当前位置:文档之家› 半导体物理学简明教程陈志明编第二章 半导体中的载流子其输运性质 课后习题

半导体物理学简明教程陈志明编第二章 半导体中的载流子其输运性质 课后习题

半导体物理学简明教程陈志明编第二章 半导体中的载流子其输运性质 课后习题
半导体物理学简明教程陈志明编第二章 半导体中的载流子其输运性质 课后习题

第二章 半导体中的载流子及其输运性质

1、对于导带底不在布里渊区中心,且电子等能面为旋转椭球面的各向异性问题,证明每个旋转椭球内所包含的动能小于(E -E C )的状态数Z 由式(2-20)给出。 证明:设导带底能量为C E ,具有类似结构的半导体在导带底附近的电子等能面为旋转椭球面,即

???

? ??++=-l t C m k m k k E k E 232

2

2122)(η 与椭球标准方程

222

1122221k k k a b c

++= 相比较,可知其电子等能面的三个半轴a 、b 、c 分别为

212

])(2[ηc t E E m b a -== 21

2

])(2[η

c l E E m c -= 于是,K 空间能量为E 的等能面所包围的体积即可表示为

23

2

122)()8(3434C t l E E m m abc V -==ππη

因为k 空间的量子态密度是V/(4π3),所以动能小于(E -E C )的状态数(球体内的状态

数)就是

2/33

2

/122)()8(31

C t l E E m m V Z -=η

π

2、利用式(2-26)证明当价带顶由轻、重空穴带简并而成时,其态密度由式(2-25)给出。 证明:当价带顶由轻、重空穴带简并而成时,其态密度分别由各自的有效质量m p 轻和m p 重表示。价带顶附近的状态密度应为这两个能带的状态密度之和。即:

2/13

2

/321)()

2(2)(E E m V E g V p V -=η

轻π 2

/13

2/322)()2(2)(E E m V E g V

p V -=η重π

价带顶附近的状态密度 =)(E g V 1)(E g V 2)(E g V +即:

=)(E g V 2/132/32)()2(2E E m V V p -η轻π+2

/13

2

/32)()2(2E E m V V p -η

重π ]2)2[()(22

3232

212)(重轻p P V m m E E V +-=η

π 只不过要将其中的有效质量m p *理解为3

/22/32

/3*

)

(重轻p p p m m m +=则可得:

])2)2[()

2(2/3232

3*重轻(p p p m m m +=带入上面式子可得: 2/13

2

/3*2)()

2(2)(E E m V E g V p V -=η

π 3、完成本章从式(2-42)到(2-43)的推演,证明非简并半导体的空穴密度由式(2-43)决

定。

解:非简并半导体的价带中空穴浓度p 0为

dE E g E f p V B E E V

V

)())(1('0-=?

带入玻尔兹曼分布函数和状态密度函数可得

dE E E T

K E E m p V E E F

p V

V

21'03

2

3*2

0)()exp(

)2(21--=?

ηπ 令,)()(0T K E E x V -=则

121021)()(x T K E E V =-

Tdx k E E d V 0)(=-

将积分下限的E'V (价带底)改为-∞,计算可得

)exp(

)2(

20232

0*0T

K E E T k m p F

V p -=ηπ 令

3

2

30*232

0*)

2(2

)2(

2h T k m T k m N p p V ππ==η

则得

)ex p(00T

k E E N P V

F V --

=

4、当E -E F =1.5kT 、4kT 、10kT 时,分别用费米分布函数和玻耳兹曼分布函数计算电子占据这些能级的几率,并分析计算结果说明了什么问题。 解:已知费米分布函数kT

E E

F e

E f -+=

11)(;玻耳兹曼分布函数kT

E E B

F e

f --

=

当E -E F =1.5kT 时:1824.011

)(5

.1=+=

e E

f ,223.05.1==-e f B ; 当E -E F =4kT 时:01799.011)(4

=+=e E f ,0183.04

==-e f B ; 当E -E F =10kT 时:510

1054.411

)(-?=+=e

E f ,510105.4--?==e f B ; 计算结果表明,两种统计方法在E -E

F <2kT 时误差较大,反之误差较小;E -E F 高于kT 的倍数越大,两种统计方法的误差越小。

5、对非简并半导体证明其热平衡电子和空穴密度也可用本征载流子密度n i 和本征费米能级E i 表示为

)exp(

0kT

E E n n i

F i -=; )

exp(0kT E E n p F i i -= 证明:因为导带中的电子密度为:)exp(0kT

E E N n

F C C --

= 本证载流子浓度为)exp(kT

E E N n i

C C i --

= 结合以上两个公式可得:)exp()exp(0kT

E E E E N kT E E N n i

C i F C F C C +--=--

= )exp()exp()exp(kT

E E n kT E E kT E E N i

F i i F i C C -=---

= 因为价带中的空穴密度为:)exp(

0kT

E E N p F

V V -= 本证载流子浓度为)exp(

kT

E E N n i

V V i -=

同理可得:)exp(

0kT

E E n p F

i i -= 6、已知6H-SiC 中氮和铝的电离能分别为0.1eV 和0.2eV ,求其300K 下电离度能达到90%的掺杂浓度上限。

解:查表2-1可得,室温下6H-SiC 的N c =8.9×1019cm -3,N v =2.5×1019cm -3。 当在6H-SiC 中参入氮元素时: 未电离施主占施主杂质数的百分比为

)ex p()2(

0T

k E

N N D D c D ?=- 将此公式变形并带入数据计算可得:

31619010523.9)026

.01

.0exp()2109.81.0()exp()2(--?=-??=?-=cm T k E N D N D c D

当在6H-SiC 中参入铝元素时: 未电离受主占受主杂质数的百分比为

)ex p()4(

0T

k E N N D A

V A ?=+ 将此公式变形并带入数据计算可得:

3141901085.2)026

.02

.0exp()4105.21.0()exp()4(-+?=-??=?-=cm T k E N D N D V A

7、计算施主浓度分别为1014cm -3、1016cm -3、1018cm -3的硅在室温下的费米能级(假定杂质全

部电离)。根据计算结果核对全电离假设是否对每一种情况都成立。核对时,取施主能级位于导带底下0.05eV 处。 解:因为假定假定杂质全部电离,故可知0C F E E kT

C D n N e N --==,则可将费米能级相对于导

带底的位置表示为

ln

D

F C C

N E E kT N -= 将室温下Si 的导带底有效态密度N C =2.8?1019 cm -3和相应的N D 代入上式,即可得各种掺杂浓度下的费米能级位置,即

N D =1014 cm -3时:eV E E C F 326.0108.210

ln

026.019

14

-=??=-

N D =1016 cm -3时:1619

10

0.026ln 0.206eV 2.810

F C E E -=?=-? N D =1018

cm -3

时:18

19

100.026ln

0.087eV 2.810F C E E -=?=-?

