当前位置:文档之家› 锂离子电池电解液的碳酸酯溶剂与氟代溶剂的安全性分析比较

锂离子电池电解液的碳酸酯溶剂与氟代溶剂的安全性分析比较

锂离子电池电解液的碳酸酯溶剂与氟代溶剂的安全性分析比较
锂离子电池电解液的碳酸酯溶剂与氟代溶剂的安全性分析比较

锂离子电池电解液的碳酸酯溶剂与氟代溶剂的安全性分析比较

1

摘要

1

第一章绪论

3

1.1 引言

3

1.2 锂离子电池简介

3

1.21 锂离子电池的工作原理

4

1.3 锂离子电池电解液

6

1.31 锂离子电池电解液的碳酸酯溶剂和氟代溶剂

6

第二章碳酸酯溶剂和氟代溶剂的安全性分析

8

2.1碳酸酯溶剂的安全性分析

8

2.2 氟代溶剂的安全性分析

10

第三章碳酸酯溶剂于氟代溶剂的安全性比较

12

第一章绪论1.1 引言能源、环境和信息技术是2l世纪科技发展的三大主题。从人类文明开始,能源的开发和利用就与人们的生活方式及生活质量密切相关。人类进入工业化社会以来,矿物能源(煤与石油)的消耗巨大,内燃机车辆每年所消耗的石油占全球能源年消耗量的I/3.伴随着矿物燃料的巨大消耗和资源的日益枯竭,温室效应和空气污染以及对入类的生存环境构成了严重的威胁。因此,研究和开发高效、安全、无污染的新型能源成了世界各国政府和科技工作者共同关心的课题。此外近年来。随着微电子技术的迅猛发展,电子仪器设备在不断地小型化和轻便化,如笔记本电脑、数码照相机、手机和无绳电话等,这对电池行业提出了更高的要求,迫切要求电池高容量、长寿命、高安全和环境友好。锂离子电池就是在这个背景下发展起来的,并在短短的十几年内,迅速的成为了能源行业的关注焦点。1.2 锂离子电池简介锂离子电池相对传统的水溶液二次电池而言,具有比能量高,循环寿命长和对环境友好的显著优点,是一种很有发展潜力的电池体系,目前已经在移动电话、笔记本电脑等便携式电子产品上得到了广泛应用。随着2007 年6 月欧盟电池指令草案的通过,锂离子电池也开始逐步进入无绳电动工具市场。同时,近年来由于环境和石油等问题日益突出,以各种二次电池为动力的电动车和混合动力车越来越受

到了人们的重视,由于以磷酸铁锂为正极材料的锂离子电池具有相当好的安全性和比能量,因此成为各种电动车电源的首选。同时由于价格便宜,使得磷酸铁锂锂离子电池单位能量的价格大幅下降,这样相对氢镍电池受镍价格大幅波动的影响以及铅酸、镉镍电池的高污染而言,锂离子电池表现出越来越强劲的竞争力。图1 至图4 为几种不同的锂离子电池

1.21 锂离子电池的工作原理与锂二次电池相比,锂离子电池正负极材料均采用锂离子可以自由嵌入和脱出的具有层状或隧道结构的锂离子嵌入化合物,充电时,Li+从正极逸出,嵌入负极,放电时,Li+则从负极脱出,嵌入正极,即在充放电过程中,Li+在正负极间嵌入脱出往复运这种电池被称为“ 摇椅” 或“ 羽毛球” 电池(“Shuttlecock” battery) 。实质上,锂离子电池是一种浓差电池,在充电状态下负极处于富锂态,正极处于贫锂态,随着放电进行,Li+从负极脱出,经过电解质嵌入正极;放电时,正极处于富锂态,负极处于贫锂态,随着放电的进行,Li+从正极脱出,

经过电解质嵌入负极。锂离子电池的电极反应表达式如下:

其工作原理可由图5 形象地表示出来。

锂离子电池在工作时,只有锂离子在正负极活性物质中嵌入和脱出,不再有金属锂的溶解与还原,从根本上消除了枝晶锂生成的客观条件,所以它克服了锂二次电池安全性差、寿命短的缺点,同时又保留它的一切优点,诸如电压高、比能量高、体积小、重量轻等。

1.3 锂离子电池电解液锂离子电池电解液就像人体的。血液”一样把电池的各个部分连接成一个有机的整体闸。在电池中承担着正负极间传递电荷的作用,它对电池的比容量,工作温度范围,循环效率及安全等性能至关重要。锂离子电池电解液由高纯有机溶剂、电解质锂盐和必要的添加剂组成。有机溶剂是电解液的主体部分,电解液的性能与之密切相关,一般用高介电常数和低粘度溶剂混合使用。常用电

解质锂盐有高氯酸锂(LiCl04)、六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、六氟砷酸锂(LiAsF6)等。一般作为实用锂离子电池的有机电解液应该具备以下性能【1】:(1)离子电导率高,一般应达到10习~2×10‘3 S.cm"1;锂离子迁移数应接近l;(2)电化学稳定的电位范围宽,必须有O~5 V的电化学稳定窗口;(3)热稳定好,使用温度围宽;(4)化学性能稳定,与电池内部集流体和活性物质不发生化学反应;(5)安全低毒,最好能够生物降解。

改善和提高电解液性能的主要措旌有:(1)合成具有高介电常数的有机溶剂,以提高电解质的溶解度和电解液的导电率;(2)合成各种新的电解质锂盐。如LiN(CF3S02)2和LiC(CF3S02)3一类的盐;(3)寻找新的电解液添加剂,如冠醚和穴状配合物等复杂结构化合物。

1.31 锂离子电池电解液的碳酸酯溶剂和氟代溶剂目前,在商品化的锂离子电池中应用最广泛的电解液是将导电锂盐LIPF6

溶解在以碳酸乙烯酯(EC)为基础的二元或三元的混合溶剂。这些溶剂一般是有机碳酸酯系列,包括:二甲基碳酸酯(DMC)、二乙基碳酸酯(DEC)、甲基乙基碳酸酯(EMC)、碳酸丙烯酯(PC)等【2】。使用上述有机溶剂主要是基于以下事实:(1)LIPF6不与溶剂反应并且能使集流体AI发生钝化起到保护作用;(2)EC具有高的介电常数,能够提供较高的离子导电率;(3)线型碳酸酯能有效降低电解液的粘度,并且有助于在碳负极表面形成稳定的SEI膜(固体电解质相界面膜)。

而通过在常用有机溶剂分子中引进卤素原子,可以降低有机溶剂的可燃性,甚至使其完全不燃烧【3】。Smart等【4】通过研究一系列部

分被氟取代或完全被氟取代的有机碳酸酯溶剂,证实了普通有机溶剂在引入氟元素之后,溶剂的物理性质发生了很大的变化,如溶剂的凝固点降低、抗氧化的稳定性提高、有利于在碳负极表面形成SEI膜。并且Keiichi【5】等提出用卤素原子取代PC分子中甲基的氢原子,得到新的化合物如三氟甲基乙烯(F3C-EC),具有非常好的物理和化学稳定性,而且还具有较高的介电常数,不易燃烧,可作为不可燃溶剂用于锂离子电池中。Arial等【6】报道,三氟代碳酸丙烯酯(TEPC)用作锂离子电池的共溶剂可以改善电池安全性,而且CI-EC/TEPC电解液无论在Li/C还是Li/Li1+xMn204电池中均显示出较好的放电容量和较低的不可逆容量。

