当前位置:文档之家› 建模与系统辨识

建模与系统辨识

建模与系统辨识
建模与系统辨识

建模与系统辨识

摘要:讨论动态系统在运用控制理论进行自动调节,控制动态系统的数学模型的构建、描述及其分类。这个模型通过分类能够对建模的做出较好的选择,并可按分布参数模型与集中参数模型作为区分模型类别的方式。系统辩识方法应能够消去所有扰动分量对系统的影响,而辨识方法的分类原则取决于所得数学模型采用信号的形式。

关键词: 建模;系统辫识;数学模型

Modeling and System Identification

Abstract: Discussing the dynamic system while using the control theory to carry on automatically the construction, description and classification of the dynamic system mathematics model controlled. The model can classify and make better choice to different possibility of modeling. The system distinguishes the method and answers and can eliminate the influence of perturbations on the system, while the principle of distinguishing method category depends on the form of the signal of the mathematics model.

Key words: modeling ;system identification;mathematics model

1引言

近年来,在许多过程控制领域,有关系统分析与建模的重要性日显突出。尤其在应用控制理论与自动化技术的工业系统中,如果没有较为准确的描述被控装置的数学模型,那么,其综合控制算法是不可能实现的。

数学模型可以定义为:用数学结构来描述被建模系统各物理量之间的关系。抽象数学模型的提出通常需要进行各种简化假设,其原因就是应将系统的复杂性限制在一个可以接受的范围内,并满足模型的精度要求。模型可按分布参数模型与集中参数模型来分类,在分布参数[5]模型中系统的动态特性是以抛物、双曲、椭圆型各种偏微分方程来描述;而在集中参数模型中则以线性或非线性常微分方程来描述。许多情况下,用分布参数模型描述的系统可简化成复杂程度较低的集中参数模型。

通过辨识应该能够消去所有扰动分量的影响。依照扰动信号的类型,已经提出了许多不同的方法。某些情况下,简单计算均值与回归就足够了。而在低频非平稳分量的情形下,则需要用滤波方法,它们适合特定形式的扰动信号。

2建模

2.1数学建模必须遵守的原则

(1)必须满足对数学模型的精确性、简明性、层次性、多用性、可靠性及标准化等一般要求。

(2)必须合理选择模型的方法:计算机辅助建模法和系统辨识建模法现在比较广泛的使用。

(3)数学建模经常考虑:模型功能能否满足所研究问题的需要?模型是否合理、经济、容易实现、稳定?是否达到预期的模型精度要求?等等[1]。

2.2建模的目的

建模的目的是以所建的模型为基础,进一次做出各种研究与决策,所以,模型必须采取适合于应用目的的形式。一般来说,一个过程的模型总应比现实的过程来得简单,所以也可以说,模型是适当地降低了复杂程度的现实过程(或事物),主要方面的代表。

系统的数学模型是系统本质特征的数学抽象,是建立系统状态参数之间以及与外作用之间最主要的相互作用、相互制约的数学表达式[2]。

建立模型主要目的有以下四个方面:

(1)研究

在科学研究中,为了掌握事物发展与变化规律,以便更全面地更深刻的了解它、研究它,现象的认识和素材,抽象与提高成理性的东西。被抽象出来的代表事物本质的模型。在工程实际中,一旦建立了系统模型后,就可以对该系统的动、静态特性有更深入全面的了解,有助了理解过程中所获得的数据;提供探索和分析不同工作条件及各种参数对该对象工作的影响,以便进一步改进系统及创造新的系统。

(2)设计与计算

在设计工作中,对被设计的系统,其中特别是比较复杂的系统,常常要进行模拟、仿真等研究,以便比较各种设计方案及选取合理的参数,使所设计的系统达到设计的要求(如稳定件、安定性、精度、产量等)。采用计算机设计的就称为计算机辅助设计。模型的建立就为以上工作提供了基础。通过模型化,使系统能进行数学处理。例如,只有确定了控制系统的模型的前提下,才有可能采用各种最优化的方法.对系统进行最优分析和计算,才有可能综合最优控制的算法。

(3)调查与预测

在工程实际中,最常见的应用系统模型的场合之一是调查与预测工程实际系统工作的状况与性能。众所周知,一个工程系统的控制和运行水平,在很大程度上取决于人们事先对于该系统特性的掌握和认识程度。建立正确的系统模型,有肋于显著地提高系统的控制和运行水平。在建立模型的基础上,对各种控制和运行方式进行系统的模拟研究,这是利用模型进行调查和预测的主要手段之一。

(4)对实际系统进行控制

在某些计算机控制系统中,需要将代表系统运动规律等的数学模型储存在汁算机中,对这些系统进行在线的最优控制等。这些系统如塑料加工的注射机、数控机床等自适应控制、导弹的轨迹控制等等。所以在这里必须用分析法线辨识法求出所要求的数学模型。

3动态系统的数学表达式

要对动态系统进行辨识,选择合适的数学模型是很重要的。用作系统辨识的数学模型,应该使被辨识的参数尽量少,计算工作员尽可能小,同时数学模型本身简单、使用方便。用作系统辨识的数学模型有连续型,如通常的微分方程离散

型,如差分方程;时域型,如微分方程,频域型,如通常的传递函数。作为系统辨识最常用的数学模型,在时域型中,有脉冲响应函数、线性差分方程、状态变量方程等。这些方程各有特点,但它们都是可以相互转换的。因为通常系统辨识都在数字计算机上进行运算,因此离散型数学模型用得最为广泛。下面就以微分方程与传递因数为例来说明。

在古典控制理论中,微分方程式是用来描述系统动态过程的一种重要数学表达式。输入量为u (t ),输出量y(t),一个线性连续系统微分方程的一般形式可写成:

u b dt u d b dt u d b y a dt dy a dt

y d a dt y d a n n n u n n m m n m n 122111011110.....................................--------+++=++++………………………………..(1) 若令dt

d p = 称为微分算子,则上式可改写成 u

b p b p b y a p a p a p a u

b u p b u p b y

a py a y p a y p a n n n n n n n n n n n n n n ).................()................(...................................121101110121101110----------+++=+++++++=++++

上式可写成:

n

n n n n n n a p a p a p a b p b p b t u t y +++++++=-----111012110..................................)()(……………………………………(2) 当系数0101,,....,,,,...n n a a a b b b 均为常数,则称为线性定常(时不变)系统,若它们是时间t 的函数,则为线性时变系统。

设初始值为零,将式(2)中p 用s 代替,则得传递函数为:

)

