道交叉,向东南方向延伸,下穿S86镇江支线后,往东止于园区二路(盛园路)交叉,路线全长3328.911m。道路等级为城市次干路,规划红线宽度50m,设计速度为50km/h。 1.责任人: (1)项目经理负责噪声控制管理工作的领导,全面管理项目的噪声预防和控制。(2)项目工程师、施工员和班组长负责实施施工过程中的噪声控制。 (3)项目技术员负责噪声控制情况的检查和噪声的监控与监测工作。 三、组织保证措施 一般噪声源:土方阶段:挖掘机、装载机、推土机、运输车辆、破碎钻等。结构阶段:汽车泵、振捣器、混凝土罐车、支拆模板与修理、支拆脚手架、钢筋加工、电刨、电锯、人为喊叫、哨工吹哨、搅拌机、水电加工等。装修阶段:拆除脚手架、石材切割机、砂浆搅拌机、空压机、电锯、电刨、电钻、磨光机等。 1.施工时间应安排在 6:00—22:00 进行,因生产工艺上要求必须连续施工或特殊需要夜间施工的,必须在施工前到工程所在地的区、县建设行政主管部门提出申请经批准后,并在环保部门备案后方可施工。项目部要协助建设单位做好周边居民工作。 2.施工场地的强噪声设备宜设置在远离居民区的一侧。尽量选用环保型低噪声振捣器,振捣器使用完毕后及时清理与保养。振捣混凝土时禁止接触模板与钢筋,并做到

风力发电机齿轮箱振动测试方法

风力发电机组齿轮箱振动测试与分析 唐新安谢志明王哲吴金强 摘要对齿轮箱做振动测试和分析,通过模式识别找到齿轮箱损坏时呈现的特性,为齿轮箱故障诊断提供依据。 关键词风力发电机组齿轮箱振动分析故障诊断 中图分类号 TH113. 21 文献标识码 A 我国风电场中安装的风力发电机组多为进口机组。因为在恶劣环境下工作,其损坏率高达40%~50%。随着清洁能源的普及,齿轮箱的故障诊断和预知维修已迫在眉睫。本文就齿轮箱的故障诊断作一些探索性研究。 一、齿轮箱振动测试 采用北京东方所开发的DASP(Data Acquisition and SignalProcessing)测振系统,对某风电场4#、5#机组齿轮箱的不同测点(图1)做振动测试和分析,4#机组刚进行过检修运行正常作为对照机组,5#机组噪声异常为待检机组,对两机组齿轮箱的振动信号对比分析,判断存在故障。齿轮箱特征频率见表1。 表1 齿轮箱特征频率表 Hz

二、信号分析 1.统计分析 由统计表2、表3可看出,5#机组振动值明显偏大,尤其是5~10测点振动值基本上是4#机组相应测点的2倍以上。 表2 4#机组幅域统计表 m/s2 表2 5#机组幅域统计表 m/s2 5#机组概率分布及概率密度函数反映其时间序列分布范围较宽(图2),峭度系数(即四阶中心距)与4#机组的(图3)明显,同(若以4#机组为标准g=0,那么5#机组g=0),预示5#机组存在古障。

