当前位置:文档之家› 数学分析第三版8-1不定积分的概念

数学分析第三版8-1不定积分的概念

数学分析

数学与信息科学学院罗仕乐

第八章不定积分8.1 不定积分的概念与基本积分公式8.2 换元积分法

8.3 分部积分法

8.4几类特殊函数的不定积分

8.1 不定积分的概念和基本积分

公式

第八章第1节

()x

x cos sin ='

x sin 是x cos 的原函数.

())

0(1

ln >='

x x x x ln 是x

1

在区间),0(+∞内的原函数.

如果在区间I 内,定义1:可导函数)(x F 的即I x ∈?,都有)

()(x f x F ='或dx x f x dF )()(=,那么函数)(x F 就称为)

(x f 导函数为)(x f ,或dx x f )(在区间I 内原函数.

一、原函数与不定积分的概念

原函数存在定理:

如果函数)(x f 在区间I 内连续,简言之:连续函数一定有原函数.问题:(1) 原函数是否唯一?

()x

x cos sin ='

()x

C x cos sin ='

+(为任意常数)

C 那么在区间I 内存在可导函数)(x F ,使I x ∈?,都有)()(x f x F ='.

(2) 若不唯一它们之间有什么联系?

关于原函数的说明:

(1)若,则对于任意常数,

)()(x f x F ='C C x F +)(都是)(x f 的原函数.

(2)若和都是的原函数,

)(x F )(x G )(x f 则C x G x F =-)()((为常数)

C 证[]

)

()()()(x G x F x G x F '-'='

-

)()(=-=x f x f C x G x F =-∴)()((为常数)C

根据定义,如果F (x )是f (x )的一个原函数,则

dx x f )(?=F (x )+C ,

其中C 是任意常数,称为积分常数。

二、不定积分

定义2函数f (x )的所有原函数称为f (x )的不定积分,记作 dx x f )(?。

任意常数

分号被积函数

C

x F dx x f +=?

)()(被积表达式

分变量

不定积分的相关名称:

?———叫做积分号,f (x ) ——叫做被积函数,f (x )dx —叫做被积表达式,x ———叫做积分变量。

如果F (x )是f (x )的一个原函数,则dx x f )(?=F (x )+C 。 x <0时,[ln x 1)1(1=-?-=x dx x +-=?)ln( 1 C x dx x

+=?||ln 1

(x ≠0)。

x ,所以C x xdx +=?sin cos 。 x 2

,所以C x dx x +=?3

2

3。 时,(ln x )'x 1=,x dx x

+=?ln 1

C (x >0);

[ln(-x )]'x

x x 1)1(1-?-=,x dx x +-=?)ln( 1x 11(1=-?-=,C x dx x +-=)ln( 1(x <0)。 1 因为(sin x )'=cos ,所例1.例2 因为(x 3

)' =3,所2.

例3 求函数x

x f 1)(=的不定积分。 3.

解:当x >0(l 解:

例4.求过点(1, 3),且其切线斜率为2x 的曲线方程。

解:设所求的曲线方程为y =f (x ),则y '=f '(x )=2x ,即f (x )是2x 的一个原函数。因为所求曲线通过点(1, 3),故

3=1+C ,C =2。

于是所求曲线方程为y =x 2+2。

-2-1O 1

2

x

-2

-1

1

2y

y =x 2+2

y =x 2

(1, 3) . 因为C x xdx +=?2

2,

所以y =f (x )=x 2+C 。

实例μμμx x ='

??

? ??++11

.

11

C x dx x ++μ=?+μμ

?启示能否根据求导公式得出积分公式?结论

既然积分运算和微分运算是互逆的,因此可以根据求导公式得出积分公式.

)

1(-≠μ四、基本积分公式

本积分表

?+

=k

C

kx

kdx(

)1(是常数);

);

1

(

1

)2(

1

-

μ

+

+

μ

=

+

μ

μ

?C

x

dx

x

;

ln

)3(?+

=C

x

x

dx

说明:?

>,0

x,

ln

?+

=C

x

x

dx

='

-

<])

[ln(

,0x

x,

1

)

(

1

x

x

x

='

-

-

,

)

ln(

?+

-

=

?C

x

x

dx

,

|

|

ln

?+

=

∴C

x

x

dx

简写为.

ln

?+

=C

x

x

dx

=+?dx x 2

11

)4(;arctan C x +=-?dx x

2

11

)5(;arcsin C x +?=xdx cos )6(;

sin C x +?=xdx sin )7(;cos C x +-=?x dx 2cos )

8(?=xdx 2

sec ;

tan C x +=?x

dx 2sin )9(?=xdx 2

csc ;

cot C x +-

?=xdx x tan sec )10(;sec C x +?=xdx x cot csc )11(;

csc C x +-=?dx e

x )

12(;

C e x

+=?dx a x

)13(;ln C a a x +?=xdx sinh )14(;cosh C x +?=xdx cosh )15(;

sinh C x +

?=±dx x g x f )]()([)

1(;

)()(??±dx x g dx x f 证

[]

'

±??dx x g dx x f )()(

[][]'

±'=??dx x g dx x f )()().

()(x g x f ±=∴等式成立.

