当前位置:文档之家› 向量综合应用

向量综合应用

向量综合应用
向量综合应用

向量的综合应用

一、相关知识要点 1、数量积的定义:

θcos ||||?=?其中,o a ≠,o b ≠ θ是a 与b 的夹角,范围是πθ≤≤0

2、),(11y x =,),(22y x b =

向量垂直的充要条件:⊥a b ?=?b a 002121=+?y y x x

向量a 与非零向量b 共线的充要条件://a b ?a b λ=1221y x y x =?

3

、向量的模:2

1

21||y x +== 二、主要应用途径

平面向量是高中数学近几年新增的内容,以向量为背景,一些传统的中学数学内容和问题就有了新的内涵,积极探索向量在数学中各方面的应用,不仅可深入了解数学教科书中新增内容和传统内容的内部联系,构建合理的数学知识结构;而且有利于拓展想象力,激发创新活力。显现出向量作为一个工具在数学中的重要性

由于向量集数、形于一体,也就是它既有代数的运算性质,又有几何的图形特征,因而许多代数、几何中的问题都可以转化为向量来处理,它不仅能解决数学学科本身的问题,跨学科应用也是它的一个特点。主要包括以下几个方面: 1、向量知识与三角知识的整合 2、向量知识与几何知识的整合 3、向量知识与函数知识的整合 三、典型例题分析

1、向量知识与三角知识的整合

例1.设函数f(x)= ?, 其中向量=(2cosx,1),=(cosx,3sin2x),x ∈R.若将函数f(x)

按向量=(m ,n) (|m|<2

π

)平移后得到函数y= 2sin2x 的图象,求

分析:先通过向量的数量积建立函数关系式,再利用向量平移公式建立方程,求出m 、n

解:依题设得:f(x)= ?= 2cos 2

x+3sin2x=2sin(2x+6

π) + 1,将函数f(x)的图象按向量=(m ,

n)平移后得到函数。y=2sin [2 (x-m) +

6

π

]+1 +n 的图象,即是函数 y=2sin2x 的图象. (由向量的关系转化为三角函数)

∵ |m|<2

π ∴m=12

π

,n= - 1.

向量与三角函数结合,显得十分和谐、贴切。 2、向量知识与几何知识的整合

例2.已知a =(2,1),动点M 满足︱OM -︱=1. 又直线L 过点A (1,-2)且L 的方向向量为e =(1,1)。 求点M 到直线L 的最短距离。

(1)︱OM -︱=1表示什么?

(2)已知点和方向向量如何求直线方 程? (3)M 到L 的最短距离怎样求?

解:设M(x,y),由︱-︱=1可求得M 的轨迹方程为 (x-2)2+(y-1)2

=1

ΘL 方向向量为e =(1,1),且过A(1,-2)于是可求得L 的方程为y+2=x-1即x-y-3=0

∴M 到L 的最小距离为d=

1212

|

312|-=---

例3.设抛物线y 2

=2px(p>0)的焦点为 F ,经过点F 的直线交抛物线于A 、B 两点,若点C 在抛物线的准线上,且BC ∥x 轴.证明:A 、O 、C 三点共线. 分析:要证明三点共线可从哪些方面考虑?

(1)证斜率相等 (2)利用定比分点公式

(3)证点C 在直线AO 上 (4)利用向量法

如何用向量法证明两向量共线? 是共线向量与只需证 变式练习: (1)……若已知A 、O 、C 三点共线,求证:BC∥x 轴

(2)在例3前提下若OM⊥AB,垂足为M ,求点M

程,并说明它表示什么曲线。 命题有垂直的条件可用向量建立关系

OM⊥AB ? 0=?

答案:M 的轨迹方程是)0()4

()4

(2

22≠+-x p y p x

变式(3):若+=,求点R 的轨迹方程

(3)解:设R(x,y),由+=得(x,y)= ),2(),2(222121y p

y y p y + 即:2px=y 2

-y 1y 2

又AF 与BF 共线?221p y y -=,代入上式即得:2222p px y -=

小结:用向量法处理解几中的平行、垂直、共线、轨迹等问题时,目标是将几何问题坐标化、数量化。

3、向量知识与函数知识的整合

例4、已知a =)1,3(-,b =)2

3

,21(,且存在实数k 和t,使得b t a x )3(2-+=,b t a k y +-=且y x ⊥.

试求t t k 2

+的最小值。

解:由题意有2||=a ,1||=b ,

∵023

1213=?-?=?b a ∴a ⊥b ∵y x ⊥∴0=?∴?-+])3([2t 0][=+-t k

∴4

33

t t k -= ∴()()4

7241

3441222-+=-+=+t t t t t k

即t=-2时,最小值为4

7

-

说明:用向量关系转化为二次函数的最值问题

练习:已知)0,1(=,)1,0(=,函数f(x)=)0()(24≠++=a c bx ax x f 的图象在y 轴上的截距为1,在x=2处切线的方向向量为:b c a 12)(--,并且函数当x=1时取得极值。求f(x)的解析式并求f(x)的单调区间

