当前位置:文档之家› 汽柴油加氢精制装置原则流程图

汽柴油加氢精制装置原则流程图

焦化苯加氢精制工艺研究

纯苯是重要的石油化工基本原料,苯的产量 和生产技术水平也是一个国家石油化工发展水平的重要标志之一。 用于生产苯乙烯等化工产品的原料只能是石油苯,焦化苯是不能直接用作化工原料的,到目前为止焦化苯绝大多数用在溶剂和涂料等方面,然而石油苯资源是有限的,况且随着石油化工的发展,苯的需求量将猛增,为了适应石油化工的发展,扩大化工原料苯的来源迫在眉睫,因此对焦化苯进行精制是首选的课题[1]。我国的焦化苯资源极为丰富,约占我国苯总产量的20%,但由于含有各种噻吩等硫化物和碱性氮化物等含氮化合物杂质,特别是硫化物,如0.2%~1.66%的噻吩等,从而限制了它的进一步深加工利用,它不能直接用于有机化工合成,必须预先进行精制。 1 实验部分 1.1 加氢精制基本原理 焦化苯中含有的硫化物中主要有噻吩类和 硫醇类,氮化物中主要有碱性氮和有机氮化物。噻吩加氢生成硫化氢和烃类;氮化物加氢生成氨和烃类; 用水洗的方法将碱性氮、硫醇除掉。 焦化苯加氢精制工艺流程图见图1。 1.3催化剂性质 催化剂性质见表1。 表1催化剂性质Table 1 Catalyst properties 孔容/(mL ·g -1)比表面积/(m 2·g -1)形状侧压强度/(N ·cm -1)堆积密度/(g ·mL -1)0.416 198.9 条形 352.8 0.85 焦化苯加氢精制工艺研究* 第38卷第5期2009年10月当代化工Contemporary Chemical Industry Vo1.38, No.5October ,2009 *收稿日期:2009-09-14作者简介:苏波(1972-),男,辽宁辽阳人,工程师,1994年毕业于北京化工大学,现从事石油化工工艺设计。电话:0413-*******, E-mail :suboo@https://www.doczj.com/doc/e914357898.html, 。 苏波,曾蓬 摘要:介绍一种焦化苯加氢精制脱除杂质的工艺方法。该技术采用加氢精制,精制后的产品 噻吩脱除率99.99%以上、 总硫脱除率>99%、碱性氮脱除率100%、总氮脱除率>99%、液收>99%,精制苯中总硫质量分数<1×10-6,检测不出总氮。精制后的产品符合石油苯国家标准的质量要求,可用于有机化工合成。关 键 词:焦化苯;加氢;精制;脱硫; 中图分类号:TQ 241.1+1 文献标识码:A 文章编号:1671-0460(2009)05-0475-04 (中国石油集团工程设计有限责任公司抚顺分公司,辽宁抚顺113006) 图1 焦化苯加氢精制工艺流程图 Fig .1 Process flow diagram of coking benzene hydrorefining

加氢裂化装置操作工初级理论知识试卷

职业技能鉴定国家题库 加氢裂化装置操作工(YN)初级理论知识试卷A 注 意 事 项 1、考试时间:90分钟。 2、请首先按要求在试卷的标封处填写您的姓名、准考证号和所在单位的名称。 3、请仔细阅读各种题目的回答要求,在规定的位置填写您的答案。 4、不要在试卷上乱写乱画,不要在标封区填写无关的内容。 一、单项选择(第1题~第160题。选择一个正确的答案,将相应的字母填入题内的括号中。每题0.5分,满分80分。) 1. 反应加热炉烘炉与反应系统干燥同步进行时,辐射段炉管应通入( )循环。 A 、氧气 B 、氮气 C 、氢气 D 、净化风 2. 反应加热炉单独烘炉时对流段炉管应通入( )保护炉管。 A 、氧气 B 、氢气 C 、蒸汽 D 、净化风 3. 低压系统用氮气进行气密时,应用采用( )进行气密。 A 、肥皂水 B 、除氧水 C 、可燃性气体检测仪 D 、硫化氢气体检测仪 4. 在各压力等级下的气密静压试验中,降压速度每小时不大于( )为合格。 A 、0.03MPa B 、0.06MPa C 、0.09MPa D 、0.12MPa 5. 装置抽真空气密静压试验中,以每小时泄漏量( )以下为合格。 A 、10kPa B 、60kPa C 、100kPa D 、600kPa 6. 高压系统气密试验的压力以( )的压力为准。 A 、反应器 B 、热高分顶 C 、循环氢压缩机入口分液罐顶或冷高分顶 D 、循环氢压缩机出口 7. 高压系统气密的最高压力应达到 ( )为准。 A 、正常操作压力 B 、冷高分安全阀定压值 8. 蜡油加氢裂化装置的原料油最常用的是( )。 A 、减压蜡油 B 、初馏塔塔底油 C 、减压渣油 D 、催化常渣 9. 蜡油加氢裂化装置催化剂硫化前的原料油通常是( )。 A 、减压渣油 B 、开工柴油 C 、常压蜡油 D 、催化常渣 10. 蜡油加氢裂化装置的主要产品是( )。 A 、汽油 B 、液化气 C 、煤油 D 、常压蜡油 11. 硫化剂为微黄色、( )的液体。 A 、无味 B 、泥土味 C 、芳香味 D 、恶臭味 12. 可以作为加氢催化剂预硫化用硫化剂的是( )。 A 、缓蚀剂 B 、胺液 C 、阻垢剂 D 、二甲基二硫 13. 装置开车水冲洗的目的是( )。 A 、打通流程、冲洗杂物 B 、检查反应器施工质量 C 、检查分馏塔施工质量 D 、检查热高分施工质量 14. 离心泵密封、冲洗蒸汽的作用是( )。 A 、加热轴承 B 、加热泵体内介质 C 、降低介质粘度 D 、防止介质泄漏造成污染 15. 蜡油加氢裂化装置的反应注水要控制活性氧的含量不超过50PPm ,是由于微量氧在反应系统容易( ),对装置生产构成一定的威胁。 A 、与硫化物反应生成单质硫 B 、与氢气反应 C 、与原料油反应 D 、使催化剂床层结焦 16. 催化剂在生产、运输和储存过程中,为了控制催化剂的活性,其活性金属组分是以( )的形式存在的。 A 、还原态 B 、硫化态 C 、氧化态 D 、金属氯化物 17. 加热炉点主火嘴顺序应( )。 A 、逐个点 B 、随意点 C 、对称点 D 、单、双数相应点 18. 加热炉点主火嘴顺序应遵循的原则是( )。 A 、使炉体各部均匀升温 B 、操作方便 C 、加快升温速度 D 、快速点起全部主火嘴 19. 原料油带水应通知调度及罐区切换原料油,并在装置外循环( )分钟以上以置换管线。 A 、10 B 、20 C 、30 D 、60 20. 硫化剂可以用( )容器贮存。 A 、铜 B 、铜合金 C 、塑料 D 、碳钢罐 21. 硫化剂罐要求密封或水封的目的是( )。 A 、防止硫化剂挥发 B 、防止硫化剂跑损 C 、防止硫化剂变质 D 、防止硫化剂腐蚀容器 考 生 答 题 不 准 超 过 此 线