(此性质可推广到有限多个函数之和的情况)

五、不定积分的性质

)

0(,)()()2(≠=??k dx x f k dx x kf

例求积分.

2

dx x x ?解

dx x x

?2

dx

x ?=2

5C x ++=+12

512

5.722

7C x +=根据积分公式(2)C

x

dx x ++=

+?1

1

μμμ

dx =?x -3

dx 1x -3+1

+1

x

31+-= C 221x

-=+C 。

3

x

x dx 4

-x dx 13

413

4+-=

+-x

+C 3x

-=3

+ C 。

1 ?3例1.

3 ?3

=?

例2.

dx x g x f )]()([±?dx x g dx x f ??±=)()(,?

?=dx x f k dx x kf )()(。 x +?2

3x x x x +-=31023dx )51-

dx x dx x ??-=2

12

5

5dx x dx x ??-=2

12

55

C x -=2

73

2

572C 7。

4 dx x x )5(2

-?x x (2

25?=例3.

dx x g x f )]()([±?dx x g dx x f ??±=)()(,??=dx x f k dx x kf )()(。

dx x

x x )1

33(2-+-=?

dx x

dx x dx xdx ????-+-=21

133

221x =-3x +3ln|x |x

1

++C 。

x 22

5 dx x

x ?-2

3

)

1(?-+-=dx x x x 3

133例4.

第五章_第一节_不定积分的概念、性质.

经济数学——微积分 4 不定积分的概念与性质 原函数与不定积分的概念 不定积分的几何意义 基本积分表 不定积分的性质 小结思考题 经济数学——积分 二—原函数与不定积分的概念 定义如果在区I 刖内,可导函数尸(X)的 导函数为/(X ),即 We/,都有F\x) = f(x) 或 dF(x) = /(x)dx,那么函数F(x)就称为/(x) 或f(x)dx 在区间 /内原函数?(primitive furwtion ) 例(sinx) =cosx sinx 是 cos 兀的原函数. (inx) =— (X >0) X In X 是1在区间((),+oo)内的原函数. X 第一节 五、

定理原函数存在定理: 如果函数八X)在区间内连续, 那么在区 间^内存在可导函数F(x), 使Hxef,都有F\x) = f(x). 简言之:连续函数一定有原函数. 问题:(1)原函数是否唯一? (2)若不唯一它们之间有什么联系? 1 f 例(sinx) =cosx (sinx + C) =cosx (C为任意常数) 经济数学一微积分 关于原函数的说明: (1) (2) 证 说明F(x)+c是f (兀舶全部原粛或 经济数学一微积分

经济数学——微积分 不定积分(indefinite integral )的定义: 在区间/内,函数/(兀)的带有任意 常数项的原函数称为/(兀)在区I 可内的 不定积分,记为f/(xMr ? 经济数学——微积分 6 =X% /. fx^dx =—— 十 C. J 」 6 例2求f --------- dr. J 1 + X- / J 解?/ (arctanx)= ,, I ‘ 1 + 疋 心& =皿2 被积函数 『积分号 积分变量 寒积表达式 F(x)

数学分析不定积分

第八5章不定积分 教学要求: 1.积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。 2.换元积分公式与分部积分公式在本章中处于十分重要的地位。要求学生:牢记换元积分公式和选取替换函数(或凑微分)的原则,并能恰当地选取替换函数(或凑微分),熟练地应用换元积分公式;牢记分部积分公式,知道求哪些函数的不定积分运用分部积分公式,并能恰当地将被积表达式分成两部分的乘积,熟练地应用分部积分公式;独立地完成一定数量的不定积分练习题,从而逐步达到快而准的求出不定积分。 3.有理函数的不定积分是求无理函数和三角函数有理式不定积分的基础。要求学生:掌握化有理函数为分项分式的方法;会求四种有理最简真分式的不定积分,知道有理函数的不定积分(原函数)还是初等函数;学会求某些有理函数的不定积分的技巧;掌握求某些简单无理函数和三角函数有理式不定积分的方法,从理论上认识到这些函数的不定积分都能用初等函数表示出来。 教学重点:深刻理解不定积分的概念;熟练地应用换元积分公式;熟练地应用分部积分公式; 教学时数:18学时

§ 1 不定积分概念与基本公式(4学时)教学要求:积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。 教学重点:深刻理解不定积分的概念。 一、新课引入:微分问题的反问题,运算的反运算. 二、讲授新课: (一)不定积分的定义: 1.原函数: 例1填空: ; ( ; ; ; ; . 定义. 注意是的一个原函数. 原函数问题的基本内容:存在性,个数,求法. 原函数的个数: Th 若是在区间上的一个原函数, 则对,都是在区间上的原函数;若也是在区间上的原函数,则必有. ( 证)