2.时域分析 通过时域分析(图4、图5),发现5#机组齿轮箱振动信号有明显异常.幅值转大,且 有明显的周期性,其频率约大20Hz 。

3.频坷分析 由图6可见,5#机组齿轮箱的频谱图既有调幅成分又有调频成分(调制频率对中心频率 的幅值不对称)。

如何降低齿轮传动噪音

如何降低齿轮传动噪音 啮合的齿轮对或齿轮组在传动时,由于相互的碰撞或摩擦激起齿轮体振动而辐射出来的噪声。齿轮噪音形成的原因有许多。 一、齿轮传动系统的噪声分析 为从设计角度出发降低齿轮传动系统的噪声,我们就应首先来分析一下齿轮系统噪声的种类和发生机理。 在齿轮系统中,根据机理的不同,可将噪声分成加速度噪声和自鸣噪声两种。一方面,在齿轮轮齿啮合时,由于冲击而使齿轮产生很大的加速度并会引起周围介质扰动,由这种扰动产生的声辐射称为齿轮的加速度噪声。另一方面,在齿轮动态啮合力作用下,系统的各零部件会产生振动,这些振动所产生的声辐射称为自鸣噪声。 对于开式齿轮传动,加速度噪声由轮齿冲击处直接辐射出来,自鸣噪声则由轮体、传动轴等处辐射出来。对于闭式齿轮传动,加速度噪声先辐射到齿轮箱内的空气和润滑油中,再通过齿轮箱辐射出来。自鸣噪声则由齿轮体的振动通过传动轴引起支座振动,从而通过齿轮箱箱壁的振动而辐射出来。一般说来,自鸣噪声是闭式齿轮传动的主要声源。因此,齿轮系统的噪声强度不仅与轮齿啮合的动态激励力有关,而且还与轮体、传动轴.轴承及箱体等的结构形式、动态特性以及动态啮合力在它们之间的传递特性有关。 一般来说,齿轮系统噪声发生的原因主要有以下几个方面: 1)齿轮设计方面。参数选择不当,重合度过小,齿廓修形不当或没有修形,齿轮箱结构不合理等。 齿轮加工方面基节误差和齿形误差过大,齿侧间隙过大,表面粗糙度过大等。 2)齿轮系及齿轮箱方面。装配偏心,接触精度低,轴的平行度差,轴,轴承、支承的刚度不足,轴 承的回转精度不高及间隙不当等。 3)其他方面输入扭矩。负载扭矩的波动,轴系的扭振,电动机及其它传动副的平衡情况等。

齿轮噪音改进

治理齿轮传动噪声 | [<<][>>] 为了避免减速机不能通过出厂测试,原因之一是减速机存在间歇性高噪声;用N D6型精密声级计测试,低噪声减速机为72.3Db(A),达到了出厂要求;而高噪声减速机为82.5d B(A),达不到出厂要求。 经过反复测试、分析和改进试验,得出的结论是必须对生产的各个环节进行综合治理,才能有效降低齿轮传动的噪声。 1、齿轮精度的基本要求 经实践验证,齿轮精度必须控制在G B10995-887~8级,线速度高于20m/s齿轮,齿距极限偏差、齿圈径向跳动公差、齿向公差一定要稳定达到7级精度。在达到7级精度齿轮的情况下,齿部要倒梭,要严防齿根凸台。 2、控制原材料的质量 高质量原材料是生产高质量产品的前提条件,某公司用量最大的材料40Cr和45钢制造齿轮。无论通过何种途径,原材料到厂后都要经过严格的化学成分检验、晶粒度测定、纯洁度评定。其目的是及时调整热处理变形,提高齿形加工中的质量。 3、防止热处理变形 齿坯在粗加工后成精锻件,进行正火或调质处理,以达到:(1)软化钢件以便进行切削加工;(2)消除残余应力;(3)细化晶粒,改善组织以提高钢的机械性能;(4)为最终能处理作好组织上的准备。应注意的是,在正火或调质处理中,一定要保持炉膛温度均匀,以及采用工位器具,使工件均匀地加热及冷却,严禁堆放在一起。需钻孔减轻重量的齿轮,应将钻孔序安排在热处理后进行。 齿轮的最终热处理采用使零件变形较小的齿面高频淬火;高频淬火后得到的齿面具有高的强度、硬度、耐磨性和疲劳极限,而心部仍保持足够的塑性和韧性。为减少变形。齿面高频淬火应采用较低的淬火温度和较短的加热时间、均匀加热、缓慢冷却。 4、保证齿坯的精度 齿轮孔的尺寸的精度要求在孔的偏差值的中间差左右分布,定在

