当前位置:文档之家› 太阳能热发电部件供应商

太阳能热发电部件供应商

Global Players

EPC Project Ownership

Project Developer

Technology Provider Operation

General Project Cycle of CSP Implementation

Components

Manufacturers of Components

Turbine

Receivers

HTF

Molten Salt

Mirrors

Mounting

Overview of Technology Suppliers

GE Oil & Gas

Siemens Bharat Heavy Electrical Ltd. -India Ormat Tech. Inc.

Pratt&Witney Rocketdyne (PWR)

Bertrams HEATEC AG Durferrit Haifa

Chemicals SQM -producer of salt

BASF

Pratt&Witney Rocketdyne (PWR)

Dow

Chemicals Solutia Lanxess

Schott AG Solel

Archimede Solar Energy srl.HIMIN

Flabeg

Hold. GmbH Rioglass Solar 3M Alanod Glasstech Inc.Guardian Ind.HERO-Glas Naugatuck Glass ReflecTech Saint-Gobain

Abengoa Flagsol Grupo Sener Solargenix Solel Solar Sys.

Sky Fuel Inc. (ReflecTech reflective foil)

HTF

Suppliers

Turbine Suppliers

Molten Salt Suppliers

Receiver Suppliers

Mirror Suppliers

Mounting Structures

GE Oil & Gas*

Siemens*Bharat Heavy Electrical Ltd. -India Ormat Tech. Inc.**Pratt&Witney Rocketdyne** (PWR)

Bertrams HEATEC AG*

Durferrit*Haifa

Chemicals*SQM* -producer of salt

BASF**

Pratt&Witney Rocketdyne (PWR)

Dow

Chemicals*Solutia*

Lanxess –unknown so far Schott AG*

Solel*

Archimede Solar Energy srl. –for molten salt receiver***HIMIN –no reference***

Flabeg Hold. GmbH*Rioglass Solar** –for Abengoa only 3M***Alanod***Glasstech Inc.**Guardian Ind.**HERO-Glas**Naugatuck Glass**ReflecTech***

Saint-Gobain**

Abengoa*Flagsol*Grupo Sener*Solargenix*Solel Solar Sys.*Sky Fuel Inc. (ReflecTech reflective foil***)

HTF

Providers

Turbine Providers

Molten Salt Providers

Receiver Providers

Mirror Providers

Mounting Structures

Technology Provider II -Comments

* with experience and reference in CSP ** probably o.k. if company can provide *** technology not yet proven

Technology Supplier -Collector Structure

Solel 6

https://www.doczj.com/doc/ed10029242.html,

P.O.B. 811Beit Shemesh

Israel

Solel Solar Systems

SGX-2

https://www.doczj.com/doc/ed10029242.html,

1378 McNeill Road Sanford, NC 27330USA

Solargenix SkyTrough Uses

ReflechTech reflector foil instead of glass mirrors https://www.doczj.com/doc/ed10029242.html,

10701 Montgomery Blvd NE, Suite A

Albuquerque, NM 87111

USA

Sky Fuel Inc.

SENERTROUGH

www.sener.es

SEVERO OCHOA, 4 (P.T.M.)

28760 TRES CANTOS Madrid

Spain

Grupo SENER

EuroTrough design SKAL-ET https://www.doczj.com/doc/ed10029242.html,

Agrippinawerft 2250678 Cologne

Germany

Flagsol EuroTrough design Sol úcar TR

www.solucar.es

https://www.doczj.com/doc/ed10029242.html, Seville

Spain Abengoa Product

Web Page

Address

Country

Company

Technology Supplier –Linear Fresnel Collector

Process heat collector; roof integration

www.pse.de

Mirroxx GmbH

Emmy-Noether-Str. 2D-79110 Freiburg

Germany

Mirroxx

Single tube collector

https://www.doczj.com/doc/ed10029242.html,

Novatec Biosol GmbH Lorenzstr. 29

D-76135 Karlsruhe Germany

Novatec Biosol

Single tube collector

https://www.doczj.com/doc/ed10029242.html,

Solar Power Group GmbH

Hohenzollernstr.24D-45128 Essen Germany

Solar Power Group

Multi-tube collector; preheating

https://www.doczj.com/doc/ed10029242.html,

Ausra Inc.

303 Ravendale Drive Mountain View, CA 94043

USA

Ausra

Product

Web Page

Address

Country

Company

Technology Supplier –Heliostats

USA

eSolar

USA

Bright Source

EuroTrough design Sol úcar TR

www.solucar.es

https://www.doczj.com/doc/ed10029242.html,

Seville

Spain

Abengoa Multi-tube collector; preheating

https://www.doczj.com/doc/ed10029242.html, Ausra Inc.

303 Ravendale Drive Mountain View, CA 94043USA

Ausra

Product

Web Page

Address

Country

Company

Mirrors I

Not yet commercial in CSP

https://www.doczj.com/doc/ed10029242.html,

Guardian Industries Corp.2300 Harmon Rd.

Auburn Hills, MI 48326-1714

USA Guardian

Industries Inc.

Entering the solar market since early 2008

https://www.doczj.com/doc/ed10029242.html,

Ampoint Industrial Park 995 Fourth Street

Perrysburg, Ohio 43551 U.S.A

USA

Glasstech Inc.

Market dominant

https://www.doczj.com/doc/ed10029242.html,

Waldaustr. 13

D-90441 Nuernberg

Germany

Flabeg Holding GmbH At the moment not suitable for CSP www.alanod.de

https://www.doczj.com/doc/ed10029242.html,

Egerstr. 12

58256 Ennepetal Germany

Germany

Alanod

Reflective mirror film ECP-305, at the moment not suitable for CSP https://www.doczj.com/doc/ed10029242.html,/solar

3M Corporate Headquarters 3M Center

St.Paul, MN 55144-1000

USA 3M

Remarks

Web page Address

Country

Company

Mirrors II

250MW/year; first shipment in the first half of 2009

www.covilis.pt

Lugar dos Canicos

2626-509 P óvoa de Santa Iria Portugal

Portugal

Saint-Gobain

At the moment

producing exclusively for Abengoa https://www.doczj.com/doc/ed10029242.html,

33695 Pola de Lena, Asturias

Spain

Rioglass Solar highly reflective, glass-free, polymer-based film, alternative to classical glass mirrors www.ReflecTechS https://www.doczj.com/doc/ed10029242.html,

18200 W. Hwy 72, Arvada, CO 80007

USA

ReflecTech

100% subsidiary of Flabeg

www.naugatuckgla https://www.doczj.com/doc/ed10029242.html, Naugatuck Glass

Thermo Fisher Scientific 1000 Church St P.O. Box 71

Naugatuck CT 06770

USA

Naugatuck Glass

Not yet commercial in CSP

www.hero-glas.de

Industriestr. 1 26906 Dersum Germany

Germany HERO-Glasveredelungs -GmbH

Remarks

Web page Address

Country

Company

Heat Collecting Elements (HCE)