第二章碳酸酯溶剂和氟代溶剂的安全性分析与金属锂二次电池相比,锂离子电池的安全性有了很大的提高,但仍然存在许多隐患。扩大锂离子电池的商品化程度,电池的安全性能不容忽视。对锂离子电池的安全保护通常是采用专门的充电电路来控制电池的充放电过程,防止电池过充放;也有在电池上设置安全阀和热敏电阻。这些方法主要通过外部的手段来达到电池的安全保护,然而要从根本上解决锂离子电池的安全性能,必须优化电池所用材料的性能,选择合适的充放电制度。研究表明,在电解液中添加SEI 膜促进剂、过充保护剂、阻燃剂能大幅提高锂离子电池的安全性能。

而锂离子电池所用正极材料一般都是高电势的嵌锂化合物,如LiCoO2 工作电压高达415 V ,因此要求电解液具有足够的耐氧化稳定性。由不同溶剂组成的电解液在乙炔黑表面的氧化电位【7】可见:溶剂的组成

影响着电解液的氧化稳定性。在电解液中使用熔点低、沸点高、分解电压高的有机溶剂,是提高锂离子电池安全性能的有效途径之一。2.1碳酸酯溶剂的安全性分析碳酸酯类溶剂具有较好的电化学稳定性,较低的熔点,在锂离子电池中得到广泛的应用,在已商品化的锂离子电池中基本上都采用碳酸酯作为电解液的溶剂。

烷基碳酸酯有机溶剂在商品化锂离子电池中得到了广泛应用,这些烷基碳酸酯主要包括EC(碳酸乙烯酯)、PC(碳酸丙烯酯)、DMC(碳酸二甲酯)、DEC(碳酸二乙酯)、EMC(碳酸甲乙酯)。Tetsuya kawamura等采用DSC方法对碳酸酯混合溶剂的热稳定性能进行了研究。结果显示,DEC与DMC相比更容易和LiPF6及LiCLO4发生放热反应。对于1M LiPF6电解液,含DMC体系放热反应发生在230~280℃范围内,但放热量明显高于DMC体系,为500~530 J/g。Sacken 等人研究表明:不同溶剂对SEI分解温度影响不大,但对嵌锂碳阳极与电解液之间相互反应的放热速率有较大的影响,采用不同熔剂放热率从小到大依次为EC

碳酸乙烯酯( EC) ,由于其在高度石墨化碳材料表面不发生分解及良好的成膜作用,因此绝大部分液体电解液均以其为主成分。EC 在常温

下是固态(熔点37 ℃) ,必须加入其它溶剂提高低温使用范围。EC∶EMC = 3 ∶7 在锂离子电池中低温性较好;EC 体系中加入等摩尔的MA(甲基乙烯酯) 同样可获得良好的低温性【8】。

在电解液中,PC在石墨电极表面的还原产物能溶解在电解液中,由于PC较强的锂盐溶解力,它会同锂离子一起嵌入到石墨层中,而PC 的分解电位高于相应的溶剂化锂离子的嵌入电位,这种二元嵌入化合物是不稳定的,PC将在石墨层问分解产生气体,导致石墨电极的剥落,形成小的石墨颗粒,进而导致石墨电极的可逆容量下降甚至是循环性能的完全丧失。因此一般认为PC基有机电解液不适合用于石墨化电极作为负极的锂离子电池中,而可以适用于不可石墨化碳,如石油焦炭、低温硬碳等作为负极材料的锂离子电池中。

链状碳酸酯,往往是低黏度、低介电常数。除含有甲氧基的少数几种可以在电解液中单独使用外,其余大部分作为共溶剂与环碳酸酯配合使用【9】。

2.2 氟代溶剂的安全性分析目前锂离子电池电解液使用碳酸酯作为溶剂,其中线型碳酸酯能够提高电池的充放电容量和循环寿命,但是它们的闪点较低,在较低的温度下即会闪燃,而氟代溶剂通常具有较高的闪点甚至无闪点,因此使用氟代溶剂有利于改善电池在受热、过充电等状态下的安全性能。

Arai【10】研究发现三氟代碳酸丙烯酯(TFPC)和氯代碳酸乙烯酯(ClEC)可以代替线型碳酸酯以获得较好的放电容量和循环寿命。

TFPC分别与ClEC、碳酸乙烯酯(EC)、碳酸丙烯酯(PC)组成的二元混合溶剂具有较高闪点。但是以ClEC/TFPC,EC/TFPC为溶剂的两种电解液的电导率较低,不过ClEC/TFPC基电解液体系表现出较好的循环寿命。Yamaki【11】研究二氟代乙酸甲酯(MFA)、二氟代乙酸乙酯(EFA)等氟代酯溶剂时发现,LiPF6/MFA电解液与金属锂负极或Li0.5CoO2正极共存时都具有较好的热稳定性。Ihara【12】对1M LiPF6/MFA电解液体系进行研究发现,该电解液体系具有可与1 M LiPF6/EC+DMC电解液相媲美的循环性能,而与嵌锂碳负极共存时的热稳定性更好。

通过对氟代醚溶剂的研究发现【13、14】:甲基氟代丁基醚(CF3CF2CF2OCH3,MFE)和碳酸甲乙酯(EMC)混合溶剂的闪点随着MFE的含量增加而升高,而在乙基全氟代丁基醚(EFE)和EMC 混合溶剂体系中,闪点却随着EFE含量增加而降低。在MFE+EMC (4:1 vol)混合溶剂中加入1M LiN(SO2C2F5)2 (LiBETI)得到的无闪点的电解液,与1M LiPF6/EC+EMC电解液相比,该电解液对LiCoO2正极的充放电容量无不良影响,但会使石墨负极的充放电容量下降较多。在上述电解液中加入0.1M LiPF6和0.5M EC,室温下石墨/LiCoO2全电池具有较好的循环性能,560次循环后,放电容量可保持在初始容量的80%以上。

第三章碳酸酯溶剂于氟代溶剂的安全性比较目前,锂离子电池电解液广泛使用碳酸酯作为溶剂,其具有良好的电化学稳定性,较低的熔点,线型碳酸酯能够提高电池的充放电容量和循环寿命,但是

它们的闪点较低,在较低的温度下即会闪燃。而氟代溶剂通常具有较高的闪点甚至无闪点,因此使用氟代溶剂有利于改善电池在受热、过充电等状态下的安全性能。并且具有良好的循环性能和热稳定性。但是氟代溶剂成本太过高昂,因此无法进行大规模生产。

参考文献【1】戴纪翠,滕祥国,马培华.锂离子二次电池电解质的研究动态阴.盐湖研究,2003,11(2):66.70.

【2】Zhang

S

S, Jow T R, Amine K, et al. LIPF6-EC-EMC electrolyte for Li-ion battery [j]. J Power Sources, 2002,107:18-23.

【3】武山,庄全超.锂离子电池有机电解液材料研究进展阴.化学研究与应用,2005,17(4):434-438.

【4】Smart M.C.,Ramakumar B.V,Ryan-Mowrey V S.et a1.Improved performance oflithium-ion cells with lhe use of thlorinated

Sources,2003,119·121:359-367.

【5】KeiichiY,Takako S.,Aldo H.Fluorine-substituted cyclic carbonate electrolytic solution

and battery containing the sane.US.P:6,010,806,2000.

【6】Arial J.,Katayama I-L,Akaboshi H.J.Binary mixed solvent electrolytes containing trifluoropropylene carbonate for secondary batteries[J].J.Electrochem.Soc.,2002,149(2):A217-A226.