答案:f(x)=2x 4-4x 2+1

f(x)的单调增区间为[][)∞-,+和10,1

思考:若K= f(t),讨论函数f(t)的单调性与极值

由上例可知, K= f(t) 4

33t

t -=,t ∈R ??? ??-='143)(2t t f ,

令f ’(x)=0得1,12

1

=-=t

t ,

当t ∈(-∞,-1)时, f ’(t)>0即f(x)单调递增

当t ∈(-1,1)时,f ’(t)< 0 即f(x)单调递减 当t ∈(1,∞ )时,f ’(t)>0 即f(x)单调递增

∴当t =-1时K= f(t)有极大值,当t =1时K= f(t)有极小值 4、向量知识与其它知识的整合

从原点出发的某质点M ,按向量)1,0(=移动的概率为32

,按向量)2,0(=移动的概率为3

1.设M 到达(0,n)点的概率为P n ,求P n

分析:

M 到达点 (0,n)有两种情形:

(1) 从点)1,0(-n 按向量)1,0(=a 移动到点),0(n ,此时概率为13

2-n P ;

(2) 从点)2,0(-n 按向量)2,0(=b 移动到点),0(n ,此时概率为23

1

-n P . ∵两种情形是互斥的,故有 213

1

32--+=n n n P P P

∵两种情形是互斥的,故有213

1

32--+=

n n n P P P )3(≥n , 即)(31211-----=-n n n n P P P P )3(≥n .又易得9

7

,3221==

P P , ∴}{1--n n P P 是以9112=

-P P 为首项,31

-为公比的等比数列. 于是)2()3

1

()31(9121≥-=-?=---n P P n n n n ,

以下略(由同学们课后完成)

本题是用向量“包装”的概率题,又与数列结合,使呆板、 平淡的数学题充满活力和无穷魅力! 小结

1.本节课主要复习了平面向量与函数、三角、解 几的整合与应用。

2.利用平面向量相关的知识来解决一些相关 问题.一是以向量为工具,二是用向量的关系来转化.

3、向量除了在函数、三角、解几中的应用外,还在不等、平几、立几和物理学等中都有广泛应用。

(0,n-1 )

(0,n-2 )

?

(0,n)

?

?

人教版高中数学必修四 2.5平面向量应用举例

一、选择题 1.已知作用在A 点的三个力F 1=(3,4),F 2=(2,-5),F 3=(3,1)且A (1,1),则合力F =F 1+F 2+F 3的终点坐标为( ) A .(9,1) B .(1,9) C .(9,0) D .(0,9) 解析:F =F 1+F 2+F 3=(8,0). 又因为起点坐标为(1,1),所以终点坐标为(9,1). 答案:A 2.初速度为v 0,发射角为θ,若要使炮弹在水平方向的速度为1 2v 0,则发射角θ应为( ) A .15° B .30° C .45° D .60° 解析:炮弹的水平速度为v =v 0·cos θ=12v 0?cos θ=12?θ=60°. 答案:D 3.△ABC 中,D 、E 、F 分别为BC 、CA 、AB 的中点,则AD +BE +CF =( ) A .0 B .0 C .AB D .AC 解析:设AB =a ,AC =b , 则AD =12a +1 2 b , BE =BA +12AC =-a +1 2b , CF =CA +1 2AB =-b +1 2a . ∴AD +BE +CF =0. 答案:B 4.在△ABC 中,D 为BC 边的中点,已知AB =a ,AC =b ,则下列向量中与AD 同向的是( ) A.a +b |a +b | B.a |a |+b |b | C.a -b |a -b | D.a |a |-a |b | 解析:AD =12AB +12AC =1 2(a +b ),而a +b |a +b | 是与a +b 同方向的单位向量.

答案:A 二、填空题 5.平面上有三个点A (-2,y ),B (0,y 2),C (x ,y ),若AB ⊥BC ,则动点C 的轨迹方 程为________. 解析:AB =(2,-y 2),BC =(x ,y 2 ). ∵AB ⊥BC ,∴A AB ·BC =2x -1 4y 2=0,即y 2=8x . 答案:y 2=8x 6.已知A ,B 是圆心为C ,半径为5的圆上的两点,且|AB |=5,则AC · CB =________. 解析:由弦长|AB |=5,可知∠ACB =60°, AC ·CB =-CA ·CB =-|CA ||CB |cos ∠ACB =-5 2. 答案:-5 2 7.质量m =2.0 kg 的物体,在4 N 的水平力作用下,由静止开始在光滑水平面上运动了3 s ,则水平力在3 s 内对物体所做的功为________. 解析:水平力在3 s 内对物体所做的功:F·s =F ·12at 2=12F ·F m t 2=12m F 2t 2=12×1 2×42×32 =36(J). 答案:36 J 8.设坐标原点为O ,已知过点(0,12)的直线交函数y =1 2x 2的图像于A 、B 两点,则OA · OB 的值为________. 解析:由题意知直线的斜率存在,可设为k ,则直线方程为y =kx +12,与y =1 2x 2联立 得12x 2=kx +1 2 , ∴x 2-2kx -1=0,∴x 1x 2=-1,x 1+x 2=2k , y 1y 2=(kx 1+12)(kx 2+12) =k 2x 1x 2+14+k (x 1+x 2) 2 =-k 2+k 2+1 4 =14 , ∴OA · OB =x 1x 2+y 1y 2=-1+14=-3 4.