如何减少齿轮的噪音

如何减少齿轮的噪音 减少齿轮噪音的方法: 为了避免减速机不能通过出厂测试,原因之一是减速机存在间歇性高噪声;用ND6型精密声级计测试,低噪声减速机为72.3Db(A),达到了出厂要求;而高噪声减速机为82.5dB(A),达不到出厂要求。经过反复测试、分析和改进试验,得出的结论是必须对生产的各个环节进行综合治理,才能有效降低齿轮传动的噪声。 1、控制齿轮的精度:齿轮精度的基本要求:经实践验证,齿轮精度必须控制在GB10995-887~8级,线速度高于20m/s齿轮,齿距极限偏差、齿圈径向跳动公差、齿向公差一定要稳定达到7级精度。在达到7级精度齿轮的情况下,齿部要倒梭,要严防齿根凸台。 2、控制原材料的质量:高质量原材料是生产高质量产品的前提条件,我公司用量最大的材料40Cr和45钢制造齿轮。无论通过何种途径,原材料到厂后都要经过严格的化学成分检验、晶粒度测定、纯洁度评定。其目的是及时调整热处理变形,提高齿形加工中的质量。 3、防止热处理变形:齿坯在粗加工后成精锻件,进行正火或调质处理,以达到: (1)软化钢件以便进行切削加工; (2)消除残余应力; (3)细化晶粒,改善组织以提高钢的机械性能; (4)为最终能处理作好组织上的准备。应注意的是,在正火或调质处理中,一定要保持炉膛温度均匀,以及采用工位器具,使工件均匀地加热及冷却,严禁堆放在一起。需钻孔减轻重量的齿轮,应将钻孔序安排在热处理后进行。齿轮的最终热处理采用使零件变形较小的齿面高频淬火;高频淬火后得到的齿面具有高的强度、硬度、耐磨性和疲劳极限,而心部仍保持足够的塑性和韧性。为减少变形。齿面高频淬火应采用较低的淬火温度和较短的加热时间、均匀加热、缓慢冷却。 4、保证齿坯的精度:齿轮孔的尺寸的精度要求在孔的偏差值的中间差左右分布,定在±0.003~±0.005mm;如果超差而又在孔的设计要求范围内,必须分类,分别转入切齿工序。齿坯的端面跳动及径向跳动为6级,定在 0.01~0.02mm范围内。 5、切齿加工措施:对外购的齿轮刀具必须进行检验,必须达到AA级要求。齿轮刀具刃磨后必须对刀具前刃面径向性、容屑槽的相邻周节差、容屑槽周节的最大累积误差、刀齿前面与内孔轴线平行度进行检验。在不影响齿轮强度的前提下,提高齿顶高系数,增加0.05~0.1m,,改善刀具齿顶高系数,避免齿轮传动齿根干涉。M=1~2的齿轮采用齿顶修圆滚刀,修圆量R=0.1~0.15m。消除齿顶毛刺,改善齿轮传动时齿顶干涉。切齿设备每年要进行一次精度检查,达不到要求的必须进行维修。操作者亦要经常进行自检,特别是在机床主轴径向间隙控制在0.01mm以下,刀轴径跳0.005mm以下,刀轴窜动0.008mm以下。刀具的安装精度:刀具径向跳动控制在0.003mm以下,端面跳动0.004mm以下。切齿工装精度,心轴外径与工件孔的间隙,保证在0.001~0.004mm以内。心轴上的螺纹必须在丙顶类定位下,由螺纹床进行磨削:垂直度≦0.003mm,径跳≦0.005mm。螺母必须保证内螺纹与基准面一次装夹车成,垫圈的平行度≦0.003mm。 6、文明生产:齿轮传动噪声有30%以上的原因来自毛刺、磕碰伤。有的工厂在齿轮箱装配前,去除毛刺及磕碰伤,是一种被动的做法。(1)齿轮轴类零件,滚齿后齿部立即套上专用的塑料保护套后转入下道工序,并带着专用的塑料保护套入库和发货。(2)进行珩齿工艺,降低齿面粗糙度,去除毛刺,并防止磕碰伤,能有效地降低齿轮

