当前位置:文档之家› 符合UL489标准的塑壳式断路器触头系统和 灭弧系统的设计与试验(文献综述)

符合UL489标准的塑壳式断路器触头系统和 灭弧系统的设计与试验(文献综述)

符合UL489标准的塑壳式断路器触头系统和   灭弧系统的设计与试验(文献综述)
符合UL489标准的塑壳式断路器触头系统和   灭弧系统的设计与试验(文献综述)

本科生毕业设计(论文)文献综述

题目:符合UL489标准的塑壳式断路器触头系统和

灭弧系统的设计与试验

姓名:

学号:

学院:

专业:

年级:

指导教师:

2014年03月30日

引言:

塑壳式断路器也称空气开关或装置式自动开关。主要用作低压系统的电能的保护和分断。塑壳断路器主要由主触头系统、灭弧系统、操作机构、脱扣器和外壳等部分组成。脱扣器接收故障信号,并传递给操作机构,由其控制主触头及辅助触头的断开和闭合。灭弧室用于熄灭主触头系统在分断电路时产生的电弧。当断路器出现短路电流并达到整定值时,瞬时脱扣器中的电磁铁动作,推动牵引杆运动,使操作机构脱扣,从而将电路切断。当电路中出现过载电流时,过载脱扣器中的热双金属受热弯曲,推动牵引杆运动,达到规定时间后操作机构脱扣,将电路切断。

塑壳断路器的UL489标准和IEC标准主要区别在于UL489标准的验证试验更加注重断路器的安全性和寿命,增加了一个6倍过载试验,检验每相温升是否在规定值内,并且其寿命试验的次数为10000次也远大于IEC标准的4000次,来提高断路器的安全性能。触头系统和灭弧系统是断路器的主要结构。电动斥力是影响触头系统正常工作的重要因素,触头系统可靠性的高低直接影响了整个断路器的性能。而同时合理设计的触头灭弧系统内部的结构,使之能获得更强的吹弧磁场和磁吹力,对于提高塑壳断路器的分断性能和安全性能具有重要意义。

磁场中的载流导体必然受到力的作用,这个力企图改变回路的形状,以使环绕的磁通增加[1]。由于电流产生磁场,因此载流导体之间也要受到力的作用,这种力称为电动力。电器的触头系统中由于有电流通过,导体之间同样存在着相互作用的电动力。动、静触头间的电动斥力轻则使触头压力减小,接触电阻增大以至温升升高,重则使触头弹开,产生电弧,加速触头磨损或导致触头熔焊。因此,研究电动力对设计好塑壳断路器的触头系统和灭弧系统,提高断路器的安全性具有重要意义。

作用在动触头上的电动斥力 F ( 包括导电回路产生的洛仑磁力F及触头间由于电流收缩产生的Holm力)和预压力决定了触头的斥开时间和打开速度,从而对塑壳断路器的限流性能产生重要的影响。,从式(1)所示的Holm 公式可以看出,接触点

半径r 与预压力触头材料的布氏硬度、触头表面接触情况( 用描述,其范围一般为0.3~0.6,通常取0.45) 有关。而Holm力F与r ,触头半径R、以及电流大小i 有关。这样 F K 对F就有一定的影响;另一方面,的选择也由于发热容许的要求,而受到F的限制。因此,在进行塑壳断路器的触头导电回路的设计时必须进行电动斥力的计算。

国内外研究现状:

对于电动斥力,国内外学者对电动斥力做了许多深入研究[2-3]。目前对触头系统电动斥力计算分析主要是基于有限元仿真软件(Ansys[4]、Ansoft)。有限元法的基本思想是把问题的求解域进行离散化[5],从而得到有限个小的单元,单元与单元之间仅仅靠节点相连。在每个单元的内部假设近似解的模式,通过某种特定的方法,建立单元内部点的待求量和单元节点量间的关联。由于离散单元的形状较为简单,由能量关系或者平衡关系来建立节点之间的方程式也较为简单,然后再将各个单元方程组成总体线性方程组,通过引入边界条件,求解此线性方程组就能得到所有的节点量,再进一步计算出导出量,问题就能得到解决。

文献[6-8]是对触头系统有限元仿真模型进行简化和电动斥力分析计算方法。文献[6]应用数值计算方法,基于三维有限元软件分析了不同触头系统电动斥力,基于电流一磁场一电动斥力之间的方程,并考虑铁磁物质的影响,引入圆柱导电桥模型作为接触点模拟触头间的电流收缩,通过两个相同半径的圆柱体触头仿真得到,得到导电桥高度h对电动斥力影响不大,同时,由于涡流对电动斥力的影响可以忽略,所以采用恒定场的方程来计算电流密度和磁通密度的分布,由此确定了触头系统的仿真模型。文献中作者利用不同触头结构的对比仿真分析,得出总的电动斥力主要由动触头及其附近区域的电动斥力提供,而动触头间电流收缩产生的电动斥力均占总体的7 0%以上,同时表明铁磁物质、U型电机槽和水平面内的U型回路通过改变电流方向可以增大电动斥力。最后通过单频高压振荡回路模拟短路电流测量电动斥力,考虑测量中相关因素的影响,其实际测得的电动斥力和仿真相差无几,证明了引入导电桥,采用静态的分析方法计算电动斥力是合适的,也是比较准确的。因此,这样也为我选用有限元分析软件分析电动力提供了科学的依据。

而文献[7]则是引入块状导电系统模型作为接触点,模拟触头间的电流收缩,采用带电动机槽的触头结构和无电动机槽的触头结构为触头模型,分析触头开距和有无铁磁物质对电动斥力的影响。得出了增大触头间电动斥力是一种增大触头间开距的有效方法,并且带磁铁的的触头结构也有助于增大电弧斥力。表明有限元分析方法的有效性、方便性和实用性。

文献[8]在使用三维积分方程法计算磁场的基础上,提出低压断路器触头系统电

动斥力的分析方法。三维积分方程法用公式计算触头间的电动斥力。用磁场分析方法来求解回路电动斥力。积分方程法只需对铁磁提内部区域进行离散,而无须对整个场域进行剖分,适用于开域的磁场问题,无须确定磁场的边界条件。文献中作者也做了一台样机在低压大电流回路进行实验,表明使用积分方程法能够准确地计算作用于触头系统上的电动斥力,在计算电动斥力时不仅考虑了由于电流线收缩产生的斥力, 而且采用磁场计算的方法来分析非线

性铁磁材料及触头系统产生的斥力, 从实验和计算的对比结果可以看出, 使用该方法具有较高的精度。

所以考虑利用有限元分析电磁场分析功能,研究接触状态下触头系统的电动斥力分布,进而改善断路器接触器触头系统的结构,提高工作时的可靠性。

当低压塑壳断路器通过较大的短路电流时,脱扣器将会瞬时脱扣,使操作机构运动,动、静触头在操作机构的带动和电动斥力的作用下分离,与此同时,电弧将在动、静触头间产生、拉长.并朝着灭弧室栅片的方向移动[11]。