120万吨柴油加氢精制装置操作规程讲义

120万吨/年柴油加氢精制装置操作规程 第一章装置概况 第一节装置简介 一、装置概况: 装置由中国石化集团公司北京设计院设计,以重油催化裂化装置所产的催化裂化柴油、顶循油,常减压装置生产的直馏柴油和焦化装置所产的焦化汽油、焦化柴油为原料,经过加氢精制反应,使产品满足新的质量标准要求。 新《轻柴油》质量标准要求柴油硫含量控制在0.2%以内,部分大城市车用柴油硫含量要求小于0.03%。这将使我厂的柴油出厂面临严重困难,本装置可对催化柴油、直馏柴油、焦化汽柴油进行加氢精制,精制后的柴油硫含量降到0.03%以下,满足即将颁布的新《轻柴油》质量标准,缩小与国外柴油质量上的差距,增强市场竞争力。 2;装置建即22351m×/年延迟焦化装置共同占地面积为217m103m该项目与50万吨设在140万吨/年重油催化裂化装置东侧,与50万吨/年延迟焦化装置建在同一个界区内,共用一套公用工程系统和一个操作室。 本装置由反应(包括新氢压缩机、循环氢压缩机部分)、分馏两部分组成。 4t/a。×10 装置设计规模:120二、设计特点: 1、根据二次加工汽、柴油的烯烃含量较高,安定性差,胶质沉渣含量多的特点,本设计选用了三台十五组自动反冲洗过滤器,除去由上游装置带来的悬浮在原料油中的颗粒。 2、为防止原料油与空气接触氧化生成聚合物,减少原料油在换热器、加热炉炉管和反应器中结焦,原料缓冲罐采用氮气或燃料气保护。 3、反应器为热壁结构,内设两个催化剂床层,床层间设冷氢盘。 4、采用国内成熟的炉前混氢工艺,原料油与氢气在换热器前混合,可提高换热器的换热效果,减少进料加热炉炉管结焦,同时可避免流体分配不均,具有流速快、停留时间短的特点。 5、为防止铵盐析出堵塞管路与设备,在反应产物空冷器和反应产物/原料油换热器的上游均设有注水点。 6、分馏部分采用蒸汽直接汽提,脱除HS、NH,并切割出付产品石脑油。32 1 120万吨/年柴油加氢精制装置操作规程 7、反应进料加热炉采用双室水平管箱式炉,炉底共设有32台附墙式扁平焰气体燃烧器,工艺介质经对流室进入辐射室加热至工艺所需温度,并设有一套烟气余热回收系统,加热炉总体热效率可达90%。 8、本装置采用螺旋锁紧环双壳程换热器,换热方案安排合理,以温位高、热容量大与温位较低、热容量较小的物流进行换热,合理选择冷端温度,使热源量最大限度地得以利用,使总的传热过程在较高的平均传热温差下进行。 9、催化剂采用中石化集团公司石油化工研究院开发的RN-10B加氢精制催化剂。催化剂采用干法硫化方案;催化剂的再生采用器外再生。

加氢裂化工艺流程概述

加氢裂化工艺流程概述 全装置工艺流程按反应系统(含轻烃吸收、低分气脱硫)、分馏系统、机组系统(含PSA系统)进行描述。 1.1反应系统流程 减压蜡油由工厂罐区送入装置经原料升压泵(P1027/A、B)后,和从二丙烷罐区直接送下来的轻脱沥青油混合,在给定的流量和混合比例下原料油缓冲罐V1002液面串级控制下,经原料油脱水罐(V1001)脱水后,与分馏部分来的循环油混合,通过原料油过滤器(FI1001)除去原料中大于25微米的颗粒,进入原料油缓冲罐(V1002),V1002由燃料气保护,使原料油不接触空气。 自原料油缓冲罐(V1002)出来的原料油经加氢进料泵 (P1001A,B)升压后,在流量控制下与混合氢混合,依次经热高分气/混合进料换热器(E1002)、反应流出物/混合进料换热器(E1001A,B)、反应进料加热炉(F1001)加热至反应所需温度后进入加氢精制反应器(R1001),R1001设三个催化剂床层,床层间设急冷氢注入设施。R1001反应流出物进入加氢裂化反应器(R1002)进行加氢裂化反应,两个反应器之间设急冷氢注入点,R1002设四个催化剂床层,床层间设急冷氢注入设施。R1001反应流出物设有精制油取样装置,用于精制油氮含量监控取样。 由反应器R1002出来的反应流出物经反应流出物/混合