数学分析第八章不定积分

第八章不定积分 §1 不定积分概念与基本积分公式 正如加法有其逆运算减法,乘法有其逆运算除法一样,微分法也有它的逆运算———积分法.我们已经知道,微分法的基本问题是研究如何从已知函数求出它的导函数,那么与之相反的问题是:求一个未知函数,使其导函数恰好是某一已知函数.提出这个逆问题,首先是因为它出现在许多实际问题之中.例如:已知速度求路程;已知加速度求速度;已知曲线上每一点处的切线斜率(或斜率所满足的某一规律),求曲线方程等等.本章与其后两章(定积分与定积分的应用)构成一元函数积分学. 一原函数与不定积分 定义1 设函数f 与F 在区间I 上都有定义.若 F ′( x) = f( x ), x ∈I, 则称F 为f 在区间I 上的一个原函数. - 1 例如, 1 3 x 3 是x 2 在( - ∞,+ ∞) 上的一个原函数, 因为(1 3 1 x 3)′= x 2 ; 又如 2 cos 2 x 与- 2 cos 2 x + 1 都是sin 2 x 在(-∞, + ∞) 上的原函数, 因为 ( -1 cos 2 x )′= ( -1 cos 2 x + 1)′= sin 2 x . 2 2 如果这些简单的例子都可从基本求导公式反推而得的话,那么 F( x) = x arctan x - 1 ln (1 + x 2 ) 2 是f ( x) = arctan x 的一个原函数, 就不那样明显了.事实上, 研究原函数必须解决下面两个重要问题: 1 .满足何种条件的函数必定存在原函数? 如果存在, 是否唯一? 2 .若已知某个函数的原函数存在, 又怎样把它求出来? 关于第一个问题, 我们用下面两个定理来回答; 至于第二个问题, 其解答则是本章接着要介绍的各种积分方法.

高中数学定积分知识点

数学选修2-2知识点总结 一、导数 1.函数的平均变化率为 =??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或 0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;

6、常见的导数和定积分运算公式:若() g x均可导(可积),则有: f x,() 用导数求函数单调区间的步骤: ①求函数f(x)的导数'() f x ②令'() f x>0,解不等式,得x的范围就是递增区间. ③令'() f x<0,解不等式,得x的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。 7.求可导函数f(x)的极值的步骤: (1)确定函数的定义域。 (2) 求函数f(x)的导数'() f x (3)求方程'() f x=0的根 (4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/() f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如

高中数学-定积分的概念测试

高中数学-定积分的概念测试 1.定积分??0 1 1d x 的值等于 ( ) A .0 B .1 C.1 2 D .2 答案 B 2.已知??1 3 f (x )d x =56,则 ( ) A.??1 2 f (x )d x =28 B.??2 3f (x )d x =28 C.??1 22f (x )d x =56 D.??12f (x )d x +??2 3 f (x )d x =56 答案 D 3.如图所示,??a b f 1(x )d x =M ,??a b f 2(x )d x =N ,则阴影部分的面积为 ( ) A .M +N B .M C .N D .M -N 答案 D

4.不用计算,根据图形,用不等号连接下列各式 ( ) (1)??01 x d x ________??0 1x 2d x (图1); (2)??01x d x ________??1 2 x d x (图2); (3)??024-x 2d x ________??0 2 2d x (图3). 答案 (1)> (2)< (3)<

1.定积分可以表示图形的面积 从几何上看,如果在区间[a ,b ]上,函数f (x )连续且恒有f (x )≥0,那么定积分??a b f (x )d x 就表示由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积,这就是定积分??a b f (x )d x 的几何意义. 2.定积分表示图形面积的代数和 被积函数是正的,定积分的值也为正,如果被积函数是负的,函数曲线在x 轴之下,定积分的值就是带负号的曲边梯形的面积.当被积函数在积分区间上有正有负时,定积分就是x 轴之上的正的面积与x 轴之下的负的面积的代数和. 3.此外,定积分还有更多的实际意义,比如在物理学中,可以用定积分表示功、路程、压力、体积等. 4.定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关,即??a b f (x )d x =??a b f (u )d u =??a b f (t )d t =…(称为积分形式的不变性),另外定积分??a b f (x )d x 与积分区间[a ,b ]息息相关,不同的积分区间,所得的值也不同,例如??01(x 2+1)d x 与??0 3(x 2 +1)d x 的值就不同.

定积分的概念和性质公式

1. 曲边梯形的面积 设在区间上,则由直线、、及曲线所围成的图形称为曲边梯形,下面求这个曲边梯形的面积 分割求近似:在区间中任意插入若干个分点将分成 n 个小区间 ,小区间的长度 在每个小区间上任取一点作乘积, 求和取极限:则面积取极限

其中,即小区间长度最大者趋于零。 2.变速直线运动的路程 设某物体作变速直线运动,速度是上的连续函数,且,求在这段时间内物体所经过的路程。 分割求近似:在内插入若干分点将其分成 n 个小区间,小区间长度,。任取, 做 求和取极限:则路程取极限 定义设函数在上有界,在中任意插入若干个分点 将分成 n 个小区间,其长度为,在每个小区间 上任取一点,作乘积,并求和, 记,如果不论对怎样分法,也不论小区间上的点

怎样取法,只要当时,和总趋于确定的极限,则称这个极限 为函数在区间上的定积分,记作,即 ,(*) 其中叫被积函数,叫被积表达式,叫积分变量,叫积分下限,叫积分上限,叫积分区间。叫积分和式。 说明: 1.如果(*)式右边极限存在,称在区间可积,下面两类函数在区间 可积,(1)在区间上连续,则在可积。(2)在区间 上有界且只有有限个间断点,则在上可积。 2.由定义可知,定积分的值只与被积函数和积分区间有关,而与积分变量无关,所以 3.规定 时, 在上时, 表示曲线、两条直线、 与轴所围成的曲边梯形的面积;