现在有效的灭弧措施有多种。最常见的有栅片灭弧即多个栅片的灭弧室,利用近极压降将进入到灭弧室中的电弧电压提升到一个较高的值,从而在开断电路。文献[9]通过有限元软件Ansys分析了四种不同触头系统结构的吹弧磁场,对比了4个模型在通以相同电流的情况下,电弧中心线的磁感应强度以及电弧受到的磁吹力。为增强吹弧磁场的磁吹力、提高灭弧系统的灭弧性能提供了方法和思路。而文献[10]利用器壁的产气绝缘材料经电弧侵蚀后产气,然后利用灭弧室内压力升高,通过灭弧室上端排气口,形成对电弧的气吹。通过比较两种不同模型,得到适合气吹的灭弧室结构。PA 自动吹弧技术(即利用高分子材料在电弧的高温下分解出有利于灭弧的气体介质灭弧)、VJC技术灭弧(这种技术动触头、静触头周围覆盖耐电弧绝缘材料,将电弧弧柱控制在一由耐电弧绝缘材料形成的狭小空间内,使电弧电压升高,从而使电弧不能稳定燃烧而快速熄灭)和ISTAC技术(在VJC技术基础上发展来的,利用3种力使电弧被高速驱动,提高电弧电压上升的速率,降低峰值电流,限流效果好,电弧能快速进人灭弧室熄灭)。

而电弧之所以会朝栅片移动,其中一个重要原因是,它受到了磁吹力的作用。增强灭弧的吹弧磁场,提高电弧所受到的磁吹力,能使电弧更快速地进入栅片,被有效分割成短弧,从而提高塑壳断路器的限流和灭弧性能。因此,提高吹弧磁力对塑壳断路器的分断性能具有很大的意义。

背景意义

动、静触头间的电动斥力轻则使触头压力减小,接触电阻增大以至温升升高,重则使触头弹开,产生电弧,加速触头磨损或导致触头熔焊。电动斥力是影响触头系统正常工作的重要因素,触头系统可靠性的高低直接影响了整个断路器的性能。而在电器触头部分的设计中,触头系统结构复杂,很难用经验公式准确地计算出电动斥力,而利用有限元分析方法能够方便的改变模型的几何参数,比较准确得到触头部分的电动斥力及其分布情况。在设计中利用有限元仿真技术可以降低试验费用,加快产品开发周期,提高效益,具有实际意义。

灭弧系统是塑壳断路器的重要结构,它有利于加速分断、抑制触头电气磨损。合理设计的触头灭弧系统内部的结构,使之能获得更强的吹弧磁场和磁吹力,对于提高

塑壳断路器的分断性能具有重要意义。

参考文献:

[1] 电器理论基础,福州大学教科书

[2]Yoshihior Kaw. Hiroyuki Mori,Shokiecho Ito.3-D Element Analysis of Electrodynamic

Repulsion Force in Stationary Electric Contacts Taking into Account Asymmetric Shapes. IEEE Transactions of Magnetics, 1997,33:1994-1999

[3] Hartwig Stammberger, Force Calculation for the Movable Contact of Circuit Breakers.

Nuremberg,Germany:19th International Conference on Contact Phenomena, 1998,369-374 [4] Ansys 5.7 Online Help. ELectromagnetic Field Analysis Guide. Copyright 1992-2000 by SAS IP as an unpublished work

[5] 成思源, 有限元法的方法论. 重庆大学学报(社会科学版), 2001 (04):61一63

[6] 李兴文,陈德桂,向洪岗等. 低压塑壳断路器中电动斥力的三维有限元非线性分析与研究中国

电机工程学报, 2004 (2):150一155

[7] 单文春,庄火庚,王宁. 直流塑壳断路器触头系统磁场区域电动斥力的分析. 低压电器,2012(24):6-9,32

[8]孙海涛,陈德桂,刘庆江. 低压断路器触头系统电动斥力的计算。低压电器,2002(3):3-6

[9]童争光, 陈德桂. 塑壳断路器不同结构触头灭弧系统吹弧磁场的分析低压电器,2007(17):

1-4

[10]陈德桂. 气吹灭弧与压力脱扣技术促进了低压断路器分断性能提高. 低压电器,

2003(03):15-18,20

真空断路器灭弧原理和方法分析-民熔

真空断路器灭弧原理和方法-民熔 真空断路器,系三相交流50Hz额定电压为12KV的电力系统的户内开关设备,民熔真空断路器作为电网设备、工矿企业动力设备的保护和控制单元。适用于要求在额定工作电流下的频繁操作,或多交开断短路电流的场所。 灭弧是断路器的重要应用之一,电弧不仅会损坏设备线路,还会影响人身安全。一般来说,常用的灭弧方法有四种,包括机械灭弧、磁吹弧等。本文介绍了常用的灭弧方法和几种常用断路器的原理。首先讨论了常用的灭弧方法,包括以下四种:

1机械灭弧:限位装置使电弧迅速拉长。这种方法常用于开关器件。 2灭磁弧:在与触头串联的磁吹线圈产生的磁场作用下,在电磁力的作用下拉长电弧,吹入由固体介质组成的灭弧罩内,与固体介质接触,使电弧冷却熄灭。 3窄缝(纵缝)灭弧方法:在电弧形成的磁场的电场作用下,电弧被拉长,进入灭弧罩窄(纵)槽内。将纵向电弧分为若干段并与之接触的固体弧段迅速熄灭。这种结构主要用于交流接触器。

4栅极灭弧法:当触头分离时,所产生的电弧在电力的作用下被推入一组金属光栅中,并分成若干段。每一块相互绝缘的金属网格相当于一个电极,因此正负极之间会有许多电压降。对于交流电弧,当电弧过零时,阴极附近会出现150V~250V的介电强度,使电弧无法维持和熄灭。由于栅极灭弧效果比直流灭弧效果强得多,在交流电器中常采用栅极灭弧。 这些方法主要针对一些低压断路器。为了了解使用这些方法的原因,有必要阐明断路器的灭弧原理。以下是一些常用断路器的讨论。真空断路器中断电弧原理。真空断路器在分闸瞬间,由于触头间存在电容,两触头间的绝缘被击穿,产生真空电弧。由于触头的形状和结构,真空弧柱迅速向弧柱外的真空区扩散。当开断电流接近零时,触头间电弧的温度和压力急剧下降,使电弧无法维持和熄灭。灭弧后几μs内,触头间真空间隙的耐压水平迅速恢复。

常用灭弧器的工作原理

①少油断路器 少油断路器以变压器油作为灭弧介质及动、静触头之间的绝缘。而用空气、陶瓷或有机绝缘材料作为相与相之间或相与地之间的绝缘。因此,少油断路器油量少、体积小、耗用钢材,价格便宜。目前在我国10~220KV电力系统中得到广泛应用。 其灭弧原理是少油断路器在油中开断电流时,触头间将产生电弧。高温电弧使油急速蒸发和分解。于是电弧便在油蒸汽和油分解的气体气泡中燃烧。油分解的气体中氢气约占70% ~ 80%,而且氢气的热导率非常高,并有很强的扩散作用。氢气和其他冷热气体对弧道产生强烈的冷却和去游离作用,特别是当电流经过零值瞬间,这种作用更加强烈,有利于熄灭电弧。断路器通常采用绝缘材料制成灭弧室,电弧在灭弧室中燃烧,利用灭弧室内升高的压力(可达几十兆帕)使油一方面流动,一方面与电弧接触,则灭弧效果更好。 ②六氟化硫断路器 六氟化硫断路器采用SF6气体作为灭弧介质和绝缘介质,SF6气体具有良好的绝缘性能和灭弧能力,因此在断路器中的应用得到迅速发展。SF6断路器的类型按灭弧方式分,有单压式和双压式;按触头工作方式可分为定开距式和变开距式;按总体结构分,有落地罐式和瓷瓶支柱式。 灭弧原理: 单压式SF6断路器只有一种压力较低的压力系统,既只有0.3~0.6MPa 压力(表压)的SF6气体作为断路器的内绝缘。在断路器开断的过程中,