进料换热器(E1001)的管程,与混合原料油换热,以尽量回收热量。在原料油一侧设有调节换热器管程出口温度的旁路控制,紧急情况下可快速的降低反应器的入口温度。换热后反应流出物温度降至250℃,进入热高压分离器(V1003)。热高分气体经热高分气/混合进料换热器(E1002)换热后,再经热高分气空冷器(A1001)冷至49℃进入冷高压分离器(V1004)。为了防止热高分气在冷却过程中析出铵盐堵塞管路和设备,通过注水泵(P1002A,B)将脱盐水注入A1001上游管线,也可根据生产情况,在热高分顶和热低分气冷却器(E1003)前进行间歇注水。冷却后的热高分气在V1004中进行油、气、水三相分离。自V1004底部出来的油相在V1004液位控制下进入冷低压分离器(V1006)。自V1003底部出来的热高分油在V1003液位控制下进入热低压分离器(V1005)。热低分气气相与冷高分油混合后,经热低分气冷却器(E1003)冷却到40℃进入冷低压分离器(V1006)。自V1005底部出来的热低分油进入分馏部分的脱丁烷塔第29层塔盘。自V1006底部出来的冷低分油分成两路,一路作为轻烃吸收塔(T1011)的吸收油,吸收完轻烃的富吸收油品由T-1011的塔底泵P-1016再打回进冷低分油的进脱丁烷塔线。依次经冷低分油/柴油换热器(E1004)、冷低分油/减一线换热器(E1005A,B)、冷低分油/减二线换热器(E1014)和冷低分油/减底油换热器(E1015),分别与柴油、减一线油、减二

汽(煤、柴)油加氢装置操作工初级理论知识手机在线考试题九

汽(煤、柴)油加氢装置操作工初级理论知识 手机在线考试题九 单项选择题 1. 伺服液位计是基于( )工作的。(1.0) A、浮力平衡 B、磁致伸缩 C、压电效应 D、差压 2. 下面不属于加油机安全检查内容的是( )。(1.0) A、法兰、过滤器、油气分离器、计量器、视油器、油枪等渗漏情况 B、电动机、电源盒、接线盒等密封情况 C、加油机接地线的连接情况 D、计量器的计量精度 3. 关于配电柜,下列说法不正确的是( )。(1.0) A、柜(箱)内电气元件的标志、编号应清晰正确,无灰尘 B、配电线路各连接点应接触良好,无腐蚀脱开和过热现象 C、开关、熔断器和继电器在不用电时应断开 D、保护接地线与接地螺栓连接要牢固 4. 100YⅡ-150×2A型离心泵中,数字100代表()。(1.0) A、吸入口直径

B、泵用材料代号 C、设计单级扬程 D、级数 5. 设备的( )是指对设备一生价值运动形态过程所采取的全部经济措施(1.0) A、维修管理 B、技术管理 C、运行管理 D、经济管理 6. 根据最新的压缩天然气加气机检定规程(JJG 996-2012 ),压缩天然气加气机以()显示。(1.0) A、质量 B、容积 C、体积 D、密度 7. 工会组织依法对职业病防治工作进行监督,维护劳动者的合法权益。用人单位制定或者修改有关职业病防治的规章制度,应当听取( )的意见。(1.0) A、监管机关 B、工会组织 C、行业协会 D、基层员工 8. 下列选项哪项不属于检维修项目的“三净”内容? B (1.0)

A、停工场地净 B、交接场地净 C、开工场地净 D、检修场地净 9. 接地体材料宜采用(),腐蚀严重的环境可采用不锈钢或锌包钢材料。(1.0) A、铁材质 B、铝材质 C、铜材质 D、热镀锌钢材 10. 手工及动力工具除锈可达到的除锈等级为( )。(1.0) A、Sa1级 B、Sa2级 C、Sa3级 D、St2级 11. 当罐内油气浓度低于该油品爆炸的下线()%时,允许作业人员在无防护措施情况下进入油罐作业,且每次作业时间不应超过4小时。(1.0) A、1 B、2 C、4 D、20 12. 卸气前操作人员将高压卸气软管与槽车主控阀进行连接,加戴软管(),

酸性水汽提操作规程最终版

第一章酸性水汽提装置概述 第一节工艺设计说明 1.1设计规模 装置建成后为连续生产,年开工按8000小时计,设计规模为50T/H,装置设计弹性范围为0.6-1.2。 1.2工艺技术特点 采用单塔汽提工艺技术,流程简单,操作方便,能耗低,酸性水经过净化,可以达到回用指标,送至其它装置回用。 1.3原料及产品 1.3.1原料 酸性水汽提装置原料来源于两套常减压装置及两套催化装置及新建的延迟焦化装置、加氢精制装置、硫磺回收装置的酸性水。 现有及新建装置酸性水情况 1.3.2产品 产品为净化水及酸性气。

产品质量控制指标 1.4装置主要操作条件 酸性水汽提塔(C-2511): 1.5装置物料平衡

1.6.1装置给水水量 1.6.2装置排水水量 1.6.3蒸汽耗量及回收冷凝水量 1.6.4净化空气耗量

1.6.6装置能耗及能耗指标 全年能耗:22492.8×104MJ 全年酸性水处理量:40×104T 单位计算能耗:562.32 MJ/T酸性水1.6.7汽提装置主要生产控制分析项目表