空间向量及其运算详细教案

空间向量及其运算 3.1.1 空间向量及其加减运算 教学目标: (1)通过本章的学习,使学生理解空间向量的有关概念。 (2)掌握空间向量的加减运算法则、运算律,并通过空间几何体加深对运算的理解。 能力目标: (1)培养学生的类比思想、转化思想,数形结合思想,培养探究、研讨、综合自学应用能力。 (2)培养学生空间想象能力,能借助图形理解空间向量加减运算及其运算律的意义。(3)培养学生空间向量的应用意识 教学重点: (1)空间向量的有关概念 (2)空间向量的加减运算及其运算律、几何意义。 (3)空间向量的加减运算在空间几何体中的应用 教学难点: (1)空间想象能力的培养,思想方法的理解和应用。 (2)空间向量的加减运算及其几何的应用和理解。 考点:空间向量的加减运算及其几何意义,空间想象能力,向量的应用思想。 易错点:空间向量的加减运算及其几何意义在空间几何体中的应用 教学用具:多媒体 教学方法:研讨、探究、启发引导。 教学指导思想:体现新课改精神,体现新教材的教学理念,体现学生探究、主动学习的思维习惯。 教学过程: (老师):同学们好!首先请教同学们一个问题:物理学中,力、速度和位移是什么量?怎样确定? (学生):矢量,由大小和方向确定 (学生讨论研究)(课件)引入:(我们看这样一个问题)有一块质地均匀的正三角形面的钢板,重500千克,顶点处用与对边成60度角,大小200千克的三个力去拉三角形钢板,问钢板在这些力的作用下将如何运动?这三个力至少多大时,才能提起这块钢板? (老师):我们研究的问题是三个力的问题,力在数学中可以看成是什么? (学生)向量 (老师):这三个向量和以前我们学过的向量有什么不同? (学生)这是三个向量不共面 (老师):不共面的向量问题能直接用平面向量来解决么? (学生):不能,得用空间向量 (老师):是的,解决这类问题需要空间向量的知识这节课我们就来学习空间向量板书:空间向量及其运算 (老师):实际上空间向量我们随处可见,同学们能不能举出一些例子? (学生)举例 (老师):然后再演示(课件)几种常见的空间向量身影。(常见的高压电线及支架所在向量,长方体中的三个不共线的边上的向量,平行六面体中的不共线向量) (老师):接下来我们我们就来研究空间向量的知识、概念和特点,空间向量与平面向量既有联系又有区别,我们将通过类比的方法来研究空间向量,首先我们复习回顾一下平面向量

向量的应用

6.向量的应用 一. 内容归纳 1. 知识精讲: 掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决 诸如平面几何、解析几何等的问题. 2. 重点难点: 向量的性质及相关知识的综合应用. 3. 思维方式: 能换一个角度看问题,善于应用向量的有关性质解题. 4. 特别注意: 向量性质的应用要准确无误,不能想当然. 二.问题讨论: 例1.已知在△ABC 中,?=?=?,则O 为△ABC 的( D ) A .内心 B .外心 C .重心 D .垂心 分析:AC OB ⊥?=?=-??=?0)(; 同理:BC OA AB OC ⊥⊥,。故选(D ) 练习:若O 是ABC ?内一点,=++,则O 是ABC ?的( ) A . 内心 B .外心 C .垂心 D .重心 (课本点击双基第1题) 练习:在△ABC 中,若 1 23?= ?=?,则A cos 等于 63 . 例2.已知,是两个非零向量,当)(R t t ∈+的模取最小值时,(1)求t 的值;(2)求证:)(t +⊥ (解题过程参考课本) 例3:如图,四边形MNPQ 是⊙C 的内接梯形,C 是圆心,C 在MN 上,向量与的夹角为0 120,2=?QM QC ,(1)求⊙C 的方程;(2)求以M 、N 为焦点且过点P 、Q 的椭圆的方程。 (解题过程参考课本) 例4:(2002年高考天津)已知两点)0,1(),0,1(N M -,且点P 使PM MN ??,成公差小于0的等差数列.(1)点P 的轨迹是什么曲线?(2)若点P 的坐标为),(00y x ,记θ为与的夹角,求θtan . 解:(1)设),(y x P ,则)0,2(),,1(),,1(=--=---=MN y x PN y x PM ?,22x +=? 122-+=y x PM ,x 22-=?,由题设得

练习4-空间向量的综合应用51

山空间向量的综合应用(2) 1.直三棱柱111C B A ABC -中,?=∠90ACB ,a AA AC ==1,则点A 到平面BC A 1的距离是 A.a B.a 2 C.a 22 D.a 3 2.在ABC ?中,15=AB ,?=∠120BCA ,若ABC ?所在平面α外一点P 到C B A ,,的距离都是14,则P 到α的距离是 A.13 B.11 C.9 D.7 3.将一块边长为2的正三角形铁皮沿各边的中位线折叠成一个正四面体,则这正四面体某顶点到其相对面的距离是 A. 36 B.35 C.33 D.3 2 4.已知111C B A ABC -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离 A .a 42 B .a 82 C .a 423 D .a 2 2 5.在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离 A .63 B .3 3 C . 332 D .2 3 6.在三棱锥ABC P -中,BC AB ⊥,PA BC AB 2 1==,点D O ,分别是PC AC ,的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值 A .621 B .338 C .60210 D .30 210 7.已知长方体1111D C B A ABCD -中,21==AA AB ,4=AD ,E 为侧面1AB 的中心,F 为11D A 的中点.试计算: (1)1BC ED ?;(2) 1EF FC ?. 8.在平行四边形ABCD 中,1==AC AB ,?=∠90ACD ,将它沿对角线AC 折起,使AB 和CD 成?60角(见下图).求B 、D 间的距离.