UVAC2008

Market dominating

https://www.doczj.com/doc/ed10029242.html,

P.O.B. 811Beit Shemesh

Israel

Solel

PTR-70

Market dominating Development with Fraunhofer ISE https://www.doczj.com/doc/ed10029242.html,/csp

Erich-Schott-Stra ?e 1495666 Mitterteich Germany

Germany Schott AG

work together with

Fraunhofer ISE on airstable absorber tubes https://www.doczj.com/doc/ed10029242.html,

No37

Hubin Bei Road Dezhou

Shandong, 253000China

China

HIMIN

Interesting when it

comes to molten salt in the absorber tube www.angelantoni.it

Localit àCimacolle, 46406056 Massa Martana (PG)

Italy Archimede

Solar Energy srl Remarks

Web page Address

Country

Company

Heat Transfer Fluid (HTF)

Therminol VP1

https://www.doczj.com/doc/ed10029242.html, Rue Laid Burniat 3

B-1348 Louvain-la-Neuve

Belgium

Solutia

Diphyl

https://www.doczj.com/doc/ed10029242.html,nxess.de Germany Lanxess

Dowtherm A

https://www.doczj.com/doc/ed10029242.html, USA Dow Chemicals

Products

Web page Address Country Company

Molten Salt as Heat Storage

Largest supplier of salt

https://www.doczj.com/doc/ed10029242.html,

Sint-Pietersvliet 7,bus 8

2000 Antwerp Belgium

Chile SQM

Rocketdyne was strongly involved in Solar-One and

Two: Receiver, MS, TES, heliostats https://www.doczj.com/doc/ed10029242.html,

Pratt & Witney 400 Main Street East Hartford CT 06108USA

Pratt & Witney Rocketdyne (PWR)Haifa Chemicals produces

only potassium nitrate

https://www.doczj.com/doc/ed10029242.html,

P.O.Box 10809Haifa Bay 26120Israel

Israel

Haifa

Chemicals,Israel

Did provide technology to

melt salt ("salt-coordinator") for https://www.doczj.com/doc/ed10029242.html,

Industriestr. 368169 Mannheim

Germany

Durferrit

Rather technology provider

than MS provider https://www.doczj.com/doc/ed10029242.html, Hohenrainstrasse 10

Switzerla

nd Betrams HEATEC AG Only sodium nitrate salt www.basf.de Germany BASF Remarks

Website

Address

Country

Company

Power Block (Turbine)

www.powergeneration.siemens.de

Erlangen

Germany

Siemens

https://www.doczj.com/doc/ed10029242.html,

Pratt & Witney East Hartford 400 Main Street CT 06108

USA

Pratt & Witney

Rocketdyne (PWR)https://www.doczj.com/doc/ed10029242.html,

6225 Neil Road

Reno, Nevada 89511-1136USA

USA

Ormat

Technologies,https://www.doczj.com/doc/ed10029242.html,

Tour Europlaza

92063 Paris La D éfense C édex France

USA

GE Oil & Gas

https://www.doczj.com/doc/ed10029242.html,

BHEL House Siri Fort New Dehli 110049 -India

India Bharat Heavy Electrical Limited (BHEL)Remarks

Web page Address

Country

Company

EPC Project Ownership

General Project Cycle of CSP Implementation

Technology Provider

Operation

Project Development

Project Developer

Project Developer I

Abengoa Solar (Spain)

?Extensive know-how by applying all major CSP technologies

?Strong and reliable technology supply chain through various

subsidiaries

?Strong international focus with a large project pipeline, e.g.

Solnova I-V, PS 10, PS 20, Hassi R’Mel, Ain Beni Mathar

?Broadly diversified supply chain to avoid certain

dependencies: (Schott, Rioglass, GE, Alstom)

Acciona Energía(Spain)

?Major construction company with domestic and US‐projects

?Concentrating on parabolic troughs

?Commissioned the first large‐scale CSP plant in the USA after 17

years (Nevada Solar One)

?Acquisition of SOLARGENIX to serve US‐market; agreements with

Schott, Solel, Siemens and Flabeg

?Project Pipeline: La Risca1&2, Palma del Río, …

Project Developer II

&(USA/Israel)

?Former LUZ International spin‐off, extensive technology know‐how

?Focusing on special Central Receiver technology

?Dynamic Power Tower (DPT)Patent

?Quite small project pipeline due to unproven technology (only USA)

?Israel‐based subsidiary LUZ II sources components exclusively

(Spain)

?Largest Spanish Power Utility with HQ in Madrid

?Late entry in CSP market –small project pipeline (only domestic)

?Applying commonly used parabolic trough technology

?No supply chain established yet; Acciona Solar is expected to play

potential role in developing possible projects

Project Developer III

?In ‐depth technology know ‐how due to SEGS experience (further LUZ spin ‐off)?Active in Spanish core market with technology support from Ener ‐T Israel ?Diversified technology supply chain but small project pipeline ?

Formed joint venture company named ENERTOL

?Large Spanish Power Utility with HQ in Bilbao ?Largest Renewable assets portfolio worldwide with 8,000 MW installed capacity –majority wind

?One of the largest project pipelines in global CSP sector but focusing on Spain exclusively

?Corporate Agreements with Schott and Siemens; owns EPC subsidiary IBERINCO

(Israel)

(Spain)

Project Developer IV

?Privately ‐owned Spanish construction company in Aragon

?Long project developing experience as large wind energy developer

?Project pipeline in its home province (Spain exclusively), https://www.doczj.com/doc/ed10029242.html, Florida, La Dehesa

?Corporate Agreements with Aragon ‐based smaller companies

?Globally acting Germany ‐based CSP project developer ?Short company history but strong experience in CSP sector ?Pursuing international projects with one of the largest pipeline especially focusing parabolic trough

?Broadly diversified supply chain; agreements with MAN Ferrostaal,ACS/Cobra, GE, Schott and Flagsol

(Germany)

(Spain)

Project Developer V

?Well ‐known brand as technology supplier ?manufacturer of receiver tubes

?Experience from operation of SEGS pilot generation

?Transforming into a project developer by forming partnerships in Spain

?Strong partnership with Sacyr ‐Vallehermoso; corporate agreement with Acciona Solar

?Newest player in the global CSP market

?Joint venture between SENER (Spanish tech. supplier)and MASDAR (Abu Dhabi’s RE company)?Still pursuing separate CSP projects

?Future corporate project pipeline announced

?SENER as exclusive component supplier; corporate agreements with SolarMillenium and ACS/Cobra

(Israel)

(Spain)