齿轮噪音原因分析

齿轮噪音原因分析 齿轮传动噪声产生原因及控制 齿轮传动的噪音是很早以前人们就关注的问题。但是人们一直未完全解决这一问题,因为齿轮传动中只要有很少的振动能量就能产生声波形成噪音。噪音不但影响周围环境,而且影响机床设备的加工精度。由于齿轮的振动直接影响设备的加工精度,满足不了产品生产工艺要求。因此,如何解决变速箱齿轮传动的噪音尤为重要。下面谈谈机械设备设计和修理中消除齿轮传动噪音的几种简单方法。 1 噪音产生的原因 1.1 转速的影响 齿轮传动若转速较高,则齿轮的振动频率增高,啮台冲击更加频繁,高频波更高。据有关资料介绍,转速在1400转/分钟时产生的振动频率达5000H。产生的声波达88dB形成噪音软。一般光学设备变速箱输出轴的转速都较高。高达2000~2800转/分钟。因此,光学设备要解决噪音问题是需要研究的。 1.2 载荷的影响 我们将齿轮传动作为一个振动弹簧体系,齿轮本身作为质量的振动系统。那么该系统由于受到变化不同的冲击载荷,产生齿轮圆周方向扭转振动,形成圆周方向的振动力。加上齿轮本身刚性较差就会产生周期振幅出现噪音。这种噪音平稳而不尖叫。 1.3 齿形误差的影响 齿形误差对齿轮的振动和噪音有敏感的影响。齿轮的齿形曲线偏离标准渐开线形状,它的公法线长度误差也就增大。同时齿形误差的偏离量使齿顶与齿根互相干扰,出现齿顼棱边啮合,从而产生振动和噪音。 1.4 共振现象的影响 齿轮的共振现象是产生噪音的重要原因之一。所谓共振现象就是一个齿轮由于刚性较差齿轮本身的固有振动频率与啮合齿轮产生相同的振动频率,这时就会产生共振现象。由于共振现象的存在,齿轮的振动频率提高,产生高一级的振动噪音。要解决共振现象的噪音问题,只有提高齿轮的刚性。 1.5 啮合齿面的表面粗糙度影响 齿轮啮合面粗糙度会激起齿轮圆周方向振动,表面粗糙度越差,振动的幅度越大,

降低齿轮噪音的方法

降低齿轮噪音的方法 降低齿轮传动噪声的有效方法 齿轮传动在各种机械中有着广泛的应用。它与带传动、链传动、蜗轮蜗杆传动等相比较有很多优点。例如:传动的速度范围广、传递的功率大、传动可靠、结构紧凑、寿命长、能保证恒定的瞬时传动比,但它的缺点之一是噪音大。那么,如何有效的降低齿轮传动的噪声,笔者浅谈如下: 一、选择材料 齿轮的材料一般有碳素钢、锻钢、铸钢、铸铁和非金属材料(如尼龙、夹布塑料)等。为了降低齿轮传动的噪声,在某些强度要求不高的场合,可大胆地使用非金属材料作为首选齿轮的材料。特别是随着我国科技工作者对非金属材料的研究和开发逐渐深入,用非金属材料制造零件的强度、精度将逐步提高,它将越来越被机械设计工作者所青睐。同时,也可在一对啮合齿轮中,一个齿轮采用非金属材料,另一个齿轮仍用金属材料。一般是小齿轮用非金属材料,大齿轮用金属材料,可以降低齿轮传动的噪声。 二、选择齿轮的参数 选择齿轮的参数时,应有利于降低齿轮传动的噪声。选择齿轮的齿数时应以多齿数为好。即:中心距确定后,在满足弯曲疲劳强度的前提下,尽量降低模数。由于d=mz,当齿轮的分度圆直径d一定时,模数m越小,齿数z越多,增加了重叠系数,从而降低齿轮传动的噪声。同时,由于模数降低,齿轮的加工成本也会降低。另一方面,当不能降低齿轮模数时,应先考虑采用斜齿轮,这样也可以增加重叠系数,降低齿轮传动的噪声。在斜齿轮传动中对于螺旋角的选择要求很高,原因是由于螺旋角较小,体现不出斜齿轮传动的优点,而螺旋角越大,相应地带来轴向力的增大,所以一般要求螺旋角在8°~20°之间。而实际应用中,较小传动功率的条件下,螺旋角可稍大于16°为宜,这样降低噪声的效果更为明显,并且又不能引起较大的温升(因螺旋角较大,则轴向力增加,会使无用功增大而产生高温)。再次,我国对一般用途的齿轮传动规定的标准压力角α=20°,但对重合系数接近2的高速齿轮传动,推荐采用齿顶高系数为1~1.2,压力角为16°~18°的齿轮,这样做可增加轮齿的柔性,降低齿轮传动的噪音。 三、结构方面 齿轮尽量避免采用实心结构,而应设计成腹板式结构。也就是只要强度满足要求,齿轮应尽量减轻重量。这样可使齿轮的固有频率降低,从而降低啮合的噪声。 四、装配方面 装配质量对齿轮传动噪声影响较大。选用同一台机床加工出来的左右旋齿轮组装,将有利于降低齿轮的啮合噪声。装配前要特别注意先清洗齿轮端面的毛刺,因为端面毛刺在啮合的过程中直接产生噪声,有条件的话可对齿廓间作降低噪声修缘。 五、模拟工作状况的跑合 对于以上措施仍达不到要求,又五条件提高齿轮加工精度时,模拟工作状况的跑合是最有效最廉价的方法。跑合时,在啮合区涂上研磨膏,然后正转10~20h,再反转同样的时间。跑合时要注意不要让研磨膏进入轴承部位,以免造成轴承磨损。跑合后要把设备清洗干净,不留研磨膏和磨屑。