在上时, 表示曲线、两条直线、与轴所围成的曲边梯形的面积(此时,曲边梯形在轴的下方); 例1 利用定积分的几何意义写出下列积分值 (1)(三角形面积)(2)(半圆面积)

设可积 性质1 性质2 性质3 (定积分对区间的可加性)对任何三个不同的数,有 性质4 性质5 如果在区间上,,则 推论 性质6 (定积分的估值)设 M 及 m 分别是函数在区间上的最大值及最小值,则 性质7 (定积分中值定理) 如果函数在区间上连续,则在上至少有一点, 使成立

巧用定积分求极限(数学分析)

定积分在求极限中的应用 1、知识准备 1.1绪论 微积分学在大学的数学学习中占有相当重要的地位.然而,求极限又是微积分学中常常要面临的问题.因此,积累更多求极限的方法应是每位大学生必备的素养. 求极限的方法层出不穷,最常用的方法有极限的定义和性质,重要极限的结论,洛必达法则以及泰勒公式等.应用极限的定义时,往往是在极限的结果已经比较明显,只需要根据极限的定义把相关式子进行放缩便可得到相应的结果.但是,这种方法一方面叙述上比较麻烦,另一方面也只适用于看上去容易放缩的式子.重要极限的结论形式上要求非常严格, 也只能解决两种形式的极限问题.洛必达法则是用于解决“00”型的极限和“∞ ∞ ”型极限的. 泰勒公式适宜于解决求分式极限中分子或分母有加减运算的问题,通过泰勒展式后可以达到某些项抵消效果.但若仔细观察这些方法,其特点不是表达较繁琐就是仅仅应用到微分学知识.事实上,微分学和积分学的关系正如中小学时代学习过的加法与减法,乘法与除法,乘方与开方以及幂运算与取对数运算的关系一样,他们互为逆运算.倘若也能用到积分学知识来解决求极限的问题,那么求极限的方法才算完美.而利用定积分求极限正体现了这一理念. 1.2定积分的概念 下面首先让我们回顾一下定积分以及极限的定义: 定积分:设函数()f x 在闭区间[],a b 上有定义,在闭区间[],a b 内任意插入 n-1个分点将 [],a b 分成 n 个区间[,]x i i x x -,记(1,2,,i i i x x x i n ?=-=),1[,]i i x x ξ-?∈,作乘积()i i f x ξ?(称 为积分元),把这些乘积相加得到和式 1 ()n i i i f x ξ=?∑(称为积分形式)设 {}max :1i x i n λ=?≤≤,若0 1 lim ()n i i i f x λξ→=?∑极限存在唯一且该极限值与区是[],a b 的分法 及分点i ξ的取法无关,则称这个唯一的极限值为函数()f x 在[],a b 上的定积分,记作 b a ()f x dx ?,即0 1 ()lim ()n b a i i i f x dx f x λξ→=?=?∑.否则称()f x 在[],a b 上不可积. 注1:由牛顿莱布尼兹公式知,计算定积分与原函数有关,故这里借助了不定积分的符号. 注2:若()b a f x dx ?存在,区间[],a b 进行特殊分割,分点i ξ进行特殊的取法得到的和式极限存在且与定积分的值相等,但反之不成立,这种思想在考题中经常出现,请读者要真正理

数学分析8不定积分总练习题

第八章 不定积分 总练习题 求下列不定积分: (1)∫4 3x 1 x 2x --dx ;(2)∫xarcsinxdx ;(3)∫ x 1dx +;(4)∫e sinx sin2xdx ; (5)∫x e dx ;(6)∫1 x x dx 2-;(7)∫x tan 1x tan 1+-dx ;(8)∫32)2-x (x -x dx ; (9)∫ x cos dx 4;(10)∫sin 4 xdx ;(11)∫4 x 3x 5-x 23+-dx ;(12)∫arctan(1+x )dx ; (13)∫2x x 47+dx ;(14)∫x tan tanx 1tanx 2++dx ;(15)∫100 2 x) -(1x dx ; (16)∫2x arcsinx dx ;(17)∫xln ??? ??+x -1x 1dx ;(18)∫x sinx cos dx 7;(19)∫e x 2 2x 1x -1??? ??+dx ; (20)I n =∫ u v n dx, 其中u=a 1+b 1x ,v=a 2+b 2x ,求递推形式解. 解:(1)∫ 4 3x 1 x 2x --dx=∫41x dx-2∫12 1x dx-∫4 1x - dx =5445x -13241213x -3 4 ∫43 x +C. (2)∫xarcsinxdx=-2 1 ∫arcsinxd(1-x 2)=-2 1(1-x 2)arcsinx+2 1 ∫(1-x 2)darcsinx =-21(1-x 2)arcsinx+21∫2x -1dx =-21(1-x 2)arcsinx+21 ∫t sin -12dsint =-21(1-x 2)arcsinx+21∫cos 2tdt=-21(1-x 2)arcsinx+81 ∫(1+cos2t)d2t =-21(1-x 2)arcsinx+4t +81sin2t+C=-21(1-x 2)arcsinx+41arcsinx +4 1 sintcost+C =2x 2arcsinx-41arcsinx +2x -14 x +C. (3)∫x 1dx +=∫t 1dt 2+=∫t 12tdt +=2∫t 1t 1++dt-2∫t 1dt +=2t-2ln|1+t|+C =2x -2ln|1+x |+C. (4)∫e sinx sin2xdx=2∫e sinx sinxcosxdx=2∫sinxde sinx =2e sinx sinx-2∫e sinx dsinx