(..................................)()(111012110s G a s a s a s a b s b s b s U s Y n n n n n n n =+++++++=-----..................... (3)

所以传递函数是输出量与输入量的拉氏交换之比。

式(3)可分解为如下形式:

)

().........)()(()().........)()(()(3211321n n r s r s r s r s z s z s z s z s K s G --------=-…………………… ……….(4) 令上式分母部分等于零,就是系统的特征方程式,其根12,,....n r r r 为G(s)的极点。G(s)的分子部分的根121,,...n z z z 称为零点,这些极点与零点的形式(是复数还是实数)及数值就决定了系统的动态特性[3]。

4 系统辨识

4.1系统辨识的基本思想

系统辨识的基本思想是根据系统运行或试验测得的数据,按照给定的“系统等价准则”从一群候选数学模型集合中,确定给一个与系统特性等价的数学模型。由于实际系统的机理往往是未知的,因此依据“系统等价准则”得到的模型大多只是实际系统模型的某种近似,而不是准确的系统模型。所以,辨识模型一般也称为系统名义模型。

依据上述系统辨识的基本思想,系统辨识包括三个主要因素,即候选数学模型集,辨识准则及辨识算法。

4.2 辨识的对象与问题

在控制过程中出现扰动将使系统的输出信号受到影响,要依据所量测到的输人与输出信号去确定准确的数学模型,具有相当大的困难。因此,必须提出一种方法,依凭它可将输出信号分成含有信息的部分以及源于扰动的部分。

辨识方法应该能够消去所有扰动分量的影响。依照扰动信号的类型,已经提出了许多不同的方法。某些情况下,简单计算均值与回归就足够了。而在低频非平稳分量的情形下,则需要用滤波方法,它们适合特定形式的扰动信号。

如果不能做到无误差地量测输人与输出信号,那么过程现在还不能辨识。而如果仅仅是输出信号受量测误差影响,这些误差又叠加于输出信号之上,则不会发生新的困难。过程辨识的关键问题是使过程与模型之间的误差尽可能地小。

4.3 辨识的内容和步骤

(1)明确辨识目的。 它决定模型的类型、精确要求及采用辨识方法。

(2)掌握先验知识。先验知识如系统的非线性程度、时变或非时变、比例或积分特性、时间常数、过度过程时间、截止频率,这些等等先验知识对预选系统数学模型种类和系统辨识试验设计将起到指导性的作用。

(3)利用先验知识。选定和预测被辨识系统数学模型种类,确定实验前假定模型。

(4)试验设计。记录输入和输出数据。如果系统是连续运行的,并且不允许加入试验信号,则只好用正常的运行数据进行辨识。

(5)数据预处理。零均值化可采用差分法和平均法等方法,消除高频成分可采用低通滤波器。

(6)模型结构辨识。在假定模型结构的前提下,利用辨识方法确定模型结构参数,如差分方程的阶次n和纯迟延d等。

(7)模型参数辨识。在模型结构确定后,选择估计方法,利用测量数据估计模型中的未知参数。

(8)模型检验。验证所确定的模型是否当地表示了被辨识的系统[4]。

4.4 系统辨识的应用及发展

目前系统辨识已成为各门学科数学建模的现代工程方法,也是系统理论和现代控制理论的重要分支。它被广泛用于系统分析、设计、仿真、预报、控制、管理和决策等等。随着各门学科研究方法的日趋定量化和相关科学技术及其它理论的快速发展,系统辨识理论和技术正在蓬勃发展,应用范围不断扩大。如果说,对于系统辨识的过去式基本理论研究和一般工程应用阶段,那么今后将是更深入地研究和大范围复杂工程应用,并广泛渗透到医学、环保、经济等工程领域。这里非线性系统辨识,多变量开环或闭环系统辨识、高维数时变系统辨识、整体和多级辨识以及辨识的可分离性理论与应用研究是及其重要的发展方向[5]。

5结论

在设计系统时,系统还是不存在的,这样就无法用辨识的方法来确定数学模型。这种情况,只能依靠理论来分析的方法来建立数学模型。为设计提供依据。在讨论系统辨识的时候,不能否定理论方法建立数学模型的重要性。

建模在系统辨识中起了很大作用。通过学习,它的理论和运用日趋成熟,系

统辨识在实际已遍及许多领域,相信不久的将来它的运用对科学的发展将起着较大的作用。

参考文献

[1]刘兴堂.现代辨识工程[M]. 北京:国防工业出版社,2006.

[2]刘党辉.系统辨识方法及应用[M].北京:国防工业出版社,2010.

[3]张洪铺.系统辨识[M]. 机械工业出版社 ,1989.

[4]李言俊、张科.系统辨识理论及应用[M]. 北京:国防工业出版社,2003.

[5]张成乾,张国强.系统辨识与参数估计仁[M].北京:机械工业出版社,1986.

系统辨识建模

上海大学2015 ~2016学年冬季学期研究生课程考试 小论文格式 课程名称:系统建模与辨识课程编号: 09SB59002 论文题目: 基于改进的BP神经网络模型的网络流量预测 研究生姓名: 李金田学号: 15721524 论文评语: 成绩: 任课教师: 张宪 评阅日期:

基于改进的BP神经网络模型的网络流量预测 15721524,李金田 2016/3/4 摘要:随着无线通信技术的快速发展,互联网在人们的日常生活中占据了越来越重要的位置。网络中流量监控和预测对于研究网络拓扑结构有着重要的意义。本文参考BP算法,通过分析算法的优势和存在的一些问题,针对这些缺陷进行了改进。通过建立新的流量传输的传递函数,对比了经典的传递函数,并且在网络中进行了流量预测的实验和验证。新方法在试验中表现出了良好的实验性能,在网络流量预测中有很好的应用,可以作为网络流量预测的一个新方法和新思路,并且对研究网络拓扑结构有着重要的启发作用。网络流量预测在研究网络行为方面有着重要的作用。ARMA时间序列模型是比较常见的用于网络流量预测的模型。但是用在普通时间序列模型里面的一些参数很难估计,同时非固定的时间序列问题用ARMA模型很难解决。人工神经网络技术通过对历史数据的学习可能对大量数据的特征进行缓存记忆,对于解决大数据的复杂问题很合适。IP6 网络流量预测是非线性的,可以使用合适的神经网络模型进行计算。 A Novel BP Neural Network Model for Traffic Prediction of The Next Generation Network. Abstract:With the rapid development of wireless communication technology, the internet occupy an important position in people’s daily life. Monitoring and predicting the traffic of the network is of great significant to study the topology of the network. According to the BP algorithm, this paper proposed an improved BP algorithm based on the analysis of the drawback of the algorithm. By establishing a new transfer function of the traffic transmission, we compare it with the previous transmission function. Then, the function is used to do experiments, found to be the better than before. This method can be used as a new way to predict the network traffic, which has important implications for the study of the network topology. Network traffic prediction is an important research aspect of network behavior. Conventionally, ARMA time sequence model is usually adopted in network traffic prediction. However, the parameters used in normal time sequence models are difficult to be estimated and the nonstationary time sequence problem cannot be processed using ARMA time sequence problem model. The neural network technique may memory large quantity of characteristics of data set by learning previous data, and is suitable for solving these problems with large complexity. IP6 network traffic prediction is just the problem with nonlinear feature and can be solved using appropriate neural network model.