塔式太阳能热发电站工作原理

2塔式太阳能热发电系统就是在空旷得地面上建立一高大得中央吸收塔,塔顶上安装固定一个吸收器,塔得周围安装一定数量得定日镜,通过定日镜将太阳光聚集到塔顶得接收器得腔体内产生高温,再将通过吸收器得工质加热并产生高温蒸汽,推动汽轮机进行发电。 3图示可以说为塔式太阳能热发电系统工作流程示意图。 对各个部件进行说明。 冷凝器:发电厂要用许多冷凝器使汽轮机排出得蒸汽得到冷凝,变成水,重新参加循环。 不同颜色得线条表示不同温度得工质。 4在大面积聚光方法中,与槽式聚光方式相比,塔式聚光有以下优点: 1)槽式得聚光比小,一般在50左右,为维持高温时得运行效率,必须使用真空管作为吸热器件。而塔式得聚光比大,一般可以达300到1500,因此可以使用非真空得吸热器进行光热转换,热转换部分寿命优于依赖于真空技术得槽式聚光技术。 2) 由于有大焦比,塔得吸热器可以在500℃到1500℃得温度范围内运行,对提高发电效率有很大得潜力。而槽式得工作温度一般在400℃以内,限制了发电透平部分得热电转换效率。接收器散热面积相对较小,因而可得到较高得光热转换效率。 5.塔式太阳能热发电系统得组成按照供能得不同主要由定日镜系统、吸热与热能传递系统(热交换系统) 、发电系统3部分组成。 定日镜场系统实现对太阳得实时跟踪,并将太阳光反射到吸热器。 位于高塔上得吸热器吸收由定日镜系统反射来得高热流密度辐射能,并将其转化为工作流体得高温热能。 高温工作流体通过管道传递到位于地面得蒸汽发生器,产生高压过热蒸汽,推动常规汽轮机发电。 由于太阳能得间隙性,必须由蓄热器提供足够得热能来补充乌云遮挡及夜晚时太阳能得不足,否则发电系统将无法正常工作。 6大汉兆瓦级太阳能塔式热发电站由集热岛、热能储存岛与常规岛构成。集热岛包括定日镜场、吸热器系统与吸热塔。 吸热器为过热型腔式吸热器,吸热塔高118 m,过热型腔式吸热器安装在吸热塔92m 标高处。热能储存岛由高温子系统、低温子系统组成,高温蓄热工质为导热油。低温子系统就是1 个100 m3得饱与蒸汽蓄热器,工质为饱与水蒸气。常规岛由1 台8、4 t/h 得燃油辅助锅炉与1、5 兆瓦得汽轮发电机组构成。 ?热力循环过程包括两个方面:

光热发电的前景和弊端

光热发电的前景和弊端 光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能。这种技术的关键元件是太阳能电池,经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。 一、光热发电 光热发电是指将太阳能聚集,通过换热装置提供蒸汽,进而驱动汽轮机发电。 1.原理不同:光伏--高纯硅可以利用太阳光照产生直流电,光伏发电; 光热--收集太阳热加热工质成汽态,推动汽轮机,发电机发交流电,光热发电;原理与传统发电的一样; 2.蓄能方式不同:光伏-蓄电池,使用期限是几年,需更换,更换的电池会造成大量污染; 光热-蓄热罐; 使用热熔盐,不需更换,只需添加; 3.使用方向不同:光伏--适合分散式、小规模、高档城市;小局域供电 光热--适合集中式、大规模、一般性地区;整个地区、省、甚至全国大范围供电,仅仅利用新疆沙漠100平方公里 的太阳热能,就够我们整个中国的用电;新疆沙漠是42.48万平方公里; 4.相关产业链不同:光伏--硅矿生产、提纯、切片、产品,相关产业链专业单一; 光热--钢铁、玻璃、水泥等等,涉及到多个行业,类似房地产,相关产业链长,非常丰富; 5.核心技术设备所有权不同:光伏--核心技术、设备都被德国、俄罗斯、日本、美国等掌握;我们需花大量外汇购买;光热--核心技术、设备全部国产化;所有知识产权完全国有; 二、含义:太阳能光热发电是指利用大规模阵列抛物或碟形镜面收集太阳热能,通过换热装置提供蒸汽,结合传统汽轮发电机的工艺,从而达到发电的目的。采用太阳能光热发电技术,避免了昂贵的硅晶光电转换工艺,可以大大降低太阳能发电的成本。而且,这种形式的太阳能利用还有一个其他形式的太阳能转换所无法比拟的优势,即太阳能所

塔式与槽式太阳能热发电技术

塔式与槽式太阳能热发电技术 塔式太阳能热发电 塔式太阳能热发电系统也称集中型太阳能热发电系统。塔式太阳能热发电系统的基本形式是利用独立跟踪太阳的定日镜群,将阳光聚集到固定在塔顶部的接收器上,用以产生高温,加热工质产生过热蒸汽或高温气体,驱动汽轮机发电机组或燃气轮机发电机组发电,从而将太阳能转换为电能。 塔式太阳能热发电特点 塔式电站的优点: 1.聚光倍数高,容易达到较高的工作温度,阵列中的定日镜数目越多,其聚光比越大,接收器的集热温度也就愈高; 2.能量集中过程是靠反射光线一次完成的,方法简捷有效; 3.接收器散热面积相对较小,因而可得到较高的光热转换效率。 塔式太阳能热发电的参数可与高温、高压火电站一致,这样不仅使太阳能电站有较高的热效率,而且也容易获得配套设备。虽然这种电站的建设费用十分昂贵,美国的SolarOne电站初次投资为1.42亿美元,成本比例为:定日镜52%、发电机组、电气设备18%、蓄热装置10%、接收器5%、塔3%、管道及换热器8%、其它设备4%。但随着制镜技术的提高和规模的增大,定日镜成本将大幅度降低。以美国Sunlab为代表的研究部门以及Sargent&Lundy评估机构对塔式太阳能热发电的成本作出了预测图1。Sunlab基于8.7GW规模预计到2020年塔式太阳能热发电的成本最终可达到约30~40$MWh,即每度电3~4美分;Sargent&Lundy基于2.6GW规模预计到2020年塔式太阳能热发电的成本最终可达到50~60$MWh,即每度电5~6美分。与常规化石能源发电相比,如果算上环境污染的成本,那么塔式太阳能热发电的前景将更加广阔。美国能源部主持的研究结果表明;在大规模发电方面,塔式太阳能热发电将是所有太阳能发电技术中成本最低的一种方式。 我国塔式太阳能热发电技术发展状况 随着太阳能利用技术的迅速发展,从20世纪70年代中期开始,我国一些高等院校和科研院所,对太阳能热发电技术做了不少应用性基础试验研究,并在天津建造了一套功率为lkW的塔式太阳能热发电模拟装置。 《中国新能源与可再生能源1999白皮书》指出:我国太阳能热发电技术的研究开发工作早在70年代末就开始了,但由于工艺、材料、部件及相关技术未得到根本性的解决,加上经费不足,热发电项目先后停止和下马。国家“八五”计划安排了小型部件和材料的攻关项目,带有技术储备性质,目前还没有试验样机,与国外差距很大。 近几年来,中国工程院院士张耀明教授带领南京春辉科技实业有限公司南京玻璃纤维研究设计院三所科技人员,在太阳能热发电研究领域中,取得了自动跟踪太阳、聚光、