为验证杂质全部电离的假定是否都成立,须利用以上求得的费米能级位置求出各种掺杂浓度下的杂质电离度

112D D F

E E D

kT

n N e

+--=

+

为此先求出各种掺杂浓度下费米能级相对于杂质能级的位置

()()D F C F C D C F D E E E E E E E E E -=---=--?

于是知

N D =1014 cm -3时:eV E E F D 276.005.0326.0=-=- N D =1016 cm -3时:0.2060.050.156eV D F E E -=-= N D =1018 cm -3时:0.0870.050.037eV D F E E -=-= 相应的电离度即为

N D =1016 cm -3时:=+=

-

+026

.0276.0211e

N n D

D

0.99995

N D =1016 cm -3时:

0.1560.026

10.99512D D

n N e +-==+

N D =1018 cm -3时:

0.0370.026

1

0.6712D D

n N e

+-=

=+

验证结果表明,室温下N D =1014 cm -3时的电离度达到99.995%,N D =1016 cm -3时的电离度达到99.5%,这两种情况都可以近似认为杂质全电离;N D =1019 cm -3的电离度只有67%这种情况下的电离度都很小,不能视为全电离。

8、试计算掺磷的硅和锗在室温下成为弱简并半导体时的杂质浓度。 解:设发生弱简并时

2eV C F E E kT -==0.052

已知磷在Si 中的电离能?E D = 0.044eV ,硅室温下的N C =2.8?1019 cm -3

磷在Ge 中的电离能?E D = 0.0126eV ,锗室温下的N C =1.1?1019 cm -3

对只含一种施主杂质的n 型半导体,按参考书中式(3-112)计算简并是的杂质浓度。将弱简并条件02C F E E k T -=带入该式,得

Si:

0.04419

21830.026

12

12)/2(2)7.810cm ;

/2(2) 1.29310D N e e

F F ---=

+-=?-=?式中,

Ge: 0.0012619

2

1830.026

12)/2(2) 2.310cm D N e e

F --=

+-=?

9、利用上题结果,计算室温下掺磷的弱简并硅和锗的电子密度。 解:已知电离施主的浓度

2121212F D

F C C D D D D

D

D E E E E E E E kT

kT

kT

kT

N N N n e

e e

e

e

+----=

==

+++V

对于硅:0.04420.026

0.40512D

D D N n N e e

+

-=

=+,1818300.4057.810 3.1610cm D

n n +

-==??=? 对于锗:0.0126

2

0.026

0.69412D

D D N n N e e

+

-=

=+,1818300.694 2.310 1.610cm D

n n +

-==??=? 10、求轻掺杂Si 中电子在104V/cm 电场作用下的平均自由时间和平均自由程。

解:查图2-20可知,对于Si 中电子,电场强度为104V/cm 时,平均漂移速度为8.5×106cm/s

根据迁移率公式可知s V cm E v d ?=?==/85010

105.82

46μ 根据电导迁移率公式c

n c m q τμ=

,其中026.0m m c =,s V cm c ?=/8502

μ 代入数据可以求得平均自由时间为:

s q m c

c n 1319

3110258.110

6.110108.926.0085.0---?=????==

μτ

进一步可以求得平均自由程为

cm v L n d n 613610069.110258.1105.8--?=???==τ

11、室温下,硅中载流子的迁移率随掺杂浓度N (N D 或N A )变化的规律可用下列经验公式

来表示

α

μμμ)

/(11

0N N '++

=

式中的4个拟合参数对电子和空穴作为多数载流子或少数载流子的取值不同,如下表所示:

作为多数载流子时的数据

作为少数载流子时的数据

μ0 (cm 2/V ?s) μ1 (cm 2/V ?s) N ' (cm -3) α μ0 (cm 2/V ?s) μ1 (cm 2/V ?s) N ' (cm -3) α 电子 65 1265 8.5×1016 0.72 232 1180 8×1016 0.9 空穴

48

447

1.3×1016

0.76

130

370

8×1017

1.25

本教程图2-13中硅的两条曲线即是用此表中的多数载流子数据按此式绘制出来的。试用

Origin 函数图形软件仿照图2-13的格式计算并重绘这两条曲线,同时计算并绘制少数载流子的两条曲线于同一图中,对结果作适当的对比分析。 解:根据数据绘图如下

结果说明多子更容易受到散射影响,少子迁移率要大于多子迁移率。另外电子迁移率要比空穴迁移率大。 12、现有施主浓度为5×1015cm -3的Si ,欲用其制造电阻R =10kΩ的p 型电阻器,这种电阻器

在T =300K 、外加5V 电压时的电流密度J =50A/cm 2,请问如何对原材料进行杂质补偿? 解:根据欧姆定律mA R V I 5.010

5===

外加5V 电压时的电流密度

J =50A/cm 2,

所以截面积

253

1050

105.0---=?==cm J I A

设E=100V/cm ,则电导率为σ。则cm E V L 21051005-?===

,1)(5.0-?Ω==cm RA

L

σ )(D A p p N N q p q -==μμσ其中p μ是总掺杂浓度(N A +N D )的参数 应折中考虑,查表计算:当N A =1.25×1016cm -3时, N A +N D =1.75×1016cm -3,此时,s V cm p ?≈/4102

