当前位置:文档之家› 无网格法与有限元法的耦合在土木工程中的应用研究

无网格法与有限元法的耦合在土木工程中的应用研究

无网格法与有限元法的耦合在土木工程中的应用研究
无网格法与有限元法的耦合在土木工程中的应用研究

有限元网格划分的基本原则

有限元网格划分的基本原则 划分网格是建立有限元模型的一个重要环节,它要求考虑的问题较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。为建立正确、合理的有限元模型,这里介绍划分网格时应考虑的一些基本原则。 1 网格数量 网格数量的多少将影响计算结果的精度和计算规模的大小。一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随网格数量的变化。可以看出,网格较少时增加网格数量可以使计算精度明显提高,而计算时间不会有大的增加。当网格数量增加到一定程度后,再继续增加网格时精度提高甚微,而计算时间却有大幅度增加。所以应注意增加网格的经济性。实际应用时可以比较两种网格划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。 图1 位移精度和计算时间随网格数量的变化 在决定网格数量时应考虑分析数据的类型。在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。如果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,如果计算的模态阶次较高,则应选择较多的网格。在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。 2 网格疏密 网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。这样,整个结构便表现出疏密不同的网格划分形式。图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。小圆孔附近存在应力集中,采用了比较密的网格。板的四周应力梯度较小,网格分得较稀。其中图b中网格疏密相差更大,它比图a中的网格少48个,但计算出的孔缘最大应力相差1%,而计算时间却减小了36%。由此可见,采用疏密不同的网格划分,既可以保持相当的计算精度,又可使网格数量减

支座零件实体建模及有限元网格划分报告

《材料成型软件应用》 课程上机报告之一 题目:支座零件实体建模及有限元网格 划分报告 专业:材料成型及控制工程 班级:2014 级 2 班 学号:2014 姓名:

一、问题描述 该建模的支座零件由底板、肋板和空心圆柱组成。整个支座高325,支座底板长400宽150高40,支座底板两个倒角半径为40,两个圆孔半径为20,底板下方凹槽长230宽150高10;大空心圆柱体内径为80外径为140长120,小空心圆柱体内径为20外径为40,各个肋板宽30。支座零件3D结构示意图如下图1所示,要求根据如图1所示的尺寸进行自顶向下建模并进行有限元网格划分。 图1支座零件3D结构示意图 二、问题分析 这个支座底板有两个倒角和两个圆孔,底板下方还有个凹槽底板上方有两块肋板相接,肋板上两个大小空心圆柱相贯。可以采用自顶向下建模:首先建支座底板然后在底板上倒角、打孔,其次建立肋板,接着在肋板上建立空心圆柱然后在空心圆柱上打孔,再修正肋板,增加肋板,最后体相加然后划分有限元网格。 三、实体建模过程 1、定义工作文件名和工作标题 1)定义工作文件名:File | Chang Jobename 2)定义工作工作标题:File | Change Title 3)重新显示:Plot | Replot 2、显示工作平面 1)显示工作平面:WorkPlane | Display Working Plane 2)关闭三角坐标符号:PlotCtrls | Window Options 3)显示工作平面移动和旋转工具栏:WorkPlane | Offset WP by Increments如下图

无网格法的应用

无网格方法的研究应用与进展 引言 有限元法(FEA)是随着电子计算机的发展而迅速发展起来的一种现代计算方法,但FEA 是基于网格的数值方法,在分析涉及特大变形(如加工成型、高速碰撞、流固耦合)、奇异性或裂纹动态扩展等问题时遇到了许多困难。 同时,复杂的三维结构的网格生成和重分也是相当困难和费时的。近年来,无网格得到了迅速的发展,受到了国际力学界的高度重视。与有限元的显著特点是无网格法不需要划分网格,只需要具体的节点信息,采用一种权函数(或核函数)有关的近似,用权函数表征节点信息。克服了有限元对网格的依赖性,在涉及网格畸变、网格移动等问题中显示出明显的优势。 无网格方法的概述 无网格方法(Meshless Method)是为有效解决有限元法在数值模拟分析时网格带来的重大问题而产生的,其基本思想是将有限元法中的网格结构去除,完全用一系列的节点排列来代之,摆脱了网格的初始化和网格重构对问题的束缚,保证了求解的精度[1]。是一种很有发展的数值模拟分析方法。 目前发展的无网格方法有:光滑质点流体动力学法(SPH)、无网格枷辽金法(EFGM)、无网格局部枷辽金法(MLPGM)、扩散单元法(DEM)、Hp-clouds 无网格方法;有限点法(FPM)、无网格局部Petrov-Galerkin方法(MLPG)、多尺度重构核粒子方法(MRKP)、小波粒子方法(WPM)、径向基函数法(RBF)、无网格有限元法(MPFEM)、边界积分方程的无网格方法等。 这些方法的基本思想都是在问题域内布置一系列的离散节点,然后采用一种与权函数或核函数有关的近似,使得某个域上的节点可以影响研究对象上的任何一点的力学特性,进而求得问题的解。 无网格方法国内外研究的进展 无网格法起源于20 世纪70 年代。Perrone,Kao 最早采用任意网格技术将传统有限差分进行扩展,提出了有限差分法,这可看作无网格技术的最初萌芽。 1977年Lucy 和Monaghan 首次提出了基于拉格朗日公式的光滑质点流体动力法(Smoothed Particle Hydrocynamics:SPH),这是一种纯拉格朗日法,无需网格。最初运用SPH 方法解决了无边界天体物理问题。Monaghan 在对SPH 方法深入研究后,将其解释为核(kernel)近似方法。 Swegle 等指出了SPH 方法不稳定的原因,并提出了一个黏度系数来保证其运算稳定。Dyka 则提出了应力粒子法来改善其稳定性。SPH 方法已经被应用于水下爆炸数值模拟、弹丸侵彻混凝土数值模拟、高速碰撞等材料动态响应的数值模拟等。 近年,我国学者张锁春对SPH 方法进行了综述,贝新源等将SPH 方法用于高速碰撞问题,宋顺成等将SPH 方法用于模拟弹丸侵彻混凝土。