碟式太阳能热发电系统的原理与构造

碟式太阳能热发电系统的原理与构造 芃 摘要:碟式太阳能热发电系统由碟式抛物面聚光镜、接收器、斯特林发动机、发电机组成,本文介绍了碟式抛物面聚光镜的结构,并介绍了碟式太阳能接收器的原理与结构。 关键字:碟式太阳能发电系统,碟式抛物面反射镜,直接加热式太阳能接收器,间接加热式太阳能接收器,池沸腾接收器,相变式太阳能加热器,斯特林发动机 碟式太阳能热发电系统主要由碟式聚光镜、接收器、斯特林发动机、发电机组成,目前峰值转换效率可达30%以上,是一种有前途的太阳能热利用装置。 1. 碟式抛物面反射镜 碟式太阳能热发电系统采用旋转抛物面汇聚太阳光,旋转抛物面是抛物线绕轴线旋转形成的面。与抛物面轴线平行的光线照射到镜面时,光线会聚焦到焦点,在焦点放置的物体会被加热到很高的温度,见图1。 图1 旋转抛物面聚光镜 每个碟式太阳能热发电系统都有一个旋转抛物面反射镜用来汇聚太阳光,圆形的反射镜像碟子一样,故称为碟式反射镜。由于反射镜面积小则几十平方米,大则数百平方米,很难造成整块的镜面,是由多块镜片拼接而成。一般几kW的小型机组用多块扇形镜面拼成园形反射镜,如图2左侧照片;也有用多块园形镜

面组成,如图2右侧照片。大型的一般用许多方形镜片拼成近似园形反射镜,如图3照片所示。 图2 网上的碟式太阳能系统照片 图3 网上的碟式太阳能系统照片 拼接用的镜片都是抛物面的一部分,不是平面,多块镜面固定在镜面框架上,构成整片的旋转抛物面反射镜。整片的旋转抛物面反射镜与斯特林机组支架固定

在一起,通过跟踪转动装置安装在机座的支柱上,斯特林机组安装斯特林机组支架上,机组接收器在旋转抛物面反射镜的聚焦点上,见图4。 跟踪转动装置由跟踪控制系统控制,保证抛物面反射镜对准太阳,把阳光聚集在斯特林机组的接收器上。关于跟踪知识请浏览“鹏芃科艺”网站(https://www.doczj.com/doc/ed10029242.html,)的“聚光太阳能热利用”栏目“太阳的视运动与跟踪”章节。在该栏目的“碟式太阳能热发电系统”章节有碟式太阳能热发电系统动画,可在线观看或下载。 图4 碟式太阳能发电系统组成 2. 斯特林发电机组 斯特林发动机是一种外燃机,依靠发动机气缸外部热源加热工质进行工作,发动机内部的工质通过反复吸热膨胀、冷却收缩的循环过程推动活塞来回运动实现连续做功。由于热源在气缸外部,方便使用多种热源,特别是利用太阳能作为热源。碟式抛物面聚光镜的聚光比范围可超过1000,能把斯特林发动机内的工质温度加热到650度以上,使斯特林发动机正常运转起来。在机组内安装有发电机与斯特林发动机连接,斯特林发动机带动发电机旋转发电。 斯特林发动机的技术较复杂,就不在这里介绍了,在“鹏芃科艺”网站(https://www.doczj.com/doc/ed10029242.html,)有“斯特林发动机”栏目专门介绍斯特林发动机的原理与

塔式太阳能热发电技术

塔式太阳能热发电技术浅析 14121330 彭启 1.前言 太阳能热发电是利用聚光器将太阳辐射能汇聚,生成高密度的能量,通过热功循环来发电的技术[1]。我国太阳能热发电技术的研究开发工作始于70年代末,一些高等院校和科研所等单位和机构,对太阳能热发电技术做了不少应用性基础实验研究,并在天津建造了一套功率为lkW的塔式太阳能热发电模拟实验装置,在上海建造了一套功率为lKW的平板式低沸点工质太阳能热发电模拟实验装置[2~3]。 目前主流的太阳能热发电技术主要有4种方式:塔式、槽式、碟式和线性菲涅尔式[4],这4种太阳能光热发电技术各有优缺点。 塔式太阳能聚光比高、运行温度高、热转换效率高,但其跟踪系统复杂、一次性投入大,随着技术的改进,可能会大幅度降低成本,并且能够实现大规模地应用,所以是今后的发展方向。槽式技术较为成熟,系统相对简单,是第一个进入商业化生产的热发电方式,但其工作温度较低,光热转换效率低,参数受到限制。碟式光热转换效率高,单机可标准化生产、既可作分布式系统单独供电,也可并网发电,但发电成本较高、单机规模很难做大。线性菲涅尔式结构简单、发电成本低、具有较好的抗风性能,但工作效率偏低、且由于发展历史较短,技术尚未完全成熟,目前处于示范工程研究阶段。 2.发电原理与系统 塔式太阳能热发电系统的基本形式是利用独立跟踪太阳的定日镜群,将阳光聚集到固定在塔顶部的接收器上产生高温,加热工质产生过热蒸汽或高温气体,驱动汽轮机发电机组或燃气轮机发电机组发电,从而将太阳能转换为电能[5]。 塔式太阳能热发电系统,也称集中型太阳能热发电系统,主要由定日镜阵列、高塔、吸热器、传热介质、换热器、蓄热系统、控制系统及汽轮发电机组等部分组成,基本原理是利用太阳能集热装置将太阳热能转换并储存在传热介质中,再利用高温介质加热水产生蒸汽,驱动汽轮发电机组发电。 塔式太阳能热发电系统中,吸热器位于高塔上,定日镜群以高塔为中心,呈圆周状分布,将太阳光聚焦到吸热器上,集中加热吸热器中的传热介质,介质温度上升,存入高温蓄热罐,然后用泵送入蒸汽发生器加热水产生蒸汽,利用蒸汽驱动汽轮机组发电,汽轮机乏汽经冷凝器冷凝后送入蒸汽发生器循环使用。在蒸汽发生器中放出热量的传热介质重新回到低温蓄热罐中,再送回吸热器加热。塔式太阳能热发电系统概念设计原理系统如图1所示。 图1 塔式太阳能电站系统流程示意图