高中数学-定积分的概念练习

高中数学-定积分的概念练习 一、基础达标 1.下列命题不正确的是 ( ) A .若f (x )是连续的奇函数,则 B .若f (x )是连续的偶函数,则 C .若f (x )在[a ,b ]上连续且恒正,则??a b f (x )d x >0 D .若f (x )在[a ,b ]上连续且??a b f (x )d x >0,则f (x )在[a ,b ]上恒正 答案 D 2.直线x =1,x =-1,y =0及曲线y =x 3 +sin x 围成的平面图形的面积可表示为 ( ) A. B .2??0 1(x 3 +sin x )d x C . D.??0 1(x 3 +sin x )d x 答案 B 3.已知??a b [f (x )+g (x )]d x =18,??a b g (x )d x =10,则??a b f (x )d x 等于 ( ) A .8 B .10 C .18 D .不确定 答案 A 4.已知定积分??06f (x )d x =8,则f (x )为奇函数,则??-6 6f (x )d x = ( ) A .0 B .16 C .12 D .8 答案 A 5.根据定积分的几何意义,用积分表示如图所示各图的阴影部分的面积, S =________.

答案 ??a b [f 1(x )-f 2(x )]d x (两图积分式相同) 6.由定积分的几何意义,定积分sin x d x 表示________. 答案 由直线x =0,x =π 2,y =0和曲线y =sin x 围成的曲边梯形的面积 7.根据定积分的几何意义推出下列积分的值. (1) x d x ;(2) cos x d x . 解 若x ∈[a ,b ]时,f (x )≥0,则??a b f (x )d x 的几何意义是表示由直线x =a ,x=b y =0和曲线y =f (x )围成的平面图形的面积;若x ∈[a ,b ]时,f (x )≤0,则??a b f (x )d x 表示所围成的图形面积的负值. (1)如图①,x d x =-A 1+A 1=0. (2)如图②,cos x d x =A 1-A 2+A 3=0. 二、能力提升 8.和式 1n +1+1n +2+ (12) ,当n →∞时的极限值用定积分式子可表示为 ( ) A.??011x d x B.? ?0 1 1 x +1d x

数学分析不定积分

8.1 不定积分概念与基本积分公式(2学时) 【教学目的】深刻理解原函数与不定积分的概念;牢记基本积分表;掌握不定积分的线形运算法则。 【教学重点】不定积分的概念,基本积分表,不定积分的线形运算法则。 【教学难点】求不定积分的技巧。 【教学过程】 一、原函数与不定积分 (一) 原函数 定义1 设函数与在区间)(x f )(x F I 上有定义。若 )()(x f x F =′, I x ∈, 则称为在区间)(x F )(x f I 上的一个原函数。 如:331x 是在R 上的一个原函数;2x x 2cos 21?, 12cos 2 1+x ,,等都有是在R 上的原函数——若函数存在原函数,则其原函数不是唯一的。 x 2sin x 2cos ?x 2sin )(x f 问题1 在什么条件下必存在原函数?若存在,其个数是否唯一;又若不唯一,则有多少个? )(x f 问题 2 若函数的原函数存在,如何将它求出?(这是本章的重点内容)。 )(x f 定理1 若在区间)(x f I 上连续,则在)(x f I 上存在原函数。 )(x F (证明在第九章中进行。) 说明:(1)由于初等函数在其定义域内都是连续的,故初等函数在其定义域内必存在原函数(但其原函数不一定仍是初等函数)。(2)连续是存在原函数的充分条件,并非必要条件。 定理2 设是在在区间)(x F )(x f I 上的一个原函数,则(1)设是在在区间C x F +)()(x f I 上的原函数,其中C 为任意常量(若存在原函数,则其个)(x f

数必为无穷多个)。(2)在)(x f I 上的任何两个原函数之间,只可能相差上个常数(揭示了原函数间的关系)。 证:(i)这是因为[] .),()()(I x x f x F C x F ∈=′=′+(ii)设F 和G 是f 在I 上的任意两个原函数,则有 [] I x x f x f x G x F C x F ∈=?=′?′=′+,0)()()()()(根据第六章拉格朗日中值定理的推论,知道I x C x G x F ∈≡?,)()(. 口 (二) 不定积分 定义 2 函数在区间)(x f I 上的原函数的全体称为在)(x f I 上的不定积分,记作: ∫dx x f )( 其中∫积分号;被积函数; ????)(x f ??dx x f )(被积表达式;??x 积分变量。 注1: 是一个整体记号; ∫dx x f )(注2:不定积分与原函数是总体与个体的关系,即若是的一个原函数,则的不定积分是一个函数族)(x F )(x f )(x f {}C x F +)(,其中是任意常数,于是,记为:∫=。 C dx x f )(C x F +)(此时称C 为积分常数,它可取任意实数。故有 ——先积后导正好还原; ∫=′)(])([x f dx x f 或 。 ∫=dx x f dx x f d )()( ∫——先导后积还原后需加上一个常数(不能完全还原)。 +=′C x f dx x f )()(或 ∫。 +=C x f x df )()(如: C x dx x +=∫332, C x xdx +?=∫2cos 212sin 。 不定积分的风何意义: 若是的一个原函数,则称的图象为的一条积分曲线。于是,的不定积分在几何上表示的某一条)(x F )(x f )(x F y =)(x f )(x f )(x f