由动触头带动压力活塞或压气罩,利用压缩气流吹熄电弧。分闸完毕,压气作用停止,分离的动静触头处在低压的SF6气体中 双压式SF6断路器内部有高压区和低压区,低压区0.3~0.5Mpa的SF6气体作为断路器的主绝缘。在分闸过程中,排气阀开启,利用高压区约1.5MPa的气体吹熄电弧。分闸完毕,动、静触头处于低压气体中或高压气体中。高压区喷向低压区的气体,再经气体循环系统和压缩机抽回高压区。 目前我国生产的SF6断路器采用单压式;并且触头多采用变开距结构 ③真空断路器 真空断路器是利用真空(真空度为10-4mm汞柱以下)具有良好的绝缘性能和耐弧性能等特点,将断路器触头部分安装在真空的外壳内而制成的断路器。真空断路器具有体积小、重量轻、噪音小、易安装、维护方便等优点。尤其适用于频繁操作的电路中。 真空灭弧室中电弧的点燃是由于真空断路器刚分瞬间,触头表面蒸发金属蒸汽,并被游离而形成电弧造成的。真空灭弧室中电弧弧柱压差很大,质量密度差也很大,因而弧柱的金属蒸汽(带电质点)将迅速向触头外扩散,加剧了去游离作用,加上电弧弧柱被拉长、拉细,从而得到更好的冷却,电弧迅速熄灭,介质绝缘强度很快得到恢复,从而阻止电弧在交流电流自然过零后重燃。(责任编辑:admin)

各类断路器的灭弧原理

引用各类断路器的灭弧原理 电机设备2010-10-27 15:24:38 阅读30 评论0 字号:大中小订阅 本文引用自缘分的天空《各类断路器的灭弧原理》 引用 缘分的天空的各类断路器的灭弧原理 真空断路器灭弧原理? 在真空断路器分断瞬间,由于两触头间的电容存在,使触头间绝缘击穿,产生真空电弧。由于触头形状和结构的原因,使得真空电弧柱迅速向弧柱体外的真空区域扩散。当被分断的电流接近零时,触头间电弧的温度和压力急剧下降,使电弧不能继续维持而熄灭。电弧熄灭后的几μs内,两触头间的真空间隙耐压水平迅速恢复。同时,触头间也达到了一定距离,能承受很高的恢复电压。所以,一般电流在过零后, 不会发生电弧重燃而被分断。这就是其灭弧的原理。 SF6开关的灭弧原理 10kV SF6断路器灭派性能优良,不仅在于SF6气体本身,而且采用旋弧式灭弧室。目前,国内外在10kV电压级的SF6断路器研制上,广泛采用了具有良好灭弧性能的旋弧式灭抓室,它利用短路电流来建立磁场,使电弧在电磁力的作用下高速旋转,以达到自动灭弧的作用。其灭弧原理从图1可见:当短路开始,电信号反馈到脱扣器,使开关分闸。在分闸的瞬间,动触头和静触头之间就产生了电弧。动触头继续向下运动,电弧很快转移到引弧电极上。此时,绕在圆筒电极外而串联在静触头与圆筒电极之间的磁吹线圈通过短路电流,因而产生了磁场,于是电磁力驱使电弧高速旋转,在SF6气体中,电弧的高速旋转使得其离子体不断地与新鲜的SF6气体接触,以充分发挥六氟化硫的负电性,从而迅速地熄灭电弧。 油断路器的灭弧原理 当油断路器开断电路时,只要电路中的电流超过0.1A,电压超过几十伏,在断路器的动触头和静触头之间就会出现电弧,而且电流可以通过电弧继续流通,只有当触头之间分开足够的距离时,电弧熄灭后电路才断开。1OkV少油断路器开断20KA时的电弧功率,可达一万千瓦以上,断路器触头之间产生的电 弧弧柱温度可达六七千度,甚至超过1万度。 油断路器的电弧熄灭过程是,当断路器的动触头和静触头互相分离的时候产生电弧,电弧高温使其附近的绝缘油蒸发气化和发生热分解,形成灭弧能力很强的气体(主要是氢气)和压力较高的气泡,使电 弧很快熄灭。 灭弧的种类:灭弧有磁吹,纵缝灭弧,横吹的等等! 磁吹当然是利用磁力来灭弧。因为电弧本身就是一个比较大的电流,用线圈通上电流,当然线圈必须是在电弧的两边,把电弧加在中间!当有电弧的时候,线圈用自己本身的磁力,把电弧拉长,让他自动 熄灭! 可以引申以下,原先的断路器是用油来灭弧(当然不是单纯的用油),也就是电弧形成时,会把油电离,电离出来的氢气会把电弧吹灭!现在的SF6断路器的灭弧能力是氢气的6-8倍,所以现在的断路器 都是用FS6灭弧。 纵缝是把电弧引到缝里面,从而灭弧。

断路器及图示介绍

断路器及图示介绍

断路器按其使用范围分为高压断路器,和低压断路器,高低压界线划分比较模糊,一般将3kV以上的成为高压电器。 低压断路器又称自动开关,它是一种既有手动开关作用,又能自动进行失压、欠压、过载、和短路保护的电器。它可用来分配电能,不频繁地启动异步电动机,对电源线路及电动机等实行保护,当它们发生严重的过载或者短路及欠压等故障时能自动切断电路,其功能相当于熔断器式开关与过欠热继电器等的组合。而且在分断故障电流后一般不需要变更零部件,一获得了广泛的应用。 分类: 按操作方式分有:电动操作、储能操作和手动操作。 按结构分有:万能式和塑壳式。 按使用类别分有:选择型和非选择型。 按灭弧介质分有:油浸式、真空式和空气式。 按动作速度分有:快速型和普通型。 按极数分有:单级、二级、三级和四级等。 按安装方式分有:插入式、固定式和抽屉式等。 高压断路器(或称高压开关)是变电所主要的电力控制设备,具有灭弧特性,当系统正常运行时,它能切断和接通线路及各种电气设备的空载和负载电流;当系统发生故障时,它和继电保护配合,能迅速切断故障电流,以防止扩大事故范围.因此,高压断路器工作的好坏,直接影响到电力系统的安全运行;高压断路器种类很多,按其灭弧的不同,可分为:油断路器(多油断路器、少油断路器)、六氟化硫断路器

(SF6断路器)、真空断路器、压缩空气断路器等 高压开关 额定电压1kV及以上主要用于开断和关合导电回路的电器。 高压负荷开关

高压负荷开关是一种功能介于高压断路器和高压隔离开关之间的电器,高压负荷开关常与高压熔断器串联配合使用;用于控制电力变压器。高压负荷开关具有简单的灭弧装置,因为能通断一定的负荷电流和过负荷电流。但是它不能断开短路电流,所以它一般与高压熔断器串联使用,借助熔断器来进行短路保护。 功能 在规定的使用条件下,可以接通和断开一定容量的空载变压器(室内315KVA,室外500KVA);可以接通和断开一定长度的空载架空线路(室内5KM,室外10KM);可以接通和断开一定长度的空载电缆线路。 特点