第二节酸性水汽提工艺原理及流程简述 2.1 工艺原理 在炼油厂一、二次加工过程中,原料中的含硫、含氮化合物由于受热分解,生成一定的氨和硫化氢及其它物质,污染油品并产生含硫含氮污水,直接排放将会造成严重污染,因此需对此污水进行处理,并回收硫和氨。含硫含氮污水在进入污水处理场之前,需对其中的硫和氮化物含量严格控制,否则将对污水处理场的微生物系统造成冲击,使污水场处理水排放不达标,造成环境污染,影响企业的经济效益和社会效益。因此含硫含氮污水需经汽提处理,使污水中的NH3-N < 80ppm,硫化氢< 30ppm才能进入污水场进行下一步的处理。 酸性水汽提装置就是利用酸性水中的H 2S、CO 2 、NH 3 、H 2 O的相对挥发度不同,用蒸 汽作为热源,把挥发性的H 2S、CO 2 、NH 3 从污水中汽提出去,从而将污水净化,并分离提 取氨和硫化氢的一种装置。 2.2工艺流程简述 各装置酸性水混合后进入酸性水汽提装置的原料水脱气罐(D-2511),脱出溶于酸性水的轻烃组份至低压瓦斯管网。脱气后的酸性水进入原料水罐(D-2512/1,2)静置、除油;上层污油经收集进入污油罐(D-2516),再经污油泵(P-2512)送出装置。 脱油后的酸性水经原料水泵(P-2511/1,2)升压,送至原料水-净化水换热器(E-2512/1,2),与酸性水汽提塔(C-2511)底的净化水换热升温到95℃后进入汽提塔(C-2511)中上部;酸性水汽提塔(C-2511)的热源由汽提塔底重沸器(E-2511)提供,1.0Mpa过热蒸汽通入汽提塔重沸器(E-2511)管程,使进入重沸器的酸性水部分汽化,然后冷凝水进入凝结水罐(D-2515), 经调节阀控制液面后再送至硫磺回收装置凝结水回收系统进行处理。 在酸性水汽提塔(C-2511)内,污水中的H 2S、NH 3 被汽提出,进入气相至塔顶。塔 顶混合器是含H 2S、NH 3 的蒸汽,经过汽提塔顶空冷器(A-2511/1,2)冷凝冷却至85℃后, 进入汽提塔顶回流罐(D-2517)进行汽、液分离,罐顶分出的含氨酸性气送至硫磺回收装置或焚烧炉进行焚烧;罐底液相经汽提塔顶回流泵(P-2513/1,2)送回汽提塔顶作回流。塔底产品是合格的净化水,温度约为127℃,经原料水-净化水换热器(E-2512/1,2)与原料水换热,温度降至71℃,再经净化水泵(P-2514/1,2)升压,送至净化水冷却器(E-2513)冷却至50℃后送出,作为其它装置的回用水或排至污水场深度净化。

加氢精制装置停工过程中硫化氢中毒事故

加氢精制装置停工过程中硫化氢中毒事故 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

加氢精制装置停工过程中硫化氢中毒事故一、事故经过 5月11日,某石化公司炼油厂加氢精制联合车间对柴油加氢装置进行停工检修。14:50,停反应系统新氢压缩机,切断新氢进装置新氢罐边界阀,准备在阀后加装盲板(该阀位于管廊上,距地面4.3米)。15:30,对新氢罐进行泄压。18:30,新氢罐压力上升,再次对新氢罐进行泄压。18:50,检修施工作业班长带领四名施工人员来到现场,检修施工作业班长和车间一名岗位人员在地面监护。19:15,作业人员在松开全部八颗螺栓后拆下上部两颗螺栓,突然有气流喷出,在下风侧的一名作业人员随即昏倒在管廊上,其他作业人员立即进行施救。一名作业人员在摘除安全带施救过程中,昏倒后从管廊缝隙中坠落。两名监护人员立刻前往车间呼救,车间一名工艺技术员和两名操作工立刻赶到现场施救,工艺技术员在施救过程中中毒从脚手架坠地,两名操作工也先后中毒。其他赶来的施救人员佩戴空气呼吸器爬上管廊将中毒人员抢救到地面,送往职工医院抢救。 二、事故原因 1、直接原因:当拆开新氢罐边界阀法兰和大气相通后,与低压瓦斯放空分液罐相连的新氢罐底部排液阀门没有关严或阀门内漏,造成高含

硫化氢的低压瓦斯进入新氢罐,从断开的法兰处排出,造成作业人员和施救人员中毒。 2、间接原因:在出现新氢罐压力升高的异常情况后,没有按生产受控程序进行检查确认,就盲目安排作业;施工人员在施工作业危害辨识不够的情况下,盲目作业;施救人员在没有采取任何防范措施的情况下,盲目应急救援,造成次生人员伤害和事故后果扩大。 三、事故教训 1、应严格按照操作规程操作,对现场发生的异常情况要高度警惕,待排查出隐患,采取相应安全措施后,方能安排下一步作业。 2、施工单位在拆卸管道、设备附件时,必须采取有效的隔离措施,作业前认真进行作业风险识别并落实相关安全措施,对可能存在危险介质的死角、盲端的拆卸必须佩戴好相应的劳动保护用品、使用安全工具、控制施工人数并保持逃生通道畅通。 3、必须杜绝盲目作业、盲目施救情况的发生。