空间向量与立体几何知识点

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量.(4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议:

专题11.4 空间向量的应用(专题训练卷)(解析版)

专题11.4 空间向量的应用(专题训练卷) 一、单选题 1.(2020·江苏如东 高一期末)在长方体1111ABCD A B C D -中,2AB BC ==,11AA =,则直线1BC 与平面11BB DD 所成角的正弦值为( ) A . 6 B . 102 C . 155 D . 105 【答案】D 【解析】 以D 点为坐标原点,以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系, 则1(2,0,0),(2,2,0),(0,2,0),A B C C (0,2,1), 1(2,0,1),(2,2,0),BC AC AC ∴=-=-为平面11BB D D 的一个法向量. 110 cos ,558 BC AC ∴<>= =?. ∴直线1BC 与平面11BB DD 10 故选:D . 2.(2020·河北新华 石家庄二中高一期末)在正方体1111ABCD A B C D -中,M N ,分别为AD ,11C D 的中点,O 为侧面11BCC B 的中心,则异面直线MN 与1OD 所成角的余弦值为( )

A.1 6 B. 1 4 C. 1 6 -D. 1 4 - 【答案】A 【解析】 如图,以D为坐标原点,分别以1 ,, DA DC DD所在直线为,, x y z轴建立空间直角坐标系.设正方体的棱长为2,则()( )()() 1 100,012,121,002 M N O D ,,,,,,,,,∴()() 1 1,1,2,1,2,1 MN OD =-=--.则 1 1 1 1 cos, 6 66 MN OD MN OD MN OD ? === ?.∴异面直线 MN与 1 OD所成角的余弦值为 1 6 ,故选A. 3.(2020·辽宁高三其他(文))如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D 所成角的正弦值为() A 6 B 26 C 15 D 10 【答案】D 【解析】 以D点为坐标原点,以DA、DC、1 DD所在的直线为x轴、y轴、z轴,建立空间直角坐标系则A(2,0,

北京四中数学必修四平面向量应用举例基础版

平面向量应用举例 编稿:丁会敏 审稿:王静伟 【学习目标】 1.会用向量方法解决某些简单的平面几何问题. 2.会用向量方法解决简单的力学问题与其他一些实际问题. 3.体会用向量方法解决实际问题的过程,知道向量是一种处理几何、物理等问题的工具,提高运算能力和解决实际问题的能力. 【要点梳理】 要点一:向量在平面几何中的应用 向量在平面几何中的应用主要有以下几个方面: (1)证明线段相等、平行,常运用向量加法的三角形法则、平行四边形法则,有时用到向量减法的意义. (2)证明线段平行、三角形相似,判断两直线(或线段)是否平行,常运用向量平行(共线)的条件://λ?=a b a b (或x 1y 2-x 2y 1=0). (3)证明线段的垂直问题,如证明四边形是矩形、正方形,判断两直线(线段)是否垂直等,常运用向量垂直的条件:0⊥??=a b a b (或x 1x 2+y 1y 2=0). (4)求与夹角相关的问题,往往利用向量的夹角公式cos |||| θ?=a b a b . (5)向量的坐标法,对于有些平面几何问题,如长方形、正方形、直角三角形等,建立直角坐标系,把向量用坐标表示,通过代数运算解决几何问题. 要点诠释: 用向量知识证明平面几何问题是向量应用的一个方面,解决这类题的关键是正确选择基底,表示出相关向量,这样平面图形的许多性质,如长度、夹角等都可以通过向量的线性运算及数量积表示出来,从而把几何问题转化成向量问题,再通过向量的运算法则运算就可以达到解决几何问题的目的了. 要点二:向量在解析几何中的应用 在平面直角坐标系中,有序实数对(x ,y )既可以表示一个固定的点,又可以表示一个向量,使向量与解析几何有了密切的联系,特别是有关直线的平行、垂直问题,可以用向量方法解决. 常见解析几何问题及应对方法:

空间向量在立体几何中的应用和习题(含答案)

空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量: ①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量. 由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量. 由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ?a ∥b ?a =k b ,k ∈R ; ②l ⊥m ?a ⊥b ?a ·b =0; ③l ∥α ?a ⊥u ?a ·u =0; ④l ⊥α ?a ∥u ?a =k u ,k ∈R ; ⑤α ∥?u ∥v ?u =k v ,k ∈R ; ⑥α ⊥β ?u ⊥v ?u ·v =0. (3)用空间向量解决线线、线面、面面的夹角问题: ①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角. 设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2 π,0(∈θ则 ?= >

复习专题:平面向量及其应用

复习专题:平面向量及其运算 平面向量及其运算(一) 例题1 给出下列结论: ①数轴上相等的向量,它们的坐标相等;反之,若数轴上两个向量的坐标相等,则这两个向量相等;