系统辨识方法

系统辨识方学习总结 一.系统辨识的定义 关于系统辨识的定义,Zadeh是这样提出的:“系统辨识就是在输入和输出数据观 测的基础上,在指定的一组模型类中确定一个与所测系统等价的模型”。L.Ljung也给 “辨识即是按规定准则在一类模型中选择一个与数据拟合得最好的模型。出了一个定义: 二.系统描述的数学模型 按照系统分析的定义,数学模型可以分为时间域和频率域两种。经典控制理论中微 分方程和现代控制方法中的状态空间方程都是属于时域的范畴,离散模型中的差分方程 和离散状态空间方程也如此。一般在经典控制论中采用频域传递函数建模,而在现代控 制论中则采用时域状态空间方程建模。 三.系统辨识的步骤与内容 (1)先验知识与明确辨识目的 这一步为执行辨识任务提供尽可能多的信息。首先从各个方面尽量的了解待辨识的 系统,例如系统飞工作过程,运行条件,噪声的强弱及其性质,支配系统行为的机理等。 对辨识目的的了解,常能提供模型类型、模型精度和辨识方法的约束。 (2)试验设计 试验设计包括扰动信号的选择,采样方法和间隔的决定,采样区段(采样数据长度 的设计)以及辨识方式(离线、在线及开环、闭环等的考虑)等。主要涉及以下两个问 题,扰动信号的选择和采样方法和采样间隔 (3)模型结构的确定 模型类型和结构的选定是决定建立数学模型质量的关键性的一步,与建模的目的, 对所辨识系统的眼前知识的掌握程度密切相关。为了讨论模型和类型和结构的选择,引 入模型集合的概念,利用它来代替被识系统的所有可能的模型称为模型群。所谓模型结 构的选定,就是在指定的一类模型中,选择出具有一定结构参数的模型M。在单输入单 输出系统的情况下,系统模型结构就只是模型的阶次。当具有一定阶次的模型的所有参 数都确定时,就得到特定的系统模型M,这就是所需要的数学模型。 (4)模型参数的估计 参数模型的类型和结构选定以后,下一步是对模型中的未知参数进行估计,这个阶 段就称为模型参数估计。

系统辨识与自适应控制作业

系统辨识与自适应控制 学院: 专业: 学号: 姓名:

系统辨识与自适应控制作业 一、 对时变系统进行参数估计。 系统方程为:y(k)+a(k)y(k-1)=b(k)u(k-1)+e(k) 其中:e(k)为零均值噪声,a(k)= b(k)= 要求:1对定常系统(a=0.8,b=0.5)进行结构(阶数)确定和参数估计; 2对时变系统,λ取不同值(0.9——0.99)时对系统辨识结果和过程进行 比较、讨论 3对辨识结果必须进行残差检验 解:一(1): 分析:采用最小二乘法(LS ):最小二乘的思想就是寻找一个θ的估计值θ? , 使得各次测量的),1(m i Z i =与由估计θ? 确定的量测估计θ??i i H Z =之差的平方和最小,由于此方法兼顾了所有方程的近似程度,使整体误差达到最小,因而对抑制误差是有利的。在此,我应用批处理最小二乘法,收敛较快,易于理解,在系统参数估计应用中十分广泛。 作业程序: clear all; a=[1 0.8]'; b=[ 0.5]'; d=3; %对象参数 na=length(a)-1; nb=length(b)-1; %na 、nb 为A 、B 阶次 L=500; %数据长度 uk=zeros(d+nb,1); %输入初值:uk(i)表示u(k-i) yk=zeros(na,1); %输出初值 x1=1; x2=1; x3=1; x4=0; S=1; %移位寄存器初值、方波初值 xi=randn(L,1); %白噪声序列 theta=[a(2:na+1);b]; %对象参数真值 for k=1:L phi(k,:)=[-yk;uk(d:d+nb)]'; %此处phi(k,:)为行向量,便于组成phi 矩阵 y(k)=phi(k,:)*theta+xi(k); %采集输出数据 IM=xor(S,x4); %产生逆M 序列 if IM==0 u(k)=-1; else u(k)=1; end S=not(S); M=xor(x3,x4); %产生M 序列