少油断路器灭弧室的灭弧过程

少油断路器灭弧室的灭弧过程 为了提高其开断能力,油断路器在触头周围装设了用绝缘材料制成的灭弧室。油断路器的灭弧室利用油分解产生的气体形成高速气流对电弧进行强烈气吹而使之熄灭。其工作特点是开断电流愈大,则单位时间内产生的气体愈多,灭弧室中的压力愈高,吹弧力量愈强,因而燃弧时间也愈短;当开断电流减小时,吹弧力量相应减弱,于是燃弧时间增大。 灭弧室装在高强度的绝缘简中,由灭弧片组成,各灭弧片之间隔开一定的距离形成油囊。灭弧室上部为静触头,分闸时动触头向下运动,当触头分开时,在触头间产生电弧,电弧被圆柱形气泡包围着,气泡壁由灭弧室油囊中的油形成。由于电弧到气泡壁的距离很短,故油强烈地冷却电弧,使电弧的能量消耗于油的分解和气化上,产生大量气体。随着动触头向下运动,高压气体通过灭弧片中间的圆孔向上对电弧进行纵吹,待动、静触头之间的距离足够长时,电弧即能熄灭。纵吹灭弧室结构简单,气体排出的方向与触头运动方向相反,有利于电弧的冷却,但燃弧时间较长,灭弧后新鲜油不易补充,不利于重合闸。少油断路器的灭弧室结构形式较多,除了纵吹灭弧室外,还有横吹、纵横吹等形式的灭弧室。 当断路器分断有电流的电路时,动、静触头分离产生电弧。随着动触

杆向下运动,电弧被拉人灭弧室依次与油囊中的油接触,使油蒸发、分解形成高压油气泡,在压力差的作用下,高压油气通过灭弧片中心的圆孔连续对电弧向上纵吹,使电弧冷却并熄灭。 属于自能式灭弧的油断路器,其灭弧能力与电弧电流大小有关。电弧电流越大,电弧能量越大,产生的油气压力越高,吹弧越强烈,灭弧能力越强。电弧电流小,则灭弧能力弱,电流过零时弧隙介质介电强度小容易复撼,开断电容电流时还会出现过电压。 为提高油断路器开断小电流电弧的能力,在现代的少油断路器中,设置压油活塞装置。静触头座内装压油活塞后,触头分离时,弹簧力推动活塞向下运动,将活塞下面的油压人弧隙中,可以消除“真空”现象,迅速提高弧隙的绝缘强度,有利于小电流电弧的熄灭。 断路器也采用逆流原理,导电杆采用下拉式。即分闸导电杆向下运动,电弧产生的高温高压油向上喷,将电弧中的带电质点迅速向上排出弧道,有利于弧隙绝缘强度的迅速恢复。导电杆向下运动,将电弧向下拉,与弧根接触的是下部冷油,可以降低电弧和触头的温度,使热游离减弱。同时向下运动,总有一部分冷油向上挤进灭弧室,形成附加机械油吹,对熄灭小电流电弧极为有利。

各种电弧灭弧原理

各种电弧灭弧原理、条件及措施的比较 1. 开关电弧灭弧的基本原理:首先使触头间的介质成为良好电导率的电弧,进而使电弧冷却,迅速降低其电导率,最终使其转变为良好的绝缘体。 单位体积内的能量平衡: 电源提供的能量=电弧的能量增量— v ?gradp (由对流引起的散热功率)—s (T) (由辐射引起的散热功率)— div Χ?gradT (由广义热传导引起的散热功率) 应根据不同条件、不同场合,提高后三项的散热功率。 2.直流电弧 灭弧条件:稳态电路方程与电弧伏安特性无交点 灭弧措施:(1)拉长电弧→Ua ↗;(2)冷却电弧→Ua ↗(加装灭弧室,选用好的介质);(3)制造电流过零点 3.交流电弧 交流电弧的熄灭措施:实质上是防止电弧重燃:利用电流过零点的有利时机,使U d >Utr 措施:提高U d 及其上升率,同时降低Utr 及其上升率 具体措施:(略) 4.SF 6电弧 灭弧原理:使大量SF 6分子与电弧接触而分解吸热,冷却电弧。 散热方式:以弧柱的热传导和对流换热为主,散热条件良好。 实际上防止重燃的方法:利用电流过零点的有利时机,使U d >Utr 。 gradT div T s gradp v dt dh E ?--?-=χρσ)(2

5.真空电弧 散热方式:以辐射和经电极与屏蔽罩的热传导为主,散热条件较差。只要保持为扩散型电弧,电流过零后,在微秒级内带电粒子即可消散而恢复间隙的绝缘强度。 实际上防止重燃的方法:利用电流过零点的有利时机,使U d >Utr, 纵向磁场的特点: (1)延缓离子贫乏现象、阳极斑点的产生,使集聚电流值提高;(2)降低了电弧电压:一方面:不利于增大电弧电压的灭弧措施; 另一方面,降低了电弧能量,电极的温度可降低,不易形成阳 极斑点。 (3)不能使阳极斑点在阳极表面快速移动,局部熔融严重。 不同形式横向磁场的特点: (1)纵向电流自身产生的角向磁场(自箍缩磁场):有助于形成集聚型电弧。 (2)径向磁场:使电弧在电极表面快速移动,避免局部温度过高; 且可在工频后半周使集聚型电弧转变为扩散型电弧。 (3)抵消或部分抵消自箍缩磁场的角向磁场:使电弧向电极边缘移动而拉长电弧。一方面,电弧电压增高有利于灭弧;另一方面,电弧能量增大使电极温度升高。 (4)X向磁场:在电极的一边(y<0区域)增强自箍缩磁场,在电极的另一边(y>0区域)减弱自箍缩磁场。可利用来产生漂移

真空断路器灭弧原理

真空断路器灭弧原理 真空断路器是利用真空(真空度为10-4mm汞柱以下)具有良好的绝缘性能和耐弧性能等特点,将断路器触头部分安装在真空的外壳内而制成的断路器。真空断路器具有体积小、重量轻、噪音小、易安装、维护方便等优点。尤其适用于频繁操作的电路中。 真空灭弧室中电弧的点燃是由于真空断路器刚分瞬间,触头表面蒸发金属蒸汽,并被游离而形成电弧造成的。真空灭弧室中电弧弧柱压差很大,质量密度差也很大,因而弧柱的金属蒸汽(带电质点)将迅速向触头外扩散,加剧了去游离作用,加上电弧弧柱被拉长、拉细,从而得到更好的冷却,电弧迅速熄灭,介质绝缘强度很快得到恢复,从而阻止电弧在交流电流自然过零后重燃。 真空灭弧室是真空断路器的灭弧和绝缘部件。主要有动触头、静触头、动端跑弧面、动端法兰、静端法兰、瓷柱、不锈钢支撑法兰、屏蔽罩、动静导电杆、玻壳和波纹管等,经过清洗由玻璃封装、真空焊、亚弧焊、排气等工艺程序处理后封装而成。各主要零部件均密封在玻壳中,玻壳不仅通过动静法兰起到密封作用,还能起到绝缘作用。波纹管系一动态密封的弹性元件,通过真空灭弧室在操动机构的作用下可完成分合闸动作,而又不会破坏其真空度。