在ANSYS平台上的复杂有限元网格划分技术

在ANSYS平台上的复杂有限元网格划分技术 1. 网格密度 有限元结构网格数量的多少将直接影响计算结果的精度和计算规模的大小。一般来说,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,怎样在这两者之间找到平衡,是每一个CAE工作者都想拥有的技术。网格较少时,增加网格数量可以使计算精度明显提高,而计算时间不会有大的增加。当网格数量增加到一定程度后,再继续增加网格时精度提高很少,而计算时间却大幅度增加。所以应该注意网格数量的经济性。实际应用时,可以比较两种网格划分的计算结果,如果两次计算结果相差较大,应该继续增加网格,重新计算,直到结果误差在允许的范围之内。 在决定网格数量时还应该考虑分析类型。静力分析时,如果仅仅是计算结构的变形,网格数量可以少一点。如果需要计算应力,则在精度要求相同的情况下取相对较多的网格。同样在结构响应计算中,计算应力响应所取的网格数量应该比计算位移响应的多。在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选取较少的网格,如果计算的阶数较高,则网格数量应该相应的增加。在热分析中,结构内部的温度梯度不大时,不需要大量的内部单元,否则,内部单元应该较多。 有限元分析原则是把结构分解成离散的单元,然后组合这些单元

解得到最终的结果。其结果的精度取决于单元的尺寸和分布,粗的网格往往其结果偏小,甚至结果会发生错误。所以必须保证单元相对足够小,考虑到模型的更多的细节,使得到的结果越接近真实结果。由于粗的网格得到的结果是非保守的,因此要认真查看结果,其中有几种方法可以帮助读者分析计算结果与真实结果之间的接近程度。 最常用的方法是用对结果判断的经验来估计网格的质量,以确定网格是否合理,如通过看云图是否与物理现象相一致,如果云图线沿单元的边界或与实际现象不一致,那么很有可能结果是不正确的。 更多的评价网格误差的方法是通过比较平均的节点结果和不平均的单元结果。如在ANSYS中,提供了两条显示结果的命令:PLNS,PLES。前者是显示平均的节点结果,后者是显示不平均的单元结果。PLNS命令是计算节点结果,它是通过对该节点周围单元结果平均后得到的,分析结果是基于单元高斯积分点值,然后外插得到每个节点,因此在给定节点周围的每个单元都由自己的单元计算得到,所以这些节点结果通常是不相同的。PLNS命令是在显示结果之前将每个节点的所有结果进行了平均,所以看到的云图是以连续的方式从一个单元过渡到另外一个单元。而PLES命令不是对节点结果平均,所以在显示云图时单元和单元之间是不连续的。这种不连续程度在网格足够密(即单元足够小)的时候会很小或不存在,而在网格较粗时很大。由于PLNS结果是一个平均值,所以它得到的结果会比PLES的结果小,他

土木工程专业(081001)

土木工程专业(081001) 表一 一、培养目标: 培养适应国家、行业和地方经济社会发展需要的,德智体美劳全面发展,具有良好的职业道德、责任感、团队精神和沟通能力,掌握土木工程领域基础理论和专业知识,具有较强的实践能力、创新能力和创业精神,具有一定的国际视野,毕业5年左右能够成长为土木工程及相关领域的技术和管理骨干的高素质应用型人才。 本专业的毕业生在毕业五年后应能达到如下目标: (1)具有扎实和宽广的基础理论和专业知识,以及与土木工程领域相关的安全、法律、环境、经济管理等方面的知识,可对土木工程复杂问题提供系统的解决方案。 (2)具有较强的工程实践能力,并能够胜任土木工程及相关领域的项目规划、设计、施工、咨询、运维和技术管理等工作。 (3)具有良好的人文社会科学素养、社会责任感和团队协作精神,并能够遵守工程伦理和职业规范。 (4)熟悉土木工程领域的国内外研究现状,并能够与国内外同行进行沟通和交流。 (5)具备良好的自主学习、终身学习的能力,富有创新意识并具有一定的创新能力。 二、毕业要求: 本专业毕业生应获得以下几方面的知识、能力和素质: 1.工程知识:能够将数学、自然科学、工程基础和专业知识用于解决土木工程专业复杂工程问题。 2.问题分析:能够应用数学、自然科学和工程科学的基本原理,识别、表达、并通过文献研究分析土木工程专业复杂工程问题,以获得有效结论。 3.设计/开发解决方案:能够设计针对土木工程有关的复杂工程问题的解决方案,具备实施项目全寿命周期管理的能力,能够对实际工程进行合理的选址、选线,能理解结构设计意图并进行简单的结构方案设计,能够设计满足土木工程特定需求的体系、结构和构件,并能够在结构和施工方案设计环节中体现创新意识,综合考虑和评价社会、健康、安全、法律、文化、环境和可持续发展等因素。 4.研究:能够通过文献检索,凝练、研究、分析和表达土木工程专业的复杂工程问题,以获得有效结论,能够制定土木工程技术基础实验方案、独立完成实验并进行数据的整理、统计、分析和解释。 5.使用现代工具:能够针对土木工程专业复杂工程问题,开发、选择与使用恰当的技术、资源、现代工程工具和信息技术工具,包括对复杂工程问题的简化、预测与模拟,并能够理解其局限性。 6. 工程与社会:熟悉国家和地方涉及行业的政策和法律法规,能够基于工程相关背景知识进行合理分析,评价复杂工程问题的解决方案对社会、健康、安全、法律以及文化的影响,并理解应承担的责任。 7. 环境和可持续发展:能够理解和评价针对复杂工程问题的工程实践对然环境可持续发展的影

