当前位置:文档之家› 高斯09 溶剂效应论坛讨论

高斯09 溶剂效应论坛讨论

高斯09 溶剂效应论坛讨论
高斯09 溶剂效应论坛讨论

Gaussian 09计算溶剂化能量

使用scrf=(solvent=toluene,cpcm)命令在G09下计算溶剂化能量(使用气态优化的结构)!但是由于与使用G03时输出文件不一样(没有Total free energy in solution这一项)!请教使用G09怎么计算溶剂化能量?

那就直接用文件结束时给出的能量好了。方便的话,也可以把output放box上让大家帮忙分析下。

做一个包含溶剂的频率计算,总自由能就自动加上了溶剂效应修正。

用smd模型来计算:scrf=(solvent=toluene,smd),不需要指定半径。

单点算出来的能量E加上气态计算的自由能修正,结果比较合理。

不过我一般使用G09得到气态优化结构,然后用G03计算溶剂效应。

用smd模型来计算:scrf=(solvent=toluene,smd),不需要指定半径。

单点算出来的能量E加上气态计算的自由能 ...

caipingl 发表于2010-11-17 12:21 https://www.doczj.com/doc/e85567142.html,/bbs/images/common/back.gif

那你这种情况发文章时怎么说呢?03和09的溶剂化计算相差还是很大的!

请问你是如何算溶剂化能的,对应高斯输出文件的哪项?

回复5# hgp2006

G03和G09的参考文献都写上,溶剂化效应说明部分指出采用G03计算就可以吧。

我对比过一些G03和G09优化结果,差别很小。我想这样做应该是合理的吧。相对于某些体系,G09的SMD模型会得到比较奇怪的结果。

个人感觉G09不如G03,有时有些体系用G09优化就会出错,而G03就能正常运行,而且IRC计算时也经常会出错。感觉还是G03用起来得心应手。

使用G09可以直接优化包含溶剂化效应的结构,在此基础上做频率计算就可以了。SMD模型比较新,但个人感觉不太成功。Bondi Radii应该更稳定一些。

本帖最后由Dice 于2012-4-6 08:41 编辑

做一个包含溶剂的频率计算,总自由能就自动加上了溶剂效应修正。

yangxz 发表于 2010-11-17 08:30 https://www.doczj.com/doc/e85567142.html,/images/common/back.gif

如果要溶剂化能的话,是不是做一个溶液相的计算(opt + freq)和一个气相的计算(opt + freq),然后用Gsol - Ggas ?

DoVacuum performs the first iteration in the gas phase; this option is required in order to compute a ΔG of solvation.

我用scrf=(smd,solvent=toluene,DoVacuum),没有见到ΔG of solvation这个问题我也很疑惑,希望跟大家讨论下。

G03中,溶剂化主要是以PCM系列为主,溶剂化的计算自动包括了静电项(elec)和非静电项(non-elec = cav+dis+rep),如果使用scrf=(solvent=溶剂名称,pcm,read)最后来一个scfvac,那么会在.log 文件中给出你详细的数据,其中有ΔG(sol)=E(elec)+G(non-elec)(据很多文献的描述,溶剂化自由能包括这两项)。

G09中的溶剂化有点烦锁有点坑。首先,它取消了scfvac这个命令,无法直接给出ΔG(sol),PCM的默认计算不再包括non-elec。如果想要计算和输出non-elec并且同时给出ΔG(sol),需要scrf=(solvent=溶剂名称,pcm,externaliteration,dovacuum,read),在gjf最后使用cav(回车)dis (回车)rep,那么你会在.log文件中得到与03一样的结果。

其次,这个版本包括了很新的SMD溶剂化模型(Truhlar课题组做的,由很早的SM5演变过来的吧),这个模型的特点主要是对non-elec的改动,它等于CDS=cav+dis+struc,但其elec项依然是PCM做的。并且SMD的计算结果会直接就把non-elec加到所得到的SCF done的能量中。由于non-elec=CDS,故该模型不支持cav(回车)dis(回车)rep这种输入模式。如此时想得到ΔG(sol),方法同上,只是最后不用加任何命令。值得注意的是,SMD is the recommended choice for computing ΔG of solvation in G09。

以上为个人的一点认识。G09的优点在于给出了大量的溶剂可供使用,SMD由于的不需要Rsolv,使得这一方法可以使用G09中所有给出的溶剂。

以下一些疑问,也希望大家能帮忙。

1. G09的PCM默认不计算non-elec,是否可以直接不用在计算,只需计算elec即可?(G09对PCM 的算法有所优化,已经到了不用考虑non-elec??此处我没搞明白);并且,1,4-dioxane只能计算其elec,一旦计算non-elec便会因为vmol和Rsol冲突导致无法计算dis和rep,即便只计算cav所得结果也是Na,错误的结果。

2. SMD很不错,其所得结果在很多时候也较为合理,通常它得到的结果要比PCM的更低一些。直接使用

SMD,默认溶剂半径是SMD-Coulomb,如果改变半径为UAKS,UFF等也是可以计算的,但是若改变了半径,是否会导致该溶剂化模型的计算精度降低而导致结果不可信??再者,多数情况下Truhlar在使用SMD时多与M06-family的方法并用(M06,M062X,M06-L等),其他方法与其并用时可信度如何?

3. 在K. N. Houk和Zhixiang Yu发表在JACS的文章中,对这些溶剂化使用的很随意。但我不明白他们在使用PCM时是否计算了non-elec(文中未提及),我见他们用过B3LYP/SMD,大牛们用了,但我不知道我们是否可用。

希望对大家有所帮助。

问题:

请教高斯09算溶剂效应及能量校正问题,多送金币+小红花作者: sesy(站内联系TA)收录: 2012-10-13 发布: 2012-10-11

我们这级新接触Gaussion09,看小木虫中有很多帖子说09和03做能量校正得到的输出结果不一样,:(所以请教高手看看我用09算的方法对不对,尤其是输入文件写的有问题吗?我先优化完结构然后做单点能和溶剂效应,输入文件如下,请之前用过09的虫友们多多指点。多送金币+小红花希望大家多多关注,急求解答!!!