μ

5.0492.0)(≈=-=D A p N N q μσ计算可得N A =1.25×1016cm -3

13、试证明当μn ≠μp 且热平衡电子密度n 0=n i (μp /μn )1/2时,材料的电导率最小,并求300K 时

Si 和GaAs 的最小电导率值,分别与其本征电导率相比较。

解:⑴由电导率的公式)(p n p n q μμσ+=,又因为n

n p i 2

=

由以上两个公式可以得到)(2

p i n n

n n q μμσ+= 令0=dn

d σ

,可得022=+p i n n n μμ

因此n

p

i

n n μμ= 又0)(

2232

332

22>=

=p i

n

p i n

n

n dn d μμμσ

故当n p i

n n μμ=时,σ取极小值。这时p

n

i n p μμ= 所以最小电导率为p n i p p

n n n p i q n q n μμμμμ

μμμσ2])()[(21

21min =+=

因为在一般情况下μn >μp ,所以电导率最小的半导体一般是弱p 型。

⑵对Si ,取s V cm n ?=/14502μ,s V cm p ?=/5002μ,3

10100.1-?=cm n i

则cm s /1072.25001450106.1100.126

1910min --?=??????=σ

而本征电导率

cm s q n p n i i /1012.3)5001450(106.1100.1)(61910--?=+????=+=μμσ

对GaAs ,取s V cm n ?=/80002μ,s V cm p ?=/4002

μ,36101.2-?=cm n i

则cm s /102.14008000106.1101.229

196min --?=??????=σ

而本征电导率

cm s q n p n i i /108.2)4008000(106.1101.2)(9196--?=+????=+=μμσ

14、试由电子平均动能3kT /2计算室温下电子的均方根热速度。对轻掺杂Si ,求其电子在

10V/cm 弱电场和104V/cm 强电场下的平均漂移速度,并与电子的热运动速度作一比较。

解:运动电子速度υ与温度的关系可得

*213

22

n m v kT =

11672

28

3 1.3810300() 1.12410/1.089.110

cm s --???===??? 当10/E V cm =:4150010 1.510/v E cm s μ==?=?漂

v >漂 当4

10/E V cm =,由图2-20可查得:68.510/d v cm s =?,

相应的迁移率2

/850/d v E cm V s μ==?

15、参照图1-24中Ge 和Si 的能带图分析这两种材料为何在强电场下不出现负微分迁移率效

应。

答:(1) 存在导带电子的子能谷;

(2) 子能谷与主能谷的能量差小于禁带宽度而远大于kT ;

(3) 电子在子能谷中的有效质量大于其主能谷中的有效质量,因而子能谷底的有效态密

度较高,迁移率较低。(这道题还是不知道该怎么组织语言来解释)

16、求Si 和GaAs 中的电子在(a)1kV/cm 和(b)50kV/cm 电场中通过1μm 距离所用的时间。

解:查图2-20可知:E=1kV/cm ,Si 中电子平均漂移速度s V cm n ??=/108.12

6μ GaAs 中电子平均漂移速度s V cm n ??=/1082

6μ E=50kV/cm ,Si 中电子平均漂移速度s V cm n ?=/102

7μ GaAs 中电子平均漂移速度s V cm n ?=/102

(a )当ε=1kV/cm 时

因此Si 中电子通过1μm 距离所用的时间为

s v s t 116

4106.510

8.1101--?=??== 因此GaAs 中电子通过1μm 距离所用的时间为

s v s t 116

41025.110

8101--?=??== (b )当ε=50kV/cm 时

因此Si 中电子通过1μm 距离所用的时间为

s v s t 117

410110

101--?=?==

因此GaAs 中电子通过1μm 距离所用的时间为

s v s t 117

410110

101--?=?== 17、已知某半导体的电导率和霍尔系数分别为1 Ω?cm 和-1250 cm 2/C ,只含一种载流子,求

其密度与迁移率。

解:因为单载流子霍尔系数R H <0,所以其为n 型半导体 根据公式nq

R H 1-

=可得2

1519

105)1250(106.111--?=-??-=-=cm qR n H 根据n nq μσ=可得s V cm nq

n ?=???=

=

-/125010

6.11051

219

15σ

μ 18、已知InSb 的μn =75000 cm 2/V .s ,μp =780 cm 2/V .s ,本征载流子密度为1.6×1016 cm -3,求300K

时本征InSb 的霍耳系数和霍尔系数为零时的载流子浓度。

解:根据两种载流子霍尔效应公式2

2

)(1nb p nb p q R H +-=

本证半导体霍尔系数)1(1b qn b R i H +-=,其中p

n b μμ

=

当T=300K 时,b=96.15

此时C cm nb p nb p q R H /383)

15.96106.1106.1(15.96106.1106.119106.11)(132

16162161622-=??+???-?-?=+-= 当霍尔系数R H =0时,有02

=-nb p ,而且2

i n np =

有上面两式可得31416

1066.115

.96106.1-?=?==cm b n n i 3

18

2

14

2

1053.115.961066.1-?=??==cm nb p

19、求掺杂浓度按N D (x )=1016-1019x 变化的半导体在300K 热平衡状态下的感生电场。

解:电场随位置变化的关系如下:

dx

x dN x N q kT E D D x )()(1)(

-= 其中N D (x)=1016-1019x ,可以推出

1910)

(-=dx

x dND

带入上式可得)

1010()

10(026.019

1619x E x --?-= 当x=0时,E=25.9V/cm 当x=1时,E=-26V/cm

20、根据维德曼—弗兰茨定律求本征Si 和本征GaAs 的室温热导率,与表2-3中的相关数据

相比较,试对比较结果做出合理解释。 解:根据

LT C

κ可得,LT q n LT p n i C )(μμσκ+== 对本征半导体,若只考虑长声学波对载流子的散射,L =2(k /q )2=1.49×10-8 V 2/K 2 所以可得 Si :

3001049.1)5001350(106.1105.1)(81910???+????=+=--LT q n k p n i c μμ

)/(1098.1)/(1098.1911

K m W K cm W ??=??=--

GaAs :

3001049.1)4008000(106.1101.1)(8197???+????=+=--LT q n k p n i c μμ

)/(106.6)/(10

6.61214

K m W K cm W ??=??=--

结果说明晶格起主要热导作用,而载流子主要起导电作用。

半导体物理学第五章习题答案电子版本

半导体物理学第五章 习题答案

第五章习题 1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空 穴的寿命为100us 。计算空穴的复合率。 2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩 载流子,产生率为,空穴寿命为 。 (1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。 3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10 cm 。今用光照射该样品,光被半导体均匀的吸 收,电子-空穴对的产生率是1022 cm -3s-1 ,试计算光照下样 品的电阻率,并求电导中少数在流子的贡献占多大比例? s cm p U s cm p U p 31710 10010 313/10U 100,/10613 ==?= ====?-??-τ τμτ得:解:根据?求:已知:τ τ τ ττ g p g p dt p d g Ae t p g p dt p d L L t L =?∴=+?-∴=?+=?+?-=?∴-. 00 )2()(达到稳定状态时,方程的通解:梯度,无飘移。 解:均匀吸收,无浓度g p L 0 .=+?-τ 光照达到稳定态后

