当前位置:文档之家› 液晶显示材料研究现状

液晶显示材料研究现状

液晶显示材料研究现状
液晶显示材料研究现状

液晶显示材料研究现状

一、基本概念与原理介绍

液晶材料(Liquid CrySTal) 是一种高分子材料,因为其特殊的物理、化学、光学特性,20世纪中叶开始被广泛应用在轻薄型的显示技术上。液晶材料即具有液体的流动性,又具有晶体的各向异性物质。液晶材料在液晶平面显示器的组成结构上所担任的角色是相当地重要,虽然其种类有数万种,但真正使用的也仅有数十多种。

人们通常根据液晶形成的条件,将液晶分为溶致液晶( Lyot ropic liquid crystal s ) 和热致液晶( Thermot ropic liquid crystal s) 两大类。

液晶材料分类

1、溶致液晶

将某些有机物放在一定的溶剂中,由于溶剂破坏结晶晶格而形成的液晶,被称为溶致液晶。比如:简单的脂肪酸盐、离子型和非离子型表面活性剂等。溶致液晶广泛存在于自然界、生物体中,与生命息息相关,但在显示中尚无应用。

2、热致液晶

热致液晶是由于温度变化而出现的液晶相。低温下它是晶体结构,高温时则变为液体,这里的温度用熔点( Tm)

和清亮点( Tc ) 来标示。液晶单分子都有各自的熔点和清亮点,在中间温度则以液晶形态存在。目前用于显示的

液晶材料基本上都是热致液晶。

液晶材料的发展历史

*1854~1889年代,德国生理学家R.C.Virchow发现自然界的Myelin物质,此是一种溶致型液晶,在适当的水份混合後,会呈现光学异方向性之有机分子集合体。

*液晶材料的发现,正式於1988年,将胆固醇的笨二甲酸或以酸加热到145度时,有白浊稠状液体,再加热至178度,会变成透明液体,冷却下来则有紫色、橙红色、绿色等不同颜色变化。

*1920後时期,为液晶合成的开始及分类的确定,Friedel博士将液晶分类成层列型或距列型、向列型、胆固醇型.. *1960到1968年代,为液晶应用研究的蓬勃时期,G.H.Heilmeir博士发现动态散射模式(DSM),而使应用朝向液晶平面

*电控复折射(ECB)的动作模式於1971年提出,後来发明扭曲向列型液晶平面显示器,应用在汽车仪表和表上

*1973年後为液晶实用化和应用研究多样化时期,日本的sharp和Seiko-Eps改朝向向列型液晶平面显示器,1972年P.Brody提出主动性矩阵型模式,1980到1983年则有铁电性液晶平面显示器,1983到1985年发明超向列型液晶平面显示器(STN-)。

*1980年日立试作低温多晶矽薄膜电晶体液晶平面显示器(LTPS TFT-LCD)

*1990年代彩色超向列型液晶平面显示器之笔记型电脑

*1991年彩色非晶矽薄膜电晶体液晶平面显示器之笔记型电脑

*1996年低温多晶矽薄膜电晶体液晶平面显示器的数位相机

*2000年低温多晶矽薄膜电晶体液晶平面显示器结合有机电激光显示器成为新一代省电及高解析度的显示器

液晶显示的基本原理

利用液晶的基本性质实现显示:

自然光经过一偏振片后“过滤”为线性偏振光,由于液晶分子在盒子中的扭曲螺距远比可见光波长大得多,所以

当沿取向膜表面的液晶分子排列方向一致或正交的线性偏振光入射后,其偏光方向在经过整个液晶层后会扭曲90°由

另一侧射出,正交偏振片起到透光的作用;如果在液晶盒上施加一定值的电压,液晶长轴开始沿电场方向倾斜,当电

压达到约2倍阈值电压后,除电极表面的液晶分子外,所有液晶盒内两电极之间的液晶分子都变成沿电场方向的再排列,这时90°旋光的功能消失,在正交片振片间失去了旋光作用,使器件不能透光。如果使用平行偏振片则相反。

正是这样利用给液晶盒通电或断电的办法使光改变其透-遮住状态,从而实现显示。

上下偏振片为正交或平行方向时显示表现为常白或常黑模式。

液晶的驱动方式

1. 静态驱动——段式液晶

2. 无源矩阵驱动(液晶等效为高电阻的容性负载)——STN型液晶

3. 有源矩阵驱动——TFT型等液晶

液晶的性质

2.1 电光效应

动态散射:把某种向列型液晶放在两个特定的电极之间(电极间距离约为

10 微米),逐渐增加静电压。电压不是很大时(1V 左右),液晶对光仅仅进行镜面射。当电压增大到某一阀值时(5V

左右),液晶在光的照射下会出现明暗相间的条纹。电压继续增大,到达另一阀值时,液晶会对光进行漫反射。光轴

的转动:分子轴按一定方向取向的向列型液晶和近晶型液晶都具有光学单轴性。在一般情况下光轴与分子轴方向一致。对这种液晶施加电场时,由于介电常数的各向异性,分子轴在最初状态一致会朝向另一方向。

2.2 热效应

向列型液晶的折射率的各向异性随温度升高而降低。温度的改变能使近晶型液晶的光轴方向发生变化。

2.3 其它性质

液晶的其它性质还有压电效应、光化学效应、光生伏特效应等等。

液晶的视角特性

与从垂直角度观看时相比,斜看的时候,转到当画面品质已经变化到无法接受的临界角度时,称之为该显示器的视角。

晶体中的折射光分成两条,一条光的折射行为遵循折射定律,这条折射线为寻常光线;另一条光线则不同,一般情况下,折射线往往不在入射面内,即不遵循折射定律,称为非常光线。这两条线都是线偏振光。

从不同的观察方向所看到的液晶分子有效长度(投影长度)不同,非常光线也会进入视线,在视觉效果上表现的视角的变化。具体表现为对比度下降、灰阶反转、色差、亮度下降等

二、应用领域

电子电器领域

液晶高分子优异的电绝缘性、低热膨胀系数、高耐热性和耐锡焊性等优点,使其在电子工业中的应用日益扩大。以表面装配技术和红外回流焊接装配技术为代表的高密度循环加工工艺,要求树脂能够经受260℃以上的高温,还要求制品薄壁和小型化,故要求树脂能精密注射、不翅曲和耐焊接,这是一般工程塑料难以达到的,而Vectra、Xydar类液晶高

分子可满足这些要求。目前发达国家电子工业中将液晶高分子用来制作接线板、线圈骨架、印刷电路板、集成电路封装和连接器,此外还用作磁带录象机部件、传感器护套和制动器材等。

汽车和机械工业领域

LCP广泛用于制造汽车发动机内各种零部件(如燃油输送系统的泵和浆叶、调速传感器等),以及特殊的耐热、隔热部件和精密机械、仪器零件。液晶高分子可以用于巡航控制系统的驱动发动机中作为旋转磁铁的密封元件。Du Pont公司采用Kevlar 119作为高级轿车轮胎补强纤维,使轮胎的各种性能提高50%;日本住友化学公司开发的PTEE Ekonol E101系列合金可用于200℃以上使用的无油润滑轴承以及耐溶剂轴承等。

显示及记忆材料

尽管高分子液晶其响应时间较长,但因其结构特征带来的易固定性,若对高分子液晶从结构条件和实验条件两方面进行强化,也可得到响应值与低分子液晶相当的液晶高分子,从而用于显示。另外液晶高分子因为易固定性可被用来作为热记录材料,即液晶高分子在热条件下将外力场的刺激固定下来,从而能保留外界所给予的信息,起到储存的作用。

若将这些记录材料再次在热条件下施以电场,则材料回复原来的变形(在外场作用下呈均匀定向排列的性能)状态,可重新

记录和摹写。

光纤通讯领域

光纤通讯中,目前采用石英玻璃丝作为光导纤维。这种外径仅为100~150um的细玻璃丝,只需100g左右的拉力

就被拉断。因此为了保护光纤表面,提高抗拉强度、抗弯强度,需给光纤涂以高分子树脂造成被复层。液晶高分子就适

用于光纤二次被复材料,以及抗拉构件和连接器等。如尤尼崎卡和三菱化学开发的PET系非全芳烃液晶高分子,经改性后代替尼龙12作为光纤的二次涂层,由于其模量、强度均高,而膨胀系数小,从而降低了由光纤本身温度变形而引起的