渣油加氢工艺流程

第一节工艺技术路线及特点 一、工艺技术路线 300×104t/a渣油加氢脱硫装置采用CLG公司的固定床渣油加氢脱硫工艺技术,该工艺技术满足操作周期8000h、柴油产品硫含量不大于500ppm、加氢常渣产品硫含量不大于0.35w%、残炭不大于5.5w%、Ni+V不大于15ppm的要求。 二、工艺技术特点 1、反应部分设置两个系列,每个系列可以单开单停(单开单停是指装置二个系列分别进行正常生产和停工更换催化剂)。由于渣油加氢脱硫装置的设计操作周期与其它主要生产装置不一致,从全厂生产安排的角度,单开单停可以有效解决原料储存、催化裂化装置进料量等问题,并使全厂油品调配更灵活。 2、反应部分采用热高分工艺流程,减少反应流出物冷却负荷;优化换热流程,充分回收热量,降低能耗。 3、反应部分高压换热器采用双壳、双弓型式,强化传热效果,提高传热效率。 4、反应器为单床层设置,易于催化剂装卸,尤其是便于卸催化剂。 5、采用原料油自动反冲洗过滤器系统,滤除大于25μm以上杂质,减缓反应器压降增大速度,延长装置操作周期。 6、原料油换热系统设置注阻垢剂设施,延长操作周期,降低能耗,而且在停工换剂期间可减少换热器和其它设备的检修工作。 7、原料油缓冲罐采用氮气覆盖措施,以防止原料油与空气接触从而减轻高温部位的结焦程度。 8、采用炉前混氢流程,避免进料加热炉炉管结焦。 9、第一台反应器入口温度通过调节加热炉燃料和高压换热器旁路量来控制,其他反应器入口温度通过调节急冷氢量来控制。 10、在热高分气空冷器入口处设注水设施,避免铵盐在低温部位的沉积。 11、循环氢脱硫塔前设高压离心式分离器除去携带的液体烃类,减少循环氢脱硫塔的起泡倾向,有利于循环氢脱硫的正常操作。 12、设置高压膜分离系统,保证反应氢分压。 13、冷低压闪蒸罐的富氢气体去加氢裂化装置脱硫后去PSA回收氢气。 14、新氢压缩机采用二开一备,每台50%负荷,单机负荷较小,方便制造,且装置有备机。 15、分馏部分采用主汽提塔+分馏塔流程,在汽提塔除去轻烃和硫化氢,降低分馏塔材质要求。 分馏塔设侧线柴油汽提塔及中段回流加热原料油,降低塔顶冷却负荷,提高能量利用率,减小分馏塔塔径。 16、利用常渣产品发生部分低压蒸汽。通过对装置换热流程的优化,把富裕热量集中在温位较高的常渣产品,发生低压蒸汽。 17、考虑到全厂能量综合利用,正常生产时常渣在150℃送至催化裂化装置。在催化裂化装置事故状态下,将常渣冷却至90℃送至工厂罐区。 18、催化剂预硫化按液相预硫化方式设置。 三、工艺流程说明 (一)工艺流程简述 1、反应部分 原料油自进装置后至冷低压分离器(V-1812)前的流程分为两个系列,以下是一个系列的流程叙述: 原料油在液位和流量的串级控制下进入滤前原料油缓冲罐(V-1801)。原料从V-1801底部出来由原料油增压泵(P1801/S)升压,经中段回流油/原料油换热器(E-1801AB)、常渣/原料油换热器(E-1802AB、E-1803AB)分别与中段回流油和常渣换热,然后进入原料油过滤器(S-1801)以除去原料油于25μm的杂质。过滤后的原料油进入滤后原料油缓冲罐(V-1802),原料油从V-1802底部出来后由加氢进料泵(P1802/S)升压,升压后的原料油在流量控制下进入反应系统。 原料油和经热高分气/混合氢换热器(E-1805AB)预热后的混合氢混合,混合进料经反应流出物/反应进料换热器(E-1804)预热后进入反应进料加热炉(F-1801)加热至反应所需温度进入第一台加氢反应器(R-1801),R-1801的入口温度通过调节F-1801的燃料量和E-1804的副线量来控制,R-1801底部物流依次通过其它三台反应器(R-1802、R-1803、R-1804),各反应器的入口温度通过调节反应器入口管线上注入的冷氢量来控制。从R-1804出来的反应产物经过E-1804换热后进入热高压分离器(V-1803)进行气液分离, V-1803底部出来的热高分液分别在液位控制下减压后,进入热低压分离器(V-1804)进行气液分离,V-1803顶部出来的热高分气分别经热高分气/混合氢换热器、热高分气蒸汽发生器(E-1806)换热后进入热高分气空冷器(E-1807),冷却到52℃进入冷高压分离器(V-1806)进行气、油、水三相分离。 为了防止铵盐在低温位析出堵塞管路,在热高分气空冷器前注入经注水泵(P-1803/S)升压后的脱硫净化水等以溶解铵盐。 从V-1806顶部出来的冷高分气体(循环氢)进入高压离心分离器(V-1807)除去携带的液体烃类,减少循环氢脱硫塔(C-1801)的起泡倾向。自V-1807顶部出来的气体进入C-1801底部,与贫胺液在塔逆向接触,脱除H2S,脱硫溶剂采用甲基二乙醇胺(MDEA),贫胺液从贫胺液缓冲罐(V-1809)抽出经贫溶剂泵(P-1804/S)升压后进入C-1801顶部,从塔底部出来的富胺液降压后进入富胺液闪蒸罐(V-1810)脱气。富液脱气后出装置去溶剂再生,气体去硫磺回收。 自C-1801顶不出来的循环氢进入循环氢压缩机入口分液罐(V-1808)除去携带的胺液,V-1808顶部出来的循环氢分成两路,一路去氢提浓(ME-1801)部分,提浓后的氢气经提浓氢压缩机(K-1804)升压后与新氢压缩机(K-1802A.B.C)出口新氢汇合,释放气去轻烃回收装置;另一路进入循环氢压缩机(K-1801)升压,升压后的循环氢分为三部分,第一部分与新氢压缩机来的新氢混合,混合氢去反应部分;第二部分作为急冷氢去控制反应器入口温度;第三部分至E-1807前作为备用冷氢和K-1801反飞动用。循环氢压缩机选用背压蒸汽透平驱动的离心式压缩机。 从两个反应系列的冷高压分离器底部出来的冷高分液分别在液位控制下减压混合后,进入冷低压分离器(V-1812)进行气液分离,冷低分液体在液位控制下从罐底排出并进入热低分气/冷低分液换热器(E-1809)、柴油/冷低分油换热器(E-1811)、常渣/冷低分油换热器(E-1812)换热后进入汽提塔(C-1803)。V-1812顶部出来的冷低分气去轻烃回收装置脱硫。 冷高压分离器底部的含H2S、NH3的酸性水进入酸性水脱气罐(V-1823)集中脱气后送出装置。 两个反应系列的热低分油在液位控制下从V-1803底部排出去分馏部分。热低分气体经E-1809换热后进入热低分气空冷器(E-1810)冷却到54℃,然后进入冷低压闪蒸罐(V-1811)进行气液分离,为了防止在低温位的地方有铵盐析出堵塞管路,在E-1810前注水以溶解铵盐。V-1811顶部出来的富氢气体直接送至加氢裂化装置进行脱硫,然后去PSA装置回收氢气;从下部出来的冷低压闪蒸液进入到冷低压分离器。 新氢从全厂氢网送入,进入新氢压缩机经三段压缩升压后分两路分别与两个系列循环氢压缩机出口的循环氢混合,混合氢气分别返回到各自的反应部分。新氢压缩机设三台,二开一备,每一台均为三级压缩,每台的一级入口设入口分液罐,级间设冷却器和分液罐。 2、分馏部分 来自反应部分的热低分油与经加热后的冷低分液一起进入汽提塔(C-1803)。塔底采用水蒸汽汽提。塔顶部气相经汽提塔顶空冷器(E-1814)冷凝冷却后进入汽提塔顶回流罐(V-1814)进行气液分离,V-1814气体与冷低分气一起出装置送至轻烃回收统一脱硫;V-1814底部出来的液体经汽提

柴油加氢精制工艺(工程科技)