齿轮箱振动信号降噪及特征提取方法研究

太原理工大学硕士研究生学位论文 齿轮箱振动信号降噪及特征提取方法研究 摘要 大型机械设备由于本身结构复杂而且大多数在恶劣环境下工作,因此能够及时、准确地监测出机械设备的运行情况和诊断出故障特征,是保证机械设备稳定、安全运行必不可少的部分。故障特征提取是故障诊断技术的关键,然而大多数的机械设备都处在强背景噪声的工况下运行,提取到的振动信号往往都是非线性、非平稳的,因此有效的信号降噪方法是提取机械设备故障特征的前提和关键。 本文从双树复小波变换、高阶累积量、变分模态分解理论出发,把齿轮箱作为研究对象研究了在高斯噪声和自然背景噪声下振动信号去噪与特征提取的问题,并引入粒子群算法做参数优化。 本文主要研究方法和结论如下: (1)由于传统阈值降噪方法对小波系数分别进行软、硬阈值处理时在强背景噪声下齿轮箱振动信号降噪效果不理想,而且用阈值分别处理实、虚部的方法会引起局部相位失真。利用双树复小波变换的平移不变性,提出了双树复小波变换和高阶累积量的齿轮箱振动信号降噪方法。算法对各层小波系数采用了四阶累积量的处理方法,根据信号和噪声的统计特性进行信噪分离。由于小波分解层数的多少会直接影响信号的去噪效果,因此本文采用粒子群算法自适应选择小波的分解层数。仿真和实验信号处理结果表明,该方法与双树复小波变换的软、硬阈值处理方法相比在不同信号和噪声水平下更能有效的抑制噪声干扰,提高信噪比,并且能够满足齿轮

疲劳磨损实验中对采集到的振动信号进行后续处理的需求。 (2)针对在强背景噪声下提取的齿轮箱故障特征效果不理想问题,提出一种参数优化变分模态分解和高阶累积量的齿轮箱故障诊断方法。首先,利用粒子群算法搜索优化变分模态分解分量的个数。故障信号经过变分模态分解为若干个本征模态函数分量(IMF),将各分量进行四阶累积量降噪处理,找到包含故障特征频率的分量。然后将筛选出的IMF分量进行包络解调运算求其包络谱,从而有效地提取出故障信号的特征频率。仿真和实验信号处理结果表明,该方法与EMD处理方法相比更能有效地提取出故障特征频率信息,很好的抑制了噪声干扰,并且可实现齿轮箱振动信号中故障特征的有效提取,具有一定的可行性和应用价值。 (3)针对双树复小波变换存在频率混叠以及参数自定义的缺陷,提出自适应改进双树复小波变换的齿轮箱故障诊断方法,该方法综合利用了双树复小波变换和变分模态分解技术(DTCWT-VMD)。首先,利用双树复小波变换将信号进行分解和单支重构,采用粒子群算法将分解后分量的峭度值作为适应度函数,选择双树复小波的最优分解层数。其次,对重构出的低频信号进行频谱分析提取故障特征。将单支重构后的各高频分量进行变分模态分解,通过峭度值自主获得各高频分量经变分模态分解后的主频率分量信号。最后,分析各主频率分量信号的频谱,识别齿轮箱的故障特征。通过仿真信号和齿轮箱振动实验信号的研究结果表明,该方法分别与双树复小波变换、变分模态分解以及经验模态分解相比,不仅消除了频率混叠现象,提高了信噪比和选择主频率分量的自主性,而且提高了从强噪声环境中提取故障特征的能力。

