当前位置:文档之家› 基因工程药物研究进展

基因工程药物研究进展

基因工程药物研究进展
基因工程药物研究进展

基因工程药物研究进展

姓名:邵亚男

学号:10201210240

班级:土木专升本10②

基因工程药物研究进展

摘要:近年来,肿瘤、肝炎、艾滋病等疾病严峻阻碍着人类健康,传统化学药物日益显露出其局限性,而利用生物技术制取新药方面取得了惊人的成就。自1982年FDA批准首个重组人胰岛素后,基因工程药物带来了治疗学的新突破,在临床治疗中日益发挥举足轻重的作用。据统计1998

年全球首次上市的45个新药中,基因工程药物就占16个。目前基因工程药物的研发要紧针对肿瘤、艾滋病、自身免疫疾病及器官移植免疫排斥等。在这些传统化学药物难以攻克的疾病面前,基因工程药物表现了较好的应用前景。本文要紧概述基因工程药物的研究进展。

一、基因工程药物的进展历程

自1972年DNA重组技术产生以来,作为现代生物技术核心的基因工程技术得到飞速的进展。1982年美国Lilly公司第一将重组胰岛素投放市场,标志着世界第一个基因工程药物的产生。美国是现代医药生物技术的发源地,也是领先应用基因工程药物的国家,其基因工程技术研究开发以及产业

化居于世界领先地位。美国已拥有世界上一半的生物技术公司和一半的生物技术专利。1996年美国就已有1300多家专门从事生物技术产品研究开发和生产的公司(其中70%是从事医药产品的开发公司),其销售额达1. 01x101美元之多,年增长率为12%。据1998年美国药学会统计,美国FDA已批准了56种生物技术医药产品上市,其中绝大多数为基因工程药物。此外,还有200多种基因工程药物正在进行临床试验,其中至少有1/5的产品将可能在今后10年内上市。1999年美国基因工程药物的销售额为7. 56x1010美元(占生物技术产品总额的75% ),年增长率为12. 6%。基因工程药物为美国的一些公司制造了丰厚的回报,取得了庞大的经济效益和社会效益。欧洲在进展基因工程药物方面也进展较快,英、法、德、俄等国在开发研制和生产基因工程药物方面成绩斐然,在生命科学技术与产业的某些领域甚至赶上并超过了美国。

我国基因工程药物的研究和开发起步较晚,直至20世纪70年代初才开始将DNA重组技术应用到医学上,但在国家产业政策的大力支持下,这一领域进展迅速,逐步缩短了与先进国家的差距。1989年我国批准了第一个在我国生产的基因工程药物———重组人干扰素α1b,标志着我国生产的基因工程药物实现了零的突破。重组人干扰素α1b是世界上第一个采纳中国人基因克隆和表达的基因工程药物,也是到目前为止唯独的一个我国自主研制成功的拥有自主知识产权的基因工程一类新药。从此以后,我国基因工程制药产业从无到有,持续进展壮大。1998年我国基因工程制药产业销售额已达到

了7. 2x109元。截止1998年底,我国已批准上市的基因工程药物和疫苗产品共计15种,它们是:一类新药重组人干扰素α1b、一类新药重组bFGF(外用)、重组人表皮生长因子(外用)、重组人干扰素α2a、重组人干扰素α2b、重组人干扰素γ、重组人白细胞介素-2、重组人G-CSF、重组人GM-CSF、重组人红细胞生成素、重组链激酶、重组人胰岛素、重组人一辈子长激素、重组乙肝疫苗、痢疾菌苗。国内已有30余家生物制药企业取得基因工程药物或疫苗试生产或正式生产批准文号。至2000年,我国已有200多家生物技术公司,有20多家生产销售人干扰素、白细胞介素、乙肝疫苗等12种基因工程药物。

二、基因工程药物在常见疾病中的治疗进展

1 肿瘤

单抗和重组疫苗等基因工程药物能有效抑制肿瘤,其中单抗的增长速度最快。

首个批准用于肿瘤治疗的单抗rituximab(Rituxan)为靶向B细胞CD2 0的小鼠人嵌合抗体,用于复发或难治性低度或滤泡型非霍奇金淋巴瘤(N HL)。

2000年批准的人表皮生长因子受体(Her)-2人源化单抗trastuzu mab(Herceptin)可用于Her-2蛋白过度表达的转移性乳腺癌治疗。

2000年上市的单抗gemtuzumab ozogamicin (Mylotarg)是一种靶向细胞表面蛋白CD33的抗体,用于治疗60岁以上CD33阳性且首次复发的急性髓细胞性白血病(AML)。

2001年6月上市的人源化抗淋巴细胞单抗alemtuzumab(Campath,M abcampath),治疗慢性淋巴细胞性白血病患者,。

疫苗正成为新一代抗肿瘤药物,Melacine是首个批准用于肿瘤治疗的疫苗,用于晚期黑色素瘤病人的Ⅲ期临床研究表明,Melacine较四药联用的化疗方案能提供更好的生活质量。