②对于任何一个实数,数轴上存在一个确定的点与之对应; ③数轴上向量AB 的坐标是一个实数,实数的绝对值为线段AB 的长度,若起点指向终点的方向与数轴同方向,则这个实数取正数,反之取负数; ④数轴上起点和终点重合的向量是零向量,它的方向不确定,它的坐标是0。 其中正确结论的个数是( ) A. 1 B. 2 C. 3 D. 4 【答案】D 【解析】①向量相等,则它们的坐标相等,坐标相等,则向量相等,①正确; ②实数和数轴上的点是一一对应的关系,即有一个实数就有一个点跟它对应,有一个点也就有一个实数与它对应,②正确; ③数轴用一个实数来表示向量AB ,正负决定其方向,绝对值决定其长度,③正确; ④数轴上零向量其起点和终点重合,方向不确定,大小为0,其坐标也为0,④正确。 故选:D 。 总结提升: 有关平面向量概念的注意点 (1)相等向量具有传递性,非零向量的平行也具有传递性。 (2)共线向量即为平行向量,它们均与起点无关。 (3)向量可以平移,平移后的向量与原向量是相等向量。解题时,不要把它与函数图象的移动混淆。 (4)两个向量不能比较大小,只可以判断它们是否相等,但它们的模可以比较大小。 (5)两平行向量有向线段所在的直线平行或重合,易忽视重合这一条件。 例题2 如图所示,在中,分别是的中点, 2 ,,.3 AE AD AB a AC b 用表示; 【解析】 如图,延长到,使2,AG AD 连接,得到平行四边形。 ABC △D F , BC AC ,a b ,,,,,AD AE AF BE BF AD G BG CG , ABGC

3.1空间向量及其运算第1课时完美版

§3.1.1空间向量及加减其运算 【学情分析】: 向量是一种重要的数学工具,它不仅在解决几何问题中有着广泛的应用,而且在物理学、工程科学等方面也有着广泛的应用。在人教A版必修四中,读者已经认知了平面向量,现在,学习空间向量时要注意与平面向量的类比,体会空间向量在解决立体几何问题中的作用。【教学目标】: (1)知识与技能:理解和掌握空间向量的基本概念,向量的加减法 (2)过程与方法:通过高一学习的平面向量的知识,引申推广,理解和掌握向量的加减法 (3)情感态度与价值观:类比学习,注重类比、推广等思想方法的学习,运用向量的概念和运算解决问题,培养学生的开拓创新能力。 【教学重点】: 空间向量的概念和加减运算 【教学难点】: 空间向量的应用

四.练习巩 固 1.课本P86练习1-3 2.如图,在三棱柱1 11C B A ABC -中,M 是1BB 的中点, 化简下列各式,并在图中标出化简得到的向量: (1)1BA CB +; (2)1AA CB AC ++; (3)CB AC AA --1 解:(1)11CA BA CB =+ (2)11AB AA CB AC =++ (3)11BA CB AC AA =-- 巩固知识,注意区别加 减法的不同处. 五.小结 1.空间向量的概念: 2.空间向量的加减运算 反思归纳 六.作业 课本P97习题3.1,A 组 第1题(1)、(2) 练习与测试: (基础题) 1.举出一些实例,表示三个不在同一平面的向量。 2.说明数字0与空间向量0的区别与联系。 答:空间向量0有方向,而数字0没有方向;空间向量0的长度为0。 3.三个向量a,b,c 互相平行,标出a+b+c. ‘解:分同向与反向讨论(略)。 4.如图,在三棱柱111C B A ABC -中,M 是1BB 的中点, 化简下列各式,并在图中标出化简得到的向量: (1)1BA CB +;

北师大版数学高一 2.7《平面向量应用举例》教案(必修4)

2.7平面向量应用举例 一.教学目标: 1.知识与技能 (1)经历用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具. (2)揭示知识背景,创设问题情景,强化学生的参与意识;发展运算能力和解决实际问题的能力. 2.过程与方法 通过本节课的学习,让学生体会应用向量知识处理平面几何问题、力学问题与其它一些实际问题是一种行之有效的工具;和同学一起总结方法,巩固强化. 3.情感态度价值观 通过本节的学习,使同学们对用向量研究几何以及其它学科有了一个初步的认识;提高学生迁移知识的能力、运算能力和解决实际问题的能力. 二.教学重、难点 重点: (体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 难点: (体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 三.学法与教学用具 学法:(1)自主性学习法+探究式学习法 (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距. 教学用具:电脑、投影机. 四.教学设想 【探究新知】 同学们阅读教材P116---118的相关内容思考: 1.直线的向量方程是怎么来的? 2.什么是直线的法向量? 【巩固深化,发展思维】 教材P118练习1、2、3题 例题讲评(教师引导学生去做) 例1.如图,AD、BE、CF是△ABC的三条高,求证:AD、BE、CF相交于一点。 证:设BE、CF交于一点H, ?→ ? AB= a, ?→ ? AC= b, ?→ ? AH= h, 则 ?→ ? BH= h-a , ?→ ? CH= h-b , ?→ ? BC= b-a ∵ ?→ ? BH⊥ ?→ ? AC, ?→ ? CH⊥ ?→ ? AB B C

空间向量的综合应用(学生用)

空间向量在立体几何中的应用 1.如图,已知正四棱柱中,底面边长,侧棱的长为,过点作的垂线交侧棱于点,交于点.求证:平面;求与平面所成的角的正弦值. 2.如图,四边形是圆柱的轴截面,点在圆柱的底面圆周上,是的中点,圆柱的底面圆的半径,侧面积为,. 求证:; 求二面角的平面角的余弦值. 3.等边三角形的边长为,点、分别是边、上的点,且满足(如图).将 沿折起到的位置,使二面角 成直二面角,连结、(如图). 求证:丄平面; 在线段上是否存在点,使直线与平面 所成的角为?若存在,求出的长;若不存在, 请说明理由.4.如图,在斜三棱柱中,点、分别是、的中点,平面.已知 ,. 证明:平面; 求异面直线与所成的角; 求与平面所成角的正弦值. 5.如图,平面,,,,,分别为,的中点.证明:平面; 求与平面所成角的正弦值. 6.如图,三棱柱中,,, .证明; 若平面平面,,求直线与平面 所成角的正弦值.