系统辨识研究的现状_徐小平

系统辨识研究的现状 徐小平1,王 峰2,胡 钢1 (1.西安理工大学自动化与信息工程学院 陕西西安 710048;2.西安交通大学理学院 陕西西安 710049) 摘 要:综述了系统辨识问题的研究进展,介绍了经典的系统辨识方法及其缺点,引出了将集员、多层递阶、神经网络、遗传算法、模糊逻辑、小波网络等知识应用于系统辨识得到的一些现代系统辨识方法,最后总结了系统辨识今后的发展方向。 关键词:系统辨识;集员;多层递阶;神经网络;遗传算法;模糊逻辑;小波网络 中图分类号:TP27 文献标识码:B 文章编号:1004-373X (2007)15-112-05 A Survey on System Identif ication XU Xiaoping 1,WAN G Feng 2,HU Gang 1 (1.School of Automation and Information Engineering ,Xi ′an University of Technology ,Xi ′an ,710048,China ; 2.School of Science ,Xi ′an Jiaotong University ,Xi ′an ,710049,China ) Abstract :In this paper the advance in the study of system identification is summarized.First ,the traditional system identi 2fication methods and their disadvantages are introduced.Then ,some new methods based on set membership ,multi -level re 2cursive ,neural network ,genetic algorithms ,f uzzy logic and wavelet network are presented.Finally ,f urther research directions of system identification are pointed out. K eywords :system identification ;set membership ;multi -level recursive ;neural network ;genetic algorithms ;f uzzy logic ;wavelet network 收稿日期:2007-04-16 基金项目:教育部博士学科基金(20060700007); 陕西省自然科学基金(2005F15)资助项目 1 引 言 辨识、状态估计和控制理论是现代控制理论三个互相渗透的领域。辨识和状态估计离不开控制理论的支持,控制理论的应用又几乎不能没有辨识和状态估计技术。随着控制过程复杂性的提高,控制理论的应用日益广泛,但其实际应用不能脱离被控对象的数学模型。然而在大多数情况下,被控对象的数学模型是不知道的,或者在正常运行期间模型的参数可能发生变化,因此利用控制理论去解决实际问题时,首先需要建立被控对象的数学模型。系统辨识正是适应这一需要而形成的,他是现代控制理论中一个很活跃的分支。社会科学和自然科学领域已经投入相当多的人力和物力去观察、研究有关的系统辨识问题。从1967年起,国际自动控制联合会(IFAC )每3年召开一次国际性的系统辨识与参数估计的讨论会。历届国际自动控制联合会的系统辨识会议均吸引了众多的有关学科的科学家和工程师们的积极参加。 系统辨识是建模的一种方法,不同的学科领域,对应 着不同的数学模型。从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。1962年,L.A.Zadeh 给出辨识这样的定义[1]:“辨识就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。”当然按照Zadeh 的定义,寻找一个与实际过程完全等价的模型无疑是非常困难的。而从实用性观点出发,对模型的要求并非如此苛刻,为此,对辨识又有一些实用性的定义。比如,1974年,P.E.ykhoff 给出辨识的定义[2]为:“辨识问题可以归结为用一个模型来表示客观系统(或将要构造的系统)本质特征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。”1978年,L. Ljung 给辨识下的定义[3] 更加实用:“辨识有三个要素—数 据,模型类和准则。辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型。”总而言之,辨识的实质就是从一组模型类中选择一个模型,按照某种准则,使之能最好地拟合所关心的实际过程的静态或动态特性。 本文首先介绍了经典的系统辨识方法,并指出其存在的缺陷,接着对近年来系统辨识的现代方法作以简单的综述,最后指出了系统辨识未来的发展方向。2 经典的系统辨识 经典的系统辨识方法[4-6]的发展已经比较成熟和完 2 11

系统辨识与自适应控制论文

XXXXXXXXXX 系统辨识与自适应控制课程论文 题目:自适应控制综述与应用 课程名称:系统辨识与自适应控制 院系:自动化学院 专业:自动化 班级:自动化102 姓名: XXXXXX 学号: XXXXXXXXX 课程论文成绩: 任课教师: XXXXX 2013年 11 月 15 日

自适应控制综述与应用 一.前言 对于系统辨识与自适应控制这门课,前部分主要讲了系统辨识的经典方法(阶跃响应法、频率响应法、相关分析法)与现代方法(最小二乘法、随机逼近法、极大似然法、预报误差法)。对于系统辨识,简单的说就是数学建模,建立黑箱系统的输入输出关系;而其主要分为结构辨识(n)与参数辨识(a、b)这两个任务。 由于在课上刘老师对系统辨识部分讲的比较详细,在此不再赘述,下面讨论自适应控制部分的相关内容。 对于自适应控制的概念,我觉得具备以下特点的控制系统,可以称为自适应控制系统: 1、在线进行系统结构和参数辨识或系统性能指标的度量,以便得到系统当前状态的改变情况。 2、按一定的规律确定当前的控制策略。 3、在线修改控制器的参数或可调系统的输入信号。 二.自适应控制综述 1.常规控制系统与自适应控制系统比较 (1)控制器结构不同 在传统的控制理论与控制工程中,常规控制系统的结构主要由控制器、控制对象以及反馈控制回路组成。 而自适应控制系统主要由控制器、控制对象、自适应器及反馈控制回路和自适应控制回路组成。 (2)适用的对象与条件不同 传统的控制理论与控制工程中,当对象是线性定常、并且完全已知的时候,才能进行分析和控制器设计。无论采用频域方法,还是状态空间方法,对象一定是已知的。这类方法称为基于完全模型的方法。在模型能够精确地描述实际对象时,基于完全模型的控制方法可以进行各种分析、综合,并得到可靠、精确和满意的控制效果。 然而,有一些实际被控系统的数学模型是很难事先通过机理建模或离线系统辨识来确知的,或者它们的数学模型的某些参数或结构是处于变化之中的.对于这类事先难以确定数学模型的系统,通过事先整定好控制器参数的常规控制往往难以对付。 面对上述系统特性未知或经常处于变化之中而无法完全事先确定的情况,如何设计一个满意的控制系统,使得能主动适应这些特性未知或变化的情况,这就 是自适应控制所要研究解决的问题.自适应控制的基本思想是:在控制系统的运行过程中,系统本身不断地测量被控系统的状态、性能和参数,从而“认识”或“掌握”系统当前的运行指标并与期望的指标相比较,进而作出决策,来改变控制器的结构、参数或根据自适应规律来改变控制作用,以保证系统运行在某种意义下的最优或次优状态。按这种思想建立起来的控制系统就称为自适应控制系统。

系统辨识及自适应控制实验..

Harbin Institute of Technology 系统辨识与自适应控制 实验报告 题目:渐消记忆最小二乘法、MIT方案 与卫星振动抑制仿真实验 专业:控制科学与工程 姓名: 学号: 15S004001 指导老师: 日期: 2015.12.06 哈尔滨工业大学 2015年11月

本实验第一部分是辨识部分,仿真了渐消记忆递推最小二乘辨识法,研究了这种方法对减缓数据饱和作用现象的作用; 第二部分是自适应控制部分,对MIT 方案模型参考自适应系统作出了仿真,分别探究了改变系统增益、自适应参数的输出,并研究了输入信号对该系统稳定性的影响; 第三部分探究自适应控制的实际应用情况,来自我本科毕设的课题,我从自适应控制角度重新考虑了这一问题并相应节选了一段实验。针对挠性卫星姿态变化前后导致参数改变的特点,探究了用模糊自适应理论中的模糊PID 法对这种变参数系统挠性振动抑制效果,并与传统PID 法比较仿真。 一、系统辨识 1. 最小二乘法的引出 在系统辨识中用得最广泛的估计方法是最小二乘法(LS)。设单输入-单输出线性定长系统的差分方程为: ()()()()()101123n n x k a x k a k n b u k b u x k n k +-+?+-=+?+-=,,,, (1.1) 错误!未找到引用源。 式中:()u k 错误!未找到引用源。为控制量;错误!未找到引用源。为理论上的输出值。错误!未找到引用源。只有通过观测才能得到,在观测过程中往往附加有随机干扰。错误!未找到引用源。的观测值错误!未找到引用源。可表示为: 错误!未找到引用源。 (1.2) 式中:()n k 为随机干扰。由式(1.2)得 错误!未找到引用源。 ()()()x k y k n k =- (1.3) 将式(1.3)带入式(1.1)得 ()()()()()()()101111()n n n i i y k a y k a y k n b u k b u k b u k n n k a k i n =+-+?+-=+-+?+ -++-∑ (1.4) 我们可能不知道()n k 错误!未找到引用源。的统计特性,在这种情况下,往往把()n k 看做均值为0的白噪声。 设 错误!未找到引用源。 (1.5)