太阳能光热发电与光伏发电对比分析

传统的火力发电是通过燃烧,把化石中储存的能量,转化为热能,再转化为电能。而太阳能光热发电则是通过数量众多的反射镜,将太阳的直射光聚焦采集,通过加热水或者其他工作介质,将太阳能转化为热能,然后利用与传统的热力循环一样的过程,即形成高温高压的水蒸气推动汽轮机工作,最终将热能转化成为电能,典型太阳能光热发电热力循环系统原理如图所示。 太阳能光热发电热力循环系统原理图 正是通过这样的环节,太阳能光热发电技术和传统技术顺利地集成在一起。由于火力发电技术早已非常成熟,从而降低了太阳能光热发电整体技术开发的风险。 中国产业信息网发布的《》指出:技术主要包括太阳能光伏发电和太阳能光热发电两种,光伏发电的原理是当太阳光照射到上时,电池吸收光能,产生光生伏打效应,在电池的两端出现异号电荷积累。若引出电极并接上负载,便有功率输出。光伏发电是目前太阳能发电产业的主流技术,较为成熟,国家已明确其上网电价(不同地区在~1 元/度范围变化),发电成本也下降至元/度左右;光热发电在我国发展时间较短,在太阳能聚光方法及设备、高温传热储热、电站设计等集成以及控制方面,已经取得实质性进展,但商业化业绩较小,上网电价政策尚未落实,发电成本也较高,约为元/度左右。但太阳能光热发电与光伏发电相比具有以下优点: 1)太阳能光热发电输出电力稳定,电力具有可调节性,易于并网 目前太阳能光热发电系统可以通过增加储热单元或通过补燃或与常规火电联合运行改善出力特性。而受日光照射强度影响较大,上网后给电网带来较大压力,其发电形式独特,和传统电厂合并难度大。 通过储热改善光热发电出力特性(槽式和塔式光热发电)。白天将多余热量储存,晚间再用储存的热量释放发电,这样可以实现光热发电连续供电,保证电流稳定,避免了光伏发电与风力发电难以解决的入网调峰问题。根据不同储热模式,可不同程度提高电站利用小时数和发电量,提高电站调节性能。 通过补燃或与常规火电联合运行改善光热发电出力特性。太阳能热可利用化石燃料补燃或与常规火电联合运行,使其可以在晚上或连续阴天时持续发电,甚至可以以稳定出力承担基荷运行,从而使年发电利用得到7000 小时左右。 2)太阳能光热发电无污染 光热发电是清洁生产过程,基本采用物理手段进行光电能量转换,对环境危害极小,太阳能光热发电站全生命周期的CO2 排放仅为13~19g/kWh。而技术存在致命弱点为在生产过程中对环境的损耗较大,是高能耗、高污染的生产过程。业内专家认为,太阳能电池在生命周期所能节约的能源与生产太阳能电池本身所要消耗的资源相比,并不经济。 和光热发电对比

太阳能光热发电技术

太阳能光热发电技术的应用与发展 摘要:太阳能是一种用之不尽、取之不竭的清洁能源,在能源与环境问题日趋严峻的今天,很多国家都对太阳能发电技术进行了研究和实践,并取得了一些成果。太阳能光热发电是太阳能利用的一种有效方式,目前有槽式、碟式和塔式三种典型的太阳能光热发电方式。比之传统的火力发电方式,太阳能有其环保的优势,但是也存在一些问题需要去克服。随着人类对清洁能源的需求太阳能发电技术将会得到更加深入的发展。 1.太阳能热发电技术概述 能源与环境问题是当今世界面临的两个重要问题,随着化石能源的日趋枯竭,一次能源的利用成本也不断增加,由于大量的燃烧矿石燃料,使环境问题日益严重,温室效应、空气污染越来越引起人们的重视。近年来一些可再生能源受到了人们的推崇,为各国所重视。太阳能是一种取之不尽、用之不竭的清洁能源,利用太阳能直接发电是缓解甚至解决能源问题的一种有效方式,世界各国也都在做积极的努力,已经有很多太阳能发电项目投入运行,太阳能发电技术在未来有着广阔的发展前景。 太阳能是太阳通过辐射的方式想宇宙空间释放的能量,人类所需能量的绝大部分都直接或间接地来自太阳。正是各种植物通过光合作用把太阳能转变成化学能在植物体内贮存下来。煤炭、石油、天然气等化石燃料也是由古代埋在地下的动植物经过漫长的地质年代形成的。它们实质上是由古代生物固定下来的太阳能。此外,水能、风能、等也都是由太阳能转换来的。地球轨道上的平均太阳辐射强度为1369W/ m2。地球赤道的周长为40000km,从而可计算出,地球获得的能量可达173000TW。在海平面上的标准峰值强度为1kW/m2,地球表面某一点24h的年平均辐射强度为 0.20kW/m2,相当于有 102000TW的能量,人类 依赖这些能量维持生存, 其中包括所有其他形式的 可再生能源(地热能资源 除外),虽然太阳能资源总 量相当于现在人类所利用 的能源的一万多倍,但太 阳能的能量密度低,而且 它因地而异,因时而变, 这是开发利用太阳能面临 的主要问题。太阳能的这图 1 世界各国太阳能发电装机容量些特点会使它在整个综合能源体系中的作用受到一定的限制。

太阳能热发电

太阳能热发电 热动081班 20084140114 武伟杰随着经济的发展、社会的进步,人们对能源提出越来越高的要求,寻找新能源成为当前人类面临的迫切课题。现有电力能源的来源主要有3种,即火电、水电和核电。 火电的缺点: 火电需要燃烧煤、石油等化石燃料。一方面化石燃料蕴藏量有限、越烧越少,正面临着枯竭的危险。据估计,全世界石油资源再有30年便将枯竭。另一方面燃烧燃料将排出二氧化碳和硫的氧化物,因此会导致温室效应和酸雨,恶化地球环境。 水电的缺点: 水电要淹没大量土地,有可能导致生态环境破坏,而且大型水库一旦塌崩,后果将不堪设想。另外,一个国家的水力资源也是有限的,而且还要受季节的影响。 核电的缺点: 核电在正常情况下固然是干净的,但万一发生核泄漏,后果同样是可怕的。前苏联切尔诺贝利核电站事故,已使900万人受到了不同程度的损害,而且这一影响并未终止。 这些都迫使人们去寻找新能源。新能源要同时符合两个条件:一是蕴藏丰富不会枯竭;二是安全、干净,不会威胁人类和破坏环境。最理想的新能源是太阳能。 照射在地球上的太阳能非常巨大,大约40分钟照射在地球上的太阳能,便足以供全球人类一年能量的消费。可以说,太阳能是真正取之不尽、用之不竭的能源。而且太阳能发电绝对干净,不产生公害。所以太阳能发电被誉为是理想的能源。从太阳能获得电力,需通过太阳电池进行光电变换来实现。它同以往其他电源发电原理完全不同,具有以下特点:①无枯竭危险;②绝对干净(无公害); ③不受资源分布地域的限制;④可在用电处就近发电;⑤能源质量高;⑥使用者从感情上容易接受;⑦获取能源花费的时间短。不足之处是:①