【7】ZHENG Honghe (郑洪河) , MA Wei (马威) , ZHANG Hucheng(张虎成)溶剂组成对尖晶石LiMn2O4 正极材料电化学性能的影响[J].Journal of Functional Materials (功能材料) ,2003 ,34 (1) :69 -72. 【8】韩景,于燕梅,陈健,万春荣. 锂离子电池电解液低温导

电性能的研究[J ] . 电化学,2003 ,9 (2) :222 - 227.

【9】Ein2Eli Y,Mcdevitt S F ,Laura R. J . Electrochem Soc.

1998 ,145 (1) 12L3。

【10】Arai J, Katayama H, Akahoshi H. J. Electrochem. Soc., 2002, 149 (2): 217-226.

【11】Yamaki J, Yamazaki I. J. Power Sources, 2001, 102: 288-293. 【12】Ihara M, Hang B T, Sato K, et al. J Electrochem. Soc., 2003, 150: A1476-A1483.

【13】Arai J. J Electrochem. Soc., 2003, 150: A219-A228.

【14】Arai J. J. Appl. Electrochem., 2002, 32: 1071-1079.

锂离子电池基本知识

一.电池常规知识 目录 1.什么是电池? 2.一次电池和二次电池有什么区别? 3、充电电池是怎样实现它的能量转换? 4、什么是Li-ion电池? 5、Li-ion电池的工作原理? 6、Li-ion电池的主要结构。 7、Li-ion电池的优缺点。 8、Li-ion电池安全特性是如何实现的? 9、什么是充电限制电压?额定容量?额定电压?终止电压? 10、Li-ion铝壳和钢壳电池比较它的区别有哪些? 11、目前常见的各种可充电电池之间有什么区别? 1、什么是电池? 电池是一种能源。当它正负极连接在用电器上时,因为正负极之间存在电势之差,电流从正极流向负极,储存在电池中的化学能直接转化成电能释放出来,一只电池必然由两种不同电化学活性的物质组成正负两极,正负极活性物质之间的电动势差形成电池的电压,根据其电化学系统的不同,各种类型的电池

电压各有不同。 2、一次电池和充电电池有什么区别? ?电池内部的电化学设计决定了该类型的电池是否可充。根据它 们的电化学成分和电极的结构可知,可充电电池的内部结构之 间所发生的反应是可逆的。 ?理论上,这种可逆性是不会受循环次数的影响,既然充放电会 在电极的体积和结构上引起可逆的变化,那么可充电电池的内 部设计就支持这种变化。而一次电池在给定的电池环境中两个 电极之间的电化学反应是不可逆的,因此,不可以将一次电池 拿来充电,这种做法很危险也很不经济。如果需要反复使用, 应选择真正的循环次数在1000次左右的充电电池,这种电池又 称为二次电池。 ?另一明显的区别就是它们具有较高的比能量和负载能力,以及 自放电率。一次电池能量密度远比一次电池高。然而他们的负 载能力相对要小。 ?二次电池具有相对较高的负载能力,可充电电池Li-ion,随着 近几年的发展,具有高能量容量。 ?不管何种一次电池的电化学系统属于哪种,所有的一次电池的 自放电率都很小。 3、充电电池是怎样实现它的能量转换? ?每种电池都具有电化学转换的能力,即将储存的化学能直接转 换成电能。就二次电池而言(另一术语也称可充电便携式电池),

锂离子电池安全性

车用锂离子动力电池系统的安全性剖析 国家大力支持以电动汽车为主的新能源汽车新兴产业。然而以热失控为特征的锂离子电池系统的安全性事故时有发生,困扰着电动汽车的发展。动力电池安全性事故的常见形式及成因是什么?又该采取怎样的防范措施?小编带你一览要点。 1 动力电池安全性问题 锂离子动力电池事故主要表现为因热失控带来的起火燃烧。如表1和图1 所示。 表1 近年发生的锂离子动力电池事故 图1 近年来部分锂离子动力电池事故 锂离子动力电池系统安全性问题表现为3个层次(图2)。 1)电池系统安全性的“演变”。即电池系统长期老化——“演化”(事故1、2、3、5、7)和突发事件造成电池系统损坏——“突变”(事故4、6)。 2)“触发”——锂离子动力电池从正常工作到发生热失控与起火燃烧的转折点。 3)“扩展”——热失控带来的向周围传播的次生危害。

图2 动力电池系统安全性问题的层次 2 动力电池安全性演变 2.1 “演化”与“突变” 电池系统长期老化带来的可靠性降低,演化耗时长,可以通过检测电池系统的老化程度来评估电池系统安全性的变化;相比而言安全性突变难以预测,但是可以通过既有事故的形式来改进电池系统的设计。 2.2 安全性演化机理 电池系统任何部件的老化都可能带来安全事故的触发,如事故1、7。除此之外,电池本身的安全性演化主要表现为内短路的发展。电池内部的金属枝晶生长是造成内短路的主要原因之一。值得一提的是,老化电池的能量密度降低,热失控造成的危害可能会降低;另一方面老化电池更容易发生热失控。 图3 锂离子电池内部金属枝晶的生长与隔膜的刺穿

3 电池安全事故触发 3.1 热失控机理 经过演变过程,电池事故将会进入“触发”阶段。一般在这之后,电池内部的能量将会在瞬间集中释放造成热失控,引发冒烟、起火与爆炸等现象。当然电池安全事故中,也可能不发生热失控,热失控后的电池不一定会同时发生冒烟、起火与爆炸,也可能都不发生,这取决于电池材料发生热失控的机理。 图4、图5与表2展示了某款具有三元正极/PE基质的陶瓷隔膜/石墨负极的25 A·h锂离子动力电池的热失控机理。热失控过程分为了7个阶段。 图4 某款三元锂离子动力电池热失控实验数据(实验仪器为大型加速绝热量热仪,EV-ARC) 图5 某款三元锂离子动力电池热失控不同阶段的机理 表2 某款锂离子动力电池热失控的分阶段特征与机理

锂离子电池电解液的碳酸酯溶剂与氟代溶剂的安全性分析比较

锂离子电池电解液的碳酸酯溶剂与氟代溶剂的安全性分析比较第一章绪论1.1引言能源、环境和信息技术是2l世纪科技发展的三大主题。从人类文明开始,能源的开发和利用就与人们的生活方式及生活质量密切相关。人类进入工业化社会以来,矿物能源(煤与石油)的消耗巨大,内燃机车辆每年所消耗的石油占全球能源年消耗量的I/3.伴随着矿物燃料的巨大消耗和资源的日益枯竭,温室效应和空气污染以及对入类的生存环境构成了严重的威胁。因此,研究和开发高效、安全、无污染的新型能源成了世界各国政府和科技工作者共同关心的课题。此外近年来。随着微电子技术的迅猛发展,电子仪器设备在不断地小型化和轻便化,如笔记本电脑、数码照相机、手机和无绳电话等,这对电池行业提出了更高的要求,迫切要求电池高容量、长寿命、高安全和环境友好。锂离子电池就是在这个背景下发展起来的,并在短短的十几年内,迅速的成为了能源行业的关注焦点。 1.2锂离子电池简介锂离子电池相对传统的水溶液二次电池而言,具有比能量高,循环寿命长和对环境友好的显着优点,是一种很有发展潜力的电池体系,目前已经在移动电话、笔记本电脑等便携式电子产品上得到了广泛应用。随着2007年6月欧盟电池指令草案的通过,锂离子电池也开始逐步进入无绳电动工具市场。同时,近年来