真空灭弧室制造成一个整体,不能拆装,损坏后应整体更换。 真空电弧的熄灭是基于利用高真空介质(一般为压强低于10-4mm汞柱的稀薄气体)的绝缘强度及在这种气体中的电弧生成物(带电粒子和金属蒸汽)具有极高的扩散速度,在电弧电流过零后,触头间隙的介质强度可以迅速恢复起来的原理而实现的。燃弧过程中的金属蒸汽和带电粒子在强烈的扩散中为屏蔽罩所冷凝,带三条阿基米德螺旋槽的跑弧面使电弧电流在其流经路线上的触头间产生一个横向磁场,这时电弧电流在主触头上沿切线方向快速移动,从而降低了主触头表面的温度,减少了主触头的烧损,稳定了断路器的开断性能,提高了断路器的寿命。

高压断路器自能灭弧技术的发展

高压断路器自能灭弧技术的发展 作者:张文兵来源:西高所研发中心发布时间:2006-12-14 浏览次数:3963 目前很多生产中压开关设备的企业,其中不少是有实力的民营或股份制企业开始越来越关注126kV级以上产品的发展,很多厂家都有在高电压领域一展身手的想法,但大家对高压领域无论是产品的技术发展还是市场行情了解得不是太多,本文拟在结合西高所今年来开发的几个产品,特别是从灭弧技术和断路器的研制入手,向大家简要介绍了目前我国高压领域发展的概况。 1.市场分析 根据行业协会2004年年鉴,下表呈示了2003年72.5kV及以上高压断路器的产品产量。 2003年72.5kV及以上高压断路器的产品产量单位: 台 电压等级750 363 252 126 72.5 SF6断路器73 22 769 4010 481 GIS 511 1494 少油断路器 1 58 78 考虑到一些合资或外资企业未参加行协的统计,椐不完全估计截止2003年目前国内市场的 126kV以上产品的总需求量为10000台套左右(含GIS),其年产值约60-70亿元左右,约占整个高压开关总市场容量的1/4~1/3。其中126kV领域的产品产值约30亿元,供应偏紧。目前国内能进行126kV级以上产品生产的企业不足20家,有规模的且能生产252kV级以上产品的企业更是凤毛麟角。可以说,高压产品在近几年里还有一定的市场空间和利润空间。但生产高压产品所必须进行的在厂房、设备、技术、品牌战略等方面的高投入,依然是使不少企业彷徨不定或难以介入的高门槛。 2.自能灭弧的技术发展 对于六氟化硫断路器灭弧原理的发展而言,20世纪90年代无疑是一个重要的时期。在这期间,126kV及以上级的自能式灭弧原理得到了蓬勃的发展和广泛的应用,它与传统的压气式断路器相比,操作功大大减少,因而可配用维护方便的轻型弹簧操动机构,机械应力小,大大提高了机械可靠性及机械寿命,减轻了重量。从而使自能式六氟化硫高压断路器在轻量化、小型化、机械可靠性等特性上有了显著的优势,体现出高压断路器的进步。故采用自能式灭弧原理的断路器,被称为继双压式、单压式后的第三代断路器,是六氟化硫断路器发展史上的一次革命。它的出现迅速被用电部门所接受,具有良好的发展前景。 西安高压电器研究所对自能灭弧技术的研究始于八十年代中期,当时主要在中压产品上进行了旋弧+热膨胀灭弧室的研究,并成功开发了LN2-10和LN2-35系列的SF6断路器。96年以后,开始进

断路器作用

断路器作用: 1.正常情况下接通和断开高压电路中的空载及负荷电流. 2.在系统发生故障时能与保护装置和自动装置相配合,迅速切断故障电流, 防止事故扩大,从而保证系统安全运行. 其实断路器就是一种开关,它和其他普通开关的不同点主要在:1.适用电压 等级高2.灭弧介质及方式,有真空,少油,多油及六氟化硫等等3.灭弧能力强,效果好. 一般情况下断路器本身不存在润滑方面的问题,需要润滑的常常是它的操 动机构 热继电器作用: 热继电器的作用是电动机过负荷时自动切断电源,热继电器的构造是两片膨胀系数不同的金属片构成,电流过大时膨胀系数大的先膨胀,起到切断电源的作用。热继电器动作后有人工复位和自动复位。 熔断器作用: 当电路发生故障或异常时,伴随着电流不断升高,并且升高的电流有可能损坏电路中的某些重要器件或贵重器件,也有可能烧毁电路甚至造成火灾。若电路中正确地安置了熔断器,那么,熔断器就会在电流异常升高到一定的高度和一定的时候,自身熔断切断电流,从而起到保护电路安全运行的作用 如果电路中安装了断路器就可以不用熔断器,热继电器需要与交流接触器

配合使用,因过载时热继电器上的触点断开切断控制回路,目前熔断器一般多用于控制回路。 断路器: 断路器是控制电气回路的分合开关,若以空气为灭弧介质的称空气断路器(开关)、若以SF6气体为灭弧介质的称六氟化硫断路器(开关)。断路器一般以额定电流(负荷)选择,做为电气回路的总开关使用。 漏电保护器和漏电保护开关: 漏电保护器和漏电保护开关:当一个空气开关带有漏电保护功能时,称之为漏电保护开关。如果是一个单单用于漏电保护的电气装置,则称之为漏电保护器。如图是一个漏电保护器,因为它并没有手动关断和合上的机构。 判定是否漏电的的原理依据是:流进和流出开关的电流必须相等,否则就判定为漏电。当漏电电流达到和超过一定的程度时,产生保护动作----跳闸。判定的阈值是可以设定的,因为电路就是我们设计的。只是应用时要根据不同的场合,选用不同灵敏度的保护器。 如果是用于人身安全保护为目的,则漏电电流小于30mA,视为安全,如大于30mA,则视为不安全,将产生保护动作。漏电保护的额定电流30mA 的漏电保护器或保护开关,属于同敏度漏电保护器或保护开关。其生产保护动作时间还应在0.1秒以内。这两个参数的选择主要依据是: 30mA:人体的感知电流----男为1.1mA女为0.7mA;摆脱电流男为16mA

开关电器中电弧产生原因及灭弧方法通用版

操作规程编号:YTO-FS-PD865 开关电器中电弧产生原因及灭弧方法 通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

开关电器中电弧产生原因及灭弧方 法通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 开关电器中电弧是如何产生的? 电孤是一种气体放电现象,它有两个特点:一是电弧中有大量的电子、离子,因而是导电的,电孤不熄灭电路继续导通,要电弧熄灭后电路才正式断开;二是电弧的温度很高,弧心温度达4000~5000摄氏度以上,高温电弧会烧坏设备造成严重事故,所以必须采取措施,迅速熄灭电弧。 电弧产生和熄灭的物理过程简述如下:在开关断开过程中,由于动触头的运动,使动、静触头间的接触面不断减小,电流密度就不断增大,接触电阻随接触面的减小就越来越大,因而触头温度升高,产生热电子发射。当触头刚分离时,由于动、静触头间的间隙极小,出现的电场强度很高,在电场作用下金属表面电子不断从金属表面飞逸出来,成为自由电子在触头间运动,这种现象称为场致发射。热电子发射、场致发射产生的自由电子在电场力作用下加速飞向阳极,途中不断碰撞中性质点,将中性质点中