畸形,以及使光纤不易出现不规则弯曲,减少了光信号传输中的损耗。

航空航天领域

L CP由于具有耐各种辐射以及脱气性极低等优良的“外层空间性质”,可用作人造卫星的电子部件,而不会污染或干扰卫星中的电子装置,还可模塑成飞机内部的各种零件,如采用Xydar可满足长期在高温下运转的发动机零件的要求。利用Kevlar的强力,美国航空航天部门已大量用其作为高级复合材料,如波音777飞机每架用高级复合材料占总重的60%以上,其中大部分是Du Pont公司的Kevlar49和149。

液晶材料在生活方面的应用

在生活中,液晶最为常见的应用是液晶显示器。现在,它已经广泛应用于手表、计算器、时钟、电话、照相机、办公设备、个人计算机,温度计、袖珍电视、汽车仪表盘等设备中。有些变色窗户中也使用了液晶材料。

(1)一笔记本电脑用的液晶显示屏:

(2)额头温度计(液晶变色温度计)液晶温度计:能安

全准确的测试温度,

包括体温、水温、气体及各种固体物表面等。适用于奶瓶、

酒瓶、饮料、冰箱、

水壶、鱼缸、水缸、室内、车内等测试温度。

(3)液晶生物学――正在崛起的交叉学科。

简言之,生物组织必须有足够的刚性,使其正常发挥功能;并且又要有足够的流动性,使所有必要的过程能够进行。

这种精巧的平衡,部分地能够被夜景结构所实现。液晶的奇妙性质对许多生物过程来说毫无疑问很重要。在生物学的

某些领域,研究者们开始对重要分子的物理状态提出疑问,希望能发现重要的新观念来解释有机体如何实现必要的功能。液晶,这个自然界中的奇妙物质,已经成为这些研究者们的新宠物。

(4)液晶用于气体的检测。

液晶对气体和蒸汽污染的灵敏度高于氧,氮及惰性气体. 它能记录有害气体的浓度,并能精确测定漏气部位,以保证安全.

测量的灵敏度可达百万分之几. 这对环境保护监测工作有重要价值. 例如胆甾液晶对不同有机溶剂气体可显示不同的

颜色. 见表2。

4.4 浅层肿瘤的诊断

用涂有胆甾型液晶的黑底薄膜,贴在病灶区的皮肤上,则能显示温度不到一度的彩色温度变化图. 利用液晶诊断肿瘤、动脉血栓和静脉肿瘤,以提供手术的准确部位,并能根据皮肤温度的变化,以及交感神经系统的堵塞情况,以判断神经系统及血管系统是否开放. 液晶在0~250 ℃之间对温度变化都很灵敏,根据选用的混合物液晶能显示1~5 ℃之间温度变化的全谱图,即使小于0125 ℃的温度变化,也可以清楚地看出。

三、国内外研究现状

1、TN-LCD用液晶材料

TN型液晶材料的发展起源于1968年,当时美国公布了动态散射液晶显示(DSM-LCD)技术。但由于提供的液晶材料的结构不稳定性,使它们作为显示材料的使用受到极大的限制。1971年扭曲向列相液晶显示器(TN-LCD)问世后,介电各向异性为正的TN型液晶材料便很快开发出来;特别是1974年相对结构稳定的联苯睛系列液晶材料由G.W.Gray等合成出来后,满足了当时电子手表、计算器和仪表显示屏等LCD器件的性能要求,从而真正形成了TN-LCD产业时代。

LCD用的TN液晶材料已发展了很多种类。这些液晶化合物的结构都很稳定,向列相温度范围较宽,相对粘度较低。不仅可以满足混合液晶的高清亮点、低粘度在20~30mPa?S(20℃)及△n≈0.15的要求,而且能保证体系具有良好的低温性能。含联苯环类液晶化合物的△n值较大,是改善液晶陡度的有效成分。嘧啶类化合物的K33/K11值较小,只有0.60左右,在TN-LCD和STN-LCD液晶材料配方中,经常用它们来调节温度序数和△n值。而二氧六环类液晶化合物是调节“多路驱动”性能的必需成分。

2、STN-LCD用液晶材料

自1984年发明了超扭曲向列相液晶显示器(STN-LCD)以来,由于它的显示容量扩大,电光特性曲线变陡,对比度提高,要求所使用的向列相液晶材料电光性能更好,到80年代末就形成了STN- LCD产业,其产品主要应用在BP机、移动电话和笔记本电脑、便携式微机终端上。

STN-LCD用混晶材料一般具有下述性能:低粘度;大K33/K11值;△n和Vth(阈值电压)可调;清亮点高于工作温度上限30℃以上。混晶材料的调制往往采用“四瓶体系”。这种调制方法能够独立地改变阈值电压和双折射,而不会明显地改变液晶的其他特性。

STN-LCD用液晶化合物主要有二苯乙炔类、乙基桥键类和链烯基类液晶化合物。二苯乙炔类化合物:把STN-LCD 的响应速度从300ms提高到120~130ms,使STN-LCD性能得到大幅度的改善,从而在当今的STN-LCD中使用较多,现行STN-LCD用液晶材料中约有70%的配方中含有二苯乙炔类化合物。乙基桥键类液晶:与相应的其他类液晶比较,这类液晶的粘度、△n值都比较低;相应化合物的相变温度范围和熔点相对较低,是调节低温TN和STN混合液晶材料低温性能的重要组分。链烯基类液晶:由于STN-LCD要求具有陡阈值特性,为此,只有增加液晶材料的弹性常数比值K33/K11才能达到目的。烯端基类液晶化合物具有异常大的弹性常数比值K33/K11,用于STN-LCD 中,得到非常满意的结果。

近年来,STN显示器在对比度、视角与响应时间上都有显著的进步。由于TFT-LCD的冲击,STN-LCD逐渐在笔记本电脑和液晶电视等领域失去了市场。鉴于成本的因素,TFT-LCD将不可能完全代替STN-LCD原有的在移动

通讯和游戏机等领域的应用。

3、TFT-LCD用液晶材料

随着薄膜晶体管TFT阵列驱动液晶显示(TFT LCD)技术的飞速发展,近年来TFT LCD不仅占据了便携式笔记本

电脑等高档显示器市场,而且随着制造工艺的完善和成本的降低,目前已向台式显示器发起挑战。由于采用薄膜晶体管阵列直接驱动液晶分子,消除了交叉失真效应,因而显示信息容量大;配合使用低粘度的液晶材料,响应速度

极大提高,能够满足视频图像显示的需要。因此,TFT LCD较之TN型、STN型液晶显示有了质的飞跃,成为21世纪最有发展前途的显示技术之一。

与TN、STN的材料相比,TFT对材料性能要求更高、更严格。要求混合液晶具有良好的光、热、化学稳定性,高的电荷保持率和高的电阻率。还要求混合液晶具有低粘度、高稳定性、适当的光学各相异性和阈值电压。TFT LCD 用液晶材料的特点:

TFT LCD同样利用TN型电光效应原理,但是TFT LCD用液晶材料与传统液晶材料有所不同。除了要求具备良好的物化稳定性、较宽的工作温度范围之外,TFT LCD用液晶材料还须具备以下特性:

(1)低粘度,20℃时粘度应小于35mPa?s,以满足快速响应的需要;

(2)高电压保持率(V.H.R),这意味液晶材料必须具备较高的电阻率,一般要求至少大于1012Ω?cm;

(3)较低的阈值电压(Vth),以达到低电压驱动,降低功耗的目的;

(4)与TFT LCD相匹配的光学各向异性(△n),以消除彩虹效应,获得较大的对比度和广角视野。△n值范围应在0.07~0.11之间。

在TN、STN液晶显示中广泛使用端基为氰基的液晶材料,如含氰基的联苯类、苯基环己烷类液晶,尽管其具有较高的△ε以及良好的电光性能,但是研究表明,含端氰基的化合物易于引人离子性杂质,电压保持率低;其粘度与具有相同分子结构的含氟液晶相比仍较高,这些不利因素限制了该类化合物在TFT LCD中的应用。酯类液晶具有合成方法

简单、种类繁多的特点,而且相变区间较宽,但其较高的粘度导致在TFT LCD配方中用量大为减少。因此,开发满足以上要求的新型液晶化合物成为液晶化学研究工作的重点。

目前,在液晶显示材料中,TN-LCD已逐步迈入衰退期,市场需求逐渐萎缩,而且生产能力过剩,价格竞争激烈,己不具备投资价值。而STN-LCD将逐渐进入成熟期,市场需求稳步上升,生产技术完全成熟。而TFT-LCD在全球范围内正进入新一轮快速增长期,市场需求急剧增长,有望成为21世纪最有发展前途的显示材料之一。