ANSYS有限元网格划分的基本原则

ANSYS有限元网格划分的基本原则 引言 ANSYS中有两种建立有限元模型的方法:实体建模和直接生成。使用实体建模,首先生成能描述模型的几何形状的几何模型,然后由ANSYS程序按照指定的单元大小和形状对几何体进行网格划分产生节点和单元。对于直接生成法,需要手工定义每个节点的位置和单元的连接关系。 一般来说对于规模较小的问题才适于采用直接生成法,常见的问题都需要先通过实体建模生成几何模型,然后再对其划分网格生成有限元模型。随着计算机性能的提高,分析模型的复杂性和规模都越来越大,而直接生成法也因其自身的局限性逐渐的被淘汰,所以正确的理解划分网格的目的和掌握划分网格的方法不论是对ANSYS的学习还是对二次开发都有重要的作用,尤其是当模型复杂度大,对模型的某些部分网格需要特殊处理时,这种对划分网格深度的理解作用更加明显。 2 常用高级网格划分方法 随着ANSYS功能的越来越强大和计算机性能的飞速提高,有限元分析向着大型化、复杂化的方向发展,而划分网格的观念也需要逐渐从二维模型向三维模型上上转变。这里主要描述三种常见的高级划分网格的方法,正确的理解和掌握这些划分网格的思想对于二次开发者来说非常的重要。 1)延伸网格划分 延伸网格划分是指将一个二维网格延伸生成一个三维网格;三维网格生成后去掉二维网格,延伸网格划分的步骤大体包括:先生成横截面、指定网格密度并对面进行网格划分、拖拉面网格生成体网格、指定单元属性、拖拉、完成体网格划分、释放已选的平面单元。 这里通过一个延伸网格划分的简单例子来加深对这种网格划分的理解。 图1 延伸网格划分举例 建立如图1所示的三维模型并划分网格,我们可以先建立z方向的端面,然后划分网格,通过拖拉的方法在z方向按照图中所示尺寸要求的三维模型,只需

_基于ANSYS的有限元法网格划分浅析

文章编号:1003-0794(2005)01-0038-02 基于ANSYS的有限元法网格划分浅析 杨小兰,刘极峰,陈 旋 (南京工程学院,南京210013) 摘要:为提高有限元数值的计算精度和对复杂结构力学分析的准确性,针对不同分析类型采用了不同的网格划分方法,结合实例阐述了ANSYS有限元网格划分的方法和技巧,指出了采用ANSYS有限元软件在网格划分时应注意的技术问题。 关键词:ANSYS;有限元;网格;计算精度 中图号:O241 82;TP391 7文献标识码:A 1 引言 ANSYS有限元分析程序是著名的C AE供应商美国ANSYS公司的产品,主要用于结构、热、流体和电磁四大物理场独立或耦合分析的CAE应用,功能强大,应用广泛,是一个便于学习和使用的优秀有限元分析程序。在ANSYS得到广泛应用的同时,许多技术人员对ANSYS程序的了解和认识还不够系统全面,在工作和研究中存在许多隐患和障碍,尤为突出的是有限元网格划分技术。本文结合工程实例,就如何合理地进行网格划分作一浅析。 2 网格划分对有限元法求解的影响 有限元法的基本思想是把复杂的形体拆分为若干个形状简单的单元,利用单元节点变量对单元内部变量进行插值来实现对总体结构的分析,将连续体进行离散化即称网格划分,离散而成的有限元集合将替代原来的弹性连续体,所有的计算分析都将在这个模型上进行。因此,网格划分将关系到有限元分析的规模、速度和精度以及计算的成败。实验表明:随着网格数量的增加,计算精确度逐渐提高,计算时间增加不多;但当网格数量增加到一定程度后,再继续增加网格数量,计算精确度提高甚微,而计算时间却大大增加。在进行网格划分时,应注意网格划分的有效性和合理性。 3 网格划分的有效性和合理性 (1)根据分析数据的类型选择合理的网格划分数量 在决定网格数量时应考虑分析数据的类型。在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。如果需要计算应力,则在精度要求相同的情况下取相对较多的网格。同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格。如果计算的模态阶次较高,则应选择较多的网格。在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,可划分较少的网格。 (2)根据分析数据的分布特点选择合理的网格疏密度 在决定网格疏密度时应考虑计算数据的分布特点,在计算固有特性时,因为固有频率和振型主要取决于结构质量分布和刚度分布,采用均匀网格可使结构刚度矩阵和质量矩阵的元素不致相差很大,可减小数值计算误差。同样,在结构温度场计算中也趋于采用均匀的网格形式。在计算数据变化梯度较大的部位时,为了更好地反映数据变化规律,需要采用比较密集的网格,而在计算数据变化梯度较小的部位,为了减小模型规模,则应划分相对稀疏的网格,这样整个结构就表现出疏密不同的网格划分形式。 以齿轮轮齿的有限元分析模型为例,由于分析的目的是求出齿轮啮合传动过程中齿根部分的弯曲应力,因此,分析计算时并不需要对整个齿轮进行计算,可根据圣文男原理将整个区域缩小到直接参与啮合的轮齿。虽然实际上参与啮合的齿数总大于1,但考虑到真正起作用的是单齿,通常只取一个轮齿作为分析对象,这样作可以大大节省计算机内存。考虑到轮齿应力在齿根过渡圆角和靠近齿面处变化较大,网格可划分得密一些。在进行疏密不同网格划分操作时可采用ANSYS提供的网格细化工具调整网格的疏密,也可采用分块建模法设置网格疏密度。 图1所示即为采用分块建模法进行网格划分。图1(a)为内燃机中重要运动零件连杆的有限元应力分析图,由于连杆结构对称于其摆动的中间平面,其厚度方向的尺寸远小于长度方向的尺寸,且载荷沿厚度方向近似均匀分布,故可按平面应力分析处 38 煤 矿 机 械 2005年第1期