一、使用G09程序包,先用小基组b3lyp/6-31g(d)对构型进行优化和频率分析,

输入文件关键词:# opt freq b3lyp/6-31g(d) geom=connectivity

输出结果选用的Thermal correction to Gibbs Free Energy= (用A表示)

二、再用大基组计算单点能:# b3lyp/6-311++g(d,p) scf=tight

输出结果选用的SCF Done: E(RB3LYP) = -1246.14645414(用B表示)

三、最后考虑到溶剂效应:

输入文件# b3lyp/6-311++g(d,p) scf=tight scrf=(PCM,solvent=benzene,read,smd,Dovac uum,ExternalIteration)

Radii=uaks (最后)

输出结果选用的DeltaG (solv) (kcal/mol) = -38.40 (用C表示)

最后自由能表示:自由能=自由能校正(A)+单点能(B)+溶剂化能(C)

楼主确定能打印DeltaG (solv) (kcal/mol) = -38.40?,我尝试过几次,用G03可以

2楼: Originally posted by lishijunzong at 2012-10-11 1209

楼主确定能打印DeltaG (solv) (kcal/mol) = -38.40?,我尝试过几次,用G03可以的,g09不能直接打印

是的,不知阁下用不用09?看看我的关键词和计算公式对吗?我就是按照这个关键词这样做的,我没用过03,我优化用的09,所以能量必须也得用09 ,不知这样校正对不对?谢

有木有研究09的大师们???赶紧来帮帮忙吧。。。。只是帮偶看一下这样做对不对?我有

2楼: Originally posted by lishijunzong at 2012-10-11 1209

楼主确定能打印DeltaG (solv) (kcal/mol) = -38.40?,我尝试过几次,用G03可以的,g09不能直接打印

第二步二、再用大基组计算单点能:# b3lyp/6-311++g(d,p) scf=tight

输出结果选用的SCF Done: E(RB3LYP) = -1246.14645414(用B表示)

是没有必要算的,只算一三步就行。

最后自由能表示:自由能=自由能校正(A)+溶剂化下的单点能

溶剂化下的单点能是g09溶剂化输出结果中的SCF Done: E(UB3LYP) = 这一项的能量

7楼: Originally posted by goodmood660 at 2012-10-11 1842

第二步二、再用大基组计算单点能:# b3lyp/6-311++g(d,p) scf=tight

输出结果选用的SCF Done: E(RB3LYP) = -1246.14645414(用B表示)

是没有必要算的,只算一三步就行。

最后自由能表示:自由能=自由能校 ...

阁下看看我们计算g09溶剂化下的单点能的输入文件对不对啊?我看了一下,第三步out 文件里有好几个SCF Done: E(RB3LYP) = 这一项的能量都不一样啊。。。

3楼: Originally posted by sesy at 2012-10-11 1455

是的,不知阁下用不用09?看看我的关键词和计算公式对吗?我就是按照这个关键词这样做的,我没用过03,我优化用的09,所以能量必须也得用09 ,不知这样校正对不对?谢谢...

直接做出来的应该是smd的能量需要加上ExternalIteration部分打印的文件静电能这样得

一、使用G09程序包,先用小基组b3lyp/6-31g(d)对构型进行优化和频率分析,

输入文件关键词:# opt freq b3lyp/6-31g(d) geom=connectivity

输出结果选用的Thermal correction to Gibbs Free Energy= (用A表示)

二、输入文件# b3lyp/6-311++g(d,p) scf=tight scrf=(solvent=benzene,read,smd,Dovac uum)

Radii=uaks (最后)

输出结果选用的DeltaG (solv) (kcal/mol) = -38.40 (用C表示)

溶剂化下的单点能就是输出结果中的SCF Done: E(UB3LYP) = **********。另外基组

12楼: Originally posted by 幸福男人at 2012-10-12 0736

一、使用G09程序包,先用小基组b3lyp/6-31g(d)对构型进行优化和频率分析,

输入文件关键词:# opt freq b3lyp/6-31g(d) geom=connectivity

输出结果选用的Thermal correction to Gibbs Free Energy= (用A表示) ...

你好,我还是有一些问题不明白,看到一些小木虫上的关于该问题的讨论,scrf项目里还需要加pcm ,ExternalIteration 关键词,我们这个地方不需要再加入这两个关键词了么?

12楼: Originally posted by 幸福男人at 2012-10-12 0736

一、使用G09程序包,先用小基组b3lyp/6-31g(d)对构型进行优化和频率分析,

输入文件关键词:# opt freq b3lyp/6-31g(d) geom=connectivity

输出结果选用的Thermal correction to Gibbs Free Energy= (用A表示) ...

你好,输入文件# b3lyp/6-311++g(d,p) scf=tight scrf=(solvent=benzene,read,smd,Dov acuum)

Radii=uaks

按照你的输入文件计算了一下,没有这一项DeltaG (solv) (kcal/mol) =

只有SCF Done: E(UB3LYP) = 这一项的能量,输出结果中的是不是应该取这一项啊

自由能=自由能校正(A)+SCF Done: E(UB3LYP) 对不对啊?

15楼: Originally posted by sesy at 2012-10-12 1646

你好,输入文件# b3lyp/6-311++g(d,p) scf=tight scrf=(solvent=benzene,read,smd,Dov acuum)

Radii=uaks

按照你的输入文件计算了一下,没有这一项DeltaG (solv) (kcal/mol) =

只有SCF Done: E( ...

14楼: Originally posted by luyating2005 at 2012-10-12 1612

你好,我还是有一些问题不明白,看到一些小木虫上的关于该问题的讨论,scrf项目里还需要加pcm ,ExternalIteration 关键词,我们这个地方不需要再加入这两个关键词了么?刚开始用高斯09 不太明白,望见谅啊...

17楼: Originally posted by 幸福男人at 2012-10-14 0713

pcm和smd是两个不同模型...

13楼: Originally posted by 飞行鸟at 2012-10-12 0843

溶剂化下的单点能就是输出结果中的SCF Done: E(UB3LYP) = **********。另外基组要改善

你好能给我写下你们计算溶剂化下的单点能的输入文件吗?多谢最近写文章、本组新接触

17楼: Originally posted by 幸福男人at 2012-10-14 0713

pcm和smd是两个不同模型...

我也对此有些疑问、、、阁下是不是用这种方法计算过?那我们这次的溶剂效应是不是就是s md模型啊?为什么我按照这些关键词算出来的,默认的模型显示的是:PCM

确认清楚才放心投出文章去嘻嘻、还请赐教,耐心等待中。。。

【求助】高斯09 PCM指定pyridine溶剂的设定作者: CKX(站内联系TA)收录: 2010-04-23 发布: 2010-04-13

# B3LYP/6-31G(d) 5D SCRF(SMD,Solvent=Generic, PCM=Read)

Water, solvation by pyridine, re-defined as generic solvent.