(四)存在的问题和需要解决的问题

液晶的响应速度也称反应时间,是液晶电视各像素点对输入信号反应的速度,即像素由暗转亮或由亮转暗所需要的时间。一般将反应时间分为两个部分:上升时间(Rise time)和下降时间(Fall time),而表示时

以两者之和为准。

如果响应时间不够快,像素点对输入信号的反应速度跟不上,观看高速移动的画面时就会出现类似残影或者拖沓的痕迹,无法保证画面的流畅。目前市面上的液晶电视多在8ms,与CRT电视低于10ms的响应时间相比,还有一点差距。不过7代线已经将液晶电视响应速度提高到6毫秒,甚至4毫秒,这样就超过了CRT

电视。所以,响应速度的提高是液晶发展中不可避免的问题。

(五)对于液晶响应时间问题的解决办法与研究计划

聚合物液晶复合材料能实现光调制,广泛应用于液晶显示器、光开关及开关窗口。将应力引入聚合物液晶,可以产生剪切诱导的液晶分子取向、光偏振效应及快速响应‘u。预应力液晶材料是由分散在被拉伸中相互连接的微米级液晶畴结构所组成。这种材料可用于光学相位阵列、非机械光束控制系统、上翘校准器及高速显示。将应力引入聚合物液晶体系中主要有三种好处:1)能消除光散射,增加相位延迟;2)使液晶产生的相位延迟与所加电压呈线性关系;3)提高液晶响应速度。实验证实,预应力液晶所呈现的这些特性受聚合物液晶成分中液晶畴的形态和尺寸影响[2]。因此,研究预应力液晶体系中液晶畴的大小和形状对了解其特性非常重要,同时也可以为改进制作工艺提

供依据。

聚合物液晶的制作过程及实验结果

预应力液晶的制作过程中,将E7液晶和紫外光学胶NOA65按质量比85:15混合均匀,并加热到90 oc,排出液晶中的气泡。将两片IT0玻璃清洗干净加热到90。C,用12弘m绝缘纸作为垫圈控制液晶层厚度,往两玻璃基片中间注入E7和NOA65的混合物,制成液晶盒。接着在90。C条件下进行紫外曝光,紫外光强度为30 mW/cm2,曝光时间为30min。然后,将液晶盒冷却到室温,降温速度为4~5。C/min,进行同样的紫外曝光。图1为紫外曝光示意图。将上述液晶盒的下玻璃基片固定,用步迸电机对上玻璃基片进行水平剪切,剪切距离为100弘m,用胶对液晶

盒四周进行密封,防止其松弛回原状态。剪切后液晶畴得到拉伸,产生平行排列,同时产生内部应力,等效增加了液晶的弹性系数,提高了响应速度。剪切前,液晶微滴随机排列,光散射较强;剪切后,液晶微滴排列基本趋向一

致,光散射减小。在预应力液晶的制作过程中,如果NOA65的含量小于10%,光聚合反应速度慢聚合物无法形成连续的网络,液晶分子有更多时间进行相分离,形成较大的液晶滴。经过紫外固化后,液晶盒牢固性较差,剪切比较小,且容易造成液晶盒的破裂。如果NOA65的含量超过20%,形成致密的聚合物网络及小的液晶滴,结果导致两玻璃基片粘和过于牢固,不容易进行剪切。因此,为得到较好的剪切效果,聚合单体的含量(质量分数)一般控制在10%~20%之间。紫外固化温度对形成的液晶/聚合物体系的形态有很重要的影响。图1为在不同固化温度下的E7液晶/聚合物的偏光显微照片,图中箭头代表的尺寸约为17 pm。图2中(a),(b)、(c)、(d)分别为400C,50。C,80。C,100。C条件下的显微照片。从图中可以看出,随着固化温度的升高,液晶在聚合物中的溶解性提高,形成的液晶滴尺寸越小,相分离过程越均匀。这种结果是由于高反应温度使聚合单体反应速率加快,而且单体转化率提高叭引。当固化温度低于E7液晶的清亮点(60℃)时,液晶微滴的直径为5~20 pm;当固化温度高于E7液晶的清亮点时,液晶微滴的直径为l~2 pm。

(固化温度还影响着SLC的光谱透过率。随着固化温度的增加,液晶微滴尺寸由几十微米减小到几微米,聚合物网络也经历了由聚合物结构到聚合物网状织构的转变,SI.C的透过率随之增加。这主要是由于固化温度较低时,聚合物以较大尺寸的球

状结构存在,而不是较细的网状结构,这样液晶与聚合物折射率的不匹配就更加严重,光散射就更明显。另外,当固化温度高于液晶的清亮点时,液晶盒的剪切性能也显著增加。这来自于两方面的原因:

(1)与固化温度较低的SLC相比,温度较高的SLC在聚合反应的后期进行相分离,聚合物转化率较高,聚合物网络相互交叉密度高,弹性高。

(2)固化温度较高时,溶解于聚合物网络中液晶的塑化程度高。

综上所述,这是通过用一种具有快速响应的预应力液晶。通过实验研究在制作过程中所形成的液晶的形态结构(液晶微滴的尺寸和形状)与工艺因素的关系。同时建立了预应力液晶形成过程的一种简易模型,推导了响应时间与

剪切特性的关系,为提高优化预应力液晶的制作工艺提供了基础。但是具体提高响应时间的工艺,还需要长期的研究和探索

液晶显示材料背景市场

显示材料行业因进入壁垒和附加值较高的特性,其行业利润水平在LCD 产业链中处于较高的位置,约为35-40%。从目前市场整体变动趋势看,由于下游面板大厂京东方科技集团股份有限公司、深圳市华星光电技术有限公司为代表的本土企业陆续建设了8.5代液晶面板线,使得大尺寸的电视面板供应有了一定的保障,拉动了液晶材料的需求和价格,未来液晶材料的行业利润仍将维持在一个均衡状态。单晶行业企业集中度一般,市场主要由中节能万润股份有限公司、西安瑞联新材料股份有限公司、浙江永太科技股份有限公司、第三化成株式会社及相互薬工株式会社等企业占据。单晶行业中的企业较为分散,但能够提供高品质产品的主要生产企业数量较少,所生产的产品主要供应给下游高端客户。由于单晶的种类众多,且各供应商擅长的产品领域不同,因此主要生产企业之间的竞争程度一般。 OLED材料(中间体及升华前材料)行业集中度较高,市场主要由西安瑞联新材料股份有限公司、烟台九目化学制品有限公司、濮阳惠成电子材料股份有限公司、陕西莱特光电材料股份有限公司及广东阿格蕾雅光电材料有限公司等企业占据。OLED材料(中间体及升华前材料)行业中,能提供高端产品的企业较少,因此主要生产企业之间的竞争程度一般。医药中间体为高度定制化行业,产品完全根据下游客户的需求生产,没有被其他客户使用的可能性。因此,无可比竞争对手适用。 混合液晶材料生产企业的上游为液晶前端材料,包括液晶中间体和液晶单体。目前,国内外混合液晶材料生产企业所用的液晶前端材料主要来自于外购,液晶前端材料领域的公司主要包括:万润股份、永太科技、上海康鹏、江苏广域化学有限公司、烟台德润液晶材料有限公司、第三化成

(完整版)纳米抗菌材料国内外研究现状

1.国内外研究现状和发展趋势 (1)多尺度杂化纳米抗菌材料的国内外研究进展 Ag+、Zn2+和Cu2+等金属离子具有抗菌活性,且毒性小、安全性高而被广泛用作抗菌剂使用。但是,由于其存在易变色、抗菌谱窄、长效性差、耐热性和稳定性不好等缺点而成为其进一步发展的障碍。相比而言,纳米银、纳米金、纳米铜、纳米氧化锌等纳米材料则可以在一定程度上克服这些问题。例如纳米银,在抗菌长效性和变色性方面均比银离子(多孔纳米材料负载银离子)抗菌剂有显著改善,而且其毒性也更低(Adv. Mater. 2010);关于其抗菌机理,被认为是纳米银释放出银离子而产生抗菌效果(Chem. Mater 2010,ACS Nano 2010)。纳米金也有类似的效果(Adv. Mater. Res.2012),尽管活性比纳米银稍差,但其对耐药菌株表现出良好的抗菌活性(Biomaterials 2012)。铜系抗菌材料可阻止“超级细菌”(NDM-1)的传播(Lancet Infec.Dis. 2010)。活性氧化物是使用时间最长、使用面最广泛的一类长效抗菌剂,其中氧化锌是典型代表,特别是近年来随着纳米技术的发展,一系列低维结构氧化锌的出现,为氧化锌系抗菌材料提供了极大的发展空间,由于其良好的安全性,氧化锌甚至可用于牙科等口腔材料(Wiley Znter Sci.,2010)。本项目相关课题组多年的研究发现,ZnO的形貌差异、结构缺陷和极化率等都会影响其抗菌活性(Phys. Chem. Chem. Phys. 2008);锌离子还可以与多种成分杂化,产生协同抗菌活性而提高其抗菌性能(Chin. J. Chem. 2008, J. Rare Earths 2011)。 利用杂化纳米材料结构耦合所带来的协同作用提高纳米材料的抗菌活性是近年来的研究热点。例如:纳米铜与石墨烯杂化体系中存在显著的协同抗菌作用(ACS Nano2010)。用络氨酸辅助制备的Ag-ZnO杂化纳米材料,表现出良好的抗菌和光催化性能(Nanotechnology 2008);但是Ag的沉积量过大,催化活性反而有所降低(J. Hazard. Mater. 2011)。以壳聚糖为媒质,通过静电作用合成得到均匀的ZnO/Ag纳米杂化结构,结果显示,ZnO/Ag纳米杂化结构比单独的ZnO 和单独纳米Ag的抗菌活性都高,表现出明显的协同抗菌作用(RSC Adv. 2012)。Akhavan等用直接等离子体增强化学气相沉积技术,结合溶胶-凝胶技术把锐钛