4. 一块半导体材料的寿命=10us ,光照在材料中会产生 非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几? 5. n 型硅中,掺杂浓度N D =1016 cm -3 , 光注入的非平衡载流子浓度 n=p=1014cm -3 。计算无光照和有光照的电导率。 % 2606 .38 .006.3500106.1109.,.. 32.0119161 0' '==???=?∴?>?Ω==-σσ ρp u p p p p cm 的贡献主要是所以少子对电导的贡献献 少数载流子对电导的贡 。 后,减为原来的光照停止%5.1320%5.13) 0() 20()0()(1020 s e p p e p t p t μτ ==???=?-- cm s q n qu p q n p p p n n n cm p cm n cm p n cm n K T n p n i /16.21350106.110:,/1025.2,10/10.105.1,30019160000003403160314310=???=≈+=?+=?+=?===?=??==---μμσ无光照则设本征 空穴的迁移率近似等于的半导体中电子、注:掺杂有光照131619140010(/19.20296.016.2)5001350(106.11016.2)(: --=+=+???+≈+?++=+=cm cm s nq q p q n pq nq p n p n p n μμμμμμσ

半导体物理学试题库完整

一.填空题 1.能带中载流子的有效质量反比于能量函数对于波矢的_________.引入有效质量的意义在于其反映了晶体材料的_________的作用。(二阶导数.内部势场) 2.半导体导带中的电子浓度取决于导带的_________(即量子态按能量如何分布)和_________(即电子在不同能量的量子态上如何分布)。(状态密度.费米分布函数) 3.两种不同半导体接触后, 费米能级较高的半导体界面一侧带________电.达到热平衡后两者的费米能级________。(正.相等) 4.半导体硅的价带极大值位于空间第一布里渊区的中央.其导带极小值位于________方向上距布里渊区边界约0.85倍处.因此属于_________半导体。([100]. 间接带隙) 5.间隙原子和空位成对出现的点缺陷称为_________;形成原子空位而无间隙原子的点缺陷称为________。(弗仑克耳缺陷.肖特基缺陷) 6.在一定温度下.与费米能级持平的量子态上的电子占据概率为_________.高于费米能级2kT能级处的占据概率为_________。(1/2.1/1+exp(2)) 7.从能带角度来看.锗、硅属于_________半导体.而砷化稼属于_________半导体.后者有利于光子的吸收和发射。(间接带隙.直接带隙) 8.通常把服从_________的电子系统称为非简并性系统.服从_________的电子系统称为简并性系统。(玻尔兹曼分布.费米分布) 9. 对于同一种半导体材料其电子浓度和空穴浓度的乘积与_________有关.而对于不同的半导体材料其浓度积在一定的温度下将取决于_________的大小。(温度.禁带宽度) 10. 半导体的晶格结构式多种多样的.常见的Ge和Si材料.其原子均通过共价键四面体相互结合.属于________结构;与Ge和Si晶格结构类似.两种不同元素形成的化合物半导体通过共价键四面体还可以形成_________和纤锌矿等两种晶格结构。(金刚石.闪锌矿) 11.如果电子从价带顶跃迁到导带底时波矢k不发生变化.则具有这种能带结构的半导体称为_________禁带半导体.否则称为_________禁带半导体。(直接.间接) 12. 半导体载流子在输运过程中.会受到各种散射机构的散射.主要散射机构有_________、 _________ 、中性杂质散射、位错散射、载流子间的散射和等价能谷间散射。(电离杂质的散射.晶格振动的散射) 13. 半导体中的载流子复合可以有很多途径.主要有两大类:_________的直接复合和通过禁带内的_________进行复合。(电子和空穴.复合中心)

半导体物理学第五章习题答案

第五章习题 1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。计算空穴的复合率。 2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空 穴寿命为。 (1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。 3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10??cm 。今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例 s cm p U s cm p U p 31710 10010 313/10U 100,/10613 ==?= ====?-??-τ τμτ得:解:根据?求:已知:τ τ τ ττ g p g p dt p d g Ae t p g p dt p d L L t L =?∴=+?-∴=?+=?+?-=?∴-. 00 )2()(达到稳定状态时,方程的通解:梯度,无飘移。 解:均匀吸收,无浓度cm s pq nq q p q n pq np cm q p q n cm g n p g p p n p n p n p n L /06.396.21.0500106.1101350106.11010.0:101 :1010100 .19 16191600'000316622=+=???+???+=?+?++=+=Ω=+==?==?=?=+?-----μμμμμμσμμρττ光照后光照前光照达到稳定态后

4. 一块半导体材料的寿命=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几 5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度n=p=1014cm -3。计算无光照和有光照的电导率。 6. 画出p 型半导体在光照(小注入)前后的能带图,标出原来的的费米能级和光照时的准费米能级。 % 2606.38.006.3500106.1109. ,.. 32.0119 161 0' '==???=?∴?>?Ω==-σσ ρp u p p p p cm 的贡献主要是所以少子对电导的贡献献 少数载流子对电导的贡Θ。 后,减为原来的光照停止%5.1320%5.13) 0() 20()0()(1020 s e p p e p t p t μτ ==???=?--cm s q n qu p q n p p p n n n cm p cm n cm p n cm n K T n p n i /16.21350106.110:,/1025.2,10/10.105.1,30019160000003403160314310=???=≈+=?+=?+=?===?=??==---μμσ无光照则设半导体的迁移率) 本征 空穴的迁移率近似等于的半导体中电子、 注:掺杂有光照131619140010(/19.20296.016.2)5001350(106.11016.2)(: --=+=+???+≈+?++=+=cm cm s nq q p q n pq nq p n p n p n μμμμμμσ

半导体物理学练习题(刘恩科)

第一章半导体中的电子状态 例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。 解:K状态电子的速度为: (1)同理,-K状态电子的速度则为: (2)从一维情况容易看出: (3)同理 有: (4) (5) 将式(3)(4)(5)代入式(2)后得: (6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。 例2.已知一维晶体的电子能带可写成: 式中,a为晶格常数。试求: (1)能带的宽度; (2)能带底部和顶部电子的有效质量。 解:(1)由E(k)关 系 (1)

(2) 令得: 当时,代入(2)得: 对应E(k)的极小值。 当时,代入(2)得: 对应E(k)的极大值。 根据上述结果,求得和即可求得能带宽度。 故:能带宽度 (3)能带底部和顶部电子的有效质量: 习题与思考题: 1 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。 2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。 3 试指出空穴的主要特征。 4 简述Ge、Si和GaAs的能带结构的主要特征。