由于环境和石油等问题日益突出,以各种二次电池为动力的电动车 和混合动力车越来越受 到了人们的重视,由于以磷酸铁锂为正极材料的锂离子电池具有相 当好的安全性和比能量,因此成为各种电动车电源的首选。同时由 于价格便宜,使得磷酸铁锂锂离子电池单位能量的价格大幅下降, 这样相对氢镍电池受镍价格大幅波动的影响以及铅酸、镉镍电池的 高污染而言,锂离子电池表现出越来越强劲的竞争力。图1至图4为几种不同的锂离子电池 1.21锂离子电池的工作原理与锂二次电池相比,锂离子电池正负极 材料均采用锂离子可以自由嵌入和脱出的具有层状或隧道结构的锂 离子嵌入化合物,充电时,Li+从正极逸出,嵌入负极,放电时, Li+则从负极脱出,嵌入正极,即在充放电过程中,Li+在正负极间 嵌入脱出往复运这种电池被称为“摇椅”或“羽毛球”电池(“Shuttlecock”battery)。实质上,锂离子电池是一种浓差电池,在充电状态下负极处于富锂态,正极处于贫锂态,随着放电进行,

锂离子电池基础知识100答

1、一次电池和充电电池有什么区别? 电池内部的电化学性决定了该类型的电池是否可充,根据它们的电化学成分和电极的结构可知,真正的可充电电池的内部结构之间所发生反应是可逆的。 理论上,这种可逆性是不会受循环次数的影响,既然充放电会在电极体积和结构上引起可逆的变化,那么可充电电池的内部设计必须支持这种变化,既然,一次电池仅做一放电,它内结构简单得多且不需要支持这种变化,因此,不可以将一次电池拿来充电,这种做法很危险也很不经济,如果需要反复使用,应有尽有选择真正的循环次数在1000次左右的充电电池,这种电池也可称为一次电池或蓄电池。 2、一次电池和二次电池还有其他的区别吗? 另一明显的区别就是它们能量和负载能力,以及自放电率,二次电池能量远比一次电池高,然而他们的负载能力相对要小。 3、可充电便携式电池的优缺点是什么? 充电电池寿命较长,可循环1000次以上,虽然价格比干电池贵,但如果经常使用的话,是比较划算的。充电电池的容量比同规格的碱锰电池或锌碳电池低,比如,他们放电较快。 另一缺点是由于他们几近恒定的放电电压,很难预测放电何时结束。当放电结束时,电池电压会突然降低。假如在照相机上使用,突然电池放完了电,就不得不终止。 但另一方面可充电电池能提供的容量比太部分一次电池高。 但Li-ion电池却可被广泛地用照相器材中,因为它容量高,能量密度大,以及随放电深度的增加而逐渐降低的放电电压。 4、充电电池是怎样实现它的能量转换? 每种电池都具有电化学转换的能力,即将储存的化学能直接转换成电能,就二次电子(也叫蓄电池)而言(另一术语也称可充电使携式电池),在放电过程中,是将化学能转换成电能;而在充电过程中,又将电能重新转换成化学能。这样的过程根据电化学系统不同,一般可充放电500次以上,而我司产品li-ion可重复充放电1000次以上。Li-ion是一种新型的可充电便携式电池。它的额定电压为3.6V,它的放电电压会随放电的深度逐渐衰退,不象其他充电电池一样,在放电未,电压突然降低。 5、什么是Li-ion电池? Li-ion是锂电池发展而来。所以在介绍Li-ion之前,先介绍锂电池。举例来讲,以前照相机里用的扣式电池就属于锂电池。锂电池的正极材料是锂金属,负极是碳。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion又叫摇椅式电池。 6、Li-ion电池有哪几部分组成? (1)电池上下盖(2)正极——活性物质为氧化锂 钴(3)隔膜——一种特殊的复合膜

锂离子动力电池的安全性问题分析Word版

锂离子动力电池的安全性问题分析 () 摘要:本文从锂离子电池材料和制作工艺两个方面分析影响锂离子电池安全性能的因素,并进一步分析锂离子电池组安全性的关键问题。 关键词:锂离子电池;安全性能;热稳定性;影响因素 Power type lithium ion battery safety problem analysis (Electrical Engineering College, Longdong University, Qingyang 745000, Gansu, China) Abstract:This article from the lithium ion battery materials and production process analysis of two aspects of influence of lithium ion battery safety performance factors, and further analysis of lithium ion battery safety problems. Key words:Lithium ion battery; Safety performance; Thermal stability; Influence factors. 0 引言 锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。一般采用含有锂元素的材料作为电极的电池。是现代高性能电池的代表。锂离子电池是最晚研究而商品化进程最快的一种高性能电池。锂离子电池以其独特的优势目前以成为各个领域广泛应用的新能源。锂离子电池具有电压高、比能量高、循环性能好等特点,越来越广泛应用发的3C市场领域、电动车(EV)和混合型电动车(HEV)市场领域、军事用途及空间技术领域。虽然,锂离子二次电池的安全性相对于金属锂二次电池有了很大的提高,但仍存在着许多隐患,比如:由于电池的比能量高,且电解液大多为有机易燃物等,当电池热量产生速度大于散热速度时,就有可能出现安全性问题。根据Ph.Biensan等的研究证明:锂离子电池在滥用的条件下有可能产生使铝集流体熔化的高温(>700℃),从而导致电池出现冒烟、着火、爆炸、乃至人员受伤等情况。因此对锂离子电池的研制和生产来说,电池的安全性不仅是指在各种测试条件下不出现冒烟、着火、爆炸等现象,最为重要的确保人员在电池滥用的条件下不受伤害。 1 锂离子电池的几代变革 第一代锂离子电池:负极:锂金属,工作电压高达3.7。由于直接以极其活跃的金属锂作为负极,安全隐患太大已经被淘汰。

锂电池电解液行业分析报告2012

2012年锂电池电解液行业分析报告 2012年11月

目录 一、预计未来三年全球电解液产能严重过剩 (3) 1、预计从2012年开始,电解液市场产能过剩将会加剧 (3) 2、厂商市场定位、产品技术路线、产品价格三因素或导致国内电解液厂商 发展分化 (4) 二、锂电池电解液发展方向 (7) 1、六氟磷酸锂进口替代加速,电解液成本有望快速下降 (7) 2、动力类电池将拉动电解液需求 (8) 3、高电压电解液给国内厂商带来弯道超车机会 (9) 三、拥有渠道优势,掌握上游六氟磷酸锂技术的国内厂商更具竞争优势 (10) 1、拥有下游优质客户资源的厂商具有一定的先发优势 (10) 2、向产业链上游延伸,可以保持不可或缺的地位 (10) 3、相关公司 (11) (1)新宙邦 (11) (2)广州天赐 (12) 四、风险因素 (12) 1、随着电解液市场产能过剩加剧,电解液产品单价下降速度可能超预期. 12 2、下游锂电池行业增速减缓,可能影响对电解液产品的需求 (13)

一、预计未来三年全球电解液产能严重过剩 1、预计从2012年开始,电解液市场产能过剩将会加剧 电解液生产已完全没有技术壁垒,国产电解液已与日本产品品质相当。国内生产能力千吨级以上的锂电池电解液厂商有12 家,涉及高、中、低端各类市场,能够基本满足国内的电池生产厂商需求,并有部分出口。 据统计,当前全球锂电池电解液厂商产能总计约7.56 万吨/年,其中国外产能2.79 万吨/年(日本2.1 万吨/年),国内产能4.76 万吨/年。由于部分厂商的生产线为近一两年新投产,产能尚未完全释放。2012 年全球电解液6.05 万吨的需求,行业存在产能过剩问题。 截止目前,国内外厂商公布的预投项目将新增产能6.70 万吨/年。结合现有产能,预计总产能可以达到14.25 万吨。其中,日本三菱化