定积分的概念与性质练习

第一节 定积分的概念与性质 一、选择题 1. A ; 2. C . 二、填空题 1. (1)1; (2)0; (3)4 π. 2. (1)1 2 x dx ? > 1 30 x dx ? , (2)2 1ln xdx ? > () 2 2 1ln x dx ?, (3) 20 xdx π ? < 20 sin xdx π ? , (4)4 3 ln xdx ? < () 4 2 3ln x dx ?. 三、 解 由于()3f x x =在[]0,1上连续,故积分2 21 x dx -? 是存在的,且它与分法无关,同 时也与点的取法无关. 将区间[]0,1n 等分,得1 i x n = ,取() 1,2,, i i i n n ξ== 作和 ()2 3 2 1 1 13 344 0001114 n n n n i i i i i n n i S x i n n n n ξ---===+??==== ???∑∑∑ 于是 1 lim 4n n S →∞= 即 13 014 x dx =?. 四、 细棒的质量()0 l x dx ρ?. 五、 1 13 x e dx -+? 311 x e dx +-=-?. 设()()1 1,0x x f x e f x e ++'==>,所以()f x 在[]1,3-内单调增加, 从而 ()()()13f f x f -≤≤,即1 41x e e +≤≤. 于是 3 141 44x e dx e +-≤≤? 从而 1 4 13 44x e e dx -+-≤ ≤-? . 六、 设()()2 21,41f x x x f x x '=-+=-,令()0,f x '=得驻点1 4 x = . ()17101,,1482f f f ???? === ? ????? .所以 min ()f x =1, max ()f x =78. 1≤≤ 由定积分性质,得 1 2012≤≤ ?.

高中数学定积分的概念教案新人教版选修2-2

§1.5.3定积分的概念 教学目标: 1.通过求曲边梯形的面积和汽车行驶的路程,了解定积分的背景; 2.借助于几何直观定积分的基本思想,了解定积分的概念,能用定积分定义求简单的定积分; 3.理解掌握定积分的几何意义. 教学重点:定积分的概念、用定义求简单的定积分、定积分的几何意义. 教学难点:定积分的概念、定积分的几何意义. 教学过程: 一.创设情景 复习: 1. 2二.新课讲授 1.定积分的概念 一般地,设函数()f x 在区间[ ,]a b 上连续,用分点 0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x D (b a x n -D =),在每个小区间 []1,i i x x -上任取一点()1,2, ,i i n x =L ,作和式: 11 ()()n n n i i i i b a S f x f n x x ==-=D =邋 如果x D 无限接近于0(亦即n ? )时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx =ò, 其中 - ò积分号,b -积分上限,a -积分下限,()f x -被积函数,x -积分变量, [,]a b -积分区间,( )f x dx -被积式。 说明:(1)定积分() b a f x dx ò是一个常数,即n S 无限趋近的常数S (n ? 时)记 为 ()b a f x dx ò,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取 点[]1,i i i x x x -?;③求和:1 ()n i i b a f n x =-?;④取极限:() 1 ()l i m n b i n a i b a f x dx f n x =-=?ò (3)曲边图形面积:()b a S f x dx = ò;变速运动路程2 1 ()t t S v t dt =ò ;变力做功 ()b a W F r dr = ò 2.定积分的几何意义

人教版高中数学定积分概念及其运算

第 1 页 定 积 分 一、定积分的概念 1、曲边梯形的面积 分割→近似取代→求和→求极限 说明:(1)常用的求和公式 )12)(1(61...3212222++=++++n n n n 223333)1(4 1...321+=++++n n n (2)在定积分理论中,这种分割是任意的,只要保证每个区间的长度都向于0.在这里“等分”与“任意分割”等价的。 2、定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点 0121i i n a x x x x x x b -=<<<<<<<= 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ= ,作和式:11()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx =? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 3、定积分的几何意义 从几何上看,如果在区间[]b a ,上函数 )(x f 连续且恒有0)(≥x f 。那么定积分?b a dx x f )(表示由直线a x = b x =,)(b a <,0=y 和曲线)(x f y =所围成的曲边梯形 的面积。 4.性质1 、 ??=b a b a dx x f k dx x kf )()( (其中k 是不为0的常数) (定积分的线性性质) 性质2、 1212[()()]()()b b b a a a f x f x dx f x dx f x dx ±=±??? (定积分的线性性质) 性质3 、 ()()()() b c b a a c f x dx f x dx f x dx a c b =+<