7.如图,四棱锥中,底面为菱形,底面,,,是上的一点,.证明:平面; 设二面角为,求与平面所成角的大小. 8.如图,正方形所在的平面与平面垂直,是和的交点,,且. 求证:平面;求直线与平面所成的角的大小; 求二面角的大小. 9.如图,在四棱锥中,底面是边长为的正方形,底面 ,,为中点.求证:直线平面; 求直线与平面所成角的大小; 求点到平面的距离.10.如图,四棱锥的底面为矩形,是四棱锥的高,与所成角为,是的中点,是上的动点.证明:; 若,求直线与平面所成角的大小. 11.如图,在四棱锥中,平面,四边形是菱形,,,是上任意一点.求证:;已知二面角的余弦 值为,若为的中点,求与平面所成角的正弦值. 12.已知平行四边形中,,,,是线段的中点.沿直线将翻折成,使得平面平面.求证:平面; 求直线与平面所成角的正弦值.

空间向量的应用教学设计

空间向量的应用教学设计 钟山中学徐玉学 一、教材内容分析: 在空间直角坐标系中引入空间向量,是解决立体几何中图形的大小及位置关系等问题的一种理想的代数工具,使我们能用代数的观点和方法解决几何问题,用精确计算代替逻辑推理和空间想象,用数的规范性代替形的直观性,具体、可操作性强,从而大大降低了立体几何的求解难度,提高学生的学习效率。 二、学生学情分析: 学生已经学习了空间向量的相关概念和性质,对空间向量知识有了一定的了解,所以课堂上可以多组织学生参与教学,通过自主探究主动发现应用空间向量解决距离问题的途径。但是由于学生对向量数量积的几何意义的理解并不透彻,所以在实际教学中需要多加启发和引导。 三、教学目标: (一)知识与技能 1.掌握空间向量法求点到平面的距离和两平行平面的距离公式; 2.理解运用空间向量法求点到平面的距离和两平行平面的距离的方法。 (二)过程与方法 1.体验运用空间向量推导点到平面的距离和两平行平面的距离公式的过程; 2.体验运用空间向量法求点到平面的距离和两平行平面的距离的过程。 (三)情感态度与价值观 1.通过运用空间向量法求点到平面的距离和两平行平面的距离的学习过程,让学生体会立体几何问题代数化的转化思想,认识到运用空间向量解决立体几何问题的优越性。 2.培养学生理解和运用知识的能力以及代数运算能力。

a B O 'B 四、教学重点、难点 重点:运用空间向量法求点到平面的距离和两平行平面的距离 难点:1.理解点到平面的距离与向量投影的关系; 2.转化思想的理解与运用。 五、教学策略 在学生已有知识的基础上,通过引导和启发,组织学生进行自主探究,在探究过程中建构起空间距离与空间向量的联系,达到利用空间向量解决距离问题的目的。 六、教学过程 (一)知识回顾 θ>=

高中数学-空间向量及向量的应用

高中数学-空间向量及向量的应用 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设血勺乃召),氓叫?乃w ), AB = OB-OA=(^y 2l 切—(吊丹 丑)=(乃—咛乃—丹 勺一匂) 空间向量的直角坐标运算: 设Q = 2],砌,色3 $ =1鹉毎妇则; ① 口+ b= P],曲,电 宀|俎,给禺 ?=I 角十知鬥 +為、屯 +鸟I ? ② a-b = \ a^a 2,a 21■ 诲.场岛i =(业一% 气-如 码一為 帀 ③ 加=兄I 曲卫2,? ' = I 現珂"久卷 '(/i e 7?); ④ 总■&= |气命4 片妇任 | = &占 + 逐血 +&並: ⑤ 口0Fe 鱼二 空三生=左或。『舌寻口[三碣‘ - 冊节 处二赵; 对? $ ⑥ 7丄匸q 口血十口曲十m 禺=0 ; 空间两点间距离:丄“ 「 1 :利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 (1)异面直线所成角Z ? gw 设Q”分别为异面直线讥的方向向量,则 则: 空间线段 的中点M (x ,y ,z )的坐标: 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应

(2) 线面角凰打殳《是直线l 的方向向量,n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 加“分别为平面G 8的法向量,则 与,剤7 互补或相等, - ? ? . m * n |( csfl i = | A>| = I 忘I * I 云I 操作方法: 1 ?空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos (S 为原斜面面积,S 为射影面积,为斜面与射影所成二面 角的平面角)这个公式对于斜面为三角形 ,任意多边形都成立.是求二面角的好方法.当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式,求岀二面角的大小。 2 ?空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3 ?空间向量的应用 (1 )用法向量求异面直线间的距离 CQS P rris-:欧 * b (1)异面直线所成的角的范围是 (2 )直线与平面所成的角的范围是 [0,—]。射影转 化法 2 方法 (3 )二面角的范围一般是指 (0,],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 b F