锂电池电解液基础知识

锂离子电池电解液 1 锂离子电解液概况 电解液是锂离子电池四大关键材料(正极、负极、隔膜、电解液)之一,号称锂离子电池的“血液”,在电池中正负极之间起到传导电子的作用,是锂离子电池获得高电压、高比能等优点的保证。电解液一般由高纯度的有机溶剂、电解质锂盐(六氟磷酸锂,LiFL6)、必要的添加剂等原料,在一定条件下,按一定比例配制而成的。 有机溶剂是电解液的主体部分,与电解液的性能密切相关,一般用高介电常数溶剂与低粘度溶剂混合使用;常用电解质锂盐有高氯酸锂、六氟磷酸锂、四氟硼酸锂等,但从成本、安全性等多方面考虑,六氟磷酸锂是商业化锂离子电池采用的主要电解质;添加剂的使用尚未商品化,但一直是有机电解液的研究热点之一。 自1991年锂离子电池电解液开发成功,锂离子电池很快进入了笔记本电脑、手机等电子信息产品市场,并且逐步占据主导地位。目前锂离子电池电解液产品技术也正处于进一步发展中。在锂离子电池电解液研究和生产方面,国际上从事锂离子电池专用电解液的研制与开发的公司主要集中在日本、德国、韩国、美国、加拿大等国,以日本的电解液发展最快,市场份额最大。 国内常用电解液体系有EC+DMC、EC+DEC、EC+DMC+EMC、EC+DMC+DEC等。不同的电解液的使用条件不同,与电池正负极的相容性不同,分解电压也不同。电解液组成为lmol/L LiPF6/EC+DMC+DEC+EMC,在性能上比普通电解液有更好的循环寿命、低温性能和安全性能,能有效减少气体产生,防止电池鼓胀。EC/DEC、EC/DMC电解液体系的分解电压分别是4.25V、5.10V。据Bellcore研究,LiPF6/EC+DMC与碳负极有良好的相容性,例如在Li x C6/LiMnO4电池中,以LiPF6/EC+DMC为电解液,室温下可稳定到4.9V,55℃可稳定到4.8V,其液相区为-20℃~130℃,突出优点是使用温度范围广,与碳负极的相容性好,安全指数高,有好的循环寿命与放电特性。

锂离子电池电解液

锂电池电解液特性 锂电池电解液是电池中离子传输的载体。一般由锂盐和有机溶剂组成。 基本信息 中文名称锂电池电解液 组成锂盐和有机溶剂 含义离子传输的载体 分类电池 锂电池电解液主要成分介绍 1.碳酸乙烯酯:分子式: C3H4O3 透明无色液体(>35℃),室温时为结晶固体。沸点:248℃/760mmHg , 243-244℃/740mmHg;闪点:160℃;密度:1.3218;折光率:1.4158(50℃);熔点:35-38℃;本品是聚丙烯腈、聚氯乙烯的良好溶剂。可用作纺织上的抽丝液;也可直接作为脱除酸性气体的溶剂及混凝土的添加剂;在医药上可用作制药的组分和原料;还可用作塑料发泡剂及合成润滑油的稳定剂;在电池工业上,可作为锂电池电解液的优良溶剂 2.碳酸丙烯酯分子式:C4H6O3 无色无气味,或淡黄色透明液体,溶于水和四氯化碳,与乙醚,丙酮,苯等混溶。是一种优良的极性溶剂。本产品主要用于高分子作业、气体分离工艺及电化学。特别是用来吸收天然气、石化厂合成氨原料其中的二氧化碳,还可用作增塑剂、纺丝溶剂、烯烃和芳烃萃取剂等。 毒理数据:动物实验经口服或皮肤接触均未发现中毒.大鼠经口LD50=2,9000 mg/kg. 本品应储存于阴凉、通风、干燥处,远离火源,按一般低毒化学品规定储运。 3.碳酸二乙酯分子式:CH3OCOOCH3 无色液体,稍有气味;蒸汽压1.33kPa/23.8℃;闪点25℃(可燃液体能挥发变成蒸气,跑入空气中。温度升高,挥发加快。当挥发的蒸气和空气的混合物与火源接触能

够闪出火花时,把这种短暂的燃烧过程叫做闪燃,把发生闪燃的最低温度叫做闪点。闪点越低,引起火灾的危险性越大。);熔点-43℃;沸点125.8℃;溶解性:不溶于水,可混溶于醇、酮、酯等多数有机溶剂;密度:相对密度(水=1)1.0;相对密度(空气=1)4.07;稳定性:稳定;危险标记7(易燃液体);主要用途:用作溶剂及用于有机合成 ①健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:本品为轻度刺激剂和麻醉剂。吸入后引起头痛、头昏、虚弱、恶心、呼吸困难等。液体或高浓度蒸气有刺激性。口服刺激胃肠道。皮肤长期反复接触有刺激性。 ②毒理学资料及环境行为 毒性:估计能通过胃肠道、皮肤和呼吸道进入机体表现为中等度毒性。刺激性比碳酸二甲酯大。 急性毒性:LD501570mg/kg(大鼠经口);人吸入20mg/L(蒸气)×10分钟,流泪及鼻粘膜刺激。 生殖毒性:仓鼠腹腔11.4mg/kg(孕鼠),有明显致畸胎作用。 危险特性:易燃,遇明火、高热有引起燃烧的危险。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。 燃烧(分解)产物:一氧化碳、二氧化碳。 ③泄漏应急处理 迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源。防止进入下水道、排洪沟等限制性空间。小量泄漏:用或其它惰性材料吸收。也可以用不燃性分散剂制成的乳液刷洗,洗液稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 ④防护措施 呼吸系统防护:空气中浓度较高时,建议佩戴自吸过滤式防毒面具(半面罩)。 眼睛防护:戴安全防护眼镜。 身体防护:穿防静电工作服。

锂电池行业研究报告

锂电池行业分析 目录 一、锂电池概述 (2) 1、锂电池构成 (2) 2、锂电池产业链 (2) 二、锂电池行业生命周期 (3) 三、锂电池行业市场现状 (4) 1、3C类产品锂电池市场 (4) 2、新能源汽车锂电池市场 (4) 四、锂电池主要材料行业市场现状 (5) 1、正极材料 (6) 2、负极材料 (8) 3、隔膜材料 (10) 4、电解液 (10) 五、锂电池材料技术特点及技术趋势 (11) 六、动力电池市场前景 (12) 1、国家对汽车动力电池的产能门槛要求 (12) 2、动力电池技术发展路线 (13) 3、纯电动汽车发展 (13) 4、锂电池的竞争格局 (14)

一、锂电池概述 1、锂电池构成 锂离子电池:是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。电池一般采用含有锂元素的材料作为电极,是现代高性能电池的代表。 锂电池材料主要由正极材料、负极材料、隔膜和电解液四大材料组成,此外还有电池外壳。 2、锂电池产业链 锂电池产业链经过二十年的发展已经形成了一个专业化程度高、分工明晰的产业链体系。 正负极材料、电解液和隔膜等材料厂商为锂离子电池产业链的上游企业,为锂离子电芯厂商提供原材料。 电芯厂商使用上游电芯材料厂商提供的正负极材料、电解液和隔膜生产出不同规格、不同容量的锂离子电芯产品;模组厂商根据下游客户产品的不同性能、使用要求选择不同的锂离子电芯、不同的电源管理系统方案、不同的精密结构件、不同的制造工艺等进行锂离子电池模组的设计与生产。