照射的能量分布密度小,即要占用巨大面积;②获得的能源同四季、昼夜及阴晴等气象条件有关。但总的说来,瑕不掩瑜,作为新能源,太阳能具有极大优点,因此受到世界各国的重视。 利用太阳能发电有两大类型,一类是太阳光发电(亦称太阳能光发电),另一类是太阳热发电(亦称太阳能热发电)。太阳能光发电是将太阳能直接转变成电能的一种发电方式。它包括光伏发电、光化学发电、光感应发电和光生物发电四种形式,在光化学发电中有电化学光伏电池、光电解电池和光催化电池。太阳能热发电是先将太阳能转化为热能,再将热能转化成电能,它有两种转化方式。一种是将太阳热能直接转化成电能,如半导体或金属材料的温差发电,真空器件中的热电子和热电离子发电,碱金属热电转换,以及磁流体发电等。另一种方式是将太阳热能通过热机(如汽轮机)带动发电机发电,与常规热力发电类似,只不过是其热能不是来自燃料,而是来自太阳能。 太阳能热发电系统一般由太阳能即热系统、蓄热与换热系统和汽轮机发电系统组成。与常规热发电的不同是太阳能热发电必须考虑太阳能能量密度低、间歇性、不稳定性等因素。太阳能热发电的集热系统用聚光集热装置将太阳能收集起来,将集热工质加热到一定的温度,经过换热器将热能传递给动力回路中循环做工的工质,或产生高温高压得过热蒸汽驱动汽轮机、再带动发电机发电;从汽轮机出来的发气,其压力和温度已大大降低,或经冷凝器凝结成液体后,被重新泵送入换热器,开始新的循环。太阳能电站一般带有储热装置。 太阳能热发电系统一般由六部分组成: (1)太阳能集热子系统; (2)吸热与输送热量子系统; (3)蓄热子系统; (4)蒸汽发生系统; (5)动力子系统; (6)发电子系统。 其中,前两部分简称为太阳场,是太阳能热发电技术的核心。由于太阳能供应不稳定、不连续,为保障热发电系统的稳定运行,通常在系统中配置蓄能子系统,将收集的太阳能热能存储起来,以保证在夜间或太阳辐照不足时的发电;或

塔式太阳能热发电站工作原理

2塔式太阳能热发电系统就是在空旷的地面上建立一高大的中央吸收塔,塔顶上安装固定一个吸收器,塔的周围安装一定数量的定日镜,通过定日镜将太阳光聚集到塔顶的接收器的腔体内产生高温,再将通过吸收器的工质加热并产生高温蒸汽,推动汽轮机进行发电。 3图示可以说为塔式太阳能热发电系统工作流程示意图。 对各个部件进行说明。 冷凝器:发电厂要用许多冷凝器使汽轮机排出的蒸汽得到冷凝,变成水,重新参加循环。 不同颜色的线条表示不同温度的工质。 4在大面积聚光方法中,与槽式聚光方式相比,塔式聚光有以下优点: 1)槽式的聚光比小,一般在50左右,为维持高温时的运行效率,必须使用真空管作为吸热器件。而塔式的聚光比大,一般可以达300到1500,因此可以使用非真空的吸热器进行光热转换,热转换部分寿命优于依赖于真空技术的槽式聚光技术。 2) 由于有大焦比,塔的吸热器可以在500℃到1500℃的温度范围内运行,对提高发电效率有很大的潜力。而槽式的工作温度一般在400℃以内,限制了发电透平部分的热电转换效率。接收器散热面积相对较小,因而可得到较高的光热转换效率。 5.塔式太阳能热发电系统的组成按照供能的不同主要由定日镜系统、吸热与热能传递系统(热交换系统) 、发电系统3部分组成。 定日镜场系统实现对太阳的实时跟踪,并将太阳光反射到吸热器。 位于高塔上的吸热器吸收由定日镜系统反射来的高热流密度辐 射能,并将其转化为工作流体的高温热能。 高温工作流体通过管道传递到位于地面的蒸汽发生器,产生高压过热蒸汽,推动常规汽轮机发电。 由于太阳能的间隙性,必须由蓄热器提供足够的热能来补充乌云遮挡及夜晚时太阳能的不足,否则发电系统将无法正常工作。 6大汉兆瓦级太阳能塔式热发电站由集热岛、热能储存岛与常规岛构成。集热岛包括定日镜场、吸热器系统与吸热塔。 吸热器为过热型腔式吸热器,吸热塔高118 m,过热型腔式吸热器安装在吸热塔92 m 标高处。热能储存岛由高温子系统、低温子系统组成,高温蓄热工质为导热油。低温子系统就是1 个100 m3的饱与蒸汽蓄热器,工质为饱与水蒸气。常规岛由1 台8、4 t/h 的燃油辅助锅炉与1、5 兆瓦的汽轮发电机组构成。 热力循环过程包括两个方面:

太阳能热发电Concentrating_Solar_Power_Part_1基础篇

T he limited supply of fossil hydrocarbon resources and the negative impact of CO 2 emissions on the global environment dictate the increasing usage of renewable energy sources. Concentrated solar power (CSP) is the most likely candidate for providing the majority of this renewable energy, because it is amongst the most cost-effective renewable electricity technologies and because its supply is not restricted if the energy generated is transported from the world's solar belt to the population centres.identified during the past decades for generating electricity in the 10kW to several 1000MW range: q dish/engine technology, which can directly generate electricity in isolated locations q parabolic trough technology, which produces high pressure superheated steam q solar tower technology which produces air above 1000°C or synthesis gas for gas turbine operation. a certain maturity, as has been demonstrated in pilot projects in Israel, Spain and the USA, significant improvements in the thermo-hydraulic performance are still required if such installations are to achieve the reliability and effectiveness of conventional power plants. This first article focuses on present CSP technologies, their history and the state of the art. The second article, in the next issue of Ingenia, looks at the technical, environmental, social and economic issues relating to CSP in the future. i n g e n i a 1 HANS MüLLER-STEINHAGEN, FRENG AND FRANZ TRIEB INSTITUTE OF TECHNICAL THERMODYNAMICS, GERMAN AEROSPACE CENTRE, STUTTGART, GERMANY SECTION Concentrating solar power A review of the technology Is solar power the answer to the ever-growing problems of global warming and depleting fossil fuel supplies? In the first of two articles Hans Müller-Steinhagen and Franz Trieb explain the principles and development of concentrated solar power and outline its considerable potential for alleviating the constant pressure on our existing resources.