[科普]有限元历史与现代工程结构分析

[科普]有限元历史与现代工程结构分析 有限元方法的思想最早可以追溯到古人的“化整为零”、“化圆为直”的作法,如“曹冲称象”的典故,我国古代数学家刘徽采用割圆法来对圆周长进行计算;这些实际上都体现了离散逼近的思想,即采用大量的简单小物体来“冲填”出复杂的大物体。 曹冲称象 有限元法的物理实质是:把一个连续体近似地用有限个在节点处相连接的单元组成的组合体来代替,从而把连续体的分析转化为单元分析加上对这些单元组合的分析问题。 早在1870年,英国科学家瑞利Rayleigh 就采用假想的“试函数”来求解复杂的微分方程。 英国科学家瑞利Rayleigh(1842-1919) 1909年,里兹Ritz(1878-1909)将其发展成为完善的数值近似方法,为现代有限元方法打下坚实基础。 1943年,Richard Courant已从数学上明确提出过有限元的思想,发表了第一篇使用三角形区域的多项式函数来求解扭转问题的论文,由于当时计算机尚未出现,并没有引起应有的注意。但后来,人们认识到了Courant 工作的重大意义,并将1943年作为有限元法的诞生之年。

Richard Courant(1888-1972), 首次提出有限元的思想。 20世纪40年代,由于航空事业的飞速发展,设计师需要对飞机结构进行精确的设计和计算,便逐渐在工程中产生了的矩阵力学分析方法。 1955年,德国出版了第一本关于结构分析中的能量原理和矩阵方法的书,为后续的有限元研究奠定了重要的基础。 1956年,M. J. Turner (波音公司工程师),R. W. Clough(土木工程教授),H. C. Martin(航空工程教授)及L. J. Topp (波音公司工程师)等四位共同在航空科技期刊上发表一篇采用有限元技术计算飞机机翼强度的论文,名为《Stiffness and Deflection Analysis of Complex Structures》,系统研究了离散杆、梁、三角形的单元刚度表达式,文中把这种解法称为刚性法(Stiffness),一般认为这是工程学界上有限元法的开端。 1960年,美国克拉夫Ray W.Clough教授在美国土木工程学会(ASCE)之计算机会议上,发表了一篇处理平面弹性问题论文,名为《The Finite Element in Plane Stress Analysis》的论文,将应用范围扩展到飞机以外之土木工程上,同时有限元法(Finite Element Method,简称FEM)的名称也第一次被正式提出。

CATIA有限元高级划分网格教程

CATIA有限元高级网格划分教程 盛选禹李明志 1.1进入高级网格划分工作台 (1)打开例题中的文件Sample01.CATPart。 (2)点击主菜单中的【开始】→【分析与模拟】→【Advanced Meshing Tools】(高级网格划分工具),就进入【Advanced Meshing Tools】(高级网格划分工具)工作台,如图1-1所示。进入工作台后,生成一个新的分析文件,并且显示一个【New Analysis Case】(新分析算题)对话框,如图1-2所示。 图1-1【开始】→【分析与模拟】→【Advanced Meshing Tools】(高级网格划分工具)(3)在【New Analysis Case】(新分析算题)对话框内选择【Static Analysis】(静力分析)选项。如果以后打开该对话框的时候均希望是计算静力分析,可以把对话框内的【Keep as default starting analysis case】(在开始时保持为默认选项)勾选。这样,下次进入本工作台时,将自动选择静力分析。 (4)点击【新分析算题】对话框内的【确定】按钮,关闭对话框。 1.2定义曲面网格划分参数 本节说明如何定义一个曲面零件的网格类型和全局参数。 (1)点击【Meshing Method】(网格划分方法)工具栏内的【高级曲面划分】按钮

,如图1-3所示。需要在【Meshing Method】(网格划分方法)工具栏内点击中间按钮的下拉箭头才能够显示出【高级曲 面划分】按钮。 图1-2【New Analysis Case】(新分析算题)对话框图1-3【高级曲面划分】按钮