2 类风湿性关节炎

肿瘤坏死因子(TNF)α在类风湿性关节炎(RA)病理性炎症反应中起核心作用,不仅参与了滑膜炎症反应,而且还诱发关节结构的破坏,故

有效地阻断TNFα对RA 的治疗有着重要的临床意义。目前通过给予可溶性受体以及通过TNFα抗体治疗等方法可明显降低TNFα活性,1998年上市的etanercept(Enbrel)是首个重组人TNF 可溶性受体(p75)与人lg G1分子Fc部分结合的融合蛋白,而2000年批准的infliximab(Remicade,1998年批准用于治疗节段性回肠炎)是首个治疗RA的TNFα抗体,可用于缓解甲氨蝶呤治疗无效的RA病人。

3 器官移植免疫排斥

目前有daclizumab(Zenapax)和basiliximab (Simulect)等IL-2细胞表面受体的单抗用于预防器官移植免疫排斥反应。1998年首次在美国上市的Zenapax能排除被激活的T细胞,可预防肾移植后免疫排斥反应,且不抑制其他免疫反应。与其它抗免疫排斥药物合用有协同作用而可不能增加不良反应。

4 心血管疾病

同意经皮经腔冠脉成形术的病人尽管手术前、术中及术后给予阿司匹林或肝素等药物,但急性冠脉综合征发生率仍较高,而血小板糖蛋白(GP)Ⅱb/Ⅲa受体拮抗剂能有效治疗该综合征,并改善不稳固型心绞痛和急性心肌梗死(MI)病人的长期预后,除轻微诱发出血外,未见其它严峻不良反应。

5 病毒性疾病

干扰素(IFN)临床广泛用于抗病毒感染治疗,90年代以农FDA先后批准了IFN α2b(Intron A)、IFN αZa (Roferon A)和IFN α1(In fergen)用于丙型肝炎治疗。为此,目前通过在IFN结构中加人聚乙二醇(P EG)链后产生PEG化IFN,使疗效提升。

1998年上市的palivizumab(Synagis)是首个针对感染性疾病的人源化单抗,能与呼吸道台胞体病毒(RSV)感染细胞表面蛋白质结合,用于6

个月以下、心肺发育不全及早产等高危婴幼儿RSV感染的预防和治疗。

6 糖尿病

与健康人餐后即刻显现的血浆胰岛素峰值不同,短效胰岛素注射45~1 20分钟后才显现血药峰值,存在时滞现象,政糖尿病患者必须餐前30-45

分钟及时注射胰岛素,但每大多次往时产生的不适感使病人顺应性降低;而长效胰岛素如鱼精蛋白(NPH型)或Zn2+(Lente型)结晶的中性温是液,虽无上述缺点,但需注射前混合药液,随血流等生理变化,吸取差异较大,常导致夜间血糖专门。因此,制备重组胰岛素类似物并查找方便的给药系统成为目前研究热点。

胰岛素吸入给药是替代传统胰岛素注射给药的有效方法,病人能够在餐前通过专门装置缓慢、精确将药物粉剂吸入肺中。

7 艾滋病

艾滋病患者一样在病情的后期会感染上巨细胞病毒(CMV)性视网膜炎,1998年FDA上市了针对这种病症的首个反义药物福米韦生(Vitravene),该药是新的反义硫代磷酸酯寡核苷酸,与CMV的mRNA互补碱基链相结合,特异性抑制CMV的复制,而不干扰人体正常的基因功能。临床用药后第8大便可观看到边缘浑浊降低,明显延缓了病人CMV视网膜炎的病变。

三、基因工程药物产业的特点

1高技术

这要紧表现在其高知识层次的人才和高新的技术手段。生物制药是一种知识密集、技术含量高、多学科高度综合相互渗透的新兴产业。以基因工程为例,上游技术涉及基因的合成、纯化与测序、基因的克隆与导入工程菌的培养与选择等;下游技术涉及发酵工程、目标蛋白的纯化及工艺放大,

产品的质量检测和保证,制剂的选择和贮藏。

2高投入

生物医药是一个投入相当大的产业,要紧用于新产品的研究开发和医药厂房的建筑和各种仪器设备的配置方面,目前国外开发一个新的生物药品平均费用在1~3x109美元,并随新药开发的难度增加而增加,有的高达6x109美元。

3周期长

生物药品从开始研制到最终转化为产品要通过专门多环节,实验室研究时期、试生产时期、临床研究时期(Ⅰ,Ⅱ,Ⅲ期)、规模化生产时期、市场商

品化时期以及监督,每个环节都要通过严格复杂的药政审批程序,而且产品培养和市场开发较难,因此开发一种新药周期较长,一样需要8~10年,甚至10年以上。

4 高风险

生物医药的开发存在较大的不确定性风险,新药的投资从生物选择、药理、毒理等临床前实验,制剂处方确定性实验,生物利用度测试,直到用于人体的临床实验,以及注册上市和售后监督,一系列的步骤,可谓耗资庞大的系统工程,任何一个环节的失败都将前功尽弃。

5 高回报

庞大风险背后蕴藏着高额的回报,生物工程药物的回报率都专门高,一种新生物药品一样上市后2~3年即可回收全部投资。专门是拥有新产品、专利产品的企业,一旦开发成功便形成技术垄断优势,利润回报高达10倍以上。