中国超硬材料行业发展现状及问题

中国超硬材料行业发展现状及问题 点击:20 日期:2008-11-18 15:09:05 我们金刚石方面也应该有硬件和软件之分,有人认为有了设备就会有优质粗颗粒金刚石,这是一种片面性的观念,是错误的。应该这么说:金刚石压机大型化与控制系统的精细化属于硬件部分;而组装设计、合成工艺及包括后部提纯、分选、鉴定、分类及标准等就是软件部分。这两者必须紧密结合起来,我们才能获得制品合用的真正优质产品。——方啸虎一个国家超硬材料应用的状态,体现了这个国家现代化工业的发展水平。中国改革开放三十年以来,由于工业化、现代化的建设不断获得进步,国民经济总量已成为全球第二的大国。当然人均GDP我国还是相当落后的,一般只有发达国家的10%左右,所以说中国的发展道路还很长!作为超硬材料行业,中国不仅是超硬材料生产大国,而且是超硬材料应用大国,这一趋势将会持续下去,超硬材料的发展也将会持续下去。 下面我们就超硬材料相关问题予以讨论。 1、基本情况 在这里希望行业首先要树立一个新的概念,即硬件与软件的概念,金刚石行业也应该有硬件和软件的关系问题。众所周知,计算机行业从来就是把硬件和软件这两部分作为两大问题分别展开工作的,所以其进步很快。我们金刚石行业也应该有硬件和软件之分。有人认为有了设备就会有优质粗颗粒金刚石,这是一种片面性的观念,是错误的。应该这么说:金刚石压机大型化与控制系统的精细化属于硬件部分;而组装设计、合成工艺及包括后部提纯、分选、鉴定、分类及标准等就是软件部分。这两者必须紧密结合起来,我们才能获得制品合用的真正优质产品。有人会说,这个问题我们始终如一地在做,但又应该指出:这个问题绝不是没有依据,因为行业里有少数工作者就是这样在强调这种片面性,所以必须这么提出,让同仁重视。同时,优质产品不见得都是强度越高越好,透明度越高越好,而应该是产品越适宜于应用越好。有了这个基本原则,我们就有了谈下面问题的基础。 1.1设备 1.1.1压机总量估计及趋势 目前国内的主要机型已经转为≥Φ500mm缸径的压机。当然有一部分Φ(400-800)mm 缸径压机转为生产聚晶、复合片及其它超硬材料产品,但已经失去其主力设备的功能和能力了。我国的主力机型压机总台数应该有4000-4500台,甚至更多。其分布以河南为主,其几个大型企业就已达3500台以上,其次有北京(含河北)、湖南、安徽、山东、江苏、浙江等。山东、安徽两省都有200台左右的规模企业。北京有数个企业都是数十台,有的企业下一步计划将更大。不为人知的浙江某地采用Φ600mm缸径(因为单缸设计压力大,相当一般说的Φ650mm缸径)的压机已经有30余台,第一期计划在50~100台。还应特别提到的,行业又有一专业厂上市,压机将会大幅增加,无疑将会成为行业产生新的竞争者。其它最少应达200~300台。 1.1.2进一步大型化与单缸高压力化 在我们讲≥Φ500mm缸径压机为我国压机主力设备的同时,可以指出在2008~2009年期间真正在生产的Φ500mm缸径的压机已经几乎没有了。而多数都是以Φ600~650mm缸径为发展方向,从目前情况看Φ600~650mm缸径压机将会越来越显示出它的优势。目前国内最大的压机是Φ700~750mm缸径压机。另外无工作缸的大型压机也会进一步完善后进入发展阶段,其工作缸径将会达1000~1500mm。尽管这两类型压机目前技术还不完全稳定,但有的企业已经开始稳定,这种发展趋势是不会逆转的。 在这里还要强调的是,单缸压力由100MPa提至120~125MPa也是可能的。据调研,已经有数百台在正常运行,它的投入产出比将会更加合理。这里关键是要解决一个理念问题,我们应该用全新的理论和经验来指导现在高速发展的现实。

建筑装饰行业发展现状及前景趋势分析

建筑装饰行业发展现状及前景趋势分析 资料来源:前瞻网:2013-2017年中国建筑装饰行业发展环境与投融资分析报告,百度报告名称可看报告详细内容。 建筑装饰行业已经成为建筑业中的三大支柱性产业之一,是一个劳动密集行业。建筑装饰行业是随着房地产热潮的逐步兴起,快速成长起来的朝阳产业。近些年来,伴随中国经济的快速增长以及相关行业的蓬勃发展,建筑装饰行业愈加显示出了其巨大的发展潜力。 建筑装饰行业发展现状: 改革开放30年,我国建筑装饰装修行业获得巨大的发展,为我国经济建设和社会发展做出了巨大的贡献。2010年我国建筑装饰行业工业总产值达2.1万亿元,“十一五”期间,行业的组织化和集中化程度有所提高,装饰企业数量已由19万家减少至15万家左右。2011年,全国建筑装饰行业完成工程总产值达到2.35万亿元规模,实现了12%左右的增长速度,再创历史新高。 2012年,在国家对房地产市场的调控常态化以及通货膨胀和经济下行压力极大的背景下,材料、人工成本上涨,建筑装饰行业受到了前所未有的冲击,但也保持了快速发展,全年建筑装饰行业工程总产值已突破2.6万亿元。同时企业也得到了新的发展,2012年的百强企业年平均工程产值已经达到14.13亿元。 2013年1月11日,苏州民企金螳螂建筑装饰股份有限公司以7500万美元的价格,签约收购美国HBA Interna-tionnal 70%的股权,这次收购是中国建筑装饰行业第一次跨国收购。这次收购标志着中国真正有了国际化的装饰企业,实现了企业内部深层次的转型升级。 建筑装饰行业前景趋势分析: 随着中国人民生活水平的提高和综合国力的加强,建筑装饰行业不仅在建筑业中的比重不断上升、作用日益突出,同时在经济发展和社会进步中,发挥的作用也日益重要。我国建筑装饰业发展迅速,低碳环保将成为今后建筑装饰业的发展趋势。同时,我国基础设施建设、建材下乡以及城市化进程加快对我国建筑装饰产业发展带来不可忽视的推动,建筑装饰行业有望获得更高的增长。 前瞻网:2013-2017年中国建筑装饰行业发展环境与投融资分析报告,共九章。首先介绍了建筑装饰行业的定义、材料分类、功能及手段等,接着分析了中国建筑装饰行业和建筑装饰材料市场的发展现状,然后具体介绍了国内的家装行业。随后,报告对建筑装饰行业做了区域发展分析、重点企业运营状况分析和存在问题及对策分析,最后分析了建筑装饰行业的未来发展前景。 (复制转载请注明出处,否则后果自负!)