5 某一维晶体的电子能带为 其中E0=3eV,晶格常数a=5×10-11m。求: (1)能带宽度; (2)能带底和能带顶的有效质量。 6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同?原子中内层电子和外层电子参与共有化运动有何不同? 7晶体体积的大小对能级和能带有什么影响? 8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量 描述能带中电子运动有何局限性? 9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此?为什么? 10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。”是否如此?为什么? 11简述有效质量与能带结构的关系? 12对于自由电子,加速反向与外力作用反向一致,这个结论是否适用于布洛赫电子? 13从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同? 14试述在周期性势场中运动的电子具有哪些一般属性?以硅的本征激发为例,说明半导体能带图的物理意义及其与硅晶格结构的联系? 15为什么电子从其价键上挣脱出来所需的最小能量就是半导体的禁带宽度?16为什么半导体满带中的少量空状态可以用具有正电荷和一定质量的空穴来描述? 17有两块硅单晶,其中一块的重量是另一块重量的二倍。这两块晶体价带中的能级数是否相等?彼此有何联系? 18说明布里渊区和k空间等能面这两个物理概念的不同。 19为什么极值附近的等能面是球面的半导体,当改变存储反向时只能观察到一个共振吸收峰? 第二章半导体中的杂质与缺陷能级 例1.半导体硅单晶的介电常数=11.8,电子和空穴的有效质量各为= 0.97, =0.19和=0.16,=0.53,利用类氢模型估计: (1)施主和受主电离能; (2)基态电子轨道半径 解:(1)利用下式求得和。

半导体物理学(第7版)第三章习题和答案

第三章习题和答案 1. 计算能量在E=E c 到2 *n 2 C L 2m 100E E 之间单位体积中的量子态数。 解: 2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。 3 22 23 3*28100E 21 23 3 *22100E 002 1 233*231000L 8100)(3 222)(22)(1Z V Z Z )(Z )(22)(23 22 C 22 C L E m h E E E m V dE E E m V dE E g V d dE E g d E E m V E g c n c C n l m h E C n l m E C n n c n c )() (单位体积内的量子态数) () (21)(,)"(2)()(,)(,)()(2~.2'2 1 3'' ''''2'21'21'21' 2 2222 22C a a l t t z y x a c c z l a z y t a y x t a x z t y x C C e E E m h k V m m m m k g k k k k k m h E k E k m m k k m m k k m m k ml k m k k h E k E K IC E G si ? 系中的态密度在等能面仍为球形等能面 系中在则:令) (关系为 )(半导体的、证明: 3 1 23 2212 32' 2123 2 31'2 '''')()2(4)()(111100)()(24)(4)()(~l t n c n c l t t z m m s m V E E h m E sg E g si V E E h m m m dE dz E g dk k k g Vk k g d k dE E E ?? ? ? )方向有四个, 锗在(旋转椭球,个方向,有六个对称的导带底在对于即状态数。 空间所包含的空间的状态数等于在

半导体物理学题库20121229

1.固体材料可以分为 晶体 和 非晶体 两大类,它们之间的主要区别是 。 2.纯净半导体Si 中掺V 族元素的杂质,当杂质电离时释放 电子 。这种杂质称 施主 杂质;相应的半 导体称 N 型半导体。 3.半导体中的载流子主要受到两种散射,它们分别是 电离杂质散射 和 晶格振动散射 。前者在 电离施 主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 4.当半导体中载流子浓度的分布不均匀时,载流子将做 扩散 运动;在半导体存在外加电压情况下,载 流子将做 漂移 运动。 5.对n 型半导体,如果以E F 和E C 的相对位置作为衡量简并化与非简并化的标准,那末, 为非 简并条件; 为弱简并条件; 简并条件。 6.空穴是半导体物理学中一个特有的概念,它是指: ; 7.施主杂质电离后向 带释放 ,在材料中形成局域的 电中心;受主杂质电离后 带释放 , 在材料中形成 电中心; 8.半导体中浅能级杂质的主要作用是 ;深能级杂质所起的主要作用 。 9. 半导体的禁带宽度随温度的升高而__________;本征载流子浓度随禁带宽度的增大而__________。 10.施主杂质电离后向半导体提供 ,受主杂质电离后向半导体提供 ,本征激发后向半导体提 供 。 11.对于一定的n 型半导体材料,温度一定时,较少掺杂浓度,将导致 靠近Ei 。 12.热平衡时,半导体中电子浓度与空穴浓度之积为常数,它只与 和 有关,而与 、 无关。 A. 杂质浓度 B. 杂质类型 C. 禁带宽度 D. 温度 12. 指出下图各表示的是什么类型半导体? 13.n o p o =n i 2标志着半导体处于 平衡 状态,当半导体掺入的杂质含量改变时,乘积n o p o 改变否? 不 变 ;当温度变化时,n o p o 改变否? 改变 。 14.非平衡载流子通过 复合作用 而消失, 非平衡载流子的平均生存时间 叫做寿命τ,寿命 τ与 复合中心 在 禁带 中的位置密切相关,对于强p 型和 强n 型材料,小注入时寿命τn 为 ,寿命τp 为 . 15. 迁移率 是反映载流子在电场作用下运动难易程度的物理量, 扩散系数 是反映有浓度梯度时载流子 运动难易程度的物理量,联系两者的关系式是 q n n 0=μ ,称为 爱因斯坦 关系式。 16.半导体中的载流子主要受到两种散射,它们分别是电离杂质散射 和 晶格振动散射 。前者在 电离施主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 17.半导体中浅能级杂质的主要作用是 影响半导体中载流子浓度和导电类型 ;深能级杂质所起的主 要作用 对载流子进行复合作用 。

半导体物理学第七版 完整课后题答案

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)与价带极大值附近 能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1==π (1)禁带宽度; (2) 导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064 30382324 30)(2320212102 2 20 202 02022210 1202==-==<-===-== >=+== =-+ηηηηηηηη因此:取极大值处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 3222* 83)2(1m dk E d m k k C nC ===η

s N k k k p k p m dk E d m k k k k V nV /1095.704 3)()()4(6 )3(25104300222* 11-===?=-=-=?=-==ηηηηη所以:准动量的定义: 2、 晶格常数为0、25nm 的一维晶格,当外加102V/m,107 V/m 的电场时,试分别计 算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=?η s a t s a t 13719282 1911027.810106.1) 0(1027.810106.1) 0(----?=??--= ??=??-- =?π πηη 补充题1 分别计算Si(100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先 画出各晶面内原子的位置与分布图) Si 在(100),(110)与(111)面上的原子分布如图1所示: (a)(100)晶面 (b)(110)晶面