四、我国基因工程药物产业存在的咨询题

1同种产品生产厂家过多,恶性竞争阻碍产业进展

我国已批准上市的基因工程药物和疫苗绝大多数是多家生产。过多厂家生产同一种基因工程药品势必造成市场过度竞争,使各生产企业的利润下降,同时还导致现有生产能力开工不足,成本增加,使企业不能获得合理利润,无法步入良性进展的轨道,甚至迫使有些企业严峻亏损和破产。我国新药研究开发缺乏创新和低水平重复是导致医药产业重复生产的源头。

2科技投入明显不足

必要的资金投入是加快高科技及其产业进展的差不多条件之一。目前,我国R&D经费的投入,仅占国内生产总值的0. 5%,远远低于世界上发达国家(占国内生产总值的比例均超过2. 0%。如美国2. 6%,日本2. 87%,德国2. 58%,英国2. 08%,法国2. 42% ),甚至也低于同为进展中国家的印度(其R& D经费占国内生产总值的0. 89% )。到2000年,即使我国的R&D经费占生产总值达到预定1. 5%的目标,也仍旧相当程度地落后于发达国家。

3技术储备相对不足

创新成果不多,创新性的成果需要强大的基础性研究的支撑,只有基础性研究达到相当的广度和深度才可能促成“点”上的突破。由于长期以来资金的投入不足,加上机制、意识等方面的缘故,导致我国创新性的成果甚少。尽管近些年来我国基础性研究的经费投入有较大幅度增加,也取得了一些成效,但由于研究的深度和积存不够,研究成果在国际上获得的专利为数不多,加上产学研不能专门好的和谐,成果转化不够。这些都导致我国自主知识产权的制造性产品不多。

4企业治理相对滞后,技术兼经营型人才匮乏

我国基因工程制药产业起步较晚,然而起点相对较高。许多企业的关键性生产设备差不多上从国外进口。然而,在经营治理上与国外相比还有专门大的差距。我国大多数基因工程制药企业,尽管在形式上是有限责任公司或股份有限公司,然而企业的经营者一样由企业的所有者出任或委派。企业这种所有权与经营权不分的状况,既不利于企业的长远进展,也不利于企业经营阶层即企业家阶层的形成。

5市场竞争无序,行业不正之风严峻

按国家现行价格规定,药品批发价是出厂价的115%,零售价为批发价的120%。然而,基因工程药物实际营销中,医院一样以国家批发价的70% ~85%进药,从而获得零售价的30% ~50%的利润,而生产企业的利润只有5% ~1 5%。这种利润不合理分配导致众多制药企业亏损。企业迫于市场压力,要紧精力都用在市场竞争上,无力顾及技术创新。另据调查,绝大多数进口基因工程药品的销售价格都大大高于同种国产药品销售价格,而且更为不合理的是,一半以上的进口基因工程药品在我国的售价高于原产国售价。

五、我国基因工程制药行业进展趋势

结合生物技术的进展趋势和目前市场上基因工程药物的种类分布,我国基因工程药物的进展方向大致如下

开发针对神经系统、肿瘤、心血管系统、艾滋病及免疫缺陷等重大疾病的多肽、蛋白质和核酸等新生物技术产品。

选择一批市场前景好的生物技术产品及疫苗、诊断用单克隆抗体进行开发,我国在这方面已有一定基础,开发重点是乙肝基因疫苗与单克隆抗体诊断试剂。

开发靶向药物要紧是开发抗肿瘤药物。目前治疗肿瘤药物存在一个“敌我不分”的咨询题,在杀死癌细胞的同时,也杀死正常细胞。导向治疗确实是针对那个咨询题提出来的。

人源化的单克隆抗体的研究开发。抗体能够对抗各种病原体,亦可作为导向器,但目前的单克隆抗体多为鼠源抗体,注入人体后会产生抗体(抗抗体)或激发免疫反应。

血液替代品的研究与开发仍旧占重要地位。血液制品是采纳大批混合的人体血浆制成的,由于人血难免被各种病原体所污染,因此利用基因工程开发血液替代品引人注目。

作为一个药物研发力量相对薄弱的进展中国家,面对目前猛烈竞争的基因经济,我国政府部门应该发挥主导作用,加大引导和宏观调控,出台各种鼓舞和优待政策,拓宽企业融资环境和增强抗风险能力。