塔式太阳能热发电中的定日镜跟踪系统设计

万方数据

万方数据

万方数据

塔式太阳能热发电中的定日镜跟踪系统设计 作者:耿其东, 朱天宇, 陈飞, GENG Qi-dong, ZHU Tian-yu, CHEN Fei 作者单位:耿其东,GENG Qi-dong(盐城工学院机械工程学院,江苏,盐城,224051), 朱天宇,陈飞,ZHU Tian-yu,CHEN Fei(河海大学机电工程学院,江苏,常州,213022) 刊名: 热力发电 英文刊名:THERMAL POWER GENERATION 年,卷(期):2009,38(2) 被引用次数:0次 参考文献(5条) 1.刘祖平一种跟踪和聚光的全新的理论[期刊论文]-中国科学技术大学学报 2006(12) 2.张宝星太阳能利用的跟踪与聚集系统研究[学位论文] 2006 3.饶鹏.孙胜利.叶虎勇两维程控太阳跟踪器控制系统的研制[期刊论文]-控制工程 2004(06) 4.张明峰PIC单片机入门与实战 2001 5.Soteris A.Kalogirou DESIGN AND CONSTRUCTION OF A ONE-AXIS SUN-TRACKING SYSTEM 1996(06) 相似文献(10条) 1.期刊论文张耀明.张文进.刘德有.孙利国.刘晓晖.王军太阳能热发电系列文章(17)70kW塔式太阳能热发电系统研究与开发(下)-太阳能2007(11) 阐述了塔式太阳能热发电系统中的接收器、燃气体轮机系统、辅助系统和控制系统的有关知识;介绍了南京江宁70kWe塔式太阳能热发电系统的接收器、燃气体轮机系统、辅助系统和控制系统的构成;总结了系统建设的目的和意义,并展望塔式太阳能热发电的前景. 2.期刊论文杨敏林.杨晓西.左远志.YANG Min-lin.YANG Xiao-xi.ZUO Yuan-zhi塔式太阳能热发电吸热器技术研究进展-科学技术与工程2008,8(10) 近年来,塔式太阳能热发电技术得到了迅猛发展,大量实验和运行数据充分证明了其技术可行性和商业应用前景.文中较系统的回顾了塔式太阳能热发电系统吸热器技术的发展历程及现状,对应用较为广泛的熔盐吸热器、空气吸热器及水/蒸汽吸热器作了详细的分析,并展望了我国开展塔武太阳能热发电应用研究的发展方向. 3.期刊论文张耀明.刘德有.张文进.孙利国.刘晓晖.王军太阳能热发电系列文章(16)70kW塔式太阳能热发电系统研究与开发(上)-太阳能2007(10) 介绍了南京江宁70kWe塔式太阳能热发电系统的基本原理与总体思路;对比了太阳能级燃气轮机与普通情况下使用的燃气轮机的差别;从定日镜的光学原理、控制原理等方面出发,阐述设计、制造工作中的做法;并对定日镜场的整体布置提出了一些见解和看法. 4.学位论文姚志豪太阳能塔式热发电站系统建模与控制逻辑研究2009 本论文的研究对象是中国第一座MW级塔式太阳能热发电站,研究内容是对该电站进行系统建模并对系统控制逻辑进行探讨。该电站采用多面定日镜作为聚光器,将太阳法向直射辐射能量反射聚焦到吸热器上产生过热蒸汽,然后利用传统的朗肯循环实现蒸汽的做功发电。
本论文紧密围绕科技部“十一五”863重点项目“太阳能热发电技术及系统示范”的子课题“太阳能塔式热发电系统总体设计技术及系统集成”中的内容,在本文研究对象大汉塔式电站的系统模型建立、子系统过程分析、全系统仿真及全场控制系统设计等几个方面分别开展了研究工作。
在电站全系统模型建立方面,设计并分析了十种电站全场运行模式及其互相之间的判别和切换控制逻辑。同时,还设计并分析了九种电站全场运行状态及其互相之间的切换逻辑,并建立了电站全系统能流传递模型及光热和发电两大子系统的输入输出参数模型。在此基础上,对定日镜场、吸热器、储热子系统、汽轮发电机组的基本数学模型进行了描述和分析,由此构建了除管路和阀门之外,较为完整的大汉塔式电站系统动力学模型。
在子系统过程分析方面,分别对大汉塔式太阳能热发电站“聚光、集热、储热、发电”这几个子系统单元基本运行过程进行了分析和探讨。总结了影响塔式太阳能热发电站能量来源不稳定及非连续性的天文学与地理、环境等方面的基本因素,提出了校正定日镜跟踪误差的BCS原理性算法。从塔式电站生产电能、电网输送电能及用户需求电能三个方面,对储热系统的重要性作了分析。对大汉电站的双级储热系统,设计了其“储热-放热”运行模式判断与切换基本逻辑。初步提出了定日镜场反射聚光功率与吸热器升压及产生蒸汽流量之间的关联函数。对影响机组正常运行的主要因素即云遮工况出现时大汉电站的系统动作逻辑进行了初步设计。
在全系统仿真及全场控制系统设计方面,利用TRNSYS软件设计搭建了大汉电站全系统仿真模型,对其在设计日与全年的发电量进行了仿真与理论计算分析。同时,对世界上第一座已实现商业化运行的塔式电站西班牙的PS10进行了系统模型重建与仿真,并得到了与已公布数据有较好吻合的结果。另外 ,还初步设计了电站全场控制系统基本原理框图及吸热器的几个主要监测及控制回路。分别设计了吸热器蒸汽温度的蒸汽侧喷水减温调节与镜场侧聚光调节的方法,对其基本热力学过程及方案原理进行了分析。在此基础上,初步设计了吸热器串级三冲量给水调节系统并对其传递函数原理图进行了描述。同时,还初步设计了考虑塔式太阳能热发电站气象、环境及聚光精度影响等基本特性的吸热器过热段喷水减温控制系统SAMA图,并对其中关键的焓值计算方案进行了探讨分析。 5.期刊论文范志林.张耀明.刘德有.王军.刘巍太阳能热发电系列文章(7)塔式太阳能热发电站接收器-太阳能2007(1) 本文介绍了国际现有高温太阳能热发电接收器的类型、结构、性能、应用状况,并结合我国研究现状指出我国开展太阳能接收器研究需解决的问题. 6.期刊论文章国芳.朱天宇.王希晨塔式太阳能热发电技术进展及在我国的应用前景-太阳能2008(11) 在介绍塔式太阳能热发电系统的基本原理、系统组成的基础上,回顾了塔式太阳能热发电系统的发展历程,着重阐述了塔式热发电所涉及的关键技术,包括定日镜、接收器、传热蓄热工质的研究进展,并通过分析我国气象、地理条件及能源需求,指出塔式太阳能热发电在我国的西藏、内蒙等西北部地区具有广阔的应用前景.

太阳能热发电技术现状

i太阳能热发电技术现状 李强 衢州学院机械工程学院 4140113038 摘要:介绍了槽式、塔式和盘式太阳能热利用发电站的发展史和技术现状。指出槽式太阳能热发电站的功率可至 1000MW,是所有太阳能热发电站中功率最大的,其年收益也最高。塔式太阳能热利用发电站的功率可至1000MW,与槽式系统相比,在商业上还不成熟。但高温型塔式系统和燃气轮机混合发电或和混合发电站联合发电最具市场化前景。盘式太阳能热发电系统功率5-1000kW,它用在流动场所,应用范围大,除可满足用电需求,还可代替柴油机组。 关键词:太阳能热发电,进展。 Abstract:Groove is introduced, and disc tower solar thermal power plant's development history and the status quo of the technology. Points out that the trough type solar thermal power plants to 1000 mw of power, is the largest solar power in the thermal power plant, its annual revenue is the highest. Tower solar thermal power plant to 1000 mw of power, compared with the groove system, in business is not yet mature. But high temperature type tower systems and gas turbine hybrid power generation or joint power and hybrid power plants the most market prospects. Disc solar thermal power generation system power 5-1000 - kw, it is used in flow, application scope is big,