混凝土桥梁徐变计算的有限元分析

收稿日期:2008208204 作者简介:赵品(1981)),女,硕士研究生,研究方向为大型结构健康诊断与控制 zh aop81@https://www.doczj.com/doc/e817056632.html, 混凝土桥梁徐变计算的有限元分析 赵 品, 王新敏 (石家庄铁道学院土木工程分院,河北石家庄050043) 摘 要:基于按龄期调整的有效模量法结合有限单元逐步分析法,对ANSYS 程序进行了计算混凝土桥梁徐变的二次开发。详细介绍了按龄期调整的有效模量法的具体计算步骤,并将计算结果与理论值进行比较,结果吻合的很好,且符合有砟轨道预应力混凝土箱梁的设计要求;验证了程序的正确性同时得出一些有益的结论:徐变对混凝土桥梁的影响不容忽视,必须予以重视。关键词:混凝土;桥梁;徐变 中图分类号:U441;U448.35 文献标识码:A 文章编号:167223953(2008)0620036204 一般混凝土的徐变变形大于其弹性变形,在不变的长期荷载下,混凝土结构的徐变变形值可达到瞬时变形值的1~6倍[1] 。对于静定结构,徐变会导致很大的变形,从而引起结构内部裂缝的形成和扩展,甚至使结构遭受破坏;对于超静定结构,徐变不但会引起变形,还会产生徐变次内力;在钢筋混凝土或预应力混凝土中,随时间变化的徐变,由于受到内部钢筋的约束会导致内力的重分配并引起预应力损失;分阶段施工的混凝土结构由于徐变的不同而导致内力的变化;连续梁、刚架、斜拉桥、拱桥等在施工过程中发生结构体系转换时,前期继承下来的应力状态所产生的应力增量受到后期结构的约束,而导致支座反力和结构内力变化:总之,徐变对混凝土结构的影响是非常大的。因此,对预应力混凝土桥梁在不同荷载工况下的徐变研究具有重要的现实意义。 1徐变计算所用的系数公式 按5铁路桥涵钢筋混凝土和预应力混凝土结构设 计规范6[2]中关于徐变系数的规定,其表达式如下:U (t,S )=B a (S )+0.4B d (t -S )+U f [B f (t)-B f (S )] (1) 为了便于计算机分析计算,对徐变系数进行拟合,得: U (t,S )=B a (S )+ E 4 i=1 C i (S )[1-e - q i (t-S ) ]+0.4B d (0) (2) 式中,B a (S )=0.8[1- 11.276(S 4.2+0.85S )3/2 ];C 1(S )=0.4A;C 2(S )=0.4B;C 3(S )=C #U f # e -q 3(S -3);C 4(S )=D #U f #e -q 4(S -3);B d (0)=0.27;A =0.43;B =0.30;q 1=0.0036;q 2=0.046。具体参数取值见表1。 表1 徐变系数计算中的参数取值理论厚度h /mm C D q 3q 4@10-3 U f 2<500.500.390.033 1.5 2.01000.470.420.0335 1.3 1.702000.410.480.034 1.1 1.554000.330.540.0350.85 1.406000.290.600.0380.65 1.33>1600 0.20 0.69 0.05 0.53 1.12 理论厚度h =K 2A h L ,K =1.5,A h 为构件截面面 积,L 为构件与大气接触的周边长度及箱梁内的长度。 2 逐步计算的方法[3] 2.1 结构单元和计算时间的划分 (1)时段划分。将计算时间从施工开始到竣工 后徐变完成,划分为若干阶段。对于一次现浇的简支梁桥而言,通常划分为浇筑混凝土、初张拉、终张拉、施加二期恒载四个阶段,根据每个施工状态,将计算时间划分成几个时间小段,也就是按施工工况进行划分。把施工阶段、加载时刻,作为各阶段与时间间隔的分界点,由初瞬时t =t 1起,以后各计算时刻依次为t 2,,t i ,,t n +1,相应时段则为:v t 1=t 2-t 1,,,v t i =t i+1-t i ,,,v t n =t n +1-t n 。 研究Research and De sign 与设计

有限元网格划分

有限元网格划分 摘要:总结近十年有限元网格划分技术发展状况。首先,研究和分析有限元网格划分的基本原则;其次,对当前典型网格划分方法进行科学地分类,结合实例,系统地分析各种网格划分方法的机理、特点及其适用范围,如映射法、基于栅格法、节点连元法、拓扑分解法、几何分解法和扫描法等;再次,阐述当前网格划分的研究热点,综述六面体网格和曲面网格划分技术;最后,展望有限元网格划分的发展趋势。 关键词:有限元网格划分;映射法;节点连元法;拓扑分解法;几何分解法;扫描法;六面体网格 1 引言 有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。 2 有限元网格划分的基本原则 有限元方法的基本思想是将结构离散化,即对连续体进行离散化,利用简化几何单元来近似逼近连续体,然后根据变形协调条件综合求解。所以有限元网格的划分一方面要考虑对各物体几何形状的准确描述,另一方面也要考虑变形梯度的准确描述。为正确、合理地建立有限元模型,这里介绍划分网格时应考虑的一些基本原则。 2.1 网格数量 网格数量直接影响计算精度和计算时耗,网格数量增加会提高计

算精度,但同时计算时耗也会增加。当网格数量较少时增加网格,计算精度可明显提高,但计算时耗不会有明显增加;当网格数量增加到一定程度后,再继续增加网格时精度提高就很小,而计算时耗却大幅度增加。所以在确定网格数量时应权衡这两个因素综合考虑。 2.2 网格密度 为了适应应力等计算数据的分布特点,在结构不同部位需要采用大小不同的网格。在孔的附近有集中应力,因此网格需要加密;周边应力梯度相对较小,网格划分较稀。由此反映了疏密不同的网格划分原则:在计算数据变化梯度较大的部位,为了较好地反映数据变化规律,需要采用比较密集的网格;而在计算数据变化梯度较小的部位,为减小模型规模,网格则应相对稀疏。 2.3 单元阶次 单元阶次与有限元的计算精度有着密切的关联,单元一般具有线性、二次和三次等形式,其中二次和三次形式的单元称为高阶单元。高阶单元的曲线或曲面边界能够更好地逼近结构的曲线和曲面边界,且高次插值函数可更高精度地逼近复杂场函数,所以增加单元阶次可提高计算精度。但增加单元阶次的同时网格的节点数也会随之增加,在网格数量相同的情况下由高阶单元组成的模型规模相对较大,因此在使用时应权衡考虑计算精度和时耗。 2.4 单元形状 网格单元形状的好坏对计算精度有着很大的影响,单元形状太差的网格甚至会中止计算。单元形状评价一般有以下几个指标: (1)单元的边长比、面积比或体积比以正三角形、正四面体、正六面体为参考基准。 (2)扭曲度:单元面内的扭转和面外的翘曲程度。 (3)节点编号:节点编号对于求解过程中总刚矩阵的带宽和波前因数有较大的影响,从而影响计算时耗和存储容量的大小 2.5 单元协调性 单元协调是指单元上的力和力矩能够通过节点传递给相邻单元。为保证单元协调,必须满足的条件是: (1)一个单元的节点必须同时也是相邻点,而不应是内点或边界