噪音与振动控制方案

振动控制方案 为认真贯彻落实《建设工程文明施工管理规定》和《扬尘污染防治管理办法》以及重大工程建设的有关文明施工管理规定,实现文明施工现场达到相关标准,特编制本施工扬尘控制专项方案。 一、组织保证措施 一般噪声源:土方阶段:挖掘机、装载机、推土机、运输车辆、破碎钻等。结构阶段:汽车泵、振捣器、混凝土罐车、支拆模板与修理、支拆脚手架、钢筋加工、电刨、电锯、人为喊叫、哨工吹哨、搅拌机、水电加工等。装修阶段:拆除脚手架、砂浆搅拌机、电锯、电钻、磨光机等。 1.施工时间应安排在 6:00——22:00 进行,因生产工艺上要求必须连续施工或特殊需要夜间施工的,必须在施工前到工程所在地的区建设行政主管部门提出申请经批准后,并在环保部门备案后方可施工。项目部要协助建设单位做好周边居民工作。 2.施工场地的强噪声设备宜设置在远离居民区的一侧。尽量选用环保型低噪声振捣器,振捣器使用完毕后及时清理与保养。振捣混凝土时禁止接触模板与钢筋,并做到快插慢拔,应配备相应人员控制电源线的开关,防止振捣器空转。 3.人为噪声的控制措施 ①提倡文明施工,加强人为噪声的管理,进行进场培训,减少人为的大声喧哗,增强全体施工生产人员防噪扰民的自觉意识。 ②合理安排施工生产时间,使产生噪声大的工序尽量在白天进行。 ③清理维修模板时禁止猛烈敲打。 ④脚手架支拆、搬运、修理等必须轻拿轻放,上下左右有人传递,减少人为噪声。 ⑤夜间施工时尽量采用隔音布、低噪声震捣棒等方法最大限度减少施工噪声;材料运输车辆进入现场严禁鸣笛,装卸材料必须轻拿轻放。 4.减少施工噪声影响,应从噪声传播途径、噪声源入手,减轻噪声对施工现场地外的影响。切断施工噪声的传播途径,可以对施工现场采取遮挡、封闭、绿化等吸声、隔声措施,从噪声源减少噪声。对机械设备采取必要的消声、隔振和减振措施,同时做好机械设备日常维护工作。施工现场场界噪声应符合规定。

齿轮传动噪音及故障分析诊断

齿轮传动噪音及故障分析 【摘要】为适应节能高效的需要,传动系零部件在朝小型化发展,汽车变速箱采用斜齿轮传动方式,不仅结构紧凑、传动平稳,还有传动力大等特点。斜齿轮传动存在轴向力和径向力,噪音的产生就包含了很多种原因。本文介绍了汽车变速箱在设计、零件制造、总成装配三个方面中产生噪音的原因和解决措施。 关键词传动斜齿轮噪音设计制造装配 目前,客车变速箱普遍采用三轴式传动,下面介绍下我公司生产的6T-160客车变速箱,结构如图一所示: 图一 公司为确保产品质量,对噪音做了详细规定:在台位主轴2600转/分以上转速各档进行跑合试验,要求纯试验时间不得少于5

分钟,在跑合试验时检查产品噪声。 空档和前进档(超速档除处)≤85dB;超速档和倒档≤87dB 本文以6T-160客车变速箱为例,从齿轮传动的特性出发,分析了设计、加工、装配各环节中与噪声产生密切相关的各种主要因素,并对其加以总结归纳,从而得出一系列经验性的方法和思路。 齿轮传动系统的噪声分析 一般来说,齿轮系统噪声发生的原因主要有以下几个方面: (1)齿轮设计方面参数选择不当,重合度过小,齿廓修形不当或没有修形,齿轮箱结构不合理等。 (2)齿轮加工方面基节误差和齿形误差过大,齿侧间隙过大,表面粗糙度过大等。 (3)轮系及齿轮箱方面装配偏心,接触精度低,轴的平行度差,轴,轴承、支承的刚度不足,轴承的回转精度不高及间隙不当等。 齿轮传动的减噪声设计 (1)、6T-160客车变速箱全部采用斜齿轮,齿轮的类型从传动平稳、噪声低的角度出发,斜齿圆柱齿轮同时接触的齿对多.啮合综合刚度的变化比较平稳。振动噪声可能比同样的直齿圆柱齿轮低,有时可低到大约12dB。 (2)、增加斜齿轮传动重合度。轮齿在传递载荷时有不同程度数变动,这样在进入和脱离啮合的瞬间就会产生沿啮合线方向的啮合冲力,因而造成扭转振动和噪音。 如果增加瞬间的平均齿数,即增大重合度,则可将载荷分配在