半导体物理学 (第七版) 习题答案

半导体物理习题解答 1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为: E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0 2 23m k h ; m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。试求: ①禁带宽度; ②导带底电子有效质量; ③价带顶电子有效质量; ④价带顶电子跃迁到导带底时准动量的变化。 [解] ①禁带宽度Eg 根据dk k dEc )(=0232m k h +0 12)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值: k min = 14 3 k , 由题中E C 式可得:E min =E C (K)|k=k min = 2 10 4k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0; 并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =2 02 48a m h =11 28282 2710 6.1)1014.3(101.948)1062.6(----???????=0.64eV ②导带底电子有效质量m n 0202022382322 m h m h m h dk E d C =+=;∴ m n =022 283/m dk E d h C = ③价带顶电子有效质量m ’ 022 26m h dk E d V -=,∴022 2'61/m dk E d h m V n -== ④准动量的改变量 h △k =h (k min -k max )= a h k h 83431= [毕] 1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带 底运动到能带顶所需的时间。 [解] 设电场强度为E ,∵F =h dt dk =q E (取绝对值) ∴dt =qE h dk

半导体物理学(刘恩科)第七版 完整课后题答案

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近 能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V - =-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1== π (1)禁带宽度; (2) 导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43 (0,060064 3 382324 3 0)(2320 2121022 20 202 02022210 1202== -==<-===-==>=+===-+ 因此:取极大值 处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 32 2 2*8 3)2(1 m dk E d m k k C nC ===

s N k k k p k p m dk E d m k k k k V nV /1095.704 3 )() ()4(6 )3(25104 3002 2 2*1 1 -===?=-=-=?=- == 所以:准动量的定义: 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别 计算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=? s a t s a t 137 19 282 1911027.810 10 6.1)0(102 7.810106.1) 0(----?=??-- =??=??-- = ?π π 补充题1 分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度 (提示:先画出各晶面内原子的位置和分布图) Si 在(100),(110)和(111)面上的原子分布如图1所示: (a )(100)晶面 (b )(110)晶面

半导体物理学第七版完整答案修订版

半导体物理学第七版完 整答案修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k) 分别为: E C (K )=0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V - =-+ (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子 自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=? 补充题1 分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提 示:先画出各晶面内原子的位置和分布图) Si 在(100),(110)和(111)面上的原子分布如图1所示:

(a )(100)晶面 (b )(110)晶面 (c )(111)晶面 补充题2 一维晶体的电子能带可写为)2cos 81 cos 8 7()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求 (1)布里渊区边界; (2)能带宽度; (3)电子在波矢k 状态时的速度; (4)能带底部电子的有效质量* n m ; (5)能带顶部空穴的有效质量*p m 解:(1)由 0)(=dk k dE 得 a n k π = (n=0,?1,?2…) 进一步分析a n k π ) 12(+= ,E (k )有极大值, a n k π 2=时,E (k )有极小值

半导体物理学试题及答案

半导体物理学试题及答案 半导体物理学试题及答案(一) 一、选择题 1、如果半导体中电子浓度等于空穴浓度,则该半导体以( A )导电为主;如果半导体中电子浓度大于空穴浓度,则该半导体以( E )导电为主;如果半导体中电子浓度小于空穴浓度,则该半导体以( C )导电为主。 A、本征 B、受主 C、空穴 D、施主 E、电子 2、受主杂质电离后向半导体提供( B ),施主杂质电离后向半导体提供( C ),本征激发向半导体提供( A )。 A、电子和空穴 B、空穴 C、电子 3、电子是带( B )电的( E );空穴是带( A )电的( D )粒子。 A、正 B、负 C、零 D、准粒子 E、粒子 4、当Au掺入Si中时,它是( B )能级,在半导体中起的是( D )的作用;当B掺入Si中时,它是( C )能级,在半导体中起的是( A )的作用。 A、受主 B、深 C、浅 D、复合中心 E、陷阱 5、 MIS结构发生多子积累时,表面的导电类型与体材料的类型( A )。 A、相同 B、不同 C、无关

6、杂质半导体中的载流子输运过程的散射机构中,当温度升高时,电离杂质散射的概率和晶格振动声子的散射概率的变化分别是( B )。 A、变大,变小 ; B、变小,变大; C、变小,变小; D、变大,变大。 7、砷有效的陷阱中心位置(B ) A、靠近禁带中央 B、靠近费米能级 8、在热力学温度零度时,能量比EF小的量子态被电子占据的概率为( D ),当温度大于热力学温度零度时,能量比EF小的量子态被电子占据的概率为( A )。 A、大于1/2 B、小于1/2 C、等于1/2 D、等于1 E、等于0 9、如图所示的P型半导体MIS结构的C-V特性图中,AB段代表( A),CD段代表( B )。 A、多子积累 B、多子耗尽 C、少子反型 D、平带状态 10、金属和半导体接触分为:( B )。 A、整流的肖特基接触和整流的欧姆接触 B、整流的肖特基接触和非整流的欧姆接触 C、非整流的肖特基接触和整流的欧姆接触 D、非整流的肖特基接触和非整流的欧姆接触 11、一块半导体材料,光照在材料中会产生非平衡载

半导体物理学期末复习试题及答案一

一、半导体物理学期末复习试题及答案一 1.与绝缘体相比,半导体的价带电子激发到导带所需要的能量 ( B )。 A. 比绝缘体的大 B.比绝缘体的小 C. 和绝缘体的相同 2.受主杂质电离后向半导体提供( B ),施主杂质电离后向半 导体提供( C ),本征激发向半导体提供( A )。 A. 电子和空穴 B.空穴 C. 电子 3.对于一定的N型半导体材料,在温度一定时,减小掺杂浓度,费米能 级会( B )。 A.上移 B.下移 C.不变 4.在热平衡状态时,P型半导体中的电子浓度和空穴浓度的乘积为 常数,它和( B )有关 A.杂质浓度和温度 B.温度和禁带宽度 C.杂质浓度和禁带宽度 D.杂质类型和温度 5.MIS结构发生多子积累时,表面的导电类型与体材料的类型 ( B )。 A.相同 B.不同 C.无关 6.空穴是( B )。 A.带正电的质量为正的粒子 B.带正电的质量为正的准粒子 C.带正电的质量为负的准粒子 D.带负电的质量为负的准粒子 7.砷化稼的能带结构是( A )能隙结构。 A. 直接 B.间接