柴油加氢精制工艺 定义:加氢精制是指在一定温度、压力、氢油比和空速条件下,原料油、氢气通过反应器内催化剂床层,在加氢精制催化剂的作用下,把油品中所含的硫、氮、氧等非烃类化合物转化成为相应的烃类及易于除去的硫化氢、氨和水。提高油品品质的过程。 石油馏分中各类含硫化合物的C—S键是比较容易断裂的,其键能比C—C或C—N键的键能小许多。在加氢过程中,一般含硫化合物中的C—S键先行断开而生成相应的烃类和H2S。但由于苯并噻吩的空间位阻效应,C-S键断键较困难,在反应苛刻度较低的情况下,加氢脱硫率在85%左右,能够满足目前产品柴油硫含量小于2000ppm 的要求。 柴油馏分中有机氮化物脱除较困难,主要是C-N键能较大,正常水平下,在目前的加氢精制技术中脱氮率一般维持在70%左右,提高反应压力对脱氮有利。 烯烃饱和反应在柴油加氢过程中进行的较完全,此反应可以提高柴油的安定性和十六烷值。 当然,在加氢精制过程中还有脱氧、芳烃饱和反应。加氢脱硫、脱氮、脱氧、烯烃饱和、芳烃饱和反应都会进行,只是反应转化率纯在差别,这些反应对加氢过程都是有利的反应。但同时还会发生烷烃加氢裂化反应,此种反应是不希望的反应类型,但在加氢精制的反应条件下,加氢裂化反应有不可避免。目前为了解决这个问题,主要是

调整反应温度和采用选择性更好的催化剂。 下面以我厂100万吨/年汽柴油加氢精制装置为例,简单介绍一下工艺流程: 60万吨柴油加氢精制 F101D201 D102 D101 SR101 P101P102E103E101 R101 K101 D106 E104 D103D104 D105 D107 P103 P201 E201A202 P202 A201 K101 E101E102E103A101 产品柴油 循环氢 低分气 C201 催化汽油选择性加氢脱硫醇技术(RSDS技术) 催化汽油加氢脱硫醇装置的主要目的是拖出催化汽油中的硫含量,目前我国大部分地区汽油执行国三标准,硫含量要求小于150ppm,烯烃含量不大于30%,苯含量小于1%。在汽油加氢脱硫的过程中,烯烃极易饱和,辛烷值损失较大,针对这一问题,石科院开发了RSDS技术。本技术的关键是将催化汽油轻重组分进行分离,重组分进行加氢脱硫,轻组分碱洗脱硫。采取轻重组分分离的理论基础是,轻组分中烯烃含量高,可达到50%以上,通过直接碱洗,辛烷值

加氢裂化装置操作工(技师)

加氢裂化装置操作工【行业分库】细目表 目录 未找到目录项。 **细目表注释** [职业工种代码] 603020108 [职业工种名称] 加氢裂化装置操作工 [扩展职业工种代码] 0000000 [扩展职业工种名称] 行业分库 [等级名称] 技师 [机构代码] 78000000 **细目表** <2> 相关知识 <2.1> 工艺操作 <2.1.1> 开车准备 <2.1.1-1> [X] 反应系统开车检查内容 <2.1.1-2> [Z] 高压换热器水压试验注意事项 <2.1.1-3> [X] 塔安装对精馏操作的影响 <2.1.1-4> [X] 审核加氢裂化开车条件 <2.1.1-5> [X] 循环氢压缩机透平的试运转步骤 <2.1.1-6> [X] 循环氢压缩机润滑油系统联锁试验要点 <2.1.1-7> [X] 循环氢压缩机密封油系统联锁试验要点 <2.1.1-8> [X] 循环氢压缩机透平暖管过程 <2.1.2> 开车操作 <2.1.2-1> [X] 催化剂硫化结束条件 <2.1.2-2> [Z] 循环氢压缩机透平启动前对调速系统的检查项目<2.1.2-3> [Z] 液氨装卸准备要点 <2.1.2-4> [X] 主要设备的设计依据 <2.1.2-5> [X] 升温过程中对设备的限制条件 <2.1.2-6> [X] 换热器流程的选择原则 <2.1.2-7> [X] 反应系统压力的控制回路 <2.1.2-8> [X] 影响加氢裂化反应的因素 <2.1.2-9> [X] 分馏系统带水的危害 <2.1.2-10> [X] 反应系统温度的控制回路 <2.1.2-11> [X] 启动循环氢压缩机步骤 <2.1.2-12> [X] 装卸液氨操作要点 <2.1.2-13> [X] 催化剂硫化方案 <2.1.2-14> [Y] 分馏塔工作原理 <2.1.3> 正常操作 <2.1.3-1> [X] 综合能耗

万吨年柴油加氢操作规程

240万吨/年柴油加氢精制装置操作规程 陕西延长石油(集团)有限责任公司延安石油化工厂

目录

第一章装置概况 第一节装置简介 我国从2000 年开始执行轻柴油质量标准,其中硫含量不高于2000ppm,2003年颁布了车用柴油推荐标准,对硫含量进一步降低至500ppm以下,2008年1月1日北京车用柴油硫含量要求已降低到50ppm。2013年6月30日全国执行国Ⅲ车用柴油标准,车用柴油硫含量要求降低到350ppm。欧美及日本的车用柴油硫含量目前已降低到50ppm,欧洲部分国家或地区甚至已降到10ppm,预计“十二五”末,国Ⅳ车用柴油硫含量将降到50ppm(北京地区已于2008年1月1日在全国率先执行柴油硫含量50ppm的标准)。低硫、超低硫是未来车用柴油的发展趋势,同时须适当提高柴油的十六烷值,才能逐步与欧美国家的先进标准接轨。 陕西延长石油(集团)有限责任公司炼化公司延安炼油厂目前原油加工能力800万吨/年,延安炼油厂目前常三线柴油与催化柴油总量为万吨/年,按照现有柴油加氢装置设计加工量,能够加工140万吨/年。为了适应柴油产品质量升级与产能的需要,需新建一套240万吨/年直馏柴油加氢及配套工程装置,部分常三线柴油与常一、二线柴油一起混合到新建柴油加氢装置,以2万标立方米/小时制氢装置所产氢气为氢源。新建柴油加氢装置加工量为万吨/年,按照公称240万吨/年规模进行设计,实现效益最大化。 240万吨/年柴油加氢装置主要目的产品为加氢柴油,同时副产少量石脑油和气体。精制柴油能满足国Ⅴ柴油性质要求,在50℃左右送至装