面向市场,强化企业作为技术创新主体的地位,加快科研体制改革步伐。促使科研机构与企业联合,把经营机制引入科研体制中,扶持与强化企业作为技术创新主体地位。

加大宏观调控,优化配置中国生物技术及其产业化有限资源。急需国家和政府在宏观上给予治理和引导。

加大下游研究和改革现行生物制品审批制度。加大知识产权和药品行政爱护,进展具有“自主专利权”的基因药物,提升中国基因药物的国际竞争力。

建立高科技风险投资机制,加大金融与高科技结合,在财政、金融和税利等方面重点扶植一些进展前景较为光明的民族生物药业,使其尽快步入国际化的轨道。

基因工程药物发展进程

基因工程药物发展进程 药剂3班张楠 07106330 学习了药学分子生物学后,我对基因工程药物产生了浓厚的兴趣,通过生物化学和分子生物学的学习以及课下翻阅相关资料,让我对基因工程药物有了新的认识: 1 基因工程药物 基因工程药物是先确定对某种疾病有预防和治疗作用的蛋白质,然后将控制该蛋白质合成过程的基因取出来,经过一系列基因操作,最后将该基因放入可以大量生产的受体细胞中去,这些受体细胞包括细菌、酵母菌、动物或动物细胞、植物或植物细胞,在受体细胞不断繁殖过程中,大规模生产具有预防和治疗这些疾病的蛋白质,即基因疫苗或药物。在医学和兽医学中应用正逐步推广。 以乙型病毒性肝炎(以下简称乙肝)疫苗为例,像其他蛋白质一样,乙肝表面抗原(HBSAg)的产生也受DNA调控。利用基因剪切技术,用一种"基因剪刀"将调控HBSAg的那段DNA剪裁下来,装到一个表达载体中,所谓表达载体,是因为它可以把这段DNA的功能发挥出来;再把这种表达载体转移到受体细胞内,如大肠杆菌或酵母菌等;最后再通过这些大肠杆菌或酵母菌的快速繁殖,生产出大量我们所需要的HBSAg(乙肝疫苗)。 目前有很多基因工程对人类的贡献典例。长期以来,医学工作者在防治乙肝方面做了大量工作,但曾一度陷于困境。乙肝病毒(HBV)主要由两部分组成,内部为DNA,外部有一层外壳蛋白质,称为HBSAg。把一定量的HBSAg注射入人体,就使机体产生对HBV抗衡的抗体。机体依靠这种抗体,可以清除入侵机体内的HBV。过去,乙肝疫苗的来源,主要是从HBV 携带者的血液中分离出来的HBSAg,这种血液是不安全的,可能混有其他病原体[其他型的肝炎病毒,特别是艾滋病病毒(HIV)]的污染。此外,血液来源也是极有限的,使乙肝疫苗的供应犹如杯水车薪,远不能满足全国的需要。基因工程疫苗解决了这一难题。与上述的血源乙肝疫苗相比,基因工程生产的乙肝疫苗,取材方便,利用的是资源丰富的大肠杆菌或酵母菌,它们有极强的繁殖能力,并借助于高科技手段,可以大规模生产出质量好、纯度高、免疫原性好、价格便宜的药物。在小孩出生后,按计划实施新生儿到六个月龄内先后注射三次乙肝疫苗的免疫程序,就可获得终身免疫,免受乙型肝炎之害。正是基于1996年我国已有能力生产大量的基因工程乙肝疫苗,我国才有信心遏制这一威胁人类健康最严重、流行最广泛的病种。这是基因工程药物对人类的贡献典例之一。 基因工程药物另一个重要应用就是干扰素的生产。当人或动物受到某种病毒感染时,体内会产生一种物质,它会阻止或干扰人体再次受到病毒感染,故人们把此种物质称为干扰素(Interfero,简称IFN),是1957年英国科学家多萨克斯(Lossaacs)和林德曼(Lindenmann)在研究流感病毒干扰现象时发现的。干扰素具有广谱抗病毒的效能,是一种治疗乙肝的有效药物,国际上批准治疗丙型病毒性肝炎的药物只有它。但是,通常情况下人体内干扰素基因处于"睡眠"状态,因而血中一般测不到干扰素。只有在发生病毒感染或受到干扰素诱导物的诱导时,人体内的干扰素基因才会"苏醒",开始产生干扰素,但其数量微乎其微。即使经过诱导,从人血中提取1mg干扰素,需要人血8000ml,其成本高得惊人。据计算:要获取1磅(453g)纯干扰素,其成本高达200亿美元。使大多数病人没有使用干扰素的能力。1980

药物分析复习题

药物的专属鉴别试验是证实某一种药物的依据,它是根据每一种药物化学结构的差异及其所引起的物理化学特性不同,选用某些特有的灵敏的定性反应,来鉴别药物的真伪。 氧瓶燃烧法系将有机药物放入充满氧气的密闭的燃烧瓶中进行燃烧,并将燃烧所产生的欲测物质吸收于适当的吸收液中,然后根据欲测物质的性质,采用适宜的分析方法进行鉴别、检查或测定含卤素有机药物或含硫、氮、硒等其它元素的有机药物。 比旋度——偏振光透过长1d m 并每1ml含有旋光性物质1g的溶液,在一定的波长与温度下测得的旋光度称之。(符号[ ]) 准确度是指用特定方法测得的生物样品浓度与真实浓度的接近程度,可用相对回收率表示,即采用“回收率”或“加样回收率”得到的药物自样品中回收率。 微生物检定法─以抗生素对微生物的杀伤或抑制程度为指标来衡量抗生素效价的一种方法。其测定方法有稀释法、比浊法、管碟琼脂扩散法生物药物:利用生物体、生物组织或器官等成分,综合运用生物学、生物化学、微生物学、免疫学、物理化学和药学的原理与方法制得的一大类药物。 基因工程药物:先确定对某种疾病具有预防和治疗作用的蛋白质,然后将控制该蛋白质合成过程的基因进行分离、纯化或人工合成,利用重组DNA 技术加以改造,最后将该基因导入可以大量生产的受体细胞中不断繁殖或表达,并能进行大规模生产具有预防和治疗这种疾病的蛋白质,通过这种方法生产的药物称为基因工程药物。 效价测定:采用国际或国家参考品,或经国家检定机构认可的参考品,以体内或体外法测定其生物学活性,并标明其活性单位。 电泳法是指带电微粒如蛋白质、核苷酸、其他微粒分子或离子在电场的作用下,向其对应的电极方向按各自的速度泳动而使组分分离,再进行检测或计算百分含量的方法。 中药指纹图谱中药材或中药制剂经适当处理后,采用一定的分析手段,得到的能够标定该中药材或中药制剂特性的共有峰的图谱。