8. 将Si 掺杂入GaAs 中,若Si 取代Ga 则起( A )杂质作用, 若Si 取代As 则起( B )杂质作用。 A. 施主 B. 受主 C. 陷阱 D. 复合中心 9. 在热力学温度零度时,能量比F E 小的量子态被电子占据的概率为 ( D ),当温度大于热力学温度零度时,能量比F E 小的量子 态被电子占据的概率为( A )。 A. 大于1/2 B. 小于1/2 C. 等于1/2 D. 等于1 E. 等于0 10. 如图所示的P 型半导体MIS 结构 的C-V 特性图中,AB 段代表 ( A ),CD 段代表(B )。 A. 多子积累 B. 多子耗尽 C. 少子反型 D. 平带状态 11. P 型半导体发生强反型的条件( B )。 A. ???? ??=i A S n N q T k V ln 0 B. ??? ? ??≥i A S n N q T k V ln 20 C. ???? ??= i D S n N q T k V ln 0 D. ???? ??≥i D S n N q T k V ln 20 12. 金属和半导体接触分为:( B )。 A. 整流的肖特基接触和整流的欧姆接触 B. 整流的肖特基接触和非整流的欧姆接触 C. 非整流的肖特基接触和整流的欧姆接触 D. 非整流的肖特基接触和非整流的欧姆接触

eejAAA半导体物理第五章习题答案

第五篇 题解-非平衡载流子 刘诺 编 5-1、何谓非平衡载流子?非平衡状态与平衡状态的差异何在? 解:半导体处于非平衡态时,附加的产生率使载流子浓度超过热平衡载流子浓度,额外产生的这部分载流子就是非平衡载流子。通常所指的非平衡载流子是指非平衡少子。 热平衡状态下半导体的载流子浓度是一定的,产生与复合处于动态平衡状态 ,跃迁引起的产生、复合不会产生宏观效应。在非平衡状态下,额外的产生、复合效应会在宏观现象中体现出来。 5-2、漂移运动和扩散运动有什么不同? 解:漂移运动是载流子在外电场的作用下发生的定向运动,而扩散运动是由于浓度分布不均匀导致载流子从浓度高的地方向浓度底的方向的定向运动。前者的推动力是外电场,后者的推动力则是载流子的分布引起的。 5-3、漂移运动与扩散运动之间有什么联系?非简并半导体的迁移率与扩散系数之间有什么联系? 解:漂移运动与扩散运动之间通过迁移率与扩散系数相联系。而非简并半导体的迁移率与扩散系数则通过爱因斯坦关系相联系,二者的比值与温度成反比关系。即 T k q D 0= μ 5-4、平均自由程与扩散长度有何不同?平均自由时间与非平衡载流子的寿命又有何不同? 答:平均自由程是在连续两次散射之间载流子自由运动的平均路程。而扩散长度则是非平衡载流子深入样品的平均距离。它们的不同之处在于平均自由程由散射决定,而扩散长度由扩散系数和材料的寿命来决定。 平均自由时间是载流子连续两次散射平均所需的自由时间,非平衡载流子的寿命是指非平衡载流子的平均生存时间。前者与散射有关,散射越弱,平均自由时间越长;后者由复合几率决定,它与复合几率成反比关系。 5-5、证明非平衡载流子的寿命满足()τ t e p t p -?=?0,并说明式中各项的物理意义。 证明: ()[] p p dt t p d τ?=?- =非平衡载流子数而在单位时间内复合的子的减少数单位时间内非平衡载流 时刻撤除光照如果在0=t

半导体物理学试题库学习资料

半导体物理学试题库

一.填空题 1.能带中载流子的有效质量反比于能量函数对于波矢的_________,引入有效质量的意义在于其反映了晶体材料的_________的作用。(二阶导数,内部势场) 2.半导体导带中的电子浓度取决于导带的_________(即量子态按能量如何分布)和 _________(即电子在不同能量的量子态上如何分布)。(状态密度,费米分布函数) 3.两种不同半导体接触后, 费米能级较高的半导体界面一侧带________电,达到热平衡后两者的费米能级________。(正,相等) 4.半导体硅的价带极大值位于空间第一布里渊区的中央,其导带极小值位于________方向上距布里渊区边界约0.85倍处,因此属于_________半导体。([100],间接带隙) 5.间隙原子和空位成对出现的点缺陷称为_________;形成原子空位而无间隙原子的点缺陷称为________。(弗仑克耳缺陷,肖特基缺陷) 6.在一定温度下,与费米能级持平的量子态上的电子占据概率为_________,高于费米能级2kT能级处的占据概率为_________。(1/2,1/1+exp(2)) 7.从能带角度来看,锗、硅属于_________半导体,而砷化稼属于_________半导体,后者有利于光子的吸收和发射。(间接带隙,直接带隙)

8.通常把服从_________的电子系统称为非简并性系统,服从_________的电子系统称为简并性系统。(玻尔兹曼分布,费米分布) 9. 对于同一种半导体材料其电子浓度和空穴浓度的乘积与_________有关,而对于不同的半导体材料其浓度积在一定的温度下将取决于_________的大小。(温度,禁带宽度) 10. 半导体的晶格结构式多种多样的,常见的Ge和Si材料,其原子均通过共价键四面体相互结合,属于________结构;与Ge和Si晶格结构类似,两种不同元素形成的化合物半导体通过共价键四面体还可以形成_________和纤锌矿等两种晶格结构。(金刚石,闪锌矿) 11.如果电子从价带顶跃迁到导带底时波矢k不发生变化,则具有这种能带结构的半导体称为_________禁带半导体,否则称为_________禁带半导体。(直接,间接) 12. 半导体载流子在输运过程中,会受到各种散射机构的散射,主要散射机构有_________、 _________ 、中性杂质散射、位错散射、载流子间的散射和等价能谷间散射。(电离杂质的散射,晶格振动的散射) 13. 半导体中的载流子复合可以有很多途径,主要有两大类:_________的直接复合和通过禁带内的_________进行复合。(电子和空穴,复合中心)