过程建模与系统辨识课程报告

过程建模与系统辨识课程报告 班级: 姓名: 学号: 课题:人体运动计算机仿真建模方法地研究 1.人体运动计算机仿真地理论基础 (1)人体运动计算机仿真地理论 所谓人体运动计算机仿真地理论, 是指人体运动领域及其计算机仿真技术应用时作为基本立论地专业理论知识依据, 也就是指导人们从事人体运动计算机仿真应用与研究活动赖以建立和存在地专业领域内地前提和一些基本思想.总之, 因为仿真技术具有“学科面广、综合性强、应用领域宽、无破坏性、可多次重复、安全、经济、可控、不受气候和场地空间条件限制”等独特优点, 故而, 无论在交通工具安全、人机项目、虚拟设计、机器人、医疗康复、体育运动以及影视娱乐等诸多领域, 应用计算机仿真技术研究人体运动都有着其它技术所无法比拟地价值和效益.因此, 本文着眼于人体运动生物力学、计算机仿真等领域地知识基础, 从计算机仿真技术及其在人体运动领域地应用发展、人体及其运动建模等主要层面进行研究成果地综述性讨论, 旨在进一步促进人体运动领域应用计算机仿真技术在理论与实践上得以不断拓宽和深入发展. (2)人体及其运动建模 当人体被作为一种系统来看待时, 其本身及其运动包含了众多不

同层面而复杂地因素和交互作用.因此, 要深刻理解和把握人体及其运动, 模型化方法是不可或缺地.概略来说, 人体及其运动模型地构造主要有两种方式( 或者两者地结合) : 第一种方式从逻辑上看是演绎为主地, 即将人体系统分成子系统, 且子系统地性质和关系已被成熟地理论知识或规律所涵盖, 进而把这些子系统用数学方法加以联结得到整个系统地模型, 因为它无须对人体实际系统进行试验, 故而, 这种方式通常就被称为建模; 第二种方式则主要是归纳地, 它主要依据从实际人体地实验数据( 记录人体系统地输入输出) 并进而进行数据分析来建立数学模型或图象模型, 通常被称为系统辩识.就人体运动地力学模型而言, 从最简化地质点、刚体, 到多刚体、柔性多体等模型, 都以阐释人体机械运动形式地机理为目标, 其主要内容涵盖多体系统力学模型、非完整系统力学模型等, 并为人体地动力学研究提供了理论基础.在计算机仿真地交互效果上, 人体地逼真形象模型是在计算机图形学与先进仿真技术不断融合促进下发展起来地, 又在虚拟现实技术大力推动下, 三维“虚拟人”模型亦不断推出, 其中主要有如下几种形式: 骨架、体素、曲线、球体堆积、曲面等模型形式. (3)人体运动计算机仿真地理论地发展 随着系统仿真技术及相关地计算机图形学、数据库技术、虚拟现实技术地交互融合与推动, 加上以人体或其运动为核心地不同领域地强烈需求地推动, 虚拟人体及其运动成为当前研究发展地热点, 在建模方法与技术地核心理论基础方面, 人工智能( 专家知识、神经网

系统辨识

系统辨识理论综述 郭金虎 【摘要】全面论述了系统辨识理论的提出背景以及理论成果,总结了系统辨识理论的基本原理、基本方法以及基本内容,并对其应用及发展做了全面的讨论。 【关键词】系统辨识;准则函数 1概述 系统辨识问题的提出是由于随着科学技术的发展,各门学科的研究方法进一步趋向定量化,人们在生产实践和科学实验中,对所研究的复杂对象通常要求通过观测和计算来定量的判明其内在规律,为此必须建立所研究对象的数学模型,从而进行分析、设计、预测、控制的决策。例如,在化工过程中,要求确定其化学动力学和有关参数,已决定工程的反应速度;在热工过程中,要求确定如热交换器这样的分布参数的系统及动态参数;在生物系统方面,通常希望获得其较精确的数学模型,一般描述在生物群体系统的动态参数;为了控制环境污染,希望得到大气污染扩散模型和水质模型;为进行人口预报,做出相应的决策,要求建立人口增长的动态模型;对产品需求量、新型工业的增长规律这类经济系统,已经建立并继续要求建立其定量的描述模型。其他如结构或机械的振动、地质分析、气象预报等等,都涉及系统辨识和系统参数估计,这类要求正在不断扩大。 2系统辨识的基本原理 2.1系统辨识的定义和基本要素 实验和观测是人类了解客观世界的最根本手段。在科学研究和工程实践中,利用通过实验和观测所得到的信息,或掌握所研究对象的特性,这种方式的含义即为“辨识”。关于系统辨识的定义,1962年,L.A.Zadeh 是这样提出的:“系统辨识就是在输入和输出数据观测的基础上,在指定的一组模型类中,确定一个与所测系统等价的模型”。1978年,L.Ljung 也给出了一个定义:“辨识既是按规定准则在一类模型中选择一个与数据拟合得最好的模型”。可用图2-1来说明辨识建模的思想。 0 G g G 等价准则系统原型 系统模型激励信号y g y e J u 图2-1 系统辨识的原理

自适应控制习题(系统辨识)