液晶显示材料研究现1

液晶显示材料研究现状 1基本概念与原理介绍 液晶是一种高分子材料,因为其特殊的物理、化学、光学特性,20世纪中叶开始被广 泛应用在轻薄型的显示技术上。人们熟悉的物质状态(又称相)为气、液、固,较为生疏的 是电浆和液晶。液晶相要具有特殊形状分子组合始会产生,它们可以流动,又拥有结晶的光 学性质。液晶的定义,现在已放宽而囊括了在某一温度范围可以是现液晶相,在较低温度为 正常结晶之物质。而液晶的组成物质是一种有机化合物,也就是以碳为中心所构成的化合物。 同时具有两种物质的液晶,是以分子间力量组合的,它们的特殊光学性质,又对电磁场敏感, 极有实用价值极有实用价值。 1.TN型液晶显示原理 TN型的液晶显示技术可说是液晶显示器中最基本的,而之后其它种类的液晶显示器也可说是以TN型为原点来加以改良。同样的,它的运作原理也较其它技术来的简单。TN型液晶显示器的简易构造图,包括了垂直方向与水平方向的偏光板,具有细纹沟槽的配向膜,液晶材料以及导电的玻璃基板。不加电场的情况下,入射光经过偏光板后通过液晶层,偏光被分子扭转排列的液晶层旋转90度,离开液晶层时,其偏光方向恰与另一偏光板的方向一致,因此光线能顺利通过,整个电极面呈光亮。当加入电场的情况时,每个液晶分子的光轴转向与电场方向一致,液晶层因此失去了旋光的能力,结果来自入射偏光片的偏光,其偏光方向与另一偏光片的偏光方向成垂直的关系,并无法通过,电极面因此呈现黑暗的状态。其显像原理是将液晶材料置于两片贴附光轴垂直偏光板之透明导电玻璃间,液晶分子会依配向膜的细沟槽方向依序旋转排列,如果电场未形成,光线会顺利的从偏光板射入,依液晶分子旋转其行进方向,然后从另一边射出。如果在两片导电玻璃通电之后,两片玻璃间会造成电场,进而影响其间液晶分子的排列,使其分子棒进行扭转,光线便无法穿透,进而遮住光源。这样所得到光暗对比的现象,叫做扭转式向列场效应,简称TNFE(twisted nematic field effect)。在电子产品中所用的液晶显示器,几乎都是用扭转式向列场效应原理所制成 2.STN液晶显示原理 STN型的显示原理与TN相类似,不同的是TN扭转式向列场效应的液晶分子是将入射光旋转90度,而STN超扭转式向列场效应是将入射光旋转180~270度。要在这里说明的是,单纯的TN液晶显示器本身只有明暗两种情形(或称黑白),并没有办法做到色彩的变化。而STN液晶显示器牵涉液晶材料的关系,以及光线的干涉现象,因此显示的色调都以淡绿色与橘色为主。但如果在传统单色STN液晶显示器加上一彩色滤光片(color filter),并将单色显示矩阵之任一像素(pixel)分成三个子像素(sub-pixel),分别通过彩色滤光片显示红、绿、蓝三原色,再经由三原色比例之调和,也可以显示出全彩模式的色彩。另外,TN型的液晶显示器如果显示屏幕做的越大,其屏幕对比度就会显得较差,不过藉由STN的改良技术,则可以弥补对比度不足的情况。 2应用领域 LCD产品制造涉及光学、半导体、电机、化工、材料等各项领域,上下游所需技术层面 极广,所以少有单一厂商能从材料到成品全部都做,因此各领域分工明显,上游材料包括玻 璃基板、ITO导电玻璃厂、偏光板、彩色滤光片、光源模块、液晶、半导体制造工序所需光

智能材料的研究现状与未来发展趋势

龙源期刊网 https://www.doczj.com/doc/e912586300.html, 智能材料的研究现状与未来发展趋势 作者:邓焕 来源:《科学与财富》2017年第36期 摘要:智能材料这一概念在上世纪80年代首次被提出,近年来,关于智能材料在航空航天领域的研究与应用被频繁提及。由于智能材料具备着结构整体性强、可塑性高、功能多样化等优点,因此在航空航天领域得到了广泛的研究与使用,首先根据功能性的不同对智能材料进行了系统的分类与概述,然后对当前智能材料在航空航天领域的主要应用进行了系统性的分析与总结,最后对智能材料在未来的航空航天的应用前景中进行了进一步地展望。 关键词:智能材料;复合材料;航空航天;功能多样化 1 引言 进入二十一世纪以来,全球各大航空航天强国在航天航空领域投入了大量的研发资金,而作为航空航天领域重要环节的航天材料,近年来也不断有着新的突破,而其中被提及最多的就是智能材料在航空航天领域的应用。在智能材料的范畴中,智能复合材料最具有代表性,智能复合材料主要具备着:外界环境感知功能;判断决策功能;自我反馈功能;执行功能等。此外,由于当前智能复合材料都向着轻量化、低成本化的方向发展,因此在航天领域复合材料的设计结构以及使用用途上都有着不同的侧重发展方向。而近年来国内外各国也均加快了各自在该领域的研发使用发展进度,主要的研究大方向还是集中在了智能检测、结构稳定性、低成本化等方向上,本文着重对相关部分进行系统性的概述与总结。 2 航空航天领域智能复合材料的功能介绍 在航空航天领域中,国内外普遍利用智能复合材料以实现在降低航空航天飞行器的自身重量的前提下保证系统结构的稳定性,其次根据复合智能材料具备智能检测自身系统内部工作状态和自愈合等功能实现航空航天材料在微电子与智能应用方向的交叉发展。 2.1 智能复合材料在航天结构检测方向的应用 智能复合材料在航空航天器中的应用,主要是通过将传感器以嵌入的方式与原始预浸料铺层以及湿片铺层等智能复合材料紧密键合,最终集成在控制芯片控制器上实现对整个系统的实时监控诊测、自我修复等供能,值得注意的是,在这一过程中,智能化不仅仅是符合材料的必要功能,复合材料在很大程度上可以有效承受比传统应用材料更大外界机械压力[1]。 除此之外,由于智能复合材料作为传感器的铺放衬底,因此智能复合材料还可以实现对整个材料内部结构的状况进行收集并且将出现的诸如温度异常、结构异常、表面裂痕等隐患及时反馈至中央处理器,这在一定程度上可以有效实现整个系统内部的检测与寿命预测,在这方面的技术上,美国的Acellent公司研发的缠绕型复合材料以压力感应的形式,按照矩形布线形式

全球与中国市场超硬材料深度研究报告(2018-2022年)

全球与中国市场超硬材料深度研究报告

研究报告目录 第一章行业概述及全球与中国市场发展现状 1.1 超硬材料行业简介 1.1.1 超硬材料行业界定及分类 1.1.2 超硬材料行业特征 1.2 超硬材料产品主要分类 1.2.1 不同种类超硬材料价格走势(2012-2022 年) 1.2.2 钻石 1.2.3 立方氮化硼 1.2.4 其他 1.3 超硬材料主要应用领域分析 1.3.1 建筑石材 1.3.2 磨料磨具类 1.3.3 复合聚晶工具 1.3.4 其他 1.4 全球与中国市场发展现状对比 1.4.1 全球市场发展现状及未来趋势(2012-2022 年) 1.4.2 中国生产发展现状及未来趋势(2012-2022 年) 1.5 全球超硬材料供需现状及预测(2012-2022 年) 1.5.1 全球超硬材料产能、产量、产能利用率及发展趋势(2012-2022 年) 1.5.2 全球超硬材料产量、表观消费量及发展趋势(2012-2022 年) 1.5.3 全球超硬材料产量、市场需求量及发展趋势(2012-2022 年) 1.6 中国超硬材料供需现状及预测(2012-2022 年) 1.6.1 中国超硬材料产能、产量、产能利用率及发展趋势(2012-2022 年) 1.6.2 中国超硬材料产量、表观消费量及发展趋势(2012-2022 年) 1.6.3 中国超硬材料产量、市场需求量及发展趋势(2012-2022 年) 1.7 超硬材料中国及欧美日等行业政策分析第二章全球与中国主要厂商超硬材料产量、产值及竞争分析 2.1 全球市场超硬材料主要厂商2016 和2017 年产量、产值及市场份额 2.1.1 全球市场超硬材料主要厂商2016和2017 年产量列表 2.1.2 全球市场超硬材料主要厂商2016和2017 年产值列表 2.1.3 全球市场超硬材料主要厂商2016和2017 年产品价格列表 2.2 中国市场超硬材料主要厂商2016 和2017 年产量、产值及市场份额