第4讲 平面向量应用举例

第4讲 平面向量应用举例 一、选择题 1.△ABC 的三个内角成等差数列,且(AB → +AC →)·BC →=0,则△ABC 一定是( ). A .等腰直角三角形 B .非等腰直角三角形 C .等边三角形 D .钝角三角形 解析 △ABC 中BC 边的中线又是BC 边的高,故△ABC 为等腰三角形,又A ,B ,C 成等差数列,故B =π3 . 答案 C 2. 半圆的直径AB =4,O 为圆心,C 是半圆上不同于A 、B 的任意一点,若P 为半径OC 的中点,则(PA →+PB →)·PC →的值是( ) A .-2 B .-1 C .2 D .无法确定,与C 点位置有关 解析 (PA →+PB →)·PC →=2PO →·PC →=-2. 答案 A 3. 函数y =tan π4x -π2的部分图象如图所示,则(OA →+OB →)·AB →= ( ). A .4 B .6 C .1 D .2 解析 由条件可得B (3,1),A (2,0), ∴(OA →+OB →)·AB →=(OA →+OB →)·(OB →-OA →)=OB →2-OA →2=10-4=6. 答案 B 4.在△ABC 中,∠BAC =60°,AB =2,AC =1,E ,F 为边BC 的三等分点,则

AE →·AF →=( ). A.53 B.54 C.109 D.158 解析 法一 依题意,不妨设BE →=12 E C →,B F →=2FC →, 则有AE →-AB →=12(AC →-AE →),即AE →=23AB →+13 AC →; AF →-AB →=2(AC →-AF →),即AF →=13AB →+23 AC →. 所以AE →·AF →=? ????23AB →+13AC →·? ?? ??13AB →+23AC → =19(2AB →+AC →)·(AB →+2AC →) =19(2AB →2+2AC →2+5AB →·AC →) =19(2×22+2×12+5×2×1×cos 60°)=53,选A. 法二 由∠BAC =60°,AB =2,AC =1可得∠ACB =90°, 如图建立直角坐标系,则A (0,1),E ? ????-233,0,F ? ?? ??-33,0, ∴AE →·AF →=? ????-233,-1·? ????-33,-1=? ????-233·? ????-33+(-1)·(-1)=23+1=53,选A. 答案 A 5.如图所示,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M , N 两点,且AM →=xAB →,AN →=yAC → ,则x ·y x +y 的值为( ).

空间向量与立体几何(2)——向量法在立体几何中的综合应用

空间向量与立体几何(2)——向量法在立体几何中的综合应用 【学习目标】1、能够建立空间直角坐标系; 2、掌握平面的法向量的求解方法; 4、掌握向量法在一些平行、垂直证明中的应用; 3、掌握向量法在线面角和二面角的应用(重难点). 【重点】空间直角坐标系的建立和法向量的求解 【难点】掌握法向量... 在线面角和二面角的应用. 【基础内容】 1、法向量:和平面垂直的向量叫做法向量.如果法向量的模长为1,则称为单位法向量. 2、平行: ①线线平行:a b a b ? ②线面平行:m 是平面α的法向量,若a m a ⊥?平面α ③面面平行:m 是平面α的法向量,n 是平面β的法向量, 若m n ?平面α || 平面β 3、垂直: ①线线垂直:a b a b ⊥?⊥ ②线面垂直:m 是平面α的法向量,若a m a ?⊥平面α ③面面垂直:m 是平面α的法向量,n 是平面β的法向量, 若m n ⊥?平面α ⊥平面β 4、线面夹角:θ是OP 和平面α的夹角 sin cos ,OP m OP m OP m θ?=<>= ?(根据θ的大小,考虑正负号) 思考:为什么sin cos ,OP m θ=<>? 5、二面角:θ是平面α和平面β的夹角 cos cos ,m n m n m n θ?=<>= ?(根据θ的大小,考虑正负号) 思考:为什么cos cos ,m n θ=<>?

【前置作业】 1、如图,三棱锥O-ABC,OA、OB、OC两两垂直,且OA=OB=OC=1,求平面ABC的法向量坐标.(提示:利用线面垂直的判定定理,若法向量m⊥平面ABC, 则m⊥AB,m⊥AC) 【研讨探究】 向量法基本方法:①建立坐标系(寻找两两垂直的三条线,特别是找到底面的垂直关系); ②求出点坐标(不知道长度的用字母代替或设单位“1”) ③求解题目(法向量的应用) 探究一:平行、垂直的证明 1、如图,P A⊥矩形ABCD所在的平面,M,N分别是AB,PC的中点,P A=AD=1,AB=2.(1)求证:MN || 平面P AD; (2)求证:MN⊥平面PCD; 探究二:线面角、二面角的求解 (3)求MN和平面PBC的夹角的正弦值; (4)求二面角A-PB-C的余弦值.