自适应控制习题 (徐湘元,自适应控制理论与应用,电子工业出版社, 2007) 【2-1】 设某物理量丫与XI 、X2、X3的关系如下:丫=0 1X1 + 0 2X2+0 3X3 由试验获得的数据如下表。试用最小二乘法确定模型参数 0 1、0 2和0 3 X1:0.620.4 0.420.820.660.720.380.520.450.690.550.36 X2:12.014.214.612.110.88.2013.010.58.8017.014.212.8 X3:5.206.100.328.305.107.904.208.003.905.503.806.20 Y: 51.649.948.550.649.748.842.645.937.864.853.445.3 【2-3】 考虑如下模型 其中w(t)为零均值、方差为1的白噪声。根据模型生成的输入/输出数据u(k)和y(k), 分别采用批处理最小二乘法、具有遗忘因子的最小二乘法(入 =0.95)和递推最小二乘法 估计模型参数(限定数据长度 N 为某一数值,如N=150或其它数值),并将结果加以比 较。 【2-4】 对于如下模型 (1 _0.8z 1 0.15z 2 )y(k) 一(z 2 0.5z 3 )u(k) - (1 - 0.65z 1 - 0.1z 2 )w(k) 其中w(k)为零均值、方差为1的白噪声。根据模型生成的输入/输出数据u(k)和y(k), 分别采用增广最小二乘法和随机逼近法进行模型参数估计,并比较结果。 (提示:w(t)可以用MATLAB^的函数“ randn ”产生)。 【3-1】 设有不稳定系统: (1z 1)y(k) - z ^(10.9z 1)u(k) 期望传递函数的分母多项式为 Amz z m r 且无稳态误差。试按照极点配置方法设计控制系统,并写出控制表达式。 【3-2} 设有被控过程:一 - _ (1 1.7z 1 0.6z 2)y(k)z 2(11.2z 1 )u(k) 一 ~ - 一 - -1.3z 0.5z u(t)w(t) I 0.3z 2 1 - - T ()(10.5 ),期望输出y 跟踪参考输入y , y(t)

自适应控制习题(系统辨识)

自适应控制习题 (徐湘元,自适应控制理论与应用,电子工业出版社,2007) 【2-1】 设某物理量Y 与X1、X2、X3的关系如下:Y=θ1X 1+θ2X 2+θ3X 3 由试验获得的数据如下表。试用最小二乘法确定模型参数θ1、θ2和θ3 X1: 0.62 0.4 0.42 0.82 0.66 0.72 0.38 0.52 0.45 0.69 0.55 0.36 X2: 12.0 14.2 14.6 12.1 10.8 8.20 13.0 10.5 8.80 17.0 14.2 12.8 X3: 5.20 6.10 0.32 8.30 5.10 7.90 4.20 8.00 3.90 5.50 3.80 6.20 Y: 51.6 49.9 48.5 50.6 49.7 48.8 42.6 45.9 37.8 64.8 53.4 45.3 【2-3】 考虑如下模型 )()(3.03.115.0)(212 1t w t u z z z z t y ++-+=---- 其中w(t)为零均值、方差为1的白噪声。根据模型生成的输入/输出数据u(k)和y(k),分别采用批处理最小二乘法、具有遗忘因子的最小二乘法(λ=0.95)和递推最小二乘法估计模型参数(限定数据长度N 为某一数值,如N=150或其它数值),并将结果加以比较。 【2-4】 对于如下模型 )()1.065.01()()5.0()()15.08.01(213221k w z z k u z z k y z z ------+-++=+- 其中w(k)为零均值、方差为1的白噪声。根据模型生成的输入/输出数据u(k)和y(k),分别采用增广最小二乘法和随机逼近法进行模型参数估计,并比较结果。 (提示:w(t)可以用MATLAB 中的函数“randn ”产生)。 【3-1】 设有不稳定系统: )()9.01()()1(111k u z z k y z ---+=- 期望传递函数的分母多项式为)5.01()(11---=z z Am ,期望输出m y 跟踪参考输入r y ,且无稳态误差。试按照极点配置方法设计控制系统,并写出控制表达式。 【3-2】 设有被控过程: )()2.11()()6.07.11(1221k u z z k y z z ----+=+- 给定期望传递函数的分母多项式为)08.06.01()(211---+-=z z z A m ,试按照极点配置方法设计控制系统,使期望输出无稳态误差,并写出控制表达式u(k)。

系统辨识研究综述

系统辨识研究综述 摘要:本文综述了系统辨识的发展与研究内容,对现有的系统辨识方法进行了介绍并分析其不足,进一步引出了把神经网络、遗传算法、模糊逻辑、小波网络知识应用于系统辨识得到的一些新型辨识方法。并对基于T-S模型的模糊系统辨识进行了介绍。文章最后对系统辨识未来的发展方向进行了介绍 关键词:系统辨识;建模;神经网络;遗传算法;模糊逻辑;小波网络;T-S 模型 1.系统辨识的发展和基本概念 1.1系统辨识发展 现代控制论是控制工程新的理论基础。辨识、状态估计和控制理论是现代控制论三个相互渗透的领域。辨识和状态估计离不开控制理论的支持;控制理论的应用又几乎不能没有辨识和状态估计。 而现代控制论的实际应用不能脱离被控对象的动态特性,且所用的数学模型需要选择一种使用方便的描述形式。但很多情况下建立被控对象的数学模型并非易事,尤其是实际的物理或工程对象,它们的机理复杂且含有各种噪声,使建立数学模型更加困难。系统辨识就是应此需要而形成的一门学科。 系统辨识和系统参数估计是六十年代开始迅速发展起来的。1960年,在莫斯科召开的国际自动控制联合会(IFCA)学术会议上,只有很少几篇文章涉及系统辨识和系统参数估计问题。然而,在此后,人们对这一学科给予了很大的注意,有关系统辨识的理论和应用的讨论日益增多。七十年代以来,随着计算机的开发和普及,系统辨识得到了迅速发展,成为了一门非常活跃的学科。 1.2系统辨识基本概念的概述 系统辨识是建模的一种方法。不同的学科领域,对应着不同的数学模型,从某种意义上讲,不同学科的发展过程就是建立它的数学模型的过程。建立数学模型有两种方法:即解析法和系统辨识。 L. A. Zadeh于1962年给辨识提出了这样的定义:“辨识就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。”当然按照Zadeh的定义,寻找一个与实际过程完全等价的模型无疑是非常困难的。根据实用性观点,对模型的要求并非如此苛刻。1974年,P. E. ykhoff给出辨识的定义“辨识问题可以归结为用一个模型来表示客观系统(或将要构造的系统) 本质为: 特征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。而1978

哈工大研究生选修课系统辨识与自适应控制考点

系统辨识考点 1、辨识定义: 是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。 2、系统辨识步骤 辨识目的及 先验知识 试验设计 输入输出数据 采集、处理 模型结构选取 与辨识 模型参数辨识 模型验证 合格? 最终模型Y N 3、递推最小二乘辨识模型 4、广义最小二乘和增广最小二乘的区别 广义最小二乘法是对系统过程模型的输入、输出和过程噪声加以变换(滤波)变成一般最小二乘法的标准格式,再用一般最小二乘法()1111???T N N N N N N y ++++=+-θθK φθ()111111T N N N N N N -++++=+K P φφP φ111T N N N N N +++=-P P K φP