2016年中国建筑装饰行业现状及十三五发展趋势

2016年中国建筑装饰行业现状及十三五发展趋势 据中国建筑装饰协会官方网站公布的数据显示,2015年,全国建筑装饰行业完成工程总产值3.4万亿元,比2014年增加了2300亿元,增长幅度为7%,增长速度比2014年回落了2.3个百分点,下降幅度为24.7%,与宏观经济增长速度7%基本持平。 2016年,是“十三五”规划的第一年,对于建筑装饰行业来说,仍将是情况较为复杂、不稳定、不确定因素较多的一年。 行业总体稳中有进 2016年虽然行业发展的困难较大,但由于我国既有建筑的基数大,装修改造比例很高,市场仍处于整体扩张的态势之中,全年预计仍有所增长。只要抓住机遇,就可能实现稳中求进、稳中求好的发展目标。2015年建筑业新开工项目环比下降了16.7%,是近30年首次出现大幅下降的局面,对建筑装饰行业的影响极大。根据上游行业2015年运行状态分析,预计2016年新建建筑工程的装修装饰工程数量会有较大幅度的下降,工程造价也会大幅度压低,将会给以大型建筑装饰工程为主要的经营目标的企业造成强烈的冲击。 2016年,装饰行业内各专业细分市场的结构将发生深刻变化。由于房地产增幅下降,固定资产投资增长放缓,新建大型公共建筑装修装饰工程会有较大幅度的减少。但受城市建筑高层、超高层发展趋势的拉动,大型建筑的建筑幕墙工程将继续保持一定的增长;受节能工程拉动,建筑节能窗等全年还会有较大的增长;随着房地产开发企业的结构调整,新建住宅成品房精装修工程还将有所增长,特别是在房地产去库存的过程中,成品房精装修可能成为去库存的一种重要手段。2016年既有建筑的节能减排装修改造工程、旧住宅的改造性装修工程、既有公共建筑改变使用功能的改造性装修工程等也会持续增长。根据行业运行整体态势分析,2016年将有可能出现前低后高的运行轨迹。 结构调整与优化将加速 2016年供给侧结构性改革的深化和国家去产能、去库存、去杠杆、降成本、补短板的任务目标的确定,将给建筑装饰行业的运行带来极大的变化。建筑装饰行业将以去产能为目标,推动不同行业的融合,加快企业间的兼并、重组、战略合作等步伐,从观念提升到实际操作都将推动行业结构的优化和升级。 在供给侧结构性改革中,没有专业特点、管理与运作不规范的小微建筑装饰工程企业将是被市场清出的重点。由于这类企业人员的主要构成是年龄较大的农民工,所以,将会有一批年龄较大的农民工退出市场,农民工的年龄结构将得到优化。同时,在供给侧结构性改革中,国家会降低保险金费率,企业获取优质人力资源成本有所下降。我国高质量新生劳动力相对充足,为行业深度调整人才结构将创造有利环境,2016年在供给侧结构性改革中,行业的人才结构将得到调整和优化。 为了增加建筑装饰市场的有效供给,建筑装饰行业的去产能将引发新一轮以品牌、资金、

聚合物基自润滑材料的研究现状和进展

聚合物基自润滑材料的研究现状和进展 由于聚合物本身具有较低的摩擦系数,优良的机械性能及耐腐蚀性等优点,其基自润滑复合材料具有非常优异的摩擦磨损性能,正在被广泛的应用到减摩领域。本文综述了聚醚醚酮、聚四氟乙烯及聚酰亚胺等几种高聚物的摩擦磨损特点及其应用,聚合物基自润滑复合材料发展现状。指出目前聚合物基高性能自润滑材料的制备途径主要是通过聚合物与聚合物共混及添加纤维、晶须等来提高基体的机械强度,通过添加各类固体自润滑剂来提高摩擦性能,有效提高其综合性能。聚合物基自润滑材料可取代传统金属材料,成为全新的一类耐摩擦磨损材料。 论文关键词:高聚物,复合材料,自润滑材料,摩擦,磨损 1、聚醚醚酮(PEEK) 1.1 聚醚醚酮(PEEK)的特点 聚醚醚酮(PEEK)是一种高性能热塑性高聚物,具有良好机械性能、抗化学腐蚀性和抗辐射性,显着的热稳定性和耐磨性。它可以在无润滑、低速高载下或在液体、固体粉尘污染等 收稿日期: 修订日期: 作者简介:刘良震(1980-),男,助理讲师, E-mail:ldcllfz@https://www.doczj.com/doc/e912586300.html, 恶劣环境下使用。因而关于聚醚醚酮及其复合材料的研究越来越受到人们重视。聚醚醚酮是一种半晶态热塑性聚合物,为了改善其机械性能,尤其是摩擦学性能,常在其中添加聚四氟乙烯(PTFE)、聚丙烯腈(PAN)和碳纤维(FC)等材料,也可添加颗粒增强型材料或进行特种表面处理等离子体处理等。当聚醚醚酮及其复合材料与金属材料相互对磨时,通常在金属表面形成聚合物转移膜,其结构、成分均与原有的聚合物及复合材料不同,其性能、厚度及连续程度均对摩擦副的摩擦学性能有重大影响[4]。 1.2 对聚醚醚酮(PEEK)摩擦性能的研究 章明秋等人[5,6]对聚醚醚酮(PEEK)在无润滑滑动条件下磨损产生的磨屑的形态进行研究,结果表明,聚醚醚酮(PEEK)的磨屑具有分形特征,其分形维数与载荷的关系对应于磨损率与载荷的关系,能够反映聚醚醚酮(PEEK)磨损机制的变化。在给定的试验条件下,随着载荷的增大,聚醚醚酮(PEEK)的磨损机制从粘着磨损为主伴随着疲劳-剥层磨损,进而转变为热塑性流动磨损。 张人佶等[7,8]利用扫描电镜、扫描微分量热仪、红外光谱仪、俄歇电子谱仪等分析手段系统的研究了聚醚醚酮(PEEK)及其复合材料的滑动转移膜,结果表明:纯聚醚醚酮(PEEK)在滑动摩擦过程中形成不连续的转移膜。聚四氟乙烯(PTFE)的光滑分子结构有助于使转移膜更光滑,固体润滑效果也更好。在PEEK/FC30中,不仅加入PTFE,而且加入具有层状

纳米材料的发展及研究现状

纳米材料的发展及研究现状 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。 纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。 纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单

元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基

显示用液晶材料的应用和研究

显示用液晶材料的研究和应用 姓名:任明珠 班级:化学工程与工艺112 学号:201103322

显示用液晶材料的研究和应用 摘要:介绍液晶材料与显示之间的联系,综述了国内TN-LCD,STN-LCD,TFT-LCD等三种液晶显示材料研究及应用等方面的情况。 关键词:液晶材料;显示;研究应用 1888 年, F.Reinitzer 在测定有机化合物熔点时,发现某些有机化合物在熔化后经历了一个不透明的浑浊液态阶段,继续加热,才成为透明的各向同性的液体,这种浑浊的液体中间相具有和晶体相似的性质,随后德国人Lehmann(1855~1922年)用偏光显微镜证实了此中间相态具有光学各向异性,兼有液体的流动性和晶体的光学各向异性,故称为液晶(Liquid Crystal)。[1] 众所周知 ,物质除气态、液态和固态 3 种聚集状态外 ,还有等离子态、无定形固态、超导态、中子态、液晶态等其他聚集态结构形式。如果一个物质已部分或全部地丧失了其结构上的平移有序性 ,而还保留取向有序性 ,它即处于液晶态。[2]根据液晶分子在空间排列的有序性不同 ,液晶相可分为向列型、近晶型、胆甾型和蝶型液晶态4类。 显示与液晶 液晶材料在显示方面的应用是人所共知的,大家熟悉的许多产品都离不开液晶 ,如液晶广告宣传牌、液晶计时钟表、液晶游戏机、液晶仪表计量、液晶传感器、液晶通讯设备、液晶计算机等等 ;或者我们日常生产中的许多电器带有液晶器件 ,如微波炉、空调、冰箱、洗衣机等都带有液晶器件。 随着显示器件技术和性能的改进和发展, 对液晶材料提出了更高的要求, 液晶材料工 作者合成并开发了一系列新材料。目前比较引人注目的液晶材料有异氰硫基( NCS基) 液晶, 含氟液晶、烷基桥链液晶、酯类液晶等。[7] 液晶材料在液晶显示器件的发展过程中起着十分重要的作用,随着液晶显示技术水平的提高,对液晶材料的性能提出了更高的要求。由表1 可见,每一种新的液晶显示方式的实现, 总是伴随着新的液晶材料的出现。显示用液晶主要具备的性能: 液晶性能的要求 ( 1 ) 工作温度以室温为中心,范围要宽; (2 ) 化学性能稳定,寿命长; ( 3) 良好的电光特性。[6]