锂离子电池电解液材料及生产工艺详解

锂离子电池电解液材料及生产工艺详解液体电解液生产工艺---流程图 电解液生产工艺---精馏和脱水 –对于使用的有机原料分别采取精馏或脱水处理以达到锂电池电解液使用标准。 –在精馏或脱水阶段,需要对有机溶剂检测的项目有:纯度、水分、总醇含量。

液体电解液生产工艺---产品罐 –在对有机溶剂完成精馏或脱水后,检测合格后经过管道进入产品罐、等待使用。 –根据电解液物料配比,在产品罐处通过电子计量准确称取有机溶剂。 –如果产品罐中的有机溶剂短时间未使用,需要再次对其进行纯度、水分、总醇含量的检测,继而根据生产的需要准确进入反应釜。 体电解液生产工艺---反应釜 –依据物料配比和加入先后顺序,有机溶剂依次加入反应釜充分搅拌、混匀,然后通过锂盐专用加料口或手套箱加入所需的锂盐和电解液添加剂。 –在加入物料开始到结束,应控制反应釜的搅拌速度、釜内温度等。不同的物料配比搅拌混匀的时间不同,但都必须使电解液混合均匀,此时对电解液检测的项目有:水分、电导率、色度、酸度 液体电解液生产工艺---灌装 –经检测合格的液体电解液被灌入合格的包装桶,充入氩气保护,最终进入仓库等待出厂。 –由于电解液自身的物理、化学性质等因素,入库的电解液应在短时间内使用,防止环境等因素导致电解液的变质 液体电解液---使用注意事项 –电解液桶有氩气保护,有一定压力,在使用中切勿拆卸气相阀头和液相阀头,也不允许随意按下快开接头的凸头,以免造成泄漏或其它危险。接管时一定要戴防护眼罩,使用时一定要使用专用快开接头

–检测合格的电解液建议一次性用完,开封的电解液很容易因为没有气氛保护等原因而变质,请客户在使用过程中注意及时充入氩气保护,防止变色电解液不建议使用玻璃器皿盛放,玻璃的主要成分是氧化硅,氧化硅和氢氟酸反应生成腐蚀性、易挥发的气体四氟化硅,此气体有毒会对人造成伤害 –现场可以使用的电解液容器和管道材料包括:不锈钢、塑料PP/PE、四氟乙烯等 –本产品对人体有害,有轻微刺激和麻醉作用。使用过程中避免身体直接接触 液体电解液的组成 –有机溶剂 –锂盐 –添加剂 有机溶剂---有机溶剂的选择标准 –有机溶剂对电极应该是惰性的,在电池的充放电过程中不与正负极发生电化学反应 –较高的介电常数和较小的黏度以使锂盐有足够高的溶解度,从而保证高的电导率 –熔点低、沸点高,从而使工作温度范围较宽 –与电极材料有较好的相容性,即电极能够在电解液中表现出优良的电化学性能 –电池循环效率、成本、环境因素等方面的考虑 液体电解液的组成---有机溶剂 –碳酸酯 –醚 –含硫有机溶剂

2016-2020年全球及中国锂电池电解液行业研究报告

2016-2020年全球及中国锂电池电解液行业研究报告 在新能源汽车和工业储能等新兴应用市场发展的带动下,全球锂电池电解液市场稳步增长,2015年销量达到11.7万吨,同比增长42.1%,预计2020年销量有望突破60万吨。 中国是全球最大的锂电池电解液消费国,2015年中国锂电池电解液销量为6.3万吨,同比增长48.9%;产值为28.6亿元,同比增长52.2%。产值增速大于销量增速主要因为:一、功能型电解液(价格高于常规性电解液)销量占比提升;二、原材料价格大幅上涨推动电解液价格止跌上扬,从2015年初的9万元/吨大幅上涨至年末的20万元/吨以上,预计2016年将继续呈上涨趋势。 从下游应用领域来看,电动汽车、储能将成为锂电池的主要增长点。2015年全球电动汽车动力锂电池出货量达20.8GWh,同比增长超过110%,预计2016-2020年出货量的年复合增长率将维持在50%以上。而以智能手机、平板电脑为代表的消费电子用小型锂电池出货量增速明显放缓,预计未来增速为5%-10%。 从发展趋势看,耐高压、耐高温的电解液将成为未来的发展重点,主要因为:一、消费电子领域,4.35V 以上高压电解液的应用比例现已达到70%左右,未来还将进一步攀升;二、动力及储能电池领域,高电压正极材料发展迅速,而与之匹配的电解液则相对落后,仅日本和美国少数企业掌握了5V高压电解液的生产技术,中国大部分企业虽已着手进行高压电解液的研发,但整体水平与国际存在一定差异。 从竞争格局看,全球锂电池电解液市场集中度相对较高,2015年全球前十大电解液企业市场份额合计约62.2%。其中,新宙邦取代韩国旭成成为全球最大的锂电池电解液生产商,市场份额9.2%,韩国旭成则以8.8%的市场份额排名第二。同期,中国前十大电解液生产商市场份额合计则超过85%。 韩国旭成:最大的锂电池电解液客户是三星SDI,销量占比在55%左右。此外,公司部分电解液专利也是与三星SDI共同拥有。 三菱化学:由于看好中国新能源汽车市场,已在中国布局了锂电池电解液生产基地(常熟)和负极材料生产基地(青岛),其中锂电池电解液产能为10,000吨/年。 新宙邦:2014年,公司通过收购张家港瀚康化工有限公司(生产锂电池添加剂)76%的股权,切入电解液上游产业。2015年将锂电池电解液产能扩充至20,000吨/年,但产能利用率尚待提高。 国泰华荣:2015年,“5,000吨/年的锂电池电解液项目”正式投产,至此公司锂电池电解液产能扩充至10,000吨/年。此外,公司还设立韩国国泰华荣有限会社,配合韩国客户进行锂电池电解液的研发。

锂离子动力电池安全性问题影响因素

锂离子动力电池安全性问题影响因素... 影响动力电池安全性能的因素贯穿了一个动力电池从电芯选材到使用终结的生命周期的始终,因此原因复杂多样层次丰富。电芯材料本身,电芯的制造过程,电池集成中关于BMS(电池管理系统)和安全性方面的设计和使用工况都是锂离子电池安全性表现的影响因素。 在这些环节中,出现制造误差和滥用工况是无论如何也难以避免的,所以在这个现实条件下,对电池发生热失控的预案设计就显得尤其重要。本文通过对锂离子动力电池安全性能影响因素的梳理总结,以期为其在高能量/高功率领域的应用和研究提供可靠的依据。 1前言 锂离子电池因为其具备高能量密度,高功率密度和长使用寿命的特点,在化学储能器件中脱颖而出,现在在便携式电子产品领域已经技术成熟广泛应用了,如今在国家的政策支持下,在电动车领域和大规模储能领域的需求量也呈爆发式的增长。 锂离子电池在通常情况下是安全的,但是,时有安全性事故的报道呈现在公众面前。比较著名的有近几年的波音公司737 和B787飞机电池着火,比亚迪电动车起火,特斯拉MODEL S起火…这些锂离子电池安全性事故进入公众视野的最早时间可以追溯到4、5年以前。发展到现在,安全性仍然是制约锂离子电池在高能量/高功率领域应用的关键性因素。热失控不仅是发生安全性问题的本质原因,也是制约锂离子电池性能表现的短板之一。