0 1

O

H,1,0.94

H,1,0.94,2,104.5

stoichiometry=C5H5N

solventname=pyridine

eps=12.978

RSOLV=?

RSOLV=?

epsinf=?

RSOLV=?

epsinf=?

RSOLV=?

epsinf=?

RSOLV=?

epsinf=?

请问这两个参数是多少啊

1楼: Originally posted by CKX at 2010-04-13 0949:

# B3LYP/6-31G(d) 5D SCRF(SMD,Solvent=Generic, PCM=Read)

Water, solvation by pyridine, re-defined as generic solvent.

0 1

O

H,1,0.94

H,1,0.94,2,104.5

stoichiometry=C5H5N

solv ...

请问用09算溶剂效应必须按照你的那个格式写输入文件吗?为什么我用原来03的输入文

直接用# B3LYP/6-31G(d) 5D SCRF(SMD,Solvent=pyridine, PCM) ,在输出文件里有你所要的

RSOLV

epsinf

有机化合物的紫外吸收光谱及溶剂效应

实验九有机化合物的紫外吸收光谱及溶剂效应 实验目的: (1)学习有机化合物结构与其紫外光谱之间的关系; (2)了解不同极性溶剂对有机化合物紫外吸收带位置、形状及强度的影响。 (3)学习紫外—可见分光光度计的使用方法 实验原理: 与紫外-可见吸收光谱有关的电子有三种,即形成单键的σ电子、形成双键的π电子以及未参与成键的n电子。跃迁类型有:σ→σ*,n→σ* ,n→π*,π→π* 四种。在以上几种跃迁中,只有π-π*和n-π*两种跃迁的能量小,相应波长出现在近紫外区甚至可见光区,且对光的吸收强烈,是我们研究的重点。 影响有机化合物紫外吸收光谱的因素有内因和外因两个方面。 内因是指有机物的结构,主要是共轭体系的电子结构。随着共轭体系增大,吸收带向长波方向移动(称作红移),吸收强度增大。紫外光谱中含有π键的不饱和基团称为生色团,如有C=C、C=O、NO2、苯环等。含有生色团的化合物通常在紫外或可见光区域产生吸收带;含有杂原子的饱和基团称为助色团,如OH、NH2、OR、Cl等。助色团本身在紫外及可见光区域不产生吸收带,但当其与生色团相连时,因形成n→π*共轭而使生色团的吸收带红移,吸收强度也有所增加。 影响有机化合物紫外吸收光谱的外因是指测定条件,如溶剂效应等。所谓溶剂效应是指受溶剂的极性或酸碱性的影响,使溶质吸收峰的波长、强度以及形状发生不同程度的变化。这是因为溶剂分子和溶质分子间可能形成氢键,或极性溶剂分子的偶极使溶质分子的极性增强,从而引起溶质分子能级的变化,使吸收带发生迁移。例如异丙叉丙酮的溶剂的溶剂效应如表1所示。随着溶剂极性的增加K带红移,而R带向短波方向移动(称作蓝移或紫移)。这是因为在极性溶剂中π→π * 跃迁所需能量减小,吸收波长红移(向长波长方向移动)如图(a)所示;而n→π * 跃迁所需能量增大,吸收波长蓝移(向短波长方向移动),溶 剂效应示意图如(b)所示。 图1 电子跃迁类型 σ π * σ * n π?

高斯投影正反算公式 新

高斯投影坐标正反算 一、相关概念 大地坐标系由大地基准面和地图投影确定,由地图投影到特定椭圆柱面后在南北两极剪开展开而成,是对地球表面的逼近,各国或地区有各自的大地基准面,我国目前主要采用的基准面为:基准面,为GPS基准面,17届国际大地测量协会上推荐,椭圆柱长半轴a=6378137m,短半轴b=; 2.西安80坐标系,1975年国际大地测量协会上推荐,椭圆柱长半轴a=6378140m,短半轴b=; 3.北京54坐标系,参照前苏联克拉索夫斯基椭球体建立,椭圆柱长半轴a=6378245m, 短半轴b=; 通常所说的高斯投影有三种,即投影后: a)角度不变(正角投影),投影后经线和纬线仍然垂直; b)长度不变; c)面积不变; 大地坐标一般采用高斯正角投影,即在地球球心放一点光源,地图投影到过与中央经线相切的椭圆柱面上而成;可分带投影,按中央经线经度值分带,有每6度一带或每3度一带两种(起始带中央经线经度为均为3度,即:6度带1带位置0-6度,3度带1带位置度),即所谓的高斯-克吕格投影。

图表11高斯投影和分带 地球某点经度(L)为过该点和地球自转轴的半圆与子午线所在半圆夹角,东半球为东经,西半球为西经;地球某点纬度(B)为所在水平面法线与赤道圆面的线面角。 正算是已知大地坐标(L,B),求解高斯平面坐标(X,Y),为确保Y值为正,Y增加500公里;反算则是由高斯平面坐标(X,Y)求解大地坐标(L,B)。 二、计算模型: 地球椭球面由椭圆绕地球自转轴旋转180度而成。 图表 1 椭圆 椭圆长半轴a,椭圆短半轴b, 椭圆方程:

(1) 图表2椭球面 椭球面方程: y2 a2+ x2 b2 + z2 a2 =1 /*************************************** 与网上充斥的将函数关系先展开为泰勒级数,再依据投影规则确定各参数不同,本文直接依据空间立体三角函数关系得出结果。 *****/ (一)正算 由图表1,