置外调和站作为调和组分;石脑油送至重整预加氢装置罐区;轻烃送至140万吨/年柴油加氢装置进一步处理;富气、低分气送至联合三车间进行干气脱硫后,进入燃料气管网系统。 本装置主要由反应部分、分馏部分和公用工程部分三个部分组成。 第二节工艺流程说明 1.2.1、反应部分 原料油自装置外来进入原料缓冲罐(D101),经原料油升压泵(P101)升压后,进入自动反冲洗过滤器(SR-101),滤后油与柴油产品/原料油换热器(E-203A/B/C)换热升温后进入滤后原料缓冲罐(D-102),再由反应进料泵(P-102A/B)抽出升压后与混氢混合,先与反应产物/混氢油换热器(E-102A/B/C)进行换热,再经反应进料加热炉(F-101)加热至要求温度;循环氢与新氢混合与热高分气/混氢换热器(E-103)换热升温后分成两路,一路与原料油混合后换热进入反应进料加热炉(F-101),另一路与反应产物/混氢换热器(E-101)进一步换热后与反应进料加热炉出口的混氢油混合,自上而下流经加氢精制反应器(R-101)。在反应器中,原料油和氢气在催化剂的作用下,进行加氢脱硫、脱氮、烯烃饱和、改质、异构降凝等反应。 从加氢精制反应器(R-101)出来的反应产物分别与反应产物/混氢换热器(E-101)、反应产物/混氢油换热器(E-102A/B/C)换热后,进入热高压分离器(D-103)进行气液分离,热高分气与热高分气/混氢换热器(E-103)换热并经热高分气空冷(A-101)冷却后进入冷高压分离器

汽(煤、柴)油加氢装置操作工--中级

职业技能鉴定国家题库 汽(煤、柴)油加氢装置操作工中级 一、单项选择(第1题~第400题。选择一个正确的答案,将相应的字母填入题内的括号中。每题1分, 满分400分。) 1. 加氢装置氢分压对催化剂影响的说法中正确的是()。 A、氢分压高使催化剂的失活快 B、氢分压低可提高催化剂的稳定性 C、氢分压高会增加催化剂的结焦 D、氢分压高可减缓催化剂的失活 2. 加氢装置冷高压分离器液位过高将危及()的运转。 A、反应器 B、空冷 C、新氢机 D、循环氢压缩机 3. 一般说来,机泵润滑油三级过滤的三级过滤网目数为()目。 A、50 B、80 C、100 D、120 4. 油气混烧的加热炉的出口温度一般情况下是通过调整()来实现的。 A、燃料油量 B、燃料气量 C、炉管循环量 D、氧含量 5. 空冷器的变频器形式有()。 A、低、中、高三档 B、Ⅰ、Ⅱ二档 C、Ⅰ、Ⅱ、Ⅲ、Ⅳ四档 D、Ⅰ、Ⅱ、Ⅲ三档 6. 分馏塔压力高,造成的原因不可能是()。 A、塔顶空冷故障停运 B、水冷管程堵塞 C、压控后路堵 D、原料组分变重 7. 螺纹锁紧环式高压换热器的轴向载荷最终由()承担。 A、外圈螺栓 B、内圈螺栓 C、螺纹承压环 D、前三者共同承担 8. 关于加氢催化剂采用密相装填运转带来的好处,下列说法中不正确的是()。 A、可以提高处理量 B、在同样的处理量下,空速下降 C、降低催化剂初期运转温度 D、在同样的处理量下,空速提高 9. 高压氮气进装置前应()。 A、经过过滤 B、经过干燥 C、经过减压阀减压 D、经过稳压 10. 若加氢装置系统新氢中断,可能发生的现象是()。 A、反应深度提高 B、循环氢纯度下降 C、系统压力上升 D、反应温升上升 11. 在常温常压下,可燃物在空气中形成爆炸混合物的()称为爆炸下限。 A、最高含量 B、最低含量 C、平均含量 D、测爆仪上显示的最小数值 12. 已知加氢生成油中含氮量为8ppm,反应脱氮率为90%,则加氢原料含氮量为()ppm。 A、100 B、90 C、80 D、70 13. 绘制带仪表控制点的工艺流程图时,仪表信号用()表示。 A、直线 B、虚线 C、双线条 D、无法确定 14. 不是工艺联锁试验的目的是()。 A、检验联锁逻辑回路的准确性 B、检验联锁参数的准确性 C、检验联锁机构的灵活性与准确性 D、让操作人员得到感性认识

柴油加氢装置停工总结要点

柴油加氢装置停工总结 按照公司停工检修统一统筹安排,柴油加氢装置于2011年6月20日22时开始停工,现对柴油加氢装置停工过程中停工进度、对外管线吹扫、人员分工、盲板管理、停工过程中存在的不足等几个方面对本次停工总结如下: 一、停工过程与分析 表1 装置停工进度表