噪音与振动控制方案_2

噪音与振动控制方案 为认真贯彻落实《建设工程文明施工管理规定》和《扬尘污染防治管理办法》以及重大工程建设的有关文明施工管理规定,实现文明施工现场达到相关标准,特编制本施工扬尘控制专项方案。 一、编制依据 《泰州市建设工程施工现场环境保护工作标准》; 《建设工程文明施工管理规定》; 《噪音污染防治管理办法》; 锦宸集团有限公司《环境管理手册》、环境管理体系程序文件、作业指导书。 二、组织保证措施 一般噪声源:土方阶段:挖掘机、装载机、推土机、运输车辆、破碎钻等。结构阶段:汽车泵、振捣器、混凝土罐车、支拆模板与修理、支拆脚手架、钢筋加工、电刨、电锯、人为喊叫、哨工吹哨、搅拌机、水电加工等。装修阶段:拆除脚手架、石材切割机、砂浆搅拌机、空压机、电锯、电刨、电钻、磨光机等。 1.施工时间应安排在 6:00——22:00 进行,因生产工艺上要求必须连续施工或特殊需要夜间施工的,必须在施工前到工程所在地的区、县建设行政主管部门提出申请经批准后,并在环保部门备案后方可施工。项目部要协助建设单位做好周边居民工作。 2.施工场地的强噪声设备宜设置在远离居民区的一侧。尽量选用环保型低噪声振捣器,振捣器使用完毕后及时清理与保养。振捣混凝土时禁止接触模板与钢筋,并做到快插慢拔,应配备相应人员控制电源线的开关,防止振捣器空转。 3.人为噪声的控制措施 3.1 提倡文明施工,加强人为噪声的管理,进行进场培训,减少人为的大声喧哗,增强全体施工生产人员防噪扰民的自觉意识。 3.2 合理安排施工生产时间,使产生噪声大的工序尽量在白天进行。 3.3 清理维修模板时禁止猛烈敲打。 3.4 脚手架支拆、搬运、修理等必须轻拿轻放,上下左右有人传递,减少人

齿轮噪声剃齿加工及剃齿刀的修磨

齿轮噪声剃齿加工及剃齿刀的修磨 在现代齿轮加工中,齿轮噪声控制已成为一个重要的质量控制环节,齿轮噪声控制水平不仅代表一个齿轮制造厂的质量水平,而且直接受到有关环保法规的制约。剃齿是一种广泛采用的齿轮精加工方法,特别在轿车齿轮加工中,90%以上的齿轮精加工均采用剃齿。这不仅因为剃齿具有较高的加工效率和较低的加工成本,可大幅度提高齿轮精度和表面粗糙度,而且剃齿能实现齿形修形及采取热处理变形补偿措施,从而降低齿轮传动噪声,提高齿轮承载能力和安全系数,延长齿轮工作寿命。 一、齿轮传动噪声的影响因素及控制方法 齿轮噪声更准确地应称为齿轮传动噪声,其声源为齿轮啮合传动中的相互撞击。齿轮传动中的撞击主要由齿轮啮合刚性的周期性变化以及齿轮传动误差和安装误差引起。 1) 齿轮啮合刚性的周期性变化对传动噪声的影响 啮合刚性的变化是指齿轮传动中因同时啮合齿数不同而引起的啮合轮齿承受载荷的变化,并由此引起轮齿变形量的变化。在直齿轮传动中,啮合线上的同时啮合齿数在1~2对之间变化,而其传动的扭矩近似恒定。因此,当一对轮齿啮合时,全部载荷均作用于该对轮齿,其变形量较大;当两对轮齿啮合时,载荷由两对轮齿共同承担,每对轮齿的负荷减半,此时轮齿变形量较小。这一结果使齿轮的实际啮合点并非总是处于啮合线的理论啮合位置,由此产生的传动误差使输出轴的运动滞后于输入轴的运动。主、被动齿轮在啮合线外进入啮合时,其速度的瞬时差异造成在被动齿轮齿顶处产生撞击。在不同载荷下齿轮传动产生的噪声程度不同,其原因在于不同载荷下轮齿产生的变形量不同,造成的撞击程度不同。斜齿轮的啮合刚性取决于啮合轮齿的接触线总长度,故同时啮合齿数的变化对啮合刚性影响不大。