溶剂概述和溶剂效应

溶剂概述和溶剂效应 摘要:对化学反应中溶剂的种类和作用做概述,以及溶剂效应在紫外,荧光,红外,核磁波谱和液相色谱中的作用。 关键词:溶剂溶剂效应吸收光谱液相色谱 1,溶剂 1.1溶剂的定义 溶剂是一种可以溶化固体,液体或气体溶质的液体,继而成为溶液,最常用的溶剂是水。 1.2溶剂的分类 溶剂按化学组成分为有机溶剂和无机溶剂 有机溶剂是一大类在生活和生产中广泛应用的有机化合物,分子量不大,常温下呈液态。有机溶剂包括多类物质,如链烷烃、烯烃、醇、醛、胺、酯、醚、酮、芳香烃、氢化烃、萜烯烃、卤代烃、杂环化物、含氮化合物及含硫化合物等等,多数对人体有一定毒性。(本文主要概述有机溶剂在化学反应以及波谱中的应用) 2,溶剂效应 2.1溶剂效应的定义 溶剂效应是指溶剂对于反应速率,平衡甚至反应机理的影响。溶剂对化学反应速率常数 的影响依赖于溶剂化反应分子和相应溶剂化过渡态的相对稳定性。 2.2溶剂效应在紫外,荧光,红外,核磁中的应用 2.2.1溶剂效应在紫外吸收光谱中的应用[5] 有机化合物紫外吸收光谱的吸收带波长和吸收强度,与所采用的溶剂有密切关系。通常,溶 剂的极性可以引起谱带形状的变化。一般在气态或者非极性溶剂(如正己烷)中,尚能观察 到振动跃迁的精细结构。但是改为极性溶剂后,由于溶剂与溶质分子的相互作用增强,使谱 带的精细结构变得模糊,以至完全消失成为平滑的吸收谱带。这一现象称为溶剂效应。例如, 苯酚在正庚烷溶液中显示振动跃迁的精细结构,而在乙醇溶液中,苯酚的吸收带几乎变得平 滑的曲线,如图所示

2.2.1.1溶剂极性对n→π*跃迁谱带的影响[2] n→π*跃迁的吸收谱带随溶剂的极性的增大而向蓝移。一般来说,从以环己烷为溶剂改为以乙醇为溶剂,会使该谱带蓝移7nm:如改为以极性更大的水为溶剂,则将蓝移8nm。增大溶剂的极性会使n→π*跃迁吸收谱带蓝移的原因如下: 会发生n→π*跃迁的分子,都含有非键电子。例如C=O在基态时碳氧键极化成Cδ+=Oδ-,当n电子跃迁到π*分子轨道时,氧的电子转移到碳上,使得羰基的激发态的极性减小,即Cδ+=Oδ-(基态)→C=O (激发态)。所以,与极性溶剂的偶极偶极相互作用强度基态大于激发态。被极性溶剂稳定而下降的能量也是基态大于激发态。跃迁能量增加而发生吸收峰蓝移,如图2所示;溶剂对n→π*跃迁的另一个影响是形成氢键,例如羰基与极性溶剂发生氢键缔合的作用程度,极性强的基态大于极性弱的激发态,致使基态的能级的能量下降较大,而激发态能级的能量下降较小,使吸收峰蓝移。 2.2.1.2溶剂极性对π→π*跃迁谱带的影响[2] π→π*跃迁的吸收谱带随溶剂极性的增大而向红移。一般来说,从以环烷烃为溶剂改为以乙醇为溶剂,会使该谱带红移10 20nm.增大溶剂的极性引起π→π*跃迁的吸收谱带红移的原因如下。大多数会发生π→π*跃迁的分子,其激发态的极性总是比基态的极性大,因而激发态与极性溶剂之间发生相互作用从而降低其能量的强度,要比极性小的基态与极性溶剂发生作用降低的能量大。也就是说,在极性溶剂的作用下,基态与激发态之间的能量差别变小了,因而要实现这一跃迁所需要的能量相应地小了,故引起吸收峰红移,2图可以加以说明。

高斯投影计算的实用公式

§8.4高斯投影计算的实用公式 1子午线弧长计算公式 改写并扩充(7-65)(7-64)两式 )8sin()6sin()4sin()2sin(86420B a B a B a B a B a X ++++= )16384 17640512525646043)(1(21864222e e e e e a a +++--= )16384 88205122106415)(1(4186424e e e e a a ++-= )16384 252051235)(1(618626e e e a a +--= )16384 315)(1(81828e e a a -= 2正算公式(8-67)(8-81) 00/cos ρBl p = 2/)12/)30/))58(61())49(5((1(22222222p p p t t t Nt X x -++++-++=ηηp p p t t t N y )6/)20/)14)5818(5()1((1(22222222ηηη+--+++-+= )3/)5/)2())23(1((1(sin 22222 00p p t Bl r -++++=ηη 式中: B t tan = 22)cos (B e '=η 221η+=V V c N /= 0000L L l -= 21a/e c -= 3 底点纬度公式 00Xq B = (单位:弧度) ))) sin (sin (sin )(2sin(028*********B q q B q B q B B B f ++++=(单位:弧度) 式中: )16384110255123506445431)(1(864220e e e e e a a ++++-=

溶剂效应图解

溶剂效应图解 图解很好! 其实是样品,样品溶剂,流动相和固定相综合作用的关系.当样品在样品溶剂中的相对溶解度大于在流动相时(可以理解为样品溶剂的洗脱能力大于流动相),样品就更喜欢在样品溶剂中,并很想随之流动.但同时与固定相的强作用只能使之形成追赶样品溶剂的效果.最终导致前延峰或裂峰的出现.(如图2:高溶解性溶剂).但当样品与固定相作用很弱时,大部分样品可能会赶上样品溶剂,但又由于与固定相的弱作用,导致其不可能与样品溶剂同时流出,最终导致拖尾峰的出现. 这也就是为什么在一般反相色谱中要用低有机相(比流动相低)溶解样品的原因!其效果就如图1:低溶解性溶剂 样品溶剂效应 很多因素可以导致峰形变差。样品溶液的组成与进样体积很可能就是导致此种现象的原因。 问题 色谱图上较早洗脱的峰扭曲变形或者开叉,与此同时较晚洗脱的峰则较为尖锐与对称,这些现象显示一个比较特殊的起因――样品溶液的溶剂很可能强于流动相。此种强溶剂效应的例子在图10-1A中可见。此处的样品溶液的溶剂是100%乙腈(100%的强溶剂),而流