1生物制药工艺学习题集生物药物概述

生物制药工艺学习题集 第一章生物药物概述 一、填空: 1、我国药物的三大药源指的是____________ 、___________ 2、现代生物药物已形成四大类型,包括__________________ 3、请写出下列药物英文的中文全称:IFN ( In terfero n ) _________________________________ 、IL(lnterleukin) 、CSF( Colony Stimulating Factor) 、EPO (Erythropoietin ) _________________________________ 、EGF ( Epidermal Growth Factor ) _______________ 、NGF ( Nerve Growth Factor ) ________________________ 、rhGH (Recomb inant Huma n Growth Hormone ) ______________________________________ 、Ins (Insulin ) __________ 、HCG ( Human Choriogonadotrophin ) ______________________ 、LH _______________ 、SOD _____________ 、tPA _____________________ 4、常用的3-内酰胺类抗生素有____________________ 、 _____________ ;氨基糖苷类抗生素 有___________ ;大环内酯类抗生素有________________ ;四环类抗生素有 _______________ ;多肽类抗生素有_____________ ;多烯类抗生素有_______________ ; 蒽环类抗生素有______________ 5、嵌合抗体是指用__________________ 替换___________________ ,保留___________________ ; 人源化抗体是指抗体可变区中仅______________________ 为鼠源,其___________________ 及恒定区均来自人源。

基因工程药物发展的历史及启示

基因工程药物发展的历史及启示 吴岚晓1,郭坤元1,秦 煜2 (11第一军医大学珠江医院血液科,广东广州510282;21第一军医大学南方医院创伤骨科,广东广州510282) 摘要:基因工程诞生20余年,运用于医药行业,研制和开发基因工程药物,已取得长足进展。迄今为止,已有近100 个基因工程新药上市,并有数百种正在研制和开发中。可以预计,基因工程药物的发展具有无比强大的生命力。 就基因工程药物发展史进行概述,会从中得到许多启示。 关键词:基因工程;药物;科学;技术 中图分类号:R-02 文献标识码:A 文章编号:1002-0772(2002)12-0011-03 Developing History and the E nlightenment of G enetic E ngineering Drug W U L an-xiao,GUO Kun-yuan,QIN Y u (1.Depart ment of Hem atology,Zhujiang Hospital,First Military Medical U niversity,Guangz hou510282,China;2. N anf ang Hospital,First Military U niversity,Guangz hou510282,China) Abstract:G enetic engineering has made remarkable development in the area of drug production and research since it ap2 peared twenty years ago.More than100new geneitc engineering drugs have been used in clinic,and more drug-projects are undergoing.It can be predicted that genetic engineering drug will make more and more influence in people’s life.A perspective view about genetic engineering drug developing history was made in this article and some philosophic opinions inspired from it were discussed. K ey Words:genetic engineering;drug;science;technology 1 基因工程原理和技术 基因工程是在分子水平上人工改造生物遗传性,创造世间新的生物物种技术,亦称DNA重组或分子克隆,包括基因和载体的制备、切割和连接,重组DNA的转移、表达及产物分离等。基因的制备方法有,多聚酶链反应、互补文库、基因组文库、染色体DNA的酶切分离、酶合成法和化学合成法等,迄今为止,已制备人胰岛素、人尿激酶、人生长激素、人α-干扰素及生长因子等多种药物的基因。载体是能将外源性目的基因运输至宿主细胞的小分子DNA,目前大抵有细菌质粒、嗜菌体DNA及病毒DNA构建人工载体,如pBR322、Charon系列、Cos2 mid、反转录病毒、腺病毒及其相关病毒的DNA,此外,尚有酵母人工染色体DNA,及哺乳动物人工染色体DNA等。载体和含目的基因的DNA分别经限制性内切酶切割后,两者混合通过连接酶连接构成重组DNA,经转化、转导、转染、激光打孔、微注射或基因枪等技术,可转移至宿主内,获得基因工程细胞,后者经培养和表达,即可产生相应的基因工程药物。近年来还发现不用载体也不重组,将编码完整的DNA片段或mRNA直接注射内实现完全表达,表明非重组DNA和mRNA可被细胞直接吸收和表达,既简化了基因操作程序,也修正了基因工程基本概念,又促进了基因工程药物的发展,同时还为基因治疗提供了新理论和新途径。 2 基因工程药物发展的历史 应用基因工程技术,研制和开发的药物称为基因工程药物。它是通过重组DNA技术将治疗疾病的蛋白质、肽类激素、酶、核酸和其他药物基因转移至宿主细胞进行繁殖和表达,最终获得相应药物。包括蛋白质类生物大分子、初级代谢产物,如苯丙氨酸及丝氨酸等以及次生代谢产物抗生素等。自20世纪70年代初基因工程药物诞生以来,基因工程药物发展十分迅速。 ? 1 1 ? 医学与哲学2002年12月第23卷第12期总第259期