数学分析9.1定积分概念

数学分析9.1定积分 概念 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第九章 不定积分 1 定积分概念 一、问题提出 1、曲边梯形的面积:设f 为[a,b]上的连续函数,且f(x)≥0,由曲线y=f(x),直线x=a ,x=b 以及x 轴所围成的平面图形,称为曲边梯形. 在[a,b]内任取n-1个分点,依次为:a=x 0

F(x)≈F(ξi ), x ∈[x i-1,x i ], i=1,2,…,n. 于是质点从x i-1位移到x i 时,力F 所作的功就近似等于F(ξi )△x i , 从而W ≈∑=n 1i F (ξi )△x i (△x i =x i -x i-1). 对[a,b]作无限细分时,和式与某一常数无限接近,则把此常数定义为变力所作的功W. 注:解决这类问题的思想方法概括为“分割,近似求和,取极限”. 二、定积分的定义 定义1:设闭区间[a,b]内有n-1个点,依次为:a=x 0

(新课程)高中数学《1.5定积分的概念》导学案 新人教A版选修22

学习目标 1.理解曲边梯形面积的求解思想, 掌握其方法步骤; 2.了解定积分的定义、性质及函数在上可积的充分条件; 3.明确定积分的几何意义和物理意义; 4.无限细分和无穷累积的思维方法. 学习过程 一、课前准备 (预习教材,找出疑惑之处) 复习1:函数23 (sin) y x =的导数是 复习2:若函数2 log(23) a y x x =--的增区间是(,1) -∞-,则a的取值范围是 二、新课导学 学习探究 探究任务一:曲边梯形的面积 问题:下图的阴影部分类似于一个梯形,但有一边是曲线() y f x =的一段,我们把直线x a =,x b =() a b ≠,0 y=和曲线() y f x =所围成的图形称为曲边梯形. 如何计算这个曲边梯形的面积呢? 研究特例:对于1 x=,0 y=,2 y x =围成的图形(曲边三角形)的面积如何来求呢? 新知:1.用流程图表示求曲边三角形面积的过程 分割?近似代替?求和?取极限 2.定积分的定义: 1 ()lim() n b i a n i b a f x dx f n ξ →∞ = - =∑ ? 3.定积分的几何意义:

4.定积分的性质: (1)()()b b a a kf x dx k f x dx =?? (k 为常数) (2)1212[()()]()() b b b a a a f x f x dx f x dx f x dx ±=±??? (3)()()() b c b a a c f x dx f x dx f x dx =+???(其中a c b <<) 试试:求直线0,2,0x x y ===与曲线2y x =所围成的曲边梯形的面积. 反思:在求曲边梯形面积过程中,你认为最让你感到困难的是什么?(如何分割,求和逼近是两大难点) 典型例题 例1 利用定积分的定义,计算1 30x dx ?的值 变式:计算2 30x dx ?的值,并从几何上解释这个值表示什么?