汽车变速器振动与噪声分析及控制方法研究

汽车变速器振动与噪声分析及控制方法研究 摘要:汽车变速器噪声是汽车的主噪声源之一。在人们对于车辆乘坐舒适性提出更高要求背景下,减振降噪就成为整个汽车行业的重要课题。研究变速器振动噪声产生的原因,针对变速器故障提出相应的优化设计方案,从而达到减振降噪的目的,具有一定的学术价值和重要的实际应用价值。文章分析了汽车变速器产生振动与噪声的主要因素,并对各影响因素的传导机理进行了具体的分析。阐明了通过增大轴的刚性、优化壳体的结构设计、合理设计齿轮等措施,可有效降低变速器噪声。关键词:变速器;振动;噪声;降低噪声 Analysis of Automotive Transmission Vibration and Noise and Control Methods Study Abstract: Many facts show that the noise of gearbox is one of the main sources of the automobiles’ noise. With the People’s requirement for more comfort of riding, vibration decreasing and noise absorption have been an important task of automobile industry. Study on the reasons that result in the gearbox’s vibration and noise, furthermore bringing forward an optimizing design for gearbox has some academic and practical value. The dominating factor of the vibration and noise of the transmission is analyzed, and the analysis on the transmission mechanism of the influencing factor is also carried through. What could effectively reduce transmission noise was explained, including increasing rigidity of the shaft, optimizing the structure of the shell, and rational designing of gear. Key words: transmission; vibration; noise; noise reduction 引言 机械式手动汽车变速器因结构简单,传动效率高,制造成本低和工作可靠等优点,在 不同形式的汽车上得到广泛的应用[1]。机械式手动变速器在今后相当长的时间里,依然会在我国中、重型汽车传动系统中占据着主导地位。变速器总成是汽车传动系统中重要总成部件,汽车变速器的动力学行为和工作性能对整车有重要的影响。许多实验结果表明,汽车 变速器噪声是汽车的主噪声源之一。当前,随着人民生活水平的提高,人们对汽车乘坐舒 适性提出了更高的要求,汽车变速器的振动噪声问题就成为当前汽车行业急待解决的问题 之一。首先,变速器振动常常会诱发与其相连接的部件的振动,从而影响整车的工作性能: 其次,齿轮噪声的频率一般处于200Hz~5000Hz的范围内,对这一频率范围的噪声人耳尤为 敏感:此外,由于变速器载荷和速度的提高,由此产生的齿轮噪声,比其它声源的噪声更突出。因此,从某种程度上说,控制了汽车变速器齿轮振动噪声也就大大提高汽车乘坐舒适性,解决汽车变速器的振动噪声问题,比以往显得更迫切[2]。 1 变速器噪声振动产生的机理 齿轮在机械传动中应用极为广泛,这是由于齿轮传动有很多优点,传动比稳定,速比 范围大,圆周速度高,传递功率大,效率高,工作可靠,寿命长。但是齿轮传动易产生噪声,尤其是在高速运转情况下更为突出,一般齿轮传动的噪声频率在20~20000Hz,这正是人的听觉最易感受的频率范围。噪声会使人疲劳,有碍人体健康,并会降低齿轮的使用寿命。因此,我们应尽可能地认识齿轮噪声的产生机理并采取相应的措施。汽车变速器是个 较复杂的齿轮机构,主要包含齿轮、传动轴、轴承和箱体等。变速器结构图如图1-1所示,汽车变速器的振动也是一个极为复杂的随机振动过程。据统计,在变速器的异常振动噪声中,90%以上是由齿轮、传动轴或滚动轴承引起的[3]。

相关主题
文本预览
相关文档 最新文档