锂离子电池的潜在安全性问题很大程度上影响了消费者的信心。虽然人们一直期待BMS能够准确地监控安全状况(SOS)并能预测和阻止一些故障的发生, 但是,由于热失控的情况复杂多样,很难由一种技术系统保障其生命周期中所面临的所有安全状况,所以,对其引发原因的分析和研究对一个安全可靠的锂离子电池来说仍然是必要的。 2电芯材料的选择 锂离子电池的内部组成主要为正极|电解质|隔膜|电解质|负极,在此基础上再进行极耳的焊接,外包装的包裹等步骤最终形成一只完整的电芯。电芯再经过初始的充放电,化成分容排气等步骤以后,就可以出厂使用了。这个过程的第一步,是材料的选择。影响材料的安全性因素主要是其本征的轨道能量、晶体结构和材料的性状。 正极材料 正极活性材料在电池中的主要作用是贡献比容量和比能量,其本征电极电势对安全性有一定的影响。例如,近年来,中国已经将低电压材料LiFePO4(磷酸铁锂)作为动力电池的正极材料广泛应用于交通工具(例如混合式动力车HEV,电动车EV)和储能设备(例如不间断电源UPS)中,但是LiFePO4在众多材料中所展现出来的安全性优势实际是以牺牲能量密度为代价的,也就是说会制约其使用者(如EV,UPS)的续航能力。而像NMC (LiNixMnyCo1-x-yO2)等三元材料虽然在能量密度上表现优异,但是作为动力电池的理想正极材料,安全性问题一直得不到完善

电解液各溶剂简称及其参数

锂电池电解液常用溶剂 碳酸丙烯酯:PC 分子式:C4H6O3 无色无气味,或淡黄色透明液体,溶于水和四氯化碳,与乙醚,丙酮,苯等混溶。 是一种优良的极性溶剂。本产品主要用于高分子作业、气体分离工艺及电化学。 特别是用来吸收天然气、石化厂合成氨原料其中的二氧化碳,还可用作增塑剂、 纺丝溶剂、烯烃和芳烃萃取剂等。 特性分子量:102.09 物理性质:外观无色透明液体 熔点-48.8 ℃ 沸点242℃ 闪点132℃ 溶解度参数δ=14.5 相对密度1.2069 溶解度参数[2] δ=14.5 饱和蒸汽压0.004kpa 溶解性:溶于水,可混溶于丙酮、醇,乙醚、苯、乙酸乙酯等有机溶剂. 折光率1.4189 比重1.189 粘度2.5mPa.s 介电常数69c/v.m 毒理数据:动物实验经口服或皮肤接触均未发现中毒.大鼠经口LD50=2,9000 mg/kg. 质量标准项目指标优级品一级品外观无色或淡黄色液体无色或淡黄色液体含 量, %≥99.5≥99.0 水份, %≤0.3≤0.5 溴化物(以溴离子计), %≤0.01≤0.1 密度20oC(g/cm3)1.200±0.0051.200±0.005 用途2电子工业上可作高能电池及电容器的优良介质2高分子工业上可作聚 合物的溶剂和增塑剂。用作胶黏剂和密封剂的增塑剂。还可用作酚醛树脂固化促进剂和水溶性胶黏剂颜填料的分散剂。2化工行业是合成碳酸二甲酯的主要原 料也可用于脱除天然气、石油裂解气中二氧化碳和硫化氢。2另外:还可用于 纺织、印染等工业领域。包装 200公斤镀锌铁桶包装,也可按顾客要求进行包装。储运应储存于阴凉、干燥、通风良好的场所,钢瓶应垂直放置,避免受热

锂离子电池安全性问题(最新版)

锂离子电池安全性问题(最新 版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0176

锂离子电池安全性问题(最新版) 1、使用安全型锂离子电池电解质 目前锂离子电池电解液使用碳酸酯作为溶剂,其中线型碳酸酯能够提高电池的充放电容量和循环寿命,但是它们的闪点较低,在较低的温度下即会闪燃,而氟代溶剂通常具有较高的闪点甚至无闪点,因此使用氟代溶剂有利于抑制电解液的燃烧。目前研究的氟代溶剂包括氟代酯和氟代醚。 阻燃电解液是一种功能电解液,这类电解液的阻燃功能通常是通过在常规电解液中加入阻燃添加剂获得的。阻燃电解液是目前解决锂离子电池安全性最经济有效的措施,所以尤其受到产业界的重视。 使用固体电解质,代替有机液态电解质,能够有效提高锂离子

电池的安全性。固体电解质包括聚合物固体电解质和无机固体电解质。聚合物电解质,尤其是凝胶型聚合物电解质的研究取得很大的进展,目前已经成功用于商品化锂离子电池中,但是凝胶型聚合物电解质其实是干态聚合物电解质和液态电解质妥协的结果,它对电池安全性的改善非常有限。干态聚合物电解质由于不像凝胶型聚合物电解质那样包含液态易燃的有机增塑剂,所以它在漏液、蒸气压和燃烧等方面具有更好的安全性。目前的干态聚合物电解质尚不能满足聚合物锂离子电池的应用要求,仍需要进一步的研究才有望在聚合物锂离子电池上得到广泛应用。相对于聚合物电解质,无机固体电解质具有更好的安全性,不挥发,不燃烧,更加不会存在漏液问题。此外,无机固体电解质机械强度高,耐热温度明显高于液体电解质和有机聚合物,使电池的工作温度范围扩大;将无机材料制成薄膜,更易于实现锂离子电池小型化,并且这类电池具有超长的储存寿命,能大大拓宽现有锂离子电池的应用领域。 常规的含阻燃添加剂的电解液具有阻燃效果,但是其溶剂仍是易挥发成分,依然存在较高的蒸气压,对于密封的电池体系来说,

锂电池的安全性设计(标准版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 锂电池的安全性设计(标准版) Safety management is an important part of production management. Safety and production are in the implementation process

锂电池的安全性设计(标准版) 为了避免因使用不当造成电池过放电或者过充电,在单体锂离子电池内设有三重保护机构。一是采用开关元件,当电池内的温度上升时,它的阻值随之上升,当温度过高时,会自动停止供电;二是选择适当的隔板材料,当温度上升到一定数值时,隔板上的微米级微孔会自动溶解掉,从而使锂离子不能通过,电池内部反应停止;三是设置安全阀(就是电池顶部的放气孔),电池内部压力上升到一定数值时,安全阀自动打开,保证电池的使用安全性。 有时,电池本身虽然有安全控制措施,但是因为某些原因造成控制失灵,缺少安全阀或者气体来不及通过安全阀释放,电池内压便会急剧上升而引起爆炸。 一般情况下,锂离子电池储存的总能量和其安全性是成反比的,随着电池容量的增加,电池体积也在增加,其散热性能变差,出事故的可能性将大幅增加。对于手机用锂离子电池,基本要求是发生

安全事故的概率要小于百万分之一,这也是社会公众所能接受的最低标准。而对于大容量锂离子电池,特别是汽车等用大容量锂离子电池,采用强制散热尤为重要。 选择更安全的电极材料,选择锰酸锂材料,在分子结构方面保证了在满电状态,正极的锂离子已经完全嵌入到负极炭孔中,从根本上避免了枝晶的产生。同时锰酸锂稳固的结构,使其氧化性能远远低于钴酸锂,分解温度超过钴酸锂100℃,即使由于外力发生内部短路(针刺),外部短路,过充电时,也完全能够避免了由于析出金属锂引发燃烧、爆炸的危险。 另外,采用锰酸锂材料还可以大幅度降低成本。 提高现有安全控制技术的性能,首先要提高锂离子电池芯的安全性能,这对大容量电池尤为重要。选择热关闭性能好的隔膜,隔膜的作用是在隔离电池正负极的同时,允许锂离子的通过。当温度升高时,在隔膜熔化前进行关闭,从而使内阻上升至2000欧姆,让内部反应停止下来。 当内部压力或温度达到预置的标准时,防爆阀将打开,开始进