ANSYS结构有限元分析中的网格划分技术及其应用实例

一、前言 有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。同理,平面应力和平面应变情况设计的单元求解方程也不相同。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。 CAD软件中流行的实体建模包括基于特征的参数化建模和空间自由曲面混合造型两种 方法。Pro/E和SoildWorks是特征参数化造型的代表,而CATIA与Unigraphics等则将特征参数化和空间自由曲面混合造型有机的结合起来。现有CAD软件对表面形态的表示法已经大大超过了CAE软件,因此,在将CAD实体模型导入CAE软件的过程中,必须将CAD 模型中其他表示法的表面形态转换到CAE软件的表示法上,转换精度的高低取决于接口程序的好坏。在转换过程中,程序需要解决好几何图形(曲线与曲面的空间位置)和拓扑关系(各图形数据的逻辑关系)两个关键问题。其中几何图形的传递相对容易实现,而图形间的拓扑关系容易出现传递失败的情况。数据传递面临的一个重大挑战是,将导入CAE程序的CAD模型改造成适合有限元分析的网格模型。在很多情况下,导入CAE程序的模型可能包含许多设计细节,如细小的孔、狭窄的槽,甚至是建模过程中形成的小曲面等。这些细节往往不是基于结构的考虑,保留这些细节,单元数量势必增加,甚至会掩盖问题的主要矛盾,对分析结果造成负面影响。 CAD模型的“完整性”问题是困扰网格剖分的障碍之一。对于同一接口程序,数据传递的品质取决于CAD模型的精度。部分CAD模型对制造检测来说具备足够的精度,但对有限元网格剖分来说却不能满足要求。值得庆幸的是,这种问题通常可通过CAD软件的“完整性检查”来修正。改造模型可取的办法是回到CAD系统中按照分析的要求修改模型。一方面检查模型的完整性,另一方面剔除对分析无用的细节特征。但在很多情况下,这种“回归”很难实现,模型的改造只有依靠CAE软件自身。CAE中最直接的办法是依靠软件具有的“重构”功能,即剔除细部特征、缝补面和将小面“融入”大曲面等。有些专用接口在模型传递过程中甚至允许自动完成这种工作,并且通过网格剖分器检验模型的“完整性”,如发现“完整性”不能满足要求,接口程序可自动进行“完整性”修复。当几何模型距CAE分析的要求相差太大时,还可利用CAE程序的造型功能修正几何模型。“布尔运算”是切除细节和修理非完整特征的有效工具之一。 目前数据传递一般可通过专用数据接口,CAE程序可与CAD程序“交流”后生成与CAE 程序兼容的数据格式。另一种方式是通过标准图形格式如IGES、SAT和ParaSolid传递。现有的CAD平台与通用有限元平台一般通过IGES、STL、Step、Parasolid等格式来数据

土木工程研究生有限元结题大作业

郑州大学土木工程学院2014 级研究生“有限元分析”课程大作业 说明:①每人试卷应有一个封面,注明姓名、学号、年级、专业和研究方向; ②从以下题目中选择一个题目,把所选试题附在扉页; ③本部分大作业重点是写出建模、分析过程,起到研究和锻炼作用,不强调结果。即使所得答案有一定问题也不影响本作业的质量,重点是考察对所选择题目的研究分析过程。 ④对于采用已有有限元软件计算,应附出其有限元结点、单元、材料参数以及边界条件和计算控制过程的文本文件(如ABAQUS的*inp文件),同时详细描述建模过程和边界条件的施加过程。 1.编写弹性力学平面4 结点四边形单元的单元刚度矩阵形成的程序。 要求: (1)可采用C、FORTRAN 或VB等程序语言; (2)材料参数采用props[2]存储,分别为弹性模量和泊松比;单元4 个结点的x 和y 坐标数组 为coordsx[4]和coordsy[4](不同语言数组表示方式不同); (3)在一个程序中,给出单元的结点坐标、材料参数,然后传给该单元刚度矩阵形成程序, 进行计算; (4)给出一个简单的结果显示或输出程序,将计算得到的单元刚度矩阵计算结果显示出来; (5)需要提交:程序清单,程序结构关系说明和程序主要变量说明,算法描述,计算结果的 屏幕硬拷贝打印,程序窗口的屏幕硬拷贝打印。 2. 编写弹性力学平面3结点三角形单元的有限元程序,可由1-3人组成一个小组共同编写。 要求: (1)可采用C、FORTRAN 或VB等程序语言; (2)阐述程序的结构,并给出程序调用框图; (3)阐述数据结构之间的相互关系,对所用主要变量进行简单说明; (4)给出一个简单算例,并计算出结果。 (5)以排名次序表明所参加人员(不超过3人)的贡献。 3. 针对混凝土的一个本构模型(非线性、弹塑性等),设计一个算法,并编制程序(C,c++,FORTRAN,VB等)计算其应力增量。 (1)材料参数采用数组props()存储,分别对应如泊松比、弹性模量、…..。 (2)已知当前的应力为stress(),累计的总应变为strain(),给定一个小的应变增量dstrain(), 计算应力增量dstress()。 (3)如需要采用中间变量累计存储一些参量,如累计塑性应变等,采用一个数组存储。