断路器灭弧

断路器灭弧原理和灭弧室 一.电弧: 电弧或弧光放电是一种物理现象,也是气体放电的一种形式。开关设备在分断时,会在触头间产生电弧,此时电路中的电流继续流通,直到电弧熄灭,触头间隙成为绝缘介质后,电流才被断开。发生在开关设备中的电弧简称为开关电弧。 所谓开关作用,就是在具有一定电位的导体电路的一部分上进行导体与绝缘体的相互迅速变化。 1.电弧的组成 除正负两极外,整个电弧可以 分成三个区域:阴极位降区域、弧柱和阳极位降区域。 2.电弧柱的游离过程 在外界能量的作用下,使大量的电子从围绕原子核的轨道上脱离出来,并成为自由电子。这种从气体中性粒子(原子或分子)中分离出自由电子和正离子的现象称为游离。 游离的结果就变成一个带负电荷的电子和一个带正电荷的离子。 由于自由电子不断碰撞形成游离,碰撞游离不断进行,使得介质中带电质点大量增加,呈现很高的导电,于是在在外加电压作用下,触头间介质被击穿开始导电,形成电流,同时也因发热而发光,这就产生了电弧; 由于电弧弧柱温度很高可达5000~13000℃,就产生了热游离和光游离。

游离方式有碰撞游离;热游离;光游离。 影响游离的因素主要有温度;介质的游离电位——游离所需的能量;气体压力。 3、电弧的的去游离(消游离) 使弧柱中的游离程度减小,直至电弧熄灭、间隙恢复成绝缘介质的过程,称为去游离(消游离)。 消游离的方式主要有:复合和扩散。 两种带异性电荷的质点互相接触而形成中心质点,称为复合(正负电荷中和)。在电极表面发生的称表面复合,在间隙空间中发生的称空间复合,空间复合一般在离子间进行称间接空间复合。 复合最主要因素为温度,温度下降时,复合速度就迅速增快。 带电粒子从电弧间隙中散出到周围介质中去,称为扩散,扩散是双极性的,弧柱的直径对扩散影响最大,弧柱直径越小,扩散越强烈。 4、开关电弧的产生 强电场发射——热电子发射——碰撞游离——热游离——形成电弧电流。 最终靠热游离维持电弧。 5、交流电弧 电弧电流有过零现象,有电压恢复过程和介质强度恢复过程。 交流电弧过零熄灭,电压恢复而重燃。介质绝缘强度恢复过程快于弧隙的电压恢复过程,并介质强度始终大于弧隙上的恢复电压,电弧就熄灭;反之电弧就重燃。U j>U hf

各种脱扣器分类及作用原理

低压断路器一般由脱扣器、触头系统、灭弧装置、传动机构、基架和外壳等几部分组成,在投入运行时,操作手柄已经使主触头闭合,自由脱扣机构将主触头锁定在闭合位置,各类脱扣器进入运行状态。下面就重点说说断路器的几个脱扣器: 1、电磁脱扣器? 电磁脱扣器与被保护电路串联。线路中通过正常电流时,电磁铁产生的电磁力小于反作用力弹簧的拉力,衔铁不能被电磁铁吸动,断路器正常运行。当线路中出现短路故障时,电流超过正常电流的若干倍,电磁铁产生的电磁力大于反作用力弹簧的作用力,衔铁被电磁铁吸动通过传动机构推动自由脱扣机构释放主触头。主触头在分闸弹簧的作用下分开切断电路起到短路保护作用。? 2、热脱扣器? 热脱扣器与被保护电路串联。线路中通过正常电流时,发热元件发热使双金属片弯曲至一定程度(刚好接触到传动机构)并 达到动态平衡状态,双金属片不再继续弯曲。若出现过载现象时,线路中电流增大,双金属片将继续弯曲,通过传动机构推动自由脱扣机构释放主触头,主触头在分闸弹簧的作用下分开,切断电路起到过载保护的作用。?

3、失压脱扣器? 失压脱扣器并联在断路器的电源测,可起到欠压及零压保护的作用。电源电压正常时扳动操作手柄,断路器的常开辅助触头闭合,电磁铁得电,衔铁被电磁铁吸住,自由脱扣机构才能将主触头锁定在合闸位置,断路器投入运行。当电源侧停电或电源电压过低时,电磁铁所产生的电磁力不足以克服反作用力弹簧的拉力,衔铁被向上拉,通过传动机构推动自由脱扣机构使断路器掉闸,起到欠压及零压保护作用。 ? 当电源电压为核定电压的75%~105%时,失压脱扣器保证吸合,使断路器顺利合闸;当电源电压低于额定电压的40%时,失压脱扣器保证脱开使断路器掉闸分断。? 一般还可用串联在失压脱扣器电磁铁圈回路中的常闭按钮做分闸操作。? 4、分励脱扣器? 分励脱扣器用于远距离操作低压断路器分闸控制。它的电磁线圈并联在低压断路器的电源侧。需要进行分闸操作时,按动常开按钮使分励脱扣器的电磁铁得电吸动衔铁,通过传动机构推动自由脱扣机构,使低压断路器掉闸。?

(整理)分合闸,断路器灭弧机械特性

1高压电路中电弧的特性及形成过程 随着我国经济发展和电力工业需求的增长,对高压开关性能要求也越来越高,它能否正常工作直接关系电力系统的安全与稳定。断路器起着控制和保护电力系统的双重作用,能在有载、无载及各种短路工况下完成规定的合分或操作循环任务,特别是在高压强电流的条件下开断电路并不是件容易的事,开断过程产生的电弧不熄灭,电路就不能被开断。。由于电力系统发生故障时,产生的电流比正常负载电流要大得多,这时开断电路的断路器在触头分离后,触点之间将会出现电弧,电弧的存在对高压电路来说是一个不可忽视的安全隐患,因此高压电路上明确规定,只有电弧熄灭,电路的断开任务才算完成,而断开的时间很短,因此要求很高。电弧快速熄灭能及时根除安全隐患,为将财产损失减到最小赢得时间。断路器的开断要快速、可靠、稳定。在运行中,开断能力是标志性能的基本指标。所谓开断能力,就是指断路器在切断电流时熄灭电弧,顺利地切、分电流的任务的能力。在电力系统中,开断能力的参数通常是以额定短路开断电流为标志的,符号为Ib,单位kA。 电弧是一种能量集中、温度高、亮度大的气体放电现象,是一种电离的气体,质量极轻,发出耀眼的光芒,在外力作用下迅速移动、卷缩和伸长。在操作电力开关分断电路的过程中,当开关的触头即将分离时,由于触头的接触面突然减小,使得触头接触处的电阻猛增,同时电路上被消耗的电能将产生上千度的高温,使触头产生热电子发射,这与人们在电子管中观察到的热电子发射情况类似,只不过这时触头表面的温度比电子管内灯丝的温度要高得多,发射的热电子强度也大得多。同时在开关触头分离的瞬间,电路加在触头上的电压将在触头间极小的间隙内形成很强的电场,它将在高温作用下触头发射的热电子迅速加速,这些高速运动的热电子碰撞其周围的气体分子而产生自由电子和正离子,被电离出来的自由电子在高温和强电场的作用下继续加速,又碰撞其附近的其它气体分子,如此继续,形成连锁反应,使开关触头间的气体在极短的时间发生雪崩似的电离,接通电路,发出耀眼的亮光,这就是人们看到的电弧。电弧产生以后,触头间隙周围的温度随之升高到4 000℃以上,大量的金属蒸气和气体原子在高温下继续电离为自由电子和正离子,以维持电弧的稳定和电路的导通。电子学理论认为[6~8],在电弧的形成过程中,高温和电场不仅使气体分子、原子和炽热的金属蒸气发生电离,同时还使已

栅片灭弧方式及相关低压电器介绍..