塔式光热发电技术介绍

塔式光热发电技术介绍 太阳能热发电是利用聚光太阳能集热器把太阳能辐射能聚集起来,加热工质推动原动机发电的一项太阳能利用技术。按太阳能采集方式不同,主要分为塔式、槽式、碟式、线性菲涅尔式四种。其中,塔式太阳能光热发电以其在规模化、光电转化效率以及投资成本等多方面具有槽式、蝶式以及线性菲涅耳式等难以媲美的综合优势,而具有更好的发展前景,目前各国都越来越关注塔式光热发电技术的发展和研究。 一、塔式光热发电技术介绍 1.基本原理 塔式系统主要由多台定日镜组成定日镜场,将太阳能反射集中到镜场中间高塔顶部的高温接收器上,转换成热能后,传给工质升温,经过蓄热器,再输入热力发动机,驱动发电机发电。塔式光热发电系统由聚光子系统,集热子系统,发电子系统,蓄热子系统,辅助能源子系统五个子系统组成。其中,聚光子系统与集热子系统为其组成核心技术。 2.塔式光热发电的优势 由于槽式聚光器的几何聚光比低及集热温度不高,使得抛物槽式太阳能光热发电系统中动力子系统的热转功效率偏低,通常在35%左右。因此,单纯的抛物槽式太阳能光热发电系统在进一步提高热效率、降低发电成本方面的难度较大;线性菲涅尔式太阳能热发电系统效率不高;碟式太阳能热发电系统单机规模受到限制,造价昂贵。与另外三种光热发电方式相比,塔式塔式太阳能热发电系统可通过熔盐储热,且具有聚光比和工作温度高、热传递路程短、热损耗少、系统综合效率高等特点,可实现高精度、大容量、连续发电,是最为理想的发电方式。 二、太阳能光热发电发展现状 日前,全世界已建成十余个塔式太阳能光热发电试验示范电站。代表性的塔式光热电站有美国的Ivanpah电站,西班牙的PS10、PS20以及Gema Solar电站、2016年2月刚投入运营的南非Khi Solar One塔式电站、新月沙丘电站。我国

太阳能光热发电和储热的经济性分析报告

Technical Report NREL-TP-6A2-45833 February 2010 The Value of Concentrating Solar Power and Thermal Energy Storage Ramteen Sioshansi The Ohio State University Columbus, Ohio Paul Denholm National Renewable Energy Laboratory Golden, Colorado

National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 ? https://www.doczj.com/doc/ed10029242.html, NREL is a national laboratory of the U.S. Department of Energy Technical Report NREL-TP-6A2-45833 February 2010 The Value of Concentrating Solar Power and Thermal Energy Storage Ramteen Sioshansi The Ohio State University Columbus, Ohio Paul Denholm National Renewable Energy Laboratory Golden, Colorado Prepared under Task No. CP09.3201

塔式太阳能光热电站的研究进展

Sustainable Development 可持续发展, 2019, 9(4), 789-795 Published Online October 2019 in Hans. https://www.doczj.com/doc/ed10029242.html,/journal/sd https://https://www.doczj.com/doc/ed10029242.html,/10.12677/sd.2019.94094 Research Progress of Tower Solar Thermal Power Station Xiaopeng Gao Xiamen University Malaysia, Kuala Lumpur Malaysia Received: Oct. 8th, 2019; accepted: Oct. 23rd, 2019; published: Oct. 30th, 2019 Abstract This paper summarized the research progress of heliostats, heat sinks, supercritical CO2 Braden cycle tower photothermal power generation systems and tower solar-assisted coal-fired power generation systems, and analyzed the economics of tower solar thermal power generation tech-nology. The tower, trough, linear Fresnel, and dish-type, four solar thermal power stations were compared. Finally the feasibility of constructing a large-scale solar thermal power station in the northwest region was explored, and it was concluded that the tower solar thermal power station can sustain large-scale power generation continuously, but the improvement of its photoelectric efficiency and the feasibility of actual construction should be further developed in the future re-search. Keywords Tower, Solar Energy, Solar Thermal Power Generation, Efficiency, Cost 塔式太阳能光热电站的研究进展 高晓鹏 厦门大学马来西亚分校,马来西亚吉隆坡 收稿日期:2019年10月8日;录用日期:2019年10月23日;发布日期:2019年10月30日 摘要 本文全面阐述了定日镜、吸热器、超临界CO2布雷登循环塔式光热发电系统和塔式太阳能辅助燃煤发电系统技术的研究进展情况,剖析了塔式太阳能热发电技术的经济性,对比了塔式、槽式、线性菲涅尔式、

太阳能光热利用的基本原理是将太阳辐射能收集起来

太阳能光热利用的基本原理是将太阳辐射能收集起来,将光能转换成热能加以利用,目前主要应用在太阳能热水器和光热发电两大领域。中国太阳能光热产业发轫于20世纪80年代,由于当时能源紧张局面的出现,各大专院校和科研院所开始了太阳能光热利用的研究工作。随着国家“863”计划的实施,一批科研成果迅速转化成生产力,全面推动了我国太阳能光热利用的产业化进程。 目前,我国已成为世界上最大的太阳能光热应用市场,也是世界上最大的太阳能集热器制造中心。到2009年我国集热器累计推广总面积约1.45亿平方米,占世界总量的76%左右;年产量达4000多万平方米,接近世界总产量的60%。2009年我国太阳能热水器总销售额约578.5亿元,同比增长34.5%。太阳能光热技术不仅在民用领域,还在造纸、饮料、机械、纺织、食品、养殖等工农业生产方面得到广泛应用。 我国太阳能光热产业之所以能快速发展并跃居世界第一,关键因素是掌握了核心技术。我国太阳能光热产业自有技术占95%以上,在太阳能集热、高温发电集成系统、采暖制冷、海水淡化、建筑节能、设备检测等方面,拥有国际领先的技术。 太阳能光热发电是太阳能光热技术应用的一个新领域,在光热利用产业中后来居上,发展势头十分迅猛。“十一五”期间,国家对光热发电技术研发的投资力度不断加大。从2006年到2010年,仅科技部投入光热发电的经费就超过4750万元,重点技术领域取得了突破性进展。 随着中高温太阳能热水器的开发以及太阳能与建筑一体化技术的日益完善,太阳能热水器的应用领域不再局限于提供热水,正逐步向取暖、制冷、烘干和工业应用方向拓展,市场潜力巨大。 “十二五”发展规划中,首次明确提出将在未来5年内,政府直接投资4 万亿元用于新能源、节能环保技术等9大行业的发展。作为同时横跨“新能源”和“节能环保”两大产业的太阳能光热,已然成为各级政府和产业政策中的焦点。 中投顾问发布的《2010-2015年中国太阳能光热产业投资分析及前景预测报告》共八章。首先介绍了太阳能热利用的概念、利用方式、发展现状,然后详细介绍了太阳能热水器、太阳能光热发电、太阳能建筑、太阳能空调、太阳能灶、太阳能海水淡化、太阳能干燥技术的发展。随后,报告分析了太阳能光热产业重点企业的运营状况。最后,报告对太阳能热利用产业的前景趋势做出了科学的预测。您若想对太阳能光热产业有个系统的了解或者想投资太阳能光热相关产业,本报告是您不可或缺的重要工具。

相关主题
文本预览
相关文档 最新文档