空间向量的应用(一)

空间向量的应用二 姓名: 班级: 高二数学 编写:张泉辉 审核:梅冬 备课日期:2011-1-4 学习目标:能用向量方法解决线线、线面的夹角的计算问题 重 点: 异线角与线面角的计算 难 点:异线角与线面角的计算 知识链接:1. 2. 3.4. (5.设直线l,m )2,则 l ∥m ?a ∥b 6.设直线l l ∥α?a ⊥u 新课导学:1.义cos <a ,b a b ?2.难,只要计算上不失误就可以正确求出角的大小如图,设学法指导: .异面直线所成的角是 范围是:0°<θ≤90° 直线与平面所成的角 范围: 0°≤θ≤90° 平面α所成的角θ)20(π θ<<。 合作探究:在棱长为a 的正方体ABCD —A ′B ′C ′D ′中,E 、F (1)求直线A ′C 与DE 所成的角; (2)求直线AD 与平面B ′EDF 所成的角; 练习:1.在正方体1111D C B A ABCD -中,E 1,F 1分别在A 1B 1,,C 1D 1F 1=41 D 1C 1,求B E 1与D F 1所成的角余弦值的大小。 2.如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC ⊥且AC BC a ==,∠VDC=45°。求直线BC 与平面VAB 学习小结: cos sin =βθ

达标检测:(A 组训练) 1. 已知空间四点11 (0,1,0),(1,0,),(0,0,1),(1,1,)22 A B C D ,则异面直线,AB CD 所 成的角的余弦值为( ) A.19- B. 19 C.13 D.13 - 2如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所 成角的正弦值为_________ (B 组训练) 1 在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( ) A .30 B .45 C .60 D .90 2. 如图,直三棱柱ABC -111C B A ,AB = AC = 1,AA 1 = 2,∠111C A B = 90°,D 为BB 1的中点。 (Ⅰ)求证:AD ⊥平面A 1DC 1; (Ⅱ)求异面直线C 1D 与直线A 1C 所成角的余弦值。 (C 组训练) 在正四面体ABCD 中,E 为AD 的中点,求直线CE 与平面BCD 成的角的正弦 值. 解法二:如图建立以三角形BCD 的中 心O 为原点,,OD,OA 依次为y 轴,z 轴X 轴平行于BC 设正四面体ABCD 的棱长为a , 则 336,,,6233 a a a a OF FC OD OA ==== ∴ 336(,,0),(0,,0),(0,0,),2633 a a a a C D A - ∵E 为AD 的中点,∴36(0, ,)a a E ∴ 36(,,)2a a a CE =- 又因为平面BCD 的法向量为(0,0,1)n =, ∴即CE 与平面BCD 成的角θ满足: 2 sin cos ,3|||| CE n CE n CE n θ?=<>= = 学后反思: 存在问题:1.法向量如何处理? 2. P111 页1、2、4题未用。 3. 知识链接内容 A B C D E F H o x z y

人教A版(2019)选择性必修第一册必杀技第一章空间向量与立体几何专题1空间向量的综合应用

人教A 版(2019)选择性必修第一册必杀技第一章空间向量 与立体几何专题1空间向量的综合应用 学校:___________姓名:___________班级:___________考号:___________ 一、单选题 1.已知点()2,1,2A -在平面α内,()3,1,2n =是平面α的一个法向量,则下列点P 中,在平面α内的是 A .()1,1,1P - B .31,3, 2P ?? ??? C .31,3, 2P ? ?- ??? D .31,3,2P ??-- ?? ? 2.若直线l∥α,且l 的方向向量为(2,m,1),平面α的法向量为11,,22?? ??? ,则m 为( ) A .-4 B .-6 C .-8 D .8 3.已知平面α,β的法向量分别为()2,3,5μ=--,()3,1,4ν=-则 A .//αβ B .αβ⊥ C .,αβ相交但是不垂直 D .以上都不 正确 4.正方体1111ABCD A B C D -中,动点M 在线段1A C 上,E ,F 分别为1DD ,AD 的中点.若异面直线EF 与BM 所成的角为θ,则θ的取值范围为( ) A .[ ,]63 ππ B .[ ,]43 ππ C .[ ,]62 ππ D .[ ,]42 ππ 5.如图,在空间直角坐标系中有长方体ABCD -A 1B 1C 1D 1,AB =1,BC =2,AA 1=3,则点B 到直线A 1C 的距离为( ) A .27 B . 7 C D .1

6.在正四棱锥P ABCD -中,M ,N 分别为PA ,PB 的中点,且侧面与底面所成 DM 与AN 所成角的余弦值为( ). A . 13 B . 16 C . 18 D . 112 二、多选题 7.(多选)下列命题是真命题的有( ). A .直线l 的方向向量为(1,1,2)a =-,直线m 的方向向量为12,1,2b ?? =- ??? ,则l 与m 垂直 B .直线l 的方向向量为(0,1,1)a =-,平面α的法向量为(1,1,1)n =--,则l α⊥ C .平面α,β的法向量分别为1(0,1,3)n =,2(1,0,2)n =,则//αβ D .平面α经过三点(1,0,1)A -,(0,1,0)B ,(1,2,0)C -,向量(1,,)n u t =是平面α的法向量,则1u t += 三、填空题 8.如图,正方体1111ABCD A B C D -的棱长为1,E ,F 分别是棱BC ,1DD 上的点,如果1B E ⊥平面ABF ,则CE 与DF 之和为________. 9.在直三棱柱ABC A B C '''-中,所有的棱长都相等,M 为B C ''的中点,N 为A B ''的中点,则AM 与BN 所成角的余弦值为________. 10.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为,则的最大值为 .

相关主题
文本预览
相关文档 最新文档