半导体物理第五章习题答案

第5章 非平衡载流子 1. 一个n 型半导体样品的额外空穴密度为1013cm -3,已知空穴寿命为100μs ,计算空穴的复合率。 解:复合率为单位时间单位体积内因复合而消失的电子-空穴对数,因此 13 17306 101010010 U cm s ρτ--===?? 2. 用强光照射n 型样品,假定光被均匀吸收,产生额外载流子,产生率为g p , 空穴寿命为τ,请 ①写出光照开始阶段额外载流子密度随时间变化所满足的方程; ②求出光照下达到稳定状态时的额外载流子密度。 解:⑴光照下,额外载流子密度?n =?p ,其值在光照的开始阶段随时间的变化决定于产生和复合两种过程,因此,额外载流子密度随时间变化所满足的方程由产生率g p 和复合率U 的代数和构成,即 ()p d p p g dt τ =- ⑵稳定时额外载流子密度不再随时间变化,即() 0d p dt =,于是由上式得 0p p p p g τ?=-= 3. 有一块n 型硅样品,额外载流子寿命是1μs ,无光照时的电阻率是10Ω?cm 。今用光照射该样品,光被半导体均匀吸收,电子-空穴对的产生率是1022/cm 3?s ,试计算光照下样品的电阻率,并求电导中少数载流子的贡献占多大比例? 解:光照被均匀吸收后产生的稳定额外载流子密度 226163101010 cm p p n g τ-?=?==?=- 取21350/()n cm V s μ=?,2 500/()p cm V s μ=?,则额外载流子对电导率的贡献 1619()10 1.610(1350500) 2.96 s/cm n p pq σμμ-=?+=???+= 无光照时00 1 0.1/s cm σρ= =,因而光照下的电导率 0 2.960.1 3.06/s cm σσσ=+=+= 相应的电阻率 1 1 0.333.06 cm ρσ = = =Ω?

半导体物理学简答题及答案.docx

复习思考题与自测题 第一章 1. 原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同,原子中内层电子和外层 电子参与共有化运动有何不同。 答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一 个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。 当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层, 和孤立原子一样 ; 然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新 的运动状态。组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电 子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。 2.描述半导体中电子运动为什么要引入 " 有效质量 " 的概念 , 用电子的惯性质量描述能带中电子运动 有何局限性。 答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外 力作用下的运动规律时,可以不涉及半导体内部势场的作用。惯性质量描述的是真空中的自由电 子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动, 成为有效质量 3.一般来说 , 对应于高能级的能带较宽 , 而禁带较窄 , 是否如此,为什么 答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄 取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。 4.有效质量对能带的宽度有什么影响,有人说:" 有效质量愈大 , 能量密度也愈大 , 因而能带愈窄 . 是否如此,为什么 答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1( k)随 k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子 的能带宽,有效质量小。 5.简述有效质量与能带结构的关系; 答:能带越窄,有效质量越大,能带越宽,有效质量越小。 6.从能带底到能带顶 , 晶体中电子的有效质量将如何变化外场对电子的作用效果有什么不同; 答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。在外电F 作用下,电子的波失K不断改变,f h dk , 其变化率与外力成正比,因为电子的速度与k有关,dt

半导体物理学(刘恩科)第七版-完整课后题答案

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带 极大值附近能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V - =-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1== π (1)禁带宽度; (2) 导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1)

eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43 (0,060064 3 382324 3 0)(2320 2121022 20 202 02022210 1202== -==<-===-==>=+===-+ηηηηηηηη因此:取极大值处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 32 2 2*8 3)2(1 m dk E d m k k C nC ===η s N k k k p k p m dk E d m k k k k V nV /1095.704 3 )() ()4(6 )3(25104 3002 2 2*1 1 -===?=-=-=?=- ==ηηηηη所以:准动量的定义: 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场 时,试分别计算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=?η

《半导体物理学》习题库共12页

第1章思考题和习题 1. 300K时硅的晶格常数a=5.43?,求每个晶胞内所含的完整原子数和原子密度为多少? 2. 综述半导体材料的基本特性及Si、GaAs的晶格结构和特征。 3. 画出绝缘体、半导体、导体的简化能带图,并对它们的导电性能作出定性解释。 4. 以硅为例,简述半导体能带的形成过程。 5. 证明本征半导体的本征费米能级E 位于禁带中央。 i 6. 简述迁移率、扩散长度的物理意义。 7. 室温下硅的有效态密度Nc=2.8×1019cm-3,κT=0.026eV,禁带宽度Eg=1.12eV,如果忽略禁带宽度随温度的变化,求: (a)计算77K、300K、473K 3个温度下的本征载流子浓度。 (b) 300K本征硅电子和空穴的迁移率分别为1450cm2/V·s和500cm2/V·s,计算本征硅的电阻率是多少? 8. 某硅棒掺有浓度分别为1016/cm3和1018/cm3的磷,求室温下的载流子浓度及费米能级E 的位置(分别从导带底和本征费米能级算起)。 FN 9. 某硅棒掺有浓度分别为1015/cm3和1017/cm3的硼,求室温下的载流子浓度及费米能级E 的位置(分别从价带顶和本征费米能级算起)。 FP 10. 求室温下掺磷为1017/cm3的N+型硅的电阻率与电导率。 11. 掺有浓度为3×1016cm-3的硼原子的硅,室温下计算: (a)光注入△n=△p=3×1012 cm-3的非平衡载流子,是否为小注入?为什么?

(b ) 附加光电导率△σ为多少? (c ) 画出光注入下的准费米能级E ’FN 和E ’ FP (E i 为参考)的位置示意 图。 (d ) 画出平衡下的能带图,标出E C 、E V 、E FP 、E i 能级的位置,在此基础上再画出光注入时,E FP ’和E FN ’,并说明偏离E FP 的程度是不同的。 12. 室温下施主杂质浓度N D =4×1015 cm -3的N 型半导体,测得载流子迁移率μn =1050cm 2/V ·s ,μp =400 cm 2/V ·s, κT/q=0.026V,求相应的扩散系数和扩散长度为多少? 第2章 思考题和习题 1.简述PN结空间电荷区的形成过程和动态平衡过程。 2.画出平衡PN结,正向PN结与反向PN结的能带图,并进行比较。 3.如图2-69所示,试分析正向小注入时,电子与空穴在5个区域中的运动情况。 4.仍如图2-69为例试分析PN 结加反向偏压时,电子与空穴在5个区域中的运动情况。 5试画出正、反向PN 结少子浓度分布示意图,写出边界少子浓度及少子浓度分布式,并给予比较。 6. 用平衡PN 结的净空穴等于零的方法,推导出突变结的接触电动势差U D 表达式。 7.简述正反向PN 结的电流转换和传输机理。 8.何为正向PN 结空间电荷区复合电流和反向PN 结空间电荷区的产生电流。

相关主题
文本预览
相关文档 最新文档