动相的组成则较弱,18%的乙腈与72%的水。第一个峰是开叉的,并且与第二个峰相比,明显地变宽了。当样品溶液的溶剂变成流动相时,所有的峰形都改善了,且变得尖锐。见图10-1B。 解释 当样品进样时,有可能出现峰展宽,最佳的样品溶液组成和体积将会保持在10%甚至更低,在这个例子里,当样品溶剂与流动相溶剂强度不同时,换句话来说,也就是样品未用流动相溶解,因此,有些样品分子溶解在强溶剂(100%ACE),并随强溶剂流过柱子,而有些则溶解在流动相中,从而导致峰分叉. 当样品与流动相强度相差较小,进样影响也会小,第一个峰可能会宽于第二个峰,而当这种展宽导致必要的分离度降低时,这样情况应引起注意,在图10-2A中, 使用一根短柱,和5UL进样,这与最佳进样体积4UL相近,用了极性更强的溶剂导致分离度明显的降低,从2.1降到1.5(如图10-2B),分离度为2 或更大是评估一个完善方法的一个必要参数,也是每天方法的验证参数,1.5只是一个基本的分离度,任何一个方法或一根柱子都必需满足这个条件,当进样为一倍时,也就是10UL时,分离度更一步降低,此方法就不行了 尽量用流动相去溶解样品,如果样品在流动相中溶解性差不得不用强溶剂溶解,那就尽量减少进样量。

有机化学中的电子效应

有机化学中的电子效应电子效应是影响有机化合物反应活性和反应规律的重要因素之一,深入理解有机化学中的电子效应,可以对有机化学的认识由感性向理性方向发展。电子效应包括诱导效应、共轭效应和超共轭效应;有时三种效应同时存在,表现共同作用的综合结果。一、诱导效应(Inductive effect)诱导效应是电子效应的一种,是由路易斯(Lewis)首先提出。路易斯认为,对于有机化合物,诱导效应是由一个电负性较强的原子 X 取代了碳原子上的氢原子后,在 C-X 键上产生一个极性分布,这个极性分布通过电性诱导作用,在分子中其它键上引起一系列的极性变化,结果在整个分子中产生一个向着 X 原子方向的较大范围的电子运动,这种电子运动称为诱导效应:δ+ C C X δC C 电负性比碳弱的元素原子也可以在分子中引起一系列的极性变化,只是所产生的诱导效应的方向刚好相反。诱导效应是指在有机化合物分子中引入一个基团或原子后,由于原子的电负性差异,导致σ 键电子的移动,使分子中的电子云密度分布发生变化,而这种变化不但发生在直接相连的部分,也可以影响到不直接相连的部分。这种因某一原子或基团的极性而引起电子沿碳链向某一方向移动的效应,称为诱导效应。如氯丙烷分子中,取代在碳上的氯原子的电负性较强, C-Cl 键产生偶极,使与氯原子连接的第一个碳原子(α-碳原子)产生部分正电荷(δ+),也使第二个碳原子带有部分正电荷,第三个碳原子带有更少的正电荷,依次影响下去。这种影响的特征是沿着碳链传递,并随着碳链的增长而迅速减弱或消失,一般传递到第三个碳原子就可忽略不计。诱导效应是一种静电作用,共用电子并不能完全转移到另一原子,只是电子云密度分布发生变化,亦即键的极性发生变化。δ+ δ+ δ+ δCH3—CH2—CH2→Cl 1.静态诱导效应(Is)诱导效应分为静态诱导效应和动态诱导效应。静态诱导效应是由分子本身结构决定的,是分子本身所固有的极化效应,与由极性溶剂或反应试剂等产生的外电场无关。⑴–I 效应和+I 效应静态诱导效应通常采用烷烃 H-CR3 上的氢作为比较标准,规定其为 0。如果用电负性较碳原子大的 X 取代了 H-CR3 中的氢原子后,化合物 X-CR3 中-CR3 部分的电子云密度比在 H -CR3 中小,X 叫做吸电子基团。由吸电子基团引起的诱导效应,叫做吸电子诱导效应,用-I 表示。如果用电负性较碳原子小的 Y 取代了 H-CR3 中的氢原子,化合物 Y- CR3 中-CR3 部分的电子云密度比在 H-CR3 中大,Y 叫做给电子基团。由给电子基团引起的诱导效应,叫做给电子诱导效应,用+I 表示。 1

高斯投影正反算——包括3度和6度带的选择

// guass coordinateDlg.cpp : implementation file // #include "stdafx.h" #include "guass coordinate.h" #include "guass coordinateDlg.h" #include "math.h" #ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = __FILE__; #endif ///////////////////////////////////////////////////////////////////////////// // CAboutDlg dialog used for App About class CAboutDlg : public CDialog { public: CAboutDlg(); // Dialog Data //{{AFX_DATA(CAboutDlg) enum { IDD = IDD_ABOUTBOX }; //}}AFX_DATA // ClassWizard generated virtual function overrides //{{AFX_VIRTUAL(CAboutDlg) protected: virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support //}}AFX_VIRTUAL // Implementation protected: //{{AFX_MSG(CAboutDlg) //}}AFX_MSG DECLARE_MESSAGE_MAP() }; CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD) { //{{AFX_DATA_INIT(CAboutDlg) //}}AFX_DATA_INIT }

溶剂化

溶剂化 1溶剂化的概念 在溶液中,溶质被溶剂分子包围的现象称为溶剂化。 例如:氯化钠在水溶液中,结构单元就是水化了的钠离子(Na)和氯离子(Cl),即氯化钠被水溶剂化。 2溶剂化的本质 一个极性溶剂分子带有部分正电荷的正端和带部分负电荷的负端。正离子与溶剂的负端,负离子与溶剂的正端相互吸引,称为离子-偶极作用,也成为离子-偶极键。离子-偶极作用是溶剂化的本质,一个离子可形成多个离子-偶极键,结果离子被溶剂化,被溶剂分子包围。 质子溶剂的溶剂化作用除了离子-偶极键作用外,往往还有氢键的作用。 3溶剂化的结果 稳定了离子,降低了离子的化学反应活性。 例如: 质子溶剂不仅稳定正离子,还急剧地降低了负离子的反应活性,因为负离子的碱性及亲核性是一致的。 溶剂化作用 溶剂化作用是溶剂分子通过它们与离子的相互作用,而累积在离子周围的过程。该过程形成离子与溶剂分子的络合物,并放出大量的热。溶剂化作用改变了溶剂和离子的结构。以水溶液为例,其中一个离子周围水的结构模型如图所示。 图中:A为化学水化层,该层中由于离子和水偶极子的强大电场作用,使得水分子与离子结合牢固,因而失去平动自由度,这一层水分子和离子一块移动,且水分子数不受温度影响,一般形成配位键; B为物理水化层,该层水分子也受到离子的吸引,但由于距离较远,吸引较弱,水分子数随温度改变; C为自由水分子层,该层水分子不受离子电场影响。 水分子的两种溶剂化作用 水分子受离子静电的作用而定向在离子周围形成水化壳,这是水的第一种溶剂化作用——离子水化;水分子还可使在纯态时由不导电的电解质变成导电的电解质,这是水的第二种溶剂化作用。 溶剂对反应速度的影响 作者: swt6707704 (站内联系TA) 发布: 2008-08-02 在均相反应中,溶液的反应远比气相反应多得多(有人粗略估计有90%以上均相反应是在溶液中进行的)。但研究溶液中反应的动力学要考虑溶剂分子所起的物理的或化学的影响,另外在溶液中有离子参加的反应常常是瞬间完成的,这也造成了观测动力学数据的困难。最简单的情况是溶剂仅引起介质作用的情况。 在溶液中起反应的分子要通过扩散穿周围的溶剂分子之后,才能彼此接触,反应后生成物分子也要穿国周围的溶剂分子通过扩散而离开。 扩散——就是对周围溶剂分子的反复挤撞,从微观角度,可以把周围溶剂分子看成是形成了一个笼,而反应分子则处于笼中。分子在笼中持续时间比气体分子互相碰撞的持续时间大10-100倍,这相当于它在笼中可以经历反复的多次碰撞。 笼效应——就是指反应分子在溶剂分子形成的笼中进行多次的碰撞(或振动)。这种连续反复碰撞则称为一次偶遇,所以溶剂分子的存在虽然限制了反应分子作远距离的移动,减少了与远距离分子的碰撞机会,但却增加了近距离分子的重复碰撞。总的碰撞频率并未减低。 据粗略估计,在水溶液中,对于一对无相互作用的分子,在依次偶遇中它们在笼中的时