基因工程药物

基因工程药物 周长征 第一部分概述 一、基因工程药物 (一)基因工程药物的概念 基因工程药物是以基因组学研究中发现的功能性基因或基因的产物为起始材料,通过生物学、分子生物学或生物化学、生物工程等相应技术制成的、并以相应分析技术控制中间产物和成品质量的生物活性物质产品,临床上可用于某些疾病的诊断和治疗。基因药物类型广泛,包括重组蛋白质药物、人源化单克隆抗体、基因治疗药物、重组蛋白质疫苗、核酸药物等10多种类型。 生产基因工程药物的基本方法是:将目的基因用DNA重组的方法连接在载体上,然后将载体导入靶细胞(微生物、哺乳动物细胞或人体组织靶细胞),使目的基因在靶细胞中得到表达,最后将表达的目的蛋白质提纯及做成制剂,从而成为蛋白类药物或疫苗。若目的基因直接在人体组织靶细胞内表达,就称为基因治疗。 例如,乙肝表面抗原(HBSAg)的产生也受DNA 调控。利用基因剪切技术,用一种“基因剪刀”将调控HBSAg的那段DNA剪裁下来,装到一个表达载体中(所谓表达载体,是因为它可以把这段DNA的功能发挥出来)再把这种表达载体转移到受体细胞内,如大肠杆菌或酵母菌等;最后再通过这些大肠杆菌或酵母菌的快速繁殖,生产出大量我们所需要的HBSAg(乙肝疫苗)。把一定量的HBSAg注射入人体,就使机体产生对HBV抗衡的抗体。机体依靠这种抗体,可以清除入侵机体内的HBV。过去,乙肝疫苗的来源,主要是从HBV 携带者的血液中分离出来的HBSAg,这种血液是不安全的,可能混有其他病原体的污染。此外,血液来源也是极有限的,使乙肝疫苗的供应犹如杯水车薪,远不能满足全国的需要。基因工程疫苗解决了这一难题。 干扰素具有广谱抗病毒的效能,是一种治疗乙肝的有效药物,国际上批准唯一一种治疗丙型病毒性肝炎的药物。通常情况下人体内干扰素基因处于休眠状态,血中一般检测不到。只有在发生病毒感染或受到干扰素诱导物的诱导时,人体内的干扰素基因才会产生干扰素,但其数量微乎其微。即使经过诱导,从人血中提取1mg 干扰素,需要人血8000ml,其成本高得惊人。获取1磅(453g)纯干扰素,其成本高达200亿美元。1980年后,采用基因工程进行生产,其基本原理及操作流程与乙肝疫苗十分类似。现在要获取1磅纯干扰素,其成本不到1亿美元。 (二)基因工程药物的发展 1973年,Cohen等人首次将带有Tet r基因和链霉素抗性基因(Str r)的两种大肠杆菌质粒成功地进行了重组,获得了可以复制并只有双亲质粒遗传信息的重组质粒,拉开了基因工程研究的序幕。1974年他们对具有Amp r和红霉素抗性基因(Emp r)的金黄色葡萄球菌质粒

生物药物安全性评价

生物药物安全性评价 第一节生物类药物概述 一、生物类药物的概念和种类 ?生物类药物(biopharmaceutics或biopharmaceuticals)是利用生物体、生物组织或器官等成分,综合运用生物学、生物化学等学科的原理与方法制得的天然生物活性物质以及人工合成或半合成的天然物质类似物。 ?生物药物主要包括生化药物(biochemical drugs)生物技术药物 (bio-technology drugs)、和生物制品(biological products)等。 1、生化药物:一般是系指从动物、植物及微生物提取的,亦可用生物-化学半合成,或用现代生物技术制得的生命基本物质,如氨基酸、多肽、蛋白质、酶、辅酶、多糖、核苷酸、脂和生物胺等,以及其衍生物、降解物及大分子的结构修饰物等。 2、生物技术药物:是指生物来源的和使用生物工程技术制造的药物,包括多肽、蛋白质及其衍生物或由其组成的产品,如细胞因子、生长因子、单克隆抗体、重组DNA 蛋白疫苗及人组织提取的内源性蛋白等。 3、生物制品:是根据免疫学原理,用微生物(细菌、病毒、立克次氏体以及微生物的毒素等)、动物的血液、组织制成的,用以预防、治疗以及诊断人或动物传染病的一类药品。 包括: ★治疗用生物制品:抗体、DNA重组技术制品等。 ★预防用生物制品:疫苗。 ★诊断用生物制品:各种抗原抗体诊断液等。 (一)治疗用生物制品 1.未在国内外上市销售的生物制品。 2.单克隆抗体。 3.基因治疗、体细胞治疗及其制品。 4.变态反应原制品。 5.由人的、动物的组织或者体液提取的,或者通过发酵制备的具有生物活性的多组份制品。