锂离子电池电解液用有机溶剂物性数据

锂离子电池电解液用有机溶剂物性数据 化学名称碳酸二甲酯(DMC)碳酸二乙酯(DEC)碳酸乙烯酯(EC)碳酸丙烯酯(PC)碳酸甲乙烯酯(EMC)碳酸甲丙酯(MPC)碳酸甲异丙酯(MiPC)别名二乙基碳酸酯1,2-丙二醇碳酸酯) 碳酸甲乙酯,乙酸乙酯 英文名称Dimethyl Carbonate Diethyl Carbonate Ethylene Carbonate Propylene carbonate Methyl-Ethyl Carbonate Methylpropyl Carbonate CAS号616-38-6 105-58-8 96-49-1 108-32-7 623-53-0 56525-42-9 分子式C3H6O3C5H10O3C3H4O3C4H6O3C4H8O3/ CH3COOC2H5C5H10O3 分子结构 分子量90.08 118.13 88.06 102.09 104.1 118.13 118.1 浓度≥99.99% ≥99.99% ≥99.99% ≥99.99% ≥99.95% 熔点/沸点/闪点4℃/89℃/18℃-43℃/126℃/33℃39℃/248℃/157℃-48℃/242℃/132℃-55℃/109℃/23℃-43℃/132℃/35℃-55℃/119℃ 密度(20℃) 1.06g/cm3 0.972g/cm2 1.41g/cm3 1.21g/cm3 1.00g/cm3 0.98g/cm3 1.01g/cm3 粘度(40℃)0.59mPa.S 0.75 mPa.S 1.9mPa.S 2.5mPa.S 0.65mPa.S 0.87mPa.S 0.74 mPa.S 介电常数 3.1c/v.m 2.8c/v.m 85.1c/v.m 65c/v.m 2.9c/v.m 2.8 c/v.m 2.9 c/v.m 还原/氧化电位-3.0V/+3.2V -3.0/+3.2V 外观无色透明液体透明液体无色针状或片状结晶, 或白色结晶体 无色透明/微黄色液体 无色透明液体有水果 香味 无色透明液体无色透明液体 特性有较强吸湿性,溶于乙醇、 乙醚等有机溶剂,不溶于水 Q/CH02–2003 具有吸湿性,不溶于水,溶 于醇、醚等有机溶剂。易燃, 易爆。Q/CH014--2003 有较强吸湿性,产品标准 Q/CH04—2003 有较强吸湿性,产品标准 Q/CH01—2003 具有较强吸湿性,不溶于水,溶 于醚、醇。化学性质不稳定,易 分解成醇和二氧化碳, Q/CH13-2003 具有较强吸湿性 用途提高其能量密度、增大放电能 力、提高使用稳定性及安全性。

锂电池电解液概述

锂离子电池电解液概述 一、锂离子电池电解液 电解液是锂离子电池四大关键材料之一,号称锂离子电池的血液,是锂离子电池获得高压、高比能等优点的保证。电解液主要由高纯度有机溶剂、电解质锂盐、必要添加剂等原料,在一定条件下,按一定比例配制而成。 1.1有机溶剂 有机溶剂一般用高介电常数溶剂于低粘度溶剂混合使用。常用的电解质锂盐有高氯酸锂、六氟磷酸锂、四氟硼酸锂等,从成本、安全性等多方面考虑,六氟磷酸锂是商业化锂离子电池采用的主要电解质。 锂离子电池电解液中常用的有机溶剂有碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、碳酸丙烯酯(PC)、丙烯酸乙酯(EA)、丙烯酸甲酯(MA)等。有机溶剂在使用前必须严格控制质量,溶剂的纯度于稳定电压之间有密切联系,有机溶剂的水分,对于配制合格电解液起着决定作用。水分降低至10-6之下,能降低六氟磷酸锂的分解、减缓SEI膜的分解、防止气涨等。利用分子筛吸附、常压或减压蒸馏、通入惰性气体的方法,可以使水分含量达到要求。为了获得具有高离子导电性的溶液,以便锂离子在其中快速移动,溶剂一般采用混合材料,如碳酸乙烯酯(EC)+碳酸二甲酯(DMC),碳酸乙烯酯(EC)+碳酸二乙酯(DEC)。 1.2电解质锂盐 电解质锂盐占电解液成本最大,约占到电解液成本的40%左右。LiPF6是最常用的电解质锂盐,其对负极稳定,电导率高,放电容量大,内阻小,充放电速度快。但对水分和HF及其敏感,易发生反应,其操作应在干燥气氛(如手套箱)中进行,不耐高温,80℃~100℃发生分解反应,生成五氟化磷和氟化锂。从成本、安全性等多方面考虑,六氟磷酸锂具有突出的离子电导率、较优的氧化稳定性和较低的环境污染等优点,是目前首选的锂离子电池电解质,也是商业化锂离子电池采用的主要电解质。除此之外还有LiBF4、LiPF6、LiBOB、LiFSI、LiPF2、LiTDI等一系列安全性高、循环性能好的锂盐电解质体系得到关注。

2019年中国锂电池电解液市场现状及趋势分析

2019年中国锂电池电解液市场现状及趋势 分析 锂离子电池工作原理是将电能转化为化学能储备在电极中,在需要的时候可以重新以电能释放。锂离子电池的核心材料主要有正极、负极、电解液和隔膜,其中电解液对综合性能的影响最大。 电解液的主要成分包括溶质、溶剂和添加剂。 电解液成分 由于电解液配方与添加剂的开发与应用是决定电解液产品差异化的核心要素,电解液生产厂商在开发初期具有较高的技术壁垒,但随着锂电子产业链的

整体发展,产品同质化的影响,导致电解液技术壁垒逐步打开,产业逐步进入市场化竞争状态。 电解液的直接下游是锂电池,随着补贴的退坡,产业链利润受到大幅压缩,产业进入阵痛与洗牌期,头部企业集中度高,在产业链中议价能力逐步增强。 电解液价格受上游原材料影响较大,导致国内电解液厂商陆续布局上游市场,控制电解液生产成本。2014年开始,新能源汽车的迅速发展,刺激电解液市场需求激增,由于产能不足,电解液、六氟磷酸锂的价格在2016年达到了历史最高点,随后行业产能大幅扩张造成产能严重过剩,大多数公司产能利用率低下,2018年行业进入了价格战的泥潭,电解液、六氟磷酸锂的价格也随之跌至谷底。2017-2019年,我国六氟磷酸锂价格从快速下跌到逐步企稳,2019年下半年至今,我国六氟磷酸锂价格稳定在8.5-9.5万元/吨之间。 受益于终端下游新能源汽车迅速发展、5G时代来临,国内电解液市场需求量有望继续保持较快速度的增长。 电解液一般是由高纯度的有机溶剂、电解质锂盐和必要的添加剂等主要材料在一定的条件下,按照某一特定的比例配置而成。电解质是最核心的组成部分,约占电解液原材料成本的60%,有机溶剂约占30%,添加剂约占10%。 因为六氟磷酸锂(LiPF6)在电解液总成本中占比较高,因此电解液价格主要受六氟磷酸锂(LiPF6)价格影响,历史上电解液价格走势和六氟磷酸锂(LiPF6)价格走势基本同步。 国内六氟磷酸锂产业化始于2008年,随着技术成熟与进步以及下游电解液需求急剧扩张,行业产能规模极具扩张,截至2019年国内电解液产能突破6万吨,占全球比重超过85%。

相关主题
文本预览
相关文档 最新文档