溶剂效应

溶剂效应 百科名片 溶剂效应图解 溶剂效应是溶剂对于反应速率、平衡甚至反应机理的影响,绝大多数在溶剂中发生的有机化学反应中,溶剂的性质不仅对反应速率而且对反应平衡都是非常重要的。溶剂可分极性溶剂和非极性溶剂,极性溶剂又可分为质子溶剂和非质子偶极溶剂。溶剂效应对反应速度常数的影响依赖于溶剂化反应物分子和相应溶剂化过渡态的相对稳定性。 目录 Solvent Effect 考虑溶剂效应,可以采用三种策略: IPCM SCIPCM CPCM或COSMO IEFPCM 液相色谱中的溶剂效应 Solvent Effect 考虑溶剂效应,可以采用三种策略: IPCM SCIPCM CPCM或COSMO IEFPCM 液相色谱中的溶剂效应 Solvent Effect

对于等级性过滤态和自由基过滤态反应,溶剂效应较小;对于偶极过渡态反应,溶剂效应较大,例如非质子偶极溶剂的特点是正端藏于分子内部,负端露于分子外部,负端可以与正离子起作用,而正端却不能与负离子起作用,因此,在非质子溶剂中,用负离子作为试剂时,由于它不被溶剂分子包围,可以很容易地进行反应,成为加快反应速度的重要手段。 溶剂效应对反应的影响的关注历史悠久。不同的溶剂可以影响反应速率,甚至改变反应进程和机理,得到不同的产物。溶剂对反应速率的影响十分复杂,包括反应介质中的离解作用、传能和传质、介电效应等物理作用,)和化学作用,溶剂参与催化、或者直接参与反应(有人不赞成将溶剂参与反应称作溶剂效应)。 通常我们对溶剂效应的静态模拟,关心的是溶剂效应的两个方面:一是溶剂分子反应中心有键的作用,包括配位键和氢键等,这种作用属于短程作用,另一个是极性溶剂的偶极距和溶质分子偶极距之间的静电相互作用,这个属于远程作用,当然溶剂和溶质之间的色散力作用也是重要的远程作用,特别是对于非极性溶剂而言,但是色散力的描述是量子化学模拟的一个难题。 考虑溶剂效应,可以采用三种策略: 1. 对于短程作用十分重要的体系,我们采用microsolvation model,或者称为explicit Solvation model。直接考虑溶剂分子和反应中心的作用。 2. 对于没有短程作用的体系,我们直接用虚拟溶剂模型(Implicit Solvation Model)来模拟远程作用。这种虚拟溶剂模型通常是把溶剂效应看成是溶质分子分布在具有均一性质的连续介质(Continuum)当中,也称为反应场(Reaction Field)。 3. 短程作用的microsolvation model和远程作用的连续介质(Continuum)模型结合起来的方法渐渐为人们所青睐。这种方法得到的结果更为可靠,因为它综合考虑的溶剂的短程作用和

基于python的高斯投影计算

袁钱梅 (贵州省第二测绘院,贵州贵阳550000) 摘要: 本文基于python脚本语言编制了测量厂用的高斯投影正、反计算工具。有效的解决了在python及ARCGIS环境中高斯投影计算工作;并具有一定的灵活性。工具以在全国第一次地理国情普查数据生产中进行了批量性验证。 关键词:Python;高斯投影 1、Python语言概述 Python是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。Python的设计具有很强的可读性,相比其他语言经常使用英文关键字,其他语言的一些标点符号,它具有比其他语言更有特色语法结构。Python吸收了Perl,TCL等脚本语言的优点,使得Python具备Tcl的扩展性,同时又具备Perl的文本解析和匹配能力。 2、高斯投影 高斯-克吕格投影是一种等角横轴切椭圆柱投影。它是假设一个椭圆柱面与地球椭球体面横切于某一条经线上,按照等角条件将中央经线东、西各3°或1.5°经线范围内的经纬线投影到椭圆柱面上,然后将椭圆柱面展开成平面而成的。 这种投影,将中央经线投影为直线,其长度没有变形,与球面实际长度相等,其余经线为向极点收敛的弧线,距中央经线愈远,变形愈大。赤道线投影后是直线,但有长度变形。除赤道外的其余纬线,投影后为凸向赤道的曲线,并以赤道为对称轴。经线和纬线投影后仍然保持正交。所有长度变形的线段,其长度变形比均大于1,随远离中央经线,面积变形也愈大。若采用分带投影的方法,可使