对系统的参数进行估计。 增广矩阵法就是使系统模型变成符合一般最小二乘法的标准格式的,并将模型参数和噪声模型参数同时估计出来的方法。 增广矩阵法用近似估计的噪声序列代替白噪声序列。这和广义最小二乘法的不同点在于:后者噪声模型参数的估计和系统模型参数的估计是交替地进行的。 5、数据饱和的原因和解决方法 ① 参数缓慢变化(易产生数据饱和现象) 解决方法:渐消记忆最小二乘、限定记忆最小二乘 ② 参数突变但不频繁????? 6、自适应系统定义、分类 自适应控制系统是一种特殊形式的非线性控制系统。系统本身的特性(结构和参数)、环境及干扰的特性存在各种不确定性。在系统运行期间,系统自身能在线地积累与实行有效控制有关的信息,并修正系统结构的有关参数和控制作用,使系统处于所要求的(接近最优的)状态。 ?????????????????????????????????增益列表补偿法最小方差控制算法预测控制算法随机自适应控制系统极点配置控制算法控制算法参数最优化设计方法模型参考自适应控制系统李亚普诺夫稳定性理论设计方法波波夫超稳定性理论设计方法PID

系统辨识与建模实验报告

系统辨识与建模实验报告电加热炉动态特性辨识实验 姓名学号: 张春燕312102332 同组同学:沈剑312102331 序号:81 指导老师:郭毓 实验时间:2013年5月

系统辨识与建模实验电加热炉动态特性辨识实验 目录 一.实验目的 (3) 2.2 数据获取 (3) 2.3 离线辨识 (3) 3.1 数据预处理 (3) 3.2 结构辨识 (4) 3.3.1 RLS辨识参数 (6) 3.3.2 RELS辨识参数 (7) 3.3.3 RIV辨识参数 (8) 3.3.4 RML辨识参数 (9) 3.4 模型验证 (10) 3.4.1 输入阶跃响应比较 (10) 3.4.2 比较残差 (11) 四.实验结果分析 (12) 五.实验心得 (12) 附录1: (13) 附录2: (13) 附录3: (14) 附录4: (16)

一.实验目的 通过实验了解辨识方法在工程应用中的一些实际问题;了解数据获取和数据处理的各种方法和手段,掌握各种辨识方法的应用特点。 二.实验内容及其步骤 2.1 编写M 序列的产生程序 在实验参数设定时选择加热电压60V ,采样周期为3S ,所以加入的M 序列电压最好为加热电压的10-20%,M 序列的采样周期为数据采样周期的整数倍,因为实验时间有限,选择了2组数据,即M 序列信号为6V 、10V ,采样周期60s. 2.2 数据获取 高温老化试验温箱,以控制电压作为炉温控制系统的输入控制变量,即,设备的输入量是燃料供给量或电压、电流,而输出量是炉膛内腔的温度。 在热稳定工况的基础上,在电压稳定值上再附加一个辨识信号,即M 序列电压信号。加热炉热惯性大,升温过程较长,所以采样周期较长,M 序列的周期也较长。这样施加M 序列周期信号之后,记录几个周期的炉温试验数据。 2.3 离线辨识 利用处理过的数据,选择某种辨识方法;如RLS 、RELS 、RIV 或RML 等参数估计方法计算,以及F 检验方法或AIC 定阶法。离线估计出参数模型参数,并计算相应的模型静态增益,同时比较利用不同方法所得到的辨识结果。最后,模型验证。 三.数据处理 数据处理主要包括输入输出数据,模型结构确定,然后辨识参数。 3.1 数据预处理 在实验中采集了四组数据,仿真时选择M 序列为10的数据组。 其中采样/20s T ?=,为隔20点采样。在离线辨识时发现,如果数据全部运用则采样时间长度过短,则计算量大并容易产生病态方程,所以数据采用隔点取数据的方法。

电加热炉的系统辨识与自适应控制

电加热炉的系统辨识与自适应控制

目录 一、电加热炉的先验知识 (1) 1.1 电加热炉的工作原理 (1) 1.2 电加热炉温度控制系统的硬件构成 (2) 二、电加热炉系统辨识 (3) 2.1 电加热炉温度系统模型 (3) 2.2 最小二乘估计的递推算法 (4) 2.3 最小二乘估计的递推算法辨识及仿真 (5) 三、电加热炉系统的自适应控制算法及仿真 (8) 3.1 电加热炉系统控制问题的提出 (8) 3.2 广义最小方差间接自校正控制算法 (8) 3.3 广义最小方差间接自校正控制仿真 (9) 参考资料 (15)

电加热炉的系统辨识与自适应控制 一、电加热炉的先验知识 1.1 电加热炉的工作原理 我选择电加热炉作为辨识和自适应控制设计与仿真实验的对象。 电加热炉的工作原理为:布置在炉内的加热元件将电能转化为热能,通过辐射或对流的方式将热能传递给加热对象,从而改变对象的温度。 通常的工业过程都对炉温的控制提出了一定的要求,这就需要对电加热炉的进行控制,调节它的通电时间或通电强度来改变它输出的热能。传统的控制方法 有两种:第一种就是手动调压法,即是依靠人的经验直接改变电加热炉的输入电压,其控温效果依赖于人为的调节,控制精度不高,且浪费人力资源。第二种控制方法在主回路中采取可控硅装置,并结合一些简单的仪表,保温阶段自动调节,升温过程仍依赖于试验者的调节,它属于半自动控制。随着微型计算机、可编程逻辑控制器的出现和迅速更新换代,智能温度控制仪表、工业控制计算机在电加热炉温度控制领域日益得到广泛地应用。借助计算机强大的数据处理和运算能力,引入反馈的思想,运用现代控制理论,实现对炉温的全自动化控制[1]。 以常用的恒温箱式电加加热炉为例,采用反馈控制。该控制系统的目的是要实现炉内的温度与给定温度值一致,即保持温度恒定,是一个典型的自动控制系统。 当然,系统给定的不是具体的期望温度值,而是通过给定电位器给定一个电压sT U 。电加热炉内的实际温度由热电偶转换为对应的电压T U f 。给定电压信号 sT U 与实际温度所对应的电压T U f 比较得温度偏差信号U ?经放大器放大后,用以 驱动执行电动机,并通过传动机构拖动调压器动触头。当温度偏高时,动触头向减小电压的方向运动,反之加大电压,直到温度达到给定值为止,此时,偏差0=?U ,电机停止转动。 上面只是一个比较简单的闭环温度控制系统。