ANSYS 网格划分方法总结

(1) 网格划分定义:实体模型是无法直接用来进行有限元计算得,故需对它进行网格划分以生成有限元模型。有限元模型是实际结构和物质的数学表示方法。 在ANSYS中,可以用单元来对实体模型进行划分,以产生有限元模型,这个过程称作实体模型的网格化。本质上对实体模型进行网格划分也就是用一个个单元将实体模型划分成众多子区域。这些子区域(单元),是有属性的,也就是前面设置的单元属性。 另外也可以直接利用单元和节点生成有限元模型。 实体模型进行网格划分就是用一个个单元将实体模型划分成众多子区域(单元)。 (2)为什么我选用plane55这个四边形单元后,仍可以把实体模型划分成三角 形区域集合??? 答案:ansys为面模型的划分只提供三角形单元和四边形单元,为体单元只提供四面体单元和六面体单元。不管你选择的单元是多少个节点,只要是2D单元,肯定构成一个四边形或者是三角形,绝对没有五、六边形等特殊形状。网格划分也就是用所选单元将实体模型划分成众多三角形单元和四边形子区域。 见下面的plane77/78/55都是节点数目大于4的,但都是通过各种插值或者是合并的方式形成一个四边形或者三角形。 所以不管你选择什么单元,只要是对面的划分,meshtool上的划分类型设置就只有tri和quad两种选择。 如果这个单元只构成三角形,例如plane35,则无论你在meshtool上划分设置时tri还是quad,划分出的结果都是三角形。

所以在选用plane55单元,而划分的是采用tri划分时,就会把两个点合并为一个点。如上图的plane55,下面是plane单元的节点组成,可见每一个单元上都有两个节点标号相同,表明两个节点是重合的。 。 同样在采用plane77 单元,进行tri划分时,会有三个节点重合。这里不再一一列出。(3)如何使用在线帮助: 点击对话框中的help,例如你想了解plane35的相关属性,你可以

有限元网格划分和收敛性

一、基本有限元网格概念 1.单元概述 几何体划分网格之前需要确定单元类型。 单元类型的选择应该根据分析类型、 形状特征、 计算数据特点、精度要求和计算的硬件条件等因素综合考虑。 为适应特殊的分析对象和边界 条件,一些问题需要采用多种单元进行组合建模。 2?单元分类 选择单元首先需要明确单元的类型,在结构中主要有以下一些单元类型: 平面应力单元、 平面应变单元、轴对称实体单元、空间实体单元、板 单元、壳单元、轴对称壳单元、杆单 元、梁单元、弹簧单元、间隙单元、质量单元、摩擦单元、刚体单元和约束单元等。根据不 同的分类方法,上述单元可以分成以 下不同的形式。 3. 按照维度进行单元分类 根据单元的维数特征,单元可以分为一维单元、二维单元和三维单元。 一维单元的网格为一条直线或者曲线。 直线表示由两个节点确定的线性单元。 曲线代表 由两个以上的节点确定的高次单元, 或者由具有确定形状的线性单元。 杆单元、梁单元和轴 对称壳单元属于一维单元,如图 1?图 3所示。 二维单元的网格是一个平面或者曲面,它没有厚度方向的尺寸。这类单元包括平面单元、 轴对称实体单元、板单元、壳单元和复合材料壳单元等,如图 4所示。二 维单元的形状通 常具有三角形和四边形两种, 在使用自动网格剖分时, 这类单元要求的几何形状是表面模型 图1捋果詰柯与一维杆单无犠型(直豉) &2桁舉第构石一隼杆早死撲型(曲线) B3毀姑构与一纯梁单元除世(直疑和呦疚〕

或者实体模型的边界面。采用薄壳单元通常具有相当好的计算效率。

洞丨伍金哉钩和潯壳社电 三维单元的网格具有空间三个方向的尺寸,其形状具有四面体、五面体和六面体,这类单元 包括空间实体单元和厚壳单元,如图5所示。在自动网格划分时,它要求的是几何模型是实 体模型(厚壳单元是曲面也可以)。 图5三址乙勺久和父侬草无 4. 按照插值函数进行单元分类 根据单元插值函数多项式的最高阶数多少,单元可以分为线性单元、二次单元、三次 单元和更高次的单元。 线性单元具有线性形式的插值函数,其网格通常只具有角节点而无边节点,网格边界为直线或者平面。这类单元的优点是节点数量少,在精度要求不高或者结果数据梯度不太大 的情况下,采用线性单元可以得到较小的模型规模。但是由于单元位移函数是线性的,单元 着应力突变,如图6所示。 S6錢41吕节点点单无fu节庖实体羊元