栅片灭弧方式中,电弧为什么会在电动力的作用下朝灭弧栅运动呢?灭弧栅是用钢片作的,它放置在触头的上方。当触头间产生电弧的时候,由于电弧下方是空气,上方是灭弧栅,由于钢的导磁率比空气大,这样在同样的磁场强度H下,电弧上方的磁通密度B应该比下方的大阿,因此电弧所受电磁力(F=BIL)的合力方向应该向下,这样电弧因该背离灭弧栅运动才对啊。那位前辈高人能指点一下不? 答1:钢片在这里的作用是分割电弧,不是利用其磁导的。电弧向内运动是利用磁吹原理,仔细观察一下接触器的通流部分,结合左右手定则,相信你一定能分析出来 答2:可以把灭弧栅想像成一整块软铁,电弧是流过恒稳电流的导线,这样不影响分析。应用右手螺旋定则,导线产生同心圆磁场,磁力线穿过软铁块,软铁块被磁化,磁化软铁块的NS极记住,由于铁被磁化,其产生磁场有独立性,即使导线移出也不变,在此磁场作用下,导线的受力方向,应用左手定则,有难度的只是想像软铁NS极之间的磁力线,受力方向指向软铁。实际的灭弧栅,时变的电弧不影响分析结果。 答3:交流接触器的栅片灭弧原理是由于触点上方的钢片栅片磁阻很小,电弧上部磁通大都进入栅片,使电弧周围空气中的磁场分布形式上疏下密,将电弧拉入灭弧栅。电弧被栅片分割多若干短弧。 常用自动控制电器 图5.6 接触器控制电路的工作原理 当按钮揿下时,线圈通电,静铁心被磁化,并把动铁心(衔铁)吸上,带动转轴使触头闭合,从而接通电路。 当放开按钮时,过程与上述相反,使电路断开。 根据主触头所接回路的电流种类,接触器分为交流和直流两种。 (1).交流接触器 ①.触头 触头是接触器的执行部分。 主要任务:完成接触器接通或断开电路的任务。 对触头的要求:接通时导电性能良好、接触电阻小;闭合时不跳动(不振动);闭合时

断路器各种脱扣器介绍及其应用原理

分励脱扣器(原理) 脱扣器不是相当于断路器分闸。它是用于释放断路器主触头的电与机械相结合的一种装置。是断路器的一个重要的部件。它在断路器的作用是释放断路器的主触头。 分励脱扣器本质上就是一个分闸线圈加脱扣器。热脱扣和电磁脱扣也用这个脱扣器。给分励脱扣线圈加上规定的电压,断路器就脱扣而分闸。分励脱扣器常用在远距离自动断电的控制上,现在用得最多的就是消防控制室切断非消防电源。 断路器分励脱扣后是不能立刻远控合闸的,也不能直接手动合闸,必须将断路器再扣后方能合闸,这和过载等脱扣跳闸后要再扣一样。这就是分励脱扣和电动操作分闸的区别。 断路器操作把手有三个位置,除大家知道的上分下合两个位置外,脱扣后把手将停留在中间位置。所谓再扣就是将把手从中间位置下扳到分的位置使脱扣器重新钩住,然后才能合闸。分励脱扣线圈电压种类有交流和直流,电压大小有各种电压等级。切断非消防电源时用 DC24V消防电源作分励脱扣线圈电源是最方便也是最简单的。分励脱扣线圈只能短时间通电,时间一长就烧坏;所以在控制回路里要串接一个断路器的常闭接点,断路器脱扣后切断分励脱扣线圈的电流。 分励线圈是用来跳闸的合闸线圈是用来合闸的合闸线圈吸合所有的常开都闭合,所有的常闭都断开分励线圈吸合后(跳闸)所有的常开都断开,所有的常闭都闭合 分励脱扣器原理图 在民用建筑中非消防电源的切除中,强切消防时需要停电的回路,选用带分励脱扣器的断路器,以使消防报警系统能在消防中心通过输入输出控制模块或控制电缆远距离使断路器跳闸,以切断此类负荷的电源。

二、低压断路器的结构和工作原理 断路器,在电路中作接通、分断和承载额定工作电流,并能在线路和电动机发生过载、短路、欠压的情况下进行可靠的保护。断路器的动、静触头及触杆设计成平行状,利用短路产生的电动斥力使动、静触头断开,分断能力高,限流特性强。 .短路时,静触头周围的芳香族绝缘物气化,起冷却灭弧作用,飞弧距离为零。断路器的灭弧室采用金属栅片结构,触头系统具有斥力限流机构,因此,断路器具有很高的分断能力和限流能力。 .具有复式脱扣器。反时限动作是双金属片受热弯曲使脱扣器动作,瞬时动作是铁芯衔铁机构带动脱扣器动作。脱扣方式有热动、电磁和复式脱扣3种。 空气开关内部比较精密,原理却甚为简单。它在入线和出线间串了个10几20圈的电感,电流足够时吸合带动机械杠杆而动作保护。比较安全又不用换保险,是很好的推荐。 自动空气开关也称为低压断路器,可用来接通和分断负载电路,也可用来控制不频繁起动的电动机。它功能相当于闸刀开关、过电流继电器、失压继电器、热继电器及漏电保护器等电器部分或全部的功能总和,是低压配电网中一种重要的保护电器。 自动空气开关具有多种保护功能(过载、短路、欠电压保护等)、动作值可调、分断能力高、操作方便、安全等优点,所以目前被广泛应用。 低压断路器的结构和工作原理 自动空气开关由操作机构、触点、保护装置(各种脱扣器)、灭弧系统等组成。自动空气开关工作原理图如

断路器基本常识

断路器 中文名称:断路器 英文名称:circuit-breaker;circuit breaker 定义1: 能够关合、承载和开断正常回路条件下的电流,并能关合、在规定的时间内承载和开断异常回路条件(包括短路条件)下的电流的开关装置。 定义2: 用以切断或关合高压电路中工作电流或故障电流的电器。 断路器 断路器按其使用范围分为高压断路器和低压断路器,高低压界线划分比较模糊,一般将3kV以上的称为高压电器。低压断路器又称自动开关,俗称"空气开关"也是指低压断路器,它是一种既有手动开关作用,又能自动进行失压、欠压、过载、和短路保护的电器。它可用来分配电能,不频繁地启动异步电动机,对电源线路及电动机等实行保护,当它们发生严重的过载或者短路及欠压等故障时能自动切断电路,其功能相当于熔断器式开关与过欠热继电器等的组合。而且在分断故障电流后一般不需要变更零部件,已获得了广泛的应用。 分类 按操作方式分:有电动操作、储能操作和手动操作。

按结构分:有万能式和塑壳式。 按使用类别分:有选择型和非选择型。 按灭弧介质分:有油浸式、真空式和空气式。 按动作速度分:有快速型和普通型。 按极数分:有单极、二极、三极和四极等。 按安装方式分:有插入式、固定式和抽屉式等。 高压断路器(或称高压开关)是发电厂、变电所主要的电力控制设备,具有灭弧特性,当系统正常运行时,它能切断和接通线路以及各种电气设备的空载和负载电流;当系统发生故障时,它和继电保护配合,能迅速切断故障电流,以防止扩大事故范围。因此,高压断路器工作的好坏,直接影响到电力系统的安全运行;高压断路器种类很多,按其灭弧的不同,可分为:油断路器(多油断路器、少油断路器)、六氟化硫断路器(SF6断路器)、真空断路器、压缩空气断路器等 内部附件 辅助触头 与断路器主电路分、合机构机械上连动的触头,主要用于断路器分、合状态的显示,接在断路器的控制电路中通过断路器的分合,对其相关电器实施控制或联锁。例如向信号灯、继电器等输出信号。塑壳断路器壳架