投影边缘的变形不致过大。我国各种大、中比例尺地形图采用了不同的高斯-克吕格投影带。其中大于1:1万的地形图采用3°带;1:2.5万至1:50万的地形图采用6°带。 3、Python模块 P博闻新闻ython是中许多功能是由一系列的模块组成的,每个模块可以是一个py为后缀的文件。模块也可以理解为lib库,如果需要使用某个模块中的函数或对象,则要导入这个模块才可以使用;除了系统默认的模块(内置函数)不需要导入。在实际使用中高斯投影计https://www.doczj.com/doc/e85567142.html,算是使用在实际工作中的各个部分的,为方便调用,采用Python的模块方式对高斯计算进行封装,可高效利用模块在不同的应用中进行计算。 4、高斯投影计算 高斯投影计算分正算和反算,正算为经纬度坐标计算到投影坐标;反算为投影坐标计算到经纬度坐标。高斯投影正算需要确定投影后的中央经度,及投影椭球参数信息;如采用CGCS2000坐标系及1980西安坐标系其采用椭球参数不同,经过正算的投影坐标即不同。 由于Python为脚本语言,其在进行科学计算时小数位取位是无法保证计算精度的,在Python中实现高斯投影计算单纯的使用其提供的基本计算函数是无法满足计算精度需求的,因此需要借助Python提供的模块进行提高精度计算。Python提供了decimal模块用于十进制数学计算,它具有以下特点: 1.提供十进制数据类型,并且存储为十进制数序列; 2.有界精度:用于存储数字的位数是固定的,可以通过decimal.getcontext ().prec=x 来设定,不同的数字可以有不同的精度;

溶剂化效应的理论研究计算模型 (1)

文献综述题目:溶剂化效应的理论研究计算模型 作者:xxx 班级:xxx 学号:xxx 日期:2014年5月21号

溶剂化效应的理论研究计算模型 摘要本文概述了研究溶剂效应计算模型,到目前的溶剂效应的研究进展和研究现状。介绍了溶剂化效应和描述溶剂效应的一些参数,以及几种重要的溶剂化模型,并分别介绍了基于不同的模型而发展的不同的理论计算方法。 关键词溶剂化效应计算模型综述 一、溶剂化现象 在溶液中,溶质被溶剂分子包围的现象称为溶剂化,溶剂化作用是溶剂分子通过它们与离子的相互作用,而累积在离子周围的过程。该过程形成离子与溶剂分子的络合物,并放出大量的热。溶剂化作用改变了溶剂和离子的结构。以水溶液为例,其中一个离子周围水的结构模型如图1所示。 图1 图中A为化学水化层,该层中由于离子和水偶极子的强大电场作用,使得水分子与离子结合牢固,因而失去平动自由度,这一层水分子和离子一块移动,且水分子数不受温度影响;B为物理水化层,该层水分子也受到离子的吸引,但由于距离较远,吸引较弱,水分子数随温度改变;C为白由水分子层,该层水分子不受离子电场影响。

溶剂不能被单纯宏观地看成一种以密度、介电常数和折射率等物理常数表示特性的连续介质,而应把它看成是单个相互作用的溶剂分子所组成的不连续的介质。在溶剂及溶液中各质点之间的相互作用,一方面用气体动力学理论的定律处理则太大,而另一方面,如用固体物理的定律来处理则又太小。溶剂既不是一种使被溶解物在其中扩散以达到紊乱而又均匀分布的惰性介质;也不是象晶体那样具有某种规则结构的介质。因此气体和晶体两种可能的模型都不能不加限制地应用于溶液。由于相互作用的复杂性,有关液体的结构,人们所知甚少,甚至最重要的溶剂一水,其内部精细结构的研究也仍然是目前探索的课题frl。人们提出过许多不同的模型用来描述水的结构,但是所有这些模型均未能圆满地描述水的物理一化学性质和解释水的异常特性。因此,用实验和理论方法研究液体的结构和相互作用,是物理化学中最为艰巨的任务。 人们曾设想溶剂和溶质的相互间有种种作用力,由此曾导出数百年的老原理,即“相似相溶”原理。但是,这一原理是经验的总结,其正确性是有限度的,许多例子中,尽管两种组分结构相似,也可能出现不溶性。例如,聚乙烯醇不溶于乙醇,醋酸纤维素不溶于乙酸乙酷,聚丙烯睛不溶于丙烯睛等。另一方面,在结构上不相似的化合物也能形成溶液。例如,甲醇和苯,水和N、N-二甲基甲酞胺,苯胺和乙醚,聚苯乙烯和三氯甲烷等。 化学是研究分子性质和反应的科学,有许多化学过程是在溶液中进行的。溶剂对分子的构象、电子结构和化学反应有着重要的影响,因此对溶剂效应进行理论研究有着重要的意义,这更能反映出溶液中分子的真实行为。例如,气相环境中氨基酸的中性分子结构比两性离子构型更稳定,但在溶液中则是两性离子的构型来得更稳定。化学,物理学以及生物化学现象的实验反馈在很大程度上依赖于所考虑分子四周的溶剂环境。因此,人们迫切需要找到一种能计算溶液中分子的电子结构以及性质的方法,并要求这种方法的精度与计算气相分子所能达到的精度相似。 从上世纪七十年代开始,己经出现了许多对分子在溶液中性质的理论方法。主要是基于两种思想:一种是把注意力集中在有限数目的溶剂分子和溶剂分子的

3度6度带高斯投影详解

3度6度带高斯投影选择投影的目的在于使所选投影的性质、特点适合于地图的用途,同时考虑地图在图廓范围内变形较小而且变形分布均匀。海域使用的地图多采用保角投影,因其能保持方位角度的正确。 我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger),这是一个等角横切椭圆柱投影,又叫横轴墨卡托投影(Transverse Mercator);小于50万的地形图采用等角正轴割园锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用等角正轴圆柱投影,又叫墨卡托投影(Mercator)。一般应该采用与我国基本比例尺地形图系列一致的地图投影系统。 地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。 采用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T 8314-2001”):

高斯投影以及中央子午线的判断

高斯投影及其中央子午线的判断 一、高斯-克吕格投影 1、高斯-克吕格简介 高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名"等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。德国数学家、物理学家、天文学家高斯(Carl FriedrichGauss,1777一1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于1912年对投影公式加以补充,故名。该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投影公式。投影后,除中央子午线和赤道为直线外,其他子午线均为对称于中央子午线的曲线。设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正形投影于椭圆柱面。将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x轴,赤道的投影为横坐标y轴,构成高斯克吕格平面直角坐标系。 2、高斯-克吕格特性 (1)等角投影——投影前后的角度相等,但长度和面积有变形; (2)等距投影——投影前后的长度相等,但角度和面积有变形; (3)等积投影——投影前后的面积相等,但角度和长度有变形。 3、投影的基本概念 它是一种横轴等角切圆柱投影。它把地球视为球体,假想一个平面卷成一个横圆柱面并把它套在球体外面,使横轴圆柱的轴心通过球的中心,球面上一根子午线与横轴圆柱面相切。这样,该子午线在圆柱面上的投影为一直线,赤道面与圆柱面的交线是一条与该子午线投影垂直的直线。将横圆柱面展开成平面,由这两条正交直线就构成高斯-克吕格平面直角坐标系。为减少投影变形,高斯-克吕格投影分为3o带和6o带投影。 4、分带投影