基 因 工 程 药 物 的 发 展 前 景

基因工程药物的发展前景 周先建2003年4月12日 一、概况 自从DNA重组技术于1972年诞生以来,作为现代生物技术核心的基因工程技术得到飞速的发展。1982年美国Lilly公司首先将重组胰岛素投放市场,标志着世界第一个基因工程药物的诞生。目前,世界各国都将基因工程及其逐渐加速的产业化进程视为国民经济的新增长点,展开了激烈的市场竞争。到1999年底为止,全球至少已有近 3000家生物工程公司在从事生物药品与基因产品研究与开发。据不完全统计,在欧美诸国,已经上市的基因工程药品接近一百种,大约还有超过300种以上的药物处于临床试验阶段,约2000种在研究开发中,形成了一个巨大的高新技术产业,产生了不可估量的社会效益和经济效益。 基因工程药物的定义:将目的基因用DNA重组的方法连接在载体上,然后将载体导入靶细胞(微生物、哺乳动物细胞或人体组织靶细胞),使目的基因在靶细胞中得到表达,最后将表达的目的蛋白质提纯及做成制剂,从而成为蛋白类药或疫苗。这就称为基因工程药物。若目的基因直接在人体组织靶细胞内表达,就成为基因治疗,但目前尚没有基于基因治疗技术的药物被正式批准。 基因工程药物因为其疗效好,副作用小,应用范围广泛而成为各国政府和企业投资研究开发的热点领域,大量的基因工程药品连续问世,年产值达数十亿美元。自1982年问世以来,基因工程药物成为制药行业的一支奇兵,每年平均有3-4个新药或疫苗问世,开发成功的约五十多个药品已广泛应用于治疗癌症、肝炎、发育不良、糖尿病、囊纤维变性和一些遗传病上,在很多领域特别是疑难病症上,起到了传统化学药物难以达到的作用。其原因在于,基因工程制药物的研究与开发多是以对疾病的分子水平上的有了解为基础的,往往会产生意想不到的高疗效。 基因工程制造药行业在近二十年中的飞速发展是以分子遗传、分子生物、分子病理、生物物理等基础学科的突破,以及基因工程、细胞工程、发酵工程、酶工程和蛋白质工程等基础工程学科的高速进展为后盾的。基因工程药物的开发时间为5-7年,比开发新化学单体(10-12年)要短一些,当然这也与各国政府的支持有关。据报道,开发活性蛋白生物创新药的成功率按开发的5个阶段大致是:临床前的成功率为15%,一期临床为27%,二期临床为40%,三期临床为80%,注册登记为90%,总体成功率大大高于化学药。适应症不断延伸也是蛋白类药物的一大特点。例如,rhG-CSF,91年上市时批的适应症是化疗并发中性粒细胞减少,到95年11月13日止,又增加了骨髓移植,严重慢性中性粒细胞减少及外周及外周血干细胞移植等适应症。因此,基因工程生物药物发展包括新品种和新适应症两个方面。 二、美国基因工程药物的发展前景

项目研究-一种治疗真菌病的基因工程药物

一种治疗真菌病的基因工程药物 ——赛内汀的研制 病原微生物是危害人类健康的一大杀手,千百年来人类为此付出了巨大的代价。真菌病,尤其是浅部真菌病,在我国较为常见。近几年来,随着免疫抑制剂的广泛应用,烧伤抢救、放射治疗、器官移植的广泛进行,特别是免疫缺陷患者,尤其是艾滋病患者的不断增加,真菌病的发病率有逐渐增加的趋势。据报道艾滋病患者中约有1/3并发各种真菌病而致死。目前临床上应用的抗真菌药物主要有2大类,一类是化学制剂:包括染料类制剂,如龙胆紫、结晶紫;碘制剂,如碘化钾、聚维酮;脂肪酸类制剂,如十一烯酸、十一烯酥锌;咪唑类药物,如克霉唑、咪康唑;丙烯胺类制剂,如萘替芬、特比萘芬;以及其他化学制剂,如土槿酸、氟胞嘧啶等。另一类是抗生素类药物:包括多烯类抗真菌抗生素,如制霉菌素、碘古霉素等;非多烯类抗真菌抗生素,如灰黄霉素、萨拉霉素。近几年来,也出现了一些新的抗真菌新药如阿莫芬类、两性霉素B脂质体、萨普康唑、β-1,3葡聚糖合成酶抑制剂等等。这些抗真菌药物大都是通过破坏真菌的代谢途径或阻断大分子的生物合成来达到抗真菌效果,这样就容易使病原真菌产生抗药性;同时对宿主细胞也产生了一定的毒性。目前临床上对病原细菌的防治也仍然局限于抗生素类药物。抗生素类药物的使用对抑杀细菌起了极其重要的作用,但同时也造成了耐药性菌株的产生和人体的过敏反应。随着生物工程特别是基因工程技术的迅猛发展,蛋白质及多肽类药物不断问世。蛋白质及多肽类药物是当今生物技术及制药工业中最为活跃的领域之一,已经显示出了巨大的社会效益和经济效益。美国FDA已批准的蛋白质及多肽类药物就有人胰岛素、人生长激素、干扰素(INF-α、β、γ)、组织纤溶酶原激活剂(t-PA)、促红细胞生成素(EPO)、粒细胞集落刺激因子(G-CSF)、白细胞介素-2(IL-2)等。利用基因工程手段,在宿主生物中表达生产重组蛋白及多肽,然后分离纯化表达产物,用于药物的研制及开发,已成为生物制药的重要组成部分。抗菌肽是生物体免疫诱导产生的一种具有生物活性的小分子多肽,分子量在2000-7000D左右,由20-60个氨基酸残基组成。目前报道的抗菌肽类,大多对细菌具有广谱的抗性。但对丝状病原真菌无明显的抑杀作用。令人欣喜的是,Pascale Fehlbaum等在E.coli 诱导的斑腹刺益蝽(Podisus.maculiventris)的血淋巴中分离了一种21aa的多肽-Thanatin,研究发现,Thanatin对细菌和真菌都具有广谱抗性。它抑制的细菌包括革兰氏阳性菌:浅绿气杆菌 93