系统辨识与建模system identificati

系统辨识与建模system identificati 系统辨识 根据系统的输入输出时间函数来确定描述系统行为的数学模型,是现代控 制理论中的一个分支。对系统进行分析的主要问题是根据输入时间函数和系统 的特性来确定输出信号。对系统进行控制的主要问题是根据系统的特性设计控 制输入,使输出满足预先规定的要求。 简介 根据系统的输入输出时间函数来确定描述系统行为的数学模型。现代控制 理论中的一个分支。通过辨识建立数学模型的目的是估计表征系统行为的重要 参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输 出预测系统输出的未来演变,以及设计控制器。对系统进行分析的主要问题是 根据输入时间函数和系统的特性来确定输出信号。对系统进行控制的主要问题 是根据系统的特性设计控制输入,使输出满足预先规定的要求。而系统辨识所 研究的问题恰好是这些问题的逆问题。通常,预先给定一个模型类μ={M}(即给定一类已知结构的模型),一类输入信号u和等价准则J=L(y,yM)(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择使误差函 数J达到最小的模型,作为辨识所要求的结果。系统辨识包括两个方面:结构 辨识和参数估计。在实际的辨识过程中,随着使用的方法不同,结构辨识和参 数估计这两个方面并不是截然分开的,而是可以交织在一起进行的。 辨识的基本步骤 先验知识和建模目的的依据 先验知识指关于系统运动规律、数据以及其他方面的已有知识。这些知识 对选择模型结构、设计实验和决定辨识方法等都有重要作用。用于不同目的的 模型可能会有很大差别。

先验知识是指关于系统运动规律、数据以及其他方面的已有 系统辨识 知识。这些知识对选择模型的结构、设计实验和决定辨识方法等都具有重要的作用。例如可以从基本的物理定律(牛顿定律,基尔霍夫定律,物质守恒定律等)去确定模型结构,建立所研究的变量之间的关系。如果关于这方面的知识是完备的,模型的结构和参数(至少在原则上)便是可以确定的。在空间技术的应用中建立飞行器的动力学模型就是一个例子。但在多数情形下却很难做到这一点。这时先验知识虽然不能完全确定模型,但是在模型结构(也就是辨识中的模型类)的选择上仍然是一个重要因素。此外,对参数变化范围的确定、初值的选取,对数据的必要的限制,以及对模型的适用性进行检验等方面,先验知识也都是最重要的依据。 其次,建模的目的对于确定模型的结构和辨识方法也有重要意义。用于不同目的的模型可能会有很大的差别。在估计具有特定物理意义的参数时,主要考虑模型的参数值与真实的参数值是否一致。在建立预测模型时,只需要考虑预测误差。在建立仿真模型时,就要根据应用的要求去决定仿真的深度,也就是决定模型结构的复杂程度。而对于设计控制系统的模型,则出于不同的控制目的可选择不同的模型类。 实验设计 辨识是从实验数据中提取有关系统信息的过程,设计实验的目标之一是要使所得到的数据能包含系统更多的信息。主要包括输入信号设计,采样区间设计,预采样滤波器设计等。 辨识的基础是输入和输出数据,而数据来源于对系统的实验和观测,因此辨识归根到底是从数据中提取有关系统的信息的过程,其结果是和实验直接联系在一起的。设计实验的目标之一是要使所得到的数据能包含系统的更多的信息。为此,首先要确定用什么准则来比较数据的好坏。这种准则可以是从辨识的可行性出发的,也可以是从某种最优性原则出发的。实验设计要解决的问题主要是:输入信号的设计,采样区间的设计,预采样滤波器的设计等(见系统辨识实验设计)。

系统辨识设计

基于最小二乘法的机械手参数辨识 1 引言 1.1 机械臂概况 工业机械臂是近代自动控制领域中出现的一项新的技术,是现代控制理论与工业生产自动化实践相结合的产物,并以成为现代机械制造生产系统中的一个重要组成部分。工业机械臂是提高生产过程自动化、改善劳动条件、提高产品质量和生产效率的有效手段之一。尤其在高温、高压、粉尘、噪声以及带有放射性和污染的场合,应用得更为广泛。在我国,近几年来也有较快的发展,并取得一定的效果,受到机械工业和铁路工业部门的重视。 机械臂是模拟人的上臂而构成的。为了抓取空间中任意位置和方位的物体,需有6个自由度,即6个关节。一般情况下,全部关节皆为转动型关节,而且其前3个关节一般都集中在手腕部。关节型机械臂的特点是结构紧凑,所占空间体积小,相对的工作空间最大,还能绕过基座周围的一些障碍物,是机械臂中使用最多的一种结构形式,比较典型的如PUMA、SCARA等[1]。多关节机械臂的优点是:动作灵活、运动惯性小、通用性强、能抓取靠近机座的工件,并能绕过机体和工作机械之间的障碍物进行工作,目前广泛应用于工业自动化生产线上。 1.2 机械臂的研究现状 早在20世纪50年代,由于高性能的飞机自动驾驶仪控制需要人们就对自适应控制进行了广泛的研究,但由于计算能力和控制理论的水平,这种思想没有得到成功的推广与应用。经过几十年的努力,自适应控制理论得到了进一步的发展和完善。近年来,国内外学者对自适应控制已做了卓越的研究工作,也取得了可喜的研究成果,有许多研究成果已经应用到生产实际中[3]。 随着科学技术的发展和社会的进步,机器人的应用越来越普及,不仅广泛应用于工业生产和制造部门,而且在航天、海洋探测、危险或条件恶劣的特殊环境中获得了大量应用。并且,它还逐渐渗透到了日常生活及教育娱乐等各个领域。而机器人中控制问题始终比较难解决,怎么样能够更好的控制机器人就成为当今研究的重点,在此研究自适应控制来解决机器人的控制问题。当操作机器人的工作环境及工作目标的性质和特征在工作过程中随时发生变化时,控制因素具有未知性和不确定的特性。这种未知因素和不确定性将使控制系统的性能变差,不能满足控制要求。采用一般反馈技术或开环补偿方法不能很好的解决这一问题。如要解决上述问题,就要求控制器能在运行过程中不断地测量受控对象的特性,

相关主题
文本预览
相关文档 最新文档