高斯投影正反算 代码

#include "stdafx.h" #include "iostream.h" #include "math.h" #include "stdio.h" #define P 206264.806247096355 #define PI 3.141592653589793 void GaosZ_fun() { printf("高斯投影的正算\n"); double l,L,B,n2,x,y,N,t,V,c,e2; double i,j,k,n,h,a0,a4,a6,a3,a5,cB2; int m; e2=0.006738525414683; c=6399698.901782711; B=17.33557339*3600/P; L=119.15521159*3600/P; l=L-111*3600/P // l=((m%6)*3600+n*60+h)/P; t=tan(B); n2=e2*cos(B)*cos(B); V=sqrt(1+n2); cB2=pow(cos(B),2); N=6399698.902-(21562.267-(108.973-0.612*cB2)*cB2)*cB2; // N=c/V; a0=32140.404-(135.3302-(0.7092-0.004*cB2)*cB2)*cB2; a4=(0.25+0.00252*cB2)*cB2-0.04166; a6=(0.166*cB2-0.084)*cB2; a3=(0.3333333+0.001123*cB2)*cB2-0.1666667; a5=0.0083-(0.1667-(0.1968+0.0040*cB2)*cB2)*cB2; // x=X+N*sin(B)*cos(B)*l*l/2+N*sin(B)*pow(cos(B),3)*(5-t*t+9*n2+4*n2*n2)*pow(l, 4)/24+N*sin(B)*pow(cos(B),5)*(61-58*t*t+pow(t,4))*pow(l,6)/720; // y=N*cos(B)*l+N*pow(cos(B),3)*(1-t*t+n2)*pow(l,5)/6+N*pow(cos(B),5)*(5-18*t*t +pow(t,4)+14*n2-58*n2*t*t)*pow(l,5)/120; x=6367558.4969*B-(a0-(0.5+(a4+a6*l*l)*l*l)*l*l*N)*sin(B)*cos(B); y=(1+(a3+a5*l*l)*l*l)*l*N*cos(B); printf("x=%f\ny=%f\n",x,y); } void GaosF_fun() { printf("高斯投影的反算\n"); double B,Bf,Nf,b,b2,b3,b4,b5,Z,x,y,L0,l;

溶剂化

溶剂化

溶剂化 1溶剂化的概念 在溶液中,溶质被溶剂分子包围的现象称为溶剂化。 例如:氯化钠在水溶液中,结构单元就是水化了的钠离子(Na)和氯离子(Cl),即氯化钠被水溶剂化。 2溶剂化的本质 一个极性溶剂分子带有部分正电荷的正端和带部分负电荷的负端。正离子与溶剂的负端,负离子与溶剂的正端相互吸引,称为离子-偶极作用,也成为离子-偶极键。离子-偶极作用是溶剂化的本质,一个离子可形成多个离子-偶极键,结果离子被溶剂化,被溶剂分子包围。 质子溶剂的溶剂化作用除了离子-偶极键作用外,往往还有氢键的作用。 3溶剂化的结果 稳定了离子,降低了离子的化学反应活性。 例如: 质子溶剂不仅稳定正离子,还急剧地降低了负离子的反应活性,因为负离子的碱性及亲核性是一致的。

溶剂化作用 溶剂化作用是溶剂分子通过它们与离子的相互作用,而累积在离子周围的过程。该过程形成离子与溶剂分子的络合物,并放出大量的热。溶剂化作用改变了溶剂和离子的结构。以水溶液为例,其中一个离子周围水的结构模型如图所示。图中:A为化学水化层,该层中由于离子和水偶极子的强大电场作用,使得水分子与离子结合牢固,因而失去平动自由度,这一层水分子和离子一块移动,且水分子数不受温度影响,一般形成配位键; B为物理水化层,该层水分子也受到离子的吸引,但由于距离较远,吸引较弱,水分子数随温度改变; C为自由水分子层,该层水分子不受离子电场影响。 水分子的两种溶剂化作用 水分子受离子静电的作用而定向在离子周围形成水化壳,这是水的第一种溶剂化作用——离子水化;水分子还可使在纯态时由不导电的电解质变成导电的电解质,这是水的第二种溶剂化作用。

高斯09 溶剂效应论坛讨论

Gaussian 09计算溶剂化能量 使用scrf=(solvent=toluene,cpcm)命令在G09下计算溶剂化能量(使用气态优化的结构)!但是由于与使用G03时输出文件不一样(没有Total free energy in solution这一项)!请教使用G09怎么计算溶剂化能量? 那就直接用文件结束时给出的能量好了。方便的话,也可以把output放box上让大家帮忙分析下。 做一个包含溶剂的频率计算,总自由能就自动加上了溶剂效应修正。 用smd模型来计算:scrf=(solvent=toluene,smd),不需要指定半径。 单点算出来的能量E加上气态计算的自由能修正,结果比较合理。 不过我一般使用G09得到气态优化结构,然后用G03计算溶剂效应。 用smd模型来计算:scrf=(solvent=toluene,smd),不需要指定半径。 单点算出来的能量E加上气态计算的自由能 ... caipingl 发表于2010-11-17 12:21 https://www.doczj.com/doc/e85567142.html,/bbs/images/common/back.gif 那你这种情况发文章时怎么说呢?03和09的溶剂化计算相差还是很大的! 请问你是如何算溶剂化能的,对应高斯输出文件的哪项? 回复5# hgp2006 G03和G09的参考文献都写上,溶剂化效应说明部分指出采用G03计算就可以吧。 我对比过一些G03和G09优化结果,差别很小。我想这样做应该是合理的吧。相对于某些体系,G09的SMD模型会得到比较奇怪的结果。 个人感觉G09不如G03,有时有些体系用G09优化就会出错,而G03就能正常运行,而且IRC计算时也经常会出错。感觉还是G03用起来得心应手。

相关主题
文本预览
相关文档 最新文档