建筑装饰装修行业的特点、现状及发展趋势

建筑装饰行业特点、现状与发展趋势 ?建筑装饰装修行业的特点 ?大行业 初步估计建筑装饰行业的市场容量在万亿元水平。行业市场容量大,且具有可持续发展特点。这是由装饰行业的特点决定的。装饰行业不同于传统的土木工程、机电安装行业。这些行业的投资是一次性的,而对于一栋建筑物来说,装饰装修是重复性的。以装饰费用较高的酒店业为例,通常一个30年经营期的酒店在其经营期间会每隔5至7年重新装修一次,这样就会带来5到6次的装修机会。目前正值我国的酒店、商场、写字楼产 业的快速发展期,因此,建筑装饰装修企业也处于,前所未有的发展时期。 ?小公司 建筑装饰行业的另一特点是,依附于土木工程的大行业之下,门槛较低,企业资金周转快,属于轻资产投入型行业。这一特点带来的结果是,长久以来的建筑装饰装修企业的鱼龙混杂、数量繁多。我们通常看到的现象是,建筑装饰装修企业,规模不大、人数不多、实力不强,在市场竞争中大打价格战,整个行业处于无序、混乱的局面。 ?中国建筑装修行业的现状 目前的建筑装饰装修企业处于快速的发展和整合时期。大的、有实力、有品牌的装修企业在通过扩张和整合,获得更快的发展机会。而技术实力差,市场占有率低的小型装饰装修企业,则渐渐淡出市场。目前中国建筑装饰装修行业里涌现出的比较有代表性的企业,包括:苏州金螳螂、深圳洪涛、浙江亚厦和深圳广田。这四家企业,技术实力强,员工人数多,市场占有率高,并于2010年左右纷纷成为上市公司,资金实力得到进一步加强。 ?中国建筑装饰装修行业的发展趋势 在经历的大的整合之后的建筑装饰装修企业,在市场上比拼的主要是设计能力和精装修施工水平。 首先,象苏州金螳螂和深圳洪涛,其在多年的装修施工和市场竞争中已经建立了自己的设计团队,拥有了较为丰富的装修设计,特别是装修施工图深化的能力。完善的设计能力,为其在市场竞争中处于不败之地奠定了较为坚实的基础。从另一个方面来看,建筑装饰装修企业的设计能力,也是其施工盈利的一个强有力的杠杆,这在实践中已经被反复证明。 其次,随着建筑市场的蓬勃发展,人们对于室内精装修的要求越来越高,小的、技术实力差的装修企业由于达不到精装标准,已经越来越难以获得有价值的市场订单。只有那些有实力的大装修企业,才能够及时抓住市场发展的脉搏,不断提高企业自身的技术、管理水平,寻找到新的发展机遇。以住宅精装修行业为例。目前,国外发达国家的住宅精装修率在80%左右的水平。相比之下,中国出售住宅的精装修率平均水平在10%左右,个别地域,如深圳和上海,精装修率略高于平均水平,但也达不到50%。在此情况下,各个有实力的大型房

纳米氧化物材料研究的现状及进展

纳米氧化物材料研究的现状及进展 发表时间:2018-11-27T16:11:48.977Z 来源:《建筑学研究前沿》2018年第21期作者:邵琪 [导读] 并作了一定的评价,介绍了一些较新的纳米氧化物制备方法。从纳米材料合成和制备的角度出发,较系统的阐述了纳米材料合成与制备的最新研究进展,并介绍了纳米材料在高科技领域中的应用展望。 邵琪 山东建筑大学土木工程学院山东济南 250101 摘要:综述了近10 年来纳米氧化物的发展情况及各种制备方法及特点,并作了一定的评价,介绍了一些较新的纳米氧化物制备方法。从纳米材料合成和制备的角度出发,较系统的阐述了纳米材料合成与制备的最新研究进展,并介绍了纳米材料在高科技领域中的应用展望。 关键字:纳米材料;氧化物 前言:纳米材料和纳米结构是当今新材料研究域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。 1 纳米材料的特性 纳米材料具有极佳的力学性能,如高强、高硬和良好的塑性。例如,金属材料的屈服强度和硬度随着晶粒尺寸的减小而提高,同时也不牺牲其塑性和韧性。 纳米材料的表面效应和量子尺寸效应对纳米材料的光学特性有很大的影响,如它的红外吸收谱频带展宽,吸收谱中的精细结构消失,中红外有很强的光吸收能力。 2 纳米氧化物材料的制备方法 纳米微粒(膜)的制备方法包括物理方法、化学方法、膜模拟法等.物理制备方法主要涉及蒸发熔融,凝固形变和粒径缩减等。物理变化过程,具体包括粉碎法、蒸发凝聚法、离子溅射法、冷冻干燥法、电火花放电法、爆炸烧结法等。化学制备纳米微粒(膜)的过程通常包含着基本的化学反应,在反应过程中物质之间的原子组织排列,这种组织排列决定物质的存在形态。化学方法主要有化学反应法、沉淀法、水热合成法、喷雾热解法、溶胶-凝胶法、γ射线辐射法、相转移法等。 2.1 物理制备法 2.1.1 真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等粒子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 2.1.2 物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 2.1.3高能机械球磨法 高能机械球磨法是近年来发展起来的制备纳米材料的一种新的方法,1988 年,日本京都大学导了用该方法制备出了 Al -Fe纳米晶材料。高能机械球磨法是利用球磨机的转动或震动使硬球对原料进行强烈的撞击,研磨和搅拌,把金属或合金粉末粉碎成纳米微粒的方法。目前,采用该方法已成功的制备出了纳米晶纯金属(Fe , Nb , W , Hf , Zr , Co , Cr 等);不相溶体系的固溶体(Cu -Ta ,Cu -W ,Al -Fe 等);纳米金属间化合物(Fe -B , Ti -Al ,Ni -Si , W -C 等);纳米金属陶瓷粉等材料。 2.2 膜模拟法 吴庆生等人利用绿豆芽通过生物膜法合成纳CdS[1]。用这种方法制备纳米物质仅仅是个尝试,在现有的试验条件下对它的合成机理还没有做出合理的解释,且与大规模生产还有一定距离。 2.3 化学方法 2.3.1 共沉淀法 共沉淀法是液相化学反应合成金属氧化物纳米颗粒最早采用的方法。赵辉等人在研究 PbO - Nb2O5 -KOH -H2O 体系中[2],发现采用共沉淀法可直接从水溶液中合成 Pb3Nb2O8 纳米粉。这种合成方法虽成本较低,但仍存在一些缺点,如沉淀通常为胶状物,水洗、过滤较困难;沉淀剂作为杂质易混入;沉淀过程中各种成分可能发生偏析,水洗时部分沉淀物发生溶解。 2.3.2 分步-均一沉淀法 分步-均一沉淀是利用某一化学反应使溶液中的构晶离子由溶液中缓慢地、均匀地释放出来。因此,加入的沉淀剂并不直接与被沉淀组分发生反应,而是通过化学反应让沉淀剂在整个溶液中均匀地、缓慢地析出,让沉淀物均匀地生成。以尿素为沉淀剂制备粒径为40 nm 锐钛矿型二氧化钛超细粒子,并在其表面包覆晶体粒径为10.2 nm 的氧化锌。 2.3.3 溶胶-凝胶法 将金属醇盐或无机盐类经水解形式或者解凝形式形成溶胶物质,然后使溶质聚合胶凝化,经过凝胶干燥,还原焙烧等过程可以得到氧化物,金属单质等纳米材料,这样的方法称之为溶胶凝胶法。法具有所需反应温度低,化学均匀性好,产物纯度高,颗粒细小,粒度分步窄等特点,但是采用金属醇盐作为原料成本高,排放物对环境有污染。溶胶凝胶法制备纳米粉体的工作开始于20 世纪 60 年代:可以制备一系列纳米氧化物,复合氧化物,金属单质及金属薄膜等。 2.3.4 有机配合物前躯体法 有机配合物前躯体法是另一类重要的氧化物纳米晶的制备方法。其原理是采用容易通过热分解取出的多齿配合物,如柠檬酸为分散剂,通过配合物与金属离子的配合作用得到高度分散的复合物前躯体,最后再通过热分解的方法去除有机配合体得到纳米复合氧化物。 2.3.5 等离子增强化学气相沉淀(PECVD)法 该方法等离子增强化学气相沉淀系统中,用高倍稀释硅烷和高倍稀释的掺杂气体(主要是磷烷和硼烷)作为反应气体,在射频和直流双重功率源作用下制备出掺杂纳米硅薄膜(nc-Si:H),并利用高分辨电子显微镜(HREM)、Raman 散射、X射线衍射(XRD)、俄歇电