柴油加氢装置停工总结 图1装置停工反应器实际降温曲线与原先方案降温曲线比较 4

装置停工实际进度与原计划停工统筹差异主要有以下几点: (1)、装置停进料泵P-102A后,反应系统热氢带油阶段,原先计划安排热氢带油16h。实际停工阶段热氢带油10h后,热高分液位基本未见上涨,同时由于重整装置停工安排,氢气中断供应,反应系统热氢带油比原先计划缩短6h。 (2)、反应系统热氮脱氢阶段,反应器入口温度维持220℃,反应系统压力维持2.7MPa,进行热氮脱氢12小时,比原先停工计划缩短12h。原计划反应系统热氮脱氢阶段,循环气中氢+烃置换至<0.5V%后结束热氮脱氢。实际停工过程中,热氮脱氢结束时,循环气中氢+烃含量为25.86V%,反应系统降温阶段继续进行氮气置换,直至循环气中氢+烃含量<0.5V%。 (3)、反应系统降温阶段,停F-101后,F-101快开风门全部打开,A-101维持最大冷却负荷进行循环降温,R-101床层温度降至150℃前,实际降温速度为7℃/h R-101床层温度降至100~150℃阶段,实际降温速度为4~5℃/h,R-101床层温度自220℃降至70℃,实际降温时间为39h。与原先计划差别不大。由于装置反应器内径较大(5.2m),系统补充氮气量受公司氮气总量限制,R-101床层温度未降至原先计划德60℃。 (4)、反应器降温结束后,停K-102、K-101,反应系统泄压至0.5MPa,自K-102出口补入氮气继续置换反应系统18h后,反应系统循环气化验分析氢+烃<0.2V%,反应系统泄压至微正压。公用工程系统吹扫合格后,装置交出检修。 (5)、装置塔、罐蒸煮结束后,C-201、D-103、D-105、D-305、D-117高硫氢部位进行钝化清洗,由于D-103、D-105、D-117导淋堵塞,废钝化液外排比较困难。从开始钝化至废钝化液排净用时约为48h,远超过原先计划的钝化时间(16h)。 二、公用工程消耗 表2 装置停工公用工程消耗 (1)、由于柴油加氢装置低压氮气流量表量程为(0~1000m3/h),装置停工吹扫期间经常出现满量程问题,低压氮气实际耗量比MES数据要大。

脱水技术在PTA加氢精制工艺中的应用

通用机械 脱 扬子石油化工股份有限公司化工厂副总工程师 沈品德 PTA 加氢精制工艺中的应用 图 PTA精制工艺流程图 1.混合罐 2.溶解罐 3.加氢反应器 4.第一结晶器 5.第二结晶器 6.第五结晶器 7.压力离心机 8.真空过滤机 9.干燥机 脱水技术在

2008年 第 4 期 33 通 二、压力离心机系统 PTA生产中,要保证压力离心机系统稳定运行。压力离心机系统是控制产品质量的重要环节,离心机分离效果的好坏直接影响到产品中PT酸和其他杂质的含量。因此,要定期对离心机系统进行检查,保证离心机油路系统的正常运行,并定期对离心机系统做一些常规处理。 由于T A料和P T酸易在压力离心机的转鼓、支架、进料管和出料管线处粘壁,降低压力离心机的处理能力,使得滤饼中的含湿量增加,从而影响到产品质量。另外由于压力离心机内转子和支架上的结料,会增加离心机的振动,使离心机的故障率增加,因此,要对离心机进行水洗和碱洗操作,包括定期和不定期的处理,从而延长离心机的运行周期,减少检修频次。 (1)水洗 切断离心机进料,切进冲洗水,对压力离心机进行在线冲洗,大约5~10m i n,水洗后恢复进料。保证每天水洗一次。 (2)碱洗 停机进料,切水冲洗;停止水洗,降温降压隔离;进料管进碱,根据工艺及设备要求确定碱洗时间;停止碱洗,切为水洗,至排出液呈中性为止;系统升温升压,解除隔离进料。一般情况下1个月碱洗1次;特殊情况下,根据产品的质量和离心机的运行情况而定,当产品中的P T酸含量偏高或离心机的振动偏大时,要进行碱洗。 三、真空过滤技术的应用 1.进料温度的控制 如果温度过高,会引起溶液闪蒸,造成滤布堵塞,控制时在过滤机进料处加入脱离子水,降低溶液的温度,使其降到89℃左右。 2.进料浓度的控制 进料浓度的控制主要是用来控制滤饼的厚度,滤饼过厚会引起洗涤效果差,滤饼的含湿量增加,影响产品的质量,因此料浆浓度应控制在35%~45%。 3.真空度的控制 真空度过高会引起滤饼厚度增加,造成过滤机的负荷过高,前后物料不能平衡,真空度过低会引起滤饼的含湿量增加,影响产品质量,因此过滤机的真空度应控制在-0.045~0.049MPa范围内。 4.溢流堰高度的调节 如果溢流堰太高会引起滤饼的厚度增加,造成滤 饼的含湿量增加,影响产品的质量,并造成前后物料不平衡。如果溢流堰过低,要增加过滤机的转速,同样造成滤饼的含湿量增加。 5.反吹气量的控制 反吹气量控制过低,滤饼不能有效地吹下,影响过滤效果,如果过高会造成料斗中浆料喷料,缩短滤布的使用周期,因此,生产中反吹气量应控制在15~40kPa。 6.洗涤水量的控制 洗涤水量的控制主要是用来控制产品的质量,洗涤水量过低会造成产品中的杂质含量高,影响产品的质量;如果洗涤水量过高会增加滤饼的含湿量,增加干燥机的能量损耗,因此洗涤水量控制在8~15m 3/h。 7.应用效果 以真空过滤机为核心设备的过滤系统取代常压离心机后,系统运转平稳,故障率低,完全满足生产工艺要求。 (1)检修费用低 常压离心机由于转鼓经常结料,因此维护保养较为困难,经常发生易熔塞化、剪切销断裂等故障,并需经常更换齿轮箱、大轴承和轴瓦等备件,每年检修费用约60万元/台。而采用真空过滤机后,除滤布定期更换外,其他基本上可实现每两年一修,大大降低了检修成本。 (2)运行成本低 该单元采用真空过滤机系统比采用常压离心机系统每小时可节能约200kW·h。同时每年可节约10~15万元的油脂、润滑油等费用。 (3)产品质量提供 采用真空过滤机后,产品中P T含量比采用常压离心机时整体下降了约10m g/k g,特别是可以通过调节真空过滤机洗液量来调节产品中的P T含量,解决了精制生产中P T酸波动幅度大的难题,产品质量得到了有效控制。 (4)处理能力大 常压离心机单台处理量小,产能低,满负荷生产时,3台离心机必须全部运行。采用真空过滤机后,实现了“一开一备”模式,且两套真空系统可以互为备用,极大地提高了精制单元后系统的处理能力。 四、PTA物料干燥 P T A物料干燥机为倾斜回转列管式干燥设备,用于干燥含湿量约10%~15%P T A滤饼,除去其中的水分,

相关主题
文本预览
相关文档 最新文档