微积分、高等数学和数学分析的差别

数学分析对于数学专业的学生是迈进大学大门后,需要修的第一门课,也是最基础最重要的一门课程。但对于非数学专业的朋友们是个陌生的概念,如果身边有人问我数学分析学什么?我会毫不犹豫地告诉他们就是微积分,那么似乎所有人都会接着提一个问题:那和我们学的微积分有什么差异?为什么我们学一学期你们要学一年半到两年啊?囧... ...这个问题就不容易回答了,于是我只能应付说学得细了,但其实并非仅仅如此。 对这个问题我在学习数学分析的过程中是不能说清楚的,正因为如此,起先学分析完全是乱学,没有重点没有次序的模仿,其结果就是感觉自己学到的东西好比是一条细线拴着好多个大秤砣,只要有一点断开,整个知识系统顿时倾覆。我也一直在思考这个问题,但直到在北师大跟着王昆扬老师学了一学期实变函数论之后,我才意识到数分与高数真正的区别在于何处。 先从微积分说起,在国内微积分这门课程大致是供文科、经济类学生选修的,其知识结构非常清晰,主要内容就是要说清两件事:第一件介绍两种运算,求导与求不定积分,并且说明它们互为逆运算。第二件介绍基础的微分学和积分学,并且给出它们之间的联系——Newton-Leibniz公式。这里需要强调的是,求不定积分作为求导数的逆运算属于微分学而不属于积分学,真正属于积分学的是Riemann定积分。不定积分与定积分虽然在字面上只差一字,但从数学定义来看却有本质的区别,不定积分是找一个函数的原函数,而Riemann定积分则是求Riemann和的极限,事实上它们之间毫无关系,既存在着没有原函数但Riemann可积的函数,也存在着有原函数但Riemann不可积的函数。但无论如何Newton-Leibniz公式好比一座桥梁沟通了不定积分(微分学)和定积分(积分学),这也是Newton-Leibniz公式被称为微积分基本定理的原因。因此我们可以看出,微积分的核心内容就是学习两种新运算,了解两样新概念,熟悉一条基本定理而已。 对于高等数学要求的层面就要比微积分高一些了,国内高等数学主要是为非数学专业的理工科学生开设的,主要的目的是解决工程上遇到的一些问题,例如求体积、求周长,求速度等等。所以高等数学除了要介绍数学知识更要学生理解各个数学概念的实际意义是什么。比如求导可以理解为求瞬时速度,可以理解求增长律,积分可以理解为求面积,求功等等。对于实际问题,数据往往是复杂的,算式也往往是冗长的,对于不易积分,不易求导的实际问题,我们怎么去求其高精度的近似解呢?那么就需要引进级数这一概念,例如将不易找到原函数的函数进行Taylor展开再逐项积,再例如利用Newton差值法计算方程的近似解。在这些问题中最令人苦恼的往往都是复杂的计算,是故高等数学对学生的计算能力要求非常高。于是高等数学的主要内容就是三条:理解数学概念背后的实际含义,熟练运用数学工具求导求积分,会使用一些手段对实际问题进行精确估计。这些可以看作是对微积分的运用,但一切仍然停留在对运算理解上。 而数学分析与以上两门课程有着本质的区别,数学分析作为数学系本科生的基础课是整个分析学的基础。什么是分析学?是分析变量以及诸多变量之间关系的学科,在数学中主要利用函数来刻画变量与变量间的关系,所以数学分析的研究主体应当是函数。在中学,我们已经学习过六类简单初等函数(常指对幂,正反三角),并且学习过一些研究初等函数的手段,但这些函数都是极其特殊的,比如他们都是逐段连续的,并且是无穷阶可导的。而学习数学分析的目的就是将函数系进行大范围扩张,去学习并且研究那些解析式不规则、不连续或者不可导的函数,这样的函数比起连续的函数可以说要多无穷多倍。那用什么方式去刻画这样的函数呢?数学分析中介绍的方法主要有两个:变限积分(尽管Riemann可积函数的变限积分也是连续的)与函数项级数。特别的,所有的初等函数都可以表示为函数项级数,但函数项级数要比初等函数的范围大很多很多,我们可以利用它构造各种千奇百怪的函数,例如处处不可导的连续函数,在有界区间内图像长度为无穷大的函数等等。这些函数的表示要比初等函数复杂很多,研究其变化性质就会变得困难得多,对此我们需要学习一些系统的定理与方法,将这些知识组合在一起就构成了数学分析这门学科。与微积分、高等代数有明显的区分,学数学分析的目的不是学习导数或者积分这样的运算,而是要扩大函数范围,学习研究复杂函数的方法。 记得在学习数学分析的时候,我曾经查阅过Liouville和Chebyshev的文章,特意去了解那些不具有初等原函数的初等函数。当时去看这些文章的初衷主要是觉得这样的函数太神奇,太不可思议了。对于其中不懂的问题,我曾经请教过老师,但没想到会招来老师极度的不满:“你研究这个毫无意义,你之所以觉得这种函数有趣,是因为你脑子里对初等函数与复杂函数还是有明显的界限,说明你没学懂,如果你把数学分析真的学懂了,你就会认识到研究这种问题,就和讨论Sin(x)为什么不是Ln(x)一模一样的无聊... ...”我正是在听完这句话之后才恍然大悟的。

数学分析9.1定积分概念

第九章 不定积分 1 定积分概念 一、问题提出 1、曲边梯形的面积:设f 为[a,b]上的连续函数,且f(x)≥0,由曲线y=f(x),直线x=a ,x=b 以及x 轴所围成的平面图形,称为曲边梯形. 在[a,b]内任取n-1个分点,依次为:a=x 0

作的功就近似等于F(ξi )△x i , 从而W ≈∑=n 1 i F (ξi )△x i (△x i =x i -x i-1). 对[a,b]作无限细分时,和式与某一常数无限接近,则把此常数定义为变力所作的功W. 注:解决这类问题的思想方法概括为“分割,近似求和,取极限”. 二、定积分的定义 定义1:设闭区间[a,b]内有n-1个点,依次为:a=x 0

最新定积分的概念与性质

定积分的概念与性质

第五章定积分 第一节定积分的概念与性质 教学目的:理解定积分的定义,掌握定积分的性质,特别是中值定理. 教学重点:连续变量的累积,熟练运用性质. 教学难点:连续变量的累积,中值定理. 教学内容: 一、定积分的定义 1.曲边梯形的面积 设?Skip Record If...?在?Skip Record If...?上非负,连续,由直线?Skip Record If...?,?Skip Record If...?,?Skip Record If...?及曲线?Skip Record If...? 所围成的图形,称为曲边梯形. 求面积: 在区间?Skip Record If...?中任意插入若干个分点 ?Skip Record If...?, 把?Skip Record If...?分成?Skip Record If...?个小区间[?Skip Record If...?],[?Skip Record If...?], … [?Skip Record If...?],它们的长度依次为: ?Skip Record If...? 经过每一个分点作平行于?Skip Record If...?轴的直线段,把曲边梯形分成?Skip Record If...?个窄曲边梯形,在每个小区间[?Skip Record If...?]上任取一点?Skip Record If...?,以[?Skip Record If...?]为底,?Skip Record If...?为高的窄边矩形近似替代第?Skip Record If...?个窄边梯形?Skip Record If...?,把这样得到的

相关主题
文本预览
相关文档 最新文档