中国磨具磨料行业发展现状与趋势深度解析

中国磨具磨料行业发展现状与趋势深度解析 一、磨具磨料行业发展概况 1、磨具磨料行业发展简史 新中国的磨料磨具行业从零起步,从无到有,由小变大,经过半个多世纪的自力更生,艰苦奋斗,逐渐建立起相对独立、完整的磨料磨具研发、制造、检测体系,尤其是在改革开放以后的十多年里,更是取得了突飞猛进的发展,在上个世纪九十年代,我国磨料磨具行业与世界先进水平的差距曾经大大缩小。但是,由于世界材料技术、机械加工工艺和技术,以及科研手段的迅猛发展,在世纪之交的一段时间里,国外磨料磨具行业发展迅速,新技术、新产品、新工艺不断涌现;而这个时期我国的磨料磨具行业正处于工业管理体制变革、企业转轨变型、产业组织结构调整的阶段,原有的产业布局被打乱,新的市场秩序正在探索建立,行业发展和技术进步一时处于停滞状态,使得本来已经缩小的差距又被迅速拉大。 在计划经济时期,我国磨料磨具行业是以原来第一机械工业部所属的七家砂轮厂为主导厂,再辅以各省、自治区、直辖市所属的地方砂轮厂而形成一个磨料磨具制造体系。现在,经过改革开放三十年的市场考验、资源整合、兼并重组,原来的七家部属企业除了在原国第四砂轮厂基础上成立的山东鲁信高新技术产业股份有限公司以外,其他几家企业基本处于停滞或经营十分困难的状态,其地处沈阳的国第一砂轮厂早已破产;国第二砂轮厂后来也成为上市公司,公司注册文全称“白鸽股份有限公司”,现在已经分解为几个小企业,经营面临困难;第三砂轮厂、第六砂轮厂并入第七砂轮厂后,未能解决其发展问题,几次分分合合,大伤元气,七砂集团也面临破产,其生产经营部分也已经分解为几个小的企业,凭借资源(主要是电价和原料)优势艰难运行;而第五砂轮厂主要是生产制造硅碳棒产品,基本上已经不属于磨料磨具行业的范畴。 改革开放后,我国涌现出了一大批民营磨料磨具制造企业,虽然这里面也不乏推动行业发展和技术进步的优秀企业,但大量的民营企业仅仅是凭借其灵活的经营机制,依靠从原国有主导厂“挖”来的技术工人,在进行比较简单的低档次产品的重复生产和恶性低价竞争,使我国的磨料磨具行业仍然在总体上处于较低水平阶段,产品的技术含量和附加值都比较低,即使是出口量较大的磨料产品,也往往是凭借廉价的资源和人工优势,在为国外先进磨具制造企业提供廉价的原材料。现在,只有鲁信高新依靠下大气力提高自主创新能力,经过六年的努力,终于走出了困境,同时具备了较大的发展潜力。 2、磨料磨具企业发展态势 当前,世界经济的发展取向和区域经济结构正处于巨大的变动之中。在经济全球化的驱使下,我国国家现代化及世界经济一体化进程的日益加快,国家整体技术水平和国民素质日益提高,国家综合实力迅猛提升。我国的磨料磨具的生产企业为适应世界经济一体化和扩大内需所带来的机遇与挑战,企业重组、改制、改革、改造和产品结构的调整步伐也得到迅猛发展,国际化程度日益剧增。

显示用液晶材料的应用和研究

显示用液晶材料的研究和应用

姓名:任明珠 班级:化学工程与工艺112 学号:201103322 显示用液晶材料的研究和应用 摘要:介绍液晶材料与显示之间的联系,综述了国内TN-LCD,STN-LCD,TFT-LCD等三种液晶显示材料研究及应用等方面的情况。 关键词:液晶材料;显示;研究应用 1888 年, F.Reinitzer 在测定有机化合物熔点时,发现某些有机化合物在熔化后经历了一个不透明的浑浊液态阶段,继续加热,才成为透明的各向同性的液体,这种浑浊的液体中间相具有和晶体相似的性质,随后德

国人Lehmann(1855~1922年)用偏光显微镜证实了此中间相态具有光学各向异性,兼有液体的流动性和晶体的光学各向异性,故称为液晶(Liquid Crystal)。[1] 众所周知 ,物质除气态、液态和固态 3 种聚集状态外 ,还有等离子态、无定形固态、超导态、中子态、液晶态等其他聚集态结构形式。如果一个物质已部分或全部地丧失了其结构上的平移有序性 ,而还保留取向有序性 ,它即处于液晶态。[2]根据液晶分子在空间排列的有序性不同 ,液晶相可分为向列型、近晶型、胆甾型和蝶型液晶态4类。 显示与液晶 液晶材料在显示方面的应用是人所共知的,大家熟悉的许多产品都离不开液晶 ,如液晶广告宣传牌、液晶计时钟表、液晶游戏机、液晶仪表计量、液晶传感器、液晶通讯设备、液晶计算机等等 ;或者我们日常生产中的许多电器带有液晶器件 ,如微波炉、空调、冰箱、洗衣机等都带有液晶器件。 随着显示器件技术和性能的改进和发展, 对液晶材料提出了更高的要求, 液晶材料工 作者合成并开发了一系列新材料。目前比较引人注目的液晶材料有异氰硫基 ( NCS基) 液

建筑装饰施工的现状及发展趋势

建筑装饰施工的现状及发展趋势 中国建筑装饰行业兴起是改革开放政策带来的并保持了20年高速持续发展的行业,是建筑业的延伸与发展,在国民经济发展中发挥了重要作用。同时,建筑装饰行业的施工技术、部品制造技术也有了很大的进步,尤其幕墙专业已经接近国际水平,有的工种已经进行了彻底的改变,建筑装饰行业常用的各种电动工具已经在全行业得到了普及。有的企业已经开始走装饰配件生产工厂化、现场施工装配化的路子,这种应用全新生产方式的示范工程已经显示出工期短、质量好、无污染等特点,是当前通常施工方式无法比拟的。 建筑装饰施工技术的现状中国建筑装饰行业的形成是中国社会经济文化发展的特殊现象,受工业专业化发展程度制约,装饰部品组合尚不成熟,售后服务滞后。由于现代建筑装饰本身涉及学科的多元化和科技的边缘性,使装饰从建筑业中逐渐分离出来,形成一个相对专业的建筑装饰行业。 我国建筑装饰行业规模之大、发展之快在建筑业发展史上是罕见的,从20世纪70年末期开始,几年间中国建筑装饰行业由几家企业发展到20 万家企业,500万人从业。全国建筑装饰总产值高达7500亿元,其中家装40 00亿元,行业总产值占GDP的6%,行业的飞速发展引起社会各界广泛关注,装饰行业的发展变化,真实地反映国内经济的发展速度和人民生活质量与消费方向。 装饰行业20年的发展不是原来水平上的重复,而是摆脱传统操作方法,不断更新施工工艺技术,研究新材料。施工方式的变化

决定着施工水平,不同历史时期的不同施工方式代表着不同的施工水平。20世纪70年代末以前中国的建筑装饰施工方法基本上是传统的手工操作方法,其特点是效率低、质量差、较简单。20世纪70年代末期到20世纪90年代末期在改革开放的推动下,大量新产品新材料、先进的施工机具涌进深圳并很快普及到全国,建筑装饰行业基本形成,并且得到超常规的发展,连续十几年以高达20%的速度发展。20世纪末到21世纪初出现的在国内领先或接近国际先进水平的工艺技术在建筑装饰行业中占主要地位。进入21世纪,企业家的市场意识不断增强,根据国内市场的需求,他们走出国门寻找国外成熟而国内没有的工艺技术,并且经过改造后在国内达到领先水平,接近国际水平的新工艺技术。如:背栓系列、石材干挂技术、组合式单体幕墙技术、点式幕墙技术、金属幕墙技术、微晶玻璃与陶瓷复合技术、木制品部品集成技术、石材毛面铺设整体研磨等。有人称,部品生产工厂化、施工现场装配化的出现,是装饰行业第三次革命。 随着建筑高技派的出现,越来越多的工业产品直接在装饰工程上进行装配,金属材料装饰、玻璃制品的装饰、复合性材料的装饰、木制品部品集成装饰等技术的应用,带来了装饰工程施工本质的变化:产品精度高,工程质量好,施工工期短,无污染,时代感强。 装饰部品生产工厂化的推广,使单一材料的组合发展为不同材质、不同产品的复合集成,多元化组合在工厂完成,减少了现场的组合次数,增强组合体的完整性。装饰施工中少不了层面之间的连接和固定,各种高性能的黏结剂的问世彻底改变了传统的钉销连接紧固

相关主题
文本预览
相关文档 最新文档