有限元网格划分和收敛性

一、基本有限元网格概念 1.单元概述?几何体划分网格之前需要确定单元类型.单元类型的选择应该根据分析类型、形状特征、计算数据特点、精度要求和计算的硬件条件等因素综合考虑。为适应特殊的分析对象和边界条件,一些问题需要采用多种单元进行组合建模。? 2.单元分类选择单元首先需要明确单元的类型,在结构有限元分析中主要有以下一些单元类型:平面应力单元、平面应变单元、轴对称实体单元、空间实体单元、板单元、壳单元、轴对称壳单元、杆单元、梁单元、弹簧单元、间隙单元、质量单元、摩擦单元、刚体单元和约束单元等。根据不同的分类方法,上述单元可以分成以下不同的形式。?3。按照维度进行单元分类 根据单元的维数特征,单元可以分为一维单元、二维单元和三维单元。?一维单元的网格为一条直线或者曲线。直线表示由两个节点确定的线性单元。曲线代表由两个以上的节点确定的高次单元,或者由具有确定形状的线性单元。杆单元、梁单元和轴对称壳单元属于一维单元,如图1~图3所示。 ?二维单元的网 格是一个平面或者曲面,它没有厚度方向的尺寸.这类单元包括平面单元、轴对称实体单元、板单元、壳单元和复合材料壳单元等,如图4所示。二维单元的形状通常具有三角形和四边形两种,在使用自动网格剖分时,这类单元要求的几何形状是表面模型或者实体模型的边界面。采用薄壳单元通常具有相当好的计算效率。

??三维单元的网格具有空间三个方向的尺寸,其形状具有四面体、五面体和六面体,这类单元包括空间实体单元和厚壳单元,如图5所示.在自动网格划分时,它要求的是几何模型是实体模型(厚壳单元是曲面也可以)。 ? 4.按照插值函数进行单元分类 根据单元插值函数多项式的最高阶数多少,单元可以分为线性单元、二次单元、三次单元和更高次的单元。 线性单元具有线性形式的插值函数,其网格通常只具有角节点而无边节点,网格边界为直线或者平面.这类单元的优点是节点数量少,在精度要求不高或者结果数据梯度不太大的情况下,采用线性单元可以得到较小的模型规模.但是由于单元位移函数是线性的,单元内的位移呈线性变化,而应力是常数,因此会造成单元间的应力不连续,单元边界上存在着应力突变,如图6所示。

有限元ansya分析钢筋混凝土步骤

分析过程 (1)首先建立有限元模型,这里我们选用ANSYS软件自带的专门针对混凝土的单元类型Solid 65,进入ANSYS主菜单Preprocessor->Element Type->Add/Edit/Delete,选择添加Solid 65号混凝土单元。 (2) 点击Element types窗口中的Options,设定Stress relax after cracking为Include,即考虑混凝土开裂后的应力软化行为,这样在很多时候都可以提高计算的收敛效率。 (3) 下面我们要通过实参数来设置Solid 65单元中的配筋情况。进入ANSYS主菜单Preprocessor-> Real Constants->Add/Edit/Delete,添加实参数类型1与Solid 65单元相关,输入钢筋的材料属性为2号材料,但不输入钢筋面积,即这类实参数是素混凝土的配筋情况。 (4) 再添加第二个实参数,输入X方向配筋为0.05,即X方向的体积配筋率为5%。 (5) 下面输入混凝土的材料属性。混凝土的材料属性比较复杂,其力学属性部分一般由以下3部分组成:基本属性,包括弹性模量和泊松比;本构关系,定义等效应力应变行为;破坏准则,定义开裂强度和压碎强度。下面分别介绍如下。 (6) 首先进入ANSYS主菜单Preprocessor-> Material Props-> Material Models,在Define Material Model Behavior 窗口中选择Structural-> Linear -> Elastic-> Isotropic,输入弹性模量和泊松比分别为30e9和0.2 (7) 下面输入混凝土的等效应力应变关系,这里我们选择von Mises屈服面,该屈服面对于二维受力的混凝土而言精度还是可以接受的。在Define Material Model Behavior 窗口中选择Structural-> Nonlinear-> Inelastic-> Rate Independent-> Isotropic Hardening Plasticity-> Mises Plasticity-> Multilinear,输入混凝土的等效应力应变曲线如下图所示。 (8) 最后输入混凝土的破坏准则,在Define Material Model Behavior 窗口中选择Structural-> Nonlinear-> Inelastic-> Non-metal Plasticity-> Concrete,设定混凝土的裂缝张开剪力传递系数为0.5,裂缝闭合剪力传递系数为0.9,混凝土的单轴抗拉强度为3e6,单轴抗压强度为30e6,开裂软化参数为1,其他空着使用默认值。其参数具体意义参见《混凝土结构有限元分析》一书。 (9) 接着还要定义钢筋材料性质。在Define Material Model Behavior窗口菜单中选择Material-> New,加入新的材料。添加以下属性:Structural->Linear->Elastic->Isotropic,设定材料的弹性模量为2×109,泊松比为0.27。。进入Structural-> Nonlinear->Inelastic-> Rate Independent->Isotropic Hardening Plasticity->Mises Plasticity->Bilinear,设定屈服强度为310e6, 屈服后的切线模量为2e9。 (10) 下面开始建立几何模型,进入ANSYS主菜单Preprocessor-> Modeling-> Create-> Keypoints-> In Active CS,输入以下两个关键点坐标(0,0,0)和(3,0,0) (11) 进入ANSYS主菜单Preprocessor-> Modeling-> Copy-> Keypoints,选择刚才建立的两个关键点,延Y轴方向复制0.05,然后再次选择初次建立的关键点,延Y轴方向复制0.5。(12) 进入ANSYS主菜单Preprocessor-> Modeling-> Create-> Area-> Arbitrary-> Through KPs,选择关键点1,2,4,3,建立第一个面,选择关键点3,4,6,5,建立第二个面

相关主题
文本预览
相关文档 最新文档