各类灭弧原理

各类断路器的灭弧原理真空断路器灭弧原理? 在真空断路器分断瞬间,由于两触头间的电容存在,使触头间绝缘击穿,产生真空电弧。由于触头形状和结构的原因,使得真空电弧柱迅速向弧柱体外的真空区域扩散。当被分断的电流接近零时,触头间电弧的温度和压力急剧下降,使电弧不能继续维持而熄灭。电弧熄灭后的几μs内,两触头间的真空间隙耐压水平迅速恢复。同时,触头间也达到了一定距离,能承受很高的恢复电压。所以,一般电流在过零后,不会发生电弧重燃而被分断。这就是其灭弧的原理。 SF6开关的灭弧原理 10kV SF6断路器灭派性能优良,不仅在于SF6气体本身,而且采用旋弧式灭弧室。目前,国内外在10kV电压级的SF6断路器研制上,广泛采用了具有良好灭弧性能的旋弧式灭抓室,它利用短路电流来建立磁场,使电弧在电磁力的作用下高速旋转,以达到自动灭弧的作用。其灭弧原理从图1可见:当短路开始,电信号反馈到脱扣器,使开关分闸。在分闸的瞬间,动触头和静触头之间就产生了电弧。动触头继续向下运动,电弧很快转移到引弧电极上。此时,绕在圆筒电极外而串联在静触头与圆筒电极之间的磁吹线圈通过短路电流,因而产生了磁场,于是电磁力驱使电弧高速旋转,在SF6气体中,电弧的高速旋转使得其离子体不断地与新鲜的SF6气体接触,以充分发挥六氟化硫的负电性,从而迅速地熄灭电弧。 油断路器的灭弧原理 当油断路器开断电路时,只要电路中的电流超过0.1A,电压超过几十伏,在断路器的动触头和静触头之间就会出现电弧,而且电流可以通过电弧继续流通,只有当触头之间分开足够的距离时,电弧熄灭后电路才断开。1OkV少油断路器开断20KA时的电弧功率,可达一万千瓦以上,断路器触头之间产生的电弧弧柱温度可达六七千度,甚至超过1万度。油断路器的电弧熄灭过程是,当断路器的动触头和静触头互相分离的时候产生电弧,电弧高温使其附近的绝缘油蒸发气化和发生热分解,形成灭弧能力很强的气体(主要是氢气)和压力较高的气泡,使电弧很快熄灭。 灭弧的种类:灭弧有磁吹,纵缝灭弧,横吹的等等! 磁吹当然是利用磁力来灭弧。因为电弧本身就是一个比较大的电流,用线圈通上电流,当然线圈必须是在电弧的两边,把电弧加在中间!当有电弧的时候,线圈用自己本身的磁力,把电弧拉长,让他自动熄灭! 可以引申以下,原先的断路器是用油来灭弧(当然不是单纯的用油),也就是电弧形成时,会把油电离,电离出来的氢气会把电弧吹灭!现在的SF6断路器的灭弧能力是氢气的6-8倍,所以现在的断路器都是用FS6灭弧。 纵缝是把电弧引到缝里面,从而灭弧。

开关电器典型灭弧装置的工作原理

开关电器典型灭弧装置的工作原理 教学基本内容: 开关电器典型灭弧装置的工作原理 提高灭弧装置开断能力的辅助方法 概述 当电源电压超过数十伏、开断电流在数十安以上时,为减少电弧对触头的烧损和限制电弧扩展的空间,通常需要采取加强灭弧能力的措施,为此而采用的装置称为灭弧装置。 这些灭弧装置的灭弧原理主要有下列十几种: 1.简单开断; 2.磁吹线圈; 3.纵缝灭弧装置; 4.绝缘栅片灭弧装置; 5.金属栅片灭弧装置; 6.固体产气灭弧装置, 7.石英砂灭弧装置; 8.变压器油灭弧装置; 9.压缩空气灭弧装置; 10.SF6灭弧装置; 11.真空灭弧装置。 此外,为了增加灭弧装置的开断能力,通常可以采用下列辅助方法: 1.在弧隙两瑞并联电阻; 2. 附加同步开断装置; 3.附加晶闸管装置。

上述灭弧装置的灭弧原理是: (1) 在大气中依靠触头分开时的机械拉长,使L增大; (2) 利用流过导电回路或特制线圈的电流在燃弧区产生磁场,使电弧迅速移动和拉长; (3)依靠磁场的作用,将电弧驱入用耐弧材料制成的狭缝中,以加强电弧的冷却和消电离; (4) 用金属板将电弧分隔成许多串联的短弧; (5) 在封闭的灭弧室中,利用电弧自身能量分解固体材料,产生气体,以提高灭弧室中的压力,或者利用产生的气体进行吹弧; (6) 利用电弧自身能量,使变压器油分解成含有大量氢气的气体并建立起很高的压力,再利用此压力推动冷油和气体去吹弧; (7) 利用压缩空气吹弧; (8) 利用SF6气体吹弧; (9) 在高真空中开断触头,利用弧隙中由电极金属蒸汽形成的弧柱在电流过零时迅速扩散的原理进行灭弧; (10) 利用石英砂等固体颗粒介质,限制电弧直径的扩展和加强冷却。 开关电器典型灭弧装置的工作原理 一、拉长电弧 (1)大气中,利用机械拉长电弧方式的原理与图例。 电弧放长后,电弧电压就增大,其静态伏——安特性向上移

开关电器中电弧产生原因及灭弧方法示范文本

开关电器中电弧产生原因及灭弧方法示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

开关电器中电弧产生原因及灭弧方法示 范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 开关电器中电弧是如何产生的? 电孤是一种气体放电现象,它有两个特点:一是电弧 中有大量的电子、离子,因而是导电的,电孤不熄灭电路 继续导通,要电弧熄灭后电路才正式断开;二是电弧的温度 很高,弧心温度达4000~5000摄氏度以上,高温电弧会 烧坏设备造成严重事故,所以必须采取措施,迅速熄灭电 弧。 电弧产生和熄灭的物理过程简述如下:在开关断开过 程中,由于动触头的运动,使动、静触头间的接触面不断 减小,电流密度就不断增大,接触电阻随接触面的减小就 越来越大,因而触头温度升高,产生热电子发射。当触头

刚分离时,由于动、静触头间的间隙极小,出现的电场强度很高,在电场作用下金属表面电子不断从金属表面飞逸出来,成为自由电子在触头间运动,这种现象称为场致发射。热电子发射、场致发射产生的自由电子在电场力作用下加速飞向阳极,途中不断碰撞中性质点,将中性质点中的电子又碰撞出来,这种现象称作碰撞游离。由于碰撞游离的连锁反应,自由电子成倍地增加(正离子亦随之增加),大量的电子奔向阳极,大量的正离子向负极运动,开关触头间隙便成了电流的通道,触头间隙间介质被击穿就形成电弧。 由于电弧温度很高,在高温的作用下,处在高温下的中性质点由于高温而产生强烈不规则的热运动,在中性质点互相碰撞时,又将被游离而形成电子和离子,这种因热运动而引起的游离称为热游离。热游离产生大量电子和离子维持触头间隙间电弧。产生电弧主要由碰撞游离,维持

相关主题
文本预览
相关文档 最新文档