我国基因工程药物的发展现状

我国基因工程药物的发展现状 以基因工程、细胞工程、酶工程、发酵工程为代表的现代生物技术在近几十年来的发展中受到了全球科技界和企业界的普遍关注,有许多专家认为21世纪将是生命科学的世纪。现代生物技术之所以能受到各界的重视,一方面是由于现代生物技术发展迅速,用途广泛,生物技术的应用范围已遍及医药、农业、食品、能源、环保等各个领域;另一方面是由于现代生物技术可以解决人类发展所面临的许多难题,如人口膨胀、粮食短缺、资源枯竭、环境污染等。人们越来越认识到了生物技术在全球经济进程中的重要性和必要性。由于生物技术是以生物(动物、植物、微生物、培养细胞等)为基本资源,因此其原料具有再生性,同时生物系统生产产品产生的污染物少,对环境的破坏性很小或几乎没有,重组微生物甚至还可以消除环境中的污染物。 基因工程(genetic engineering )又称基因拼接技术和DNA重组技术。所谓基因工程是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体 细胞内复制、转录、翻译表达的操作。 基因工程制药的出现是因为,许多药品的生产是从生物组织中提取的,受材料来源限制产量有限,其价格往往十分昂贵。微生物生长迅速,容易控制,适于大规模工业化生产。若利用基因工程将生物合成相应药物成分的基因导入微生物细胞内,让它们产生相应的药物, 不但能解决产量问题,还能大大降低生产成本。

一、产业现状及地位 1989年,中国批准了第一个在中国生产的基因工程药物一一重组人干扰素,标志着中国生产的基因工程药物实现了零的突破。重组人干扰素是世界上第一个采用中国人基因克隆和表达的基因工程药物,也是到目前为止唯一的一个中国自主研制成功的拥有自主知识产权的基因工程一类新药。从此以后,中国基因工程制药产业从无到有,不断发展壮大。1998年,中国基因工程制药产业销售额已达到了7.2 亿元人民币。截止1998年底,中国已批准上市的基因工程药物和疫苗产品共计15种。国内已有30余家生物制药企业取得了基因工程药物或疫苗试生产或正式生产批准文号。 根据1997年对全国452从个事生物技术研究、开发和生产的单位进行的通讯调查结果,截止1996年底,中国已有8种基因工程药物和疫苗商品化(包括试生产),1996年基因工程药物和疫苗销售额约为2.2亿元人民币,仅占同期全国医药生物技术产品年销售额21.16亿元人民的10.4%。然而可喜的是,中国基因工程制药产业发展迅猛,年销售额已从1996年的2.2亿元人民币增长到1998年的7.2亿元人民币,年均增长率高达80%预计2000年中国基因工程药物销售额将达到22.8亿元人民币。 基因工程在制药业中具有广阔的发展前景,中国的基因制药行业 已经初具规模,但与世界发达国家存在差距,主要表现在具有自主知识产权的产品较少,产业规模小、经济效益低。基因制药产业面临着历史性的机遇,主要表现在政府支持、资源丰富、基因信息公开、国际交流

基因工程的利与弊

基因工程的利与弊 基因工程的原理:基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。 操作方法是:将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA 分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。它克服了远缘杂交的不亲和障碍。 例如:将大鼠的生长激素基因导入小鼠受精卵.首先在大鼠的体细胞中提取染色体,分离目标基因.用限制性核酸内切酶处理载体,再将载体与基因片段连接(这里用到DNA连接酶)。通过显微注射的方法将这些重组基因注入小鼠的受精卵内,最后让这些受精卵生长发育。结果小鼠生出几只带有大鼠生长激素基因的小鼠,这些小鼠的生长速度非常快,其个体是同窝其他小鼠的1.8倍,成为“巨型小鼠”。 基因工程中的载体常选取大肠杆菌的环状DNA,用到的工具酶有限制性内切酶、DNA 连接酶,其次还得用到DNA聚合酶。限制性核酸内切酶,用来切割目的基因和载体,主要是2型酶;DNA连接酶,用来连接目的基因和载体,有两类,连接平末端的和粘性末端的,若末端不相同连不起来的话,还得用DNA聚合酶来加片段,如加CCC-和GGG-,再用连接平末端的连接酶来连接。 将目的基因导入受体细胞的方法有: 植物常用的是农杆菌转化法、基因枪法和花粉管通道法。农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性地感染大多数双子叶植物和裸子植物的受伤部位。农杆菌通过侵染植物伤口进入细胞后,可将T-DNA插入到植物基因组中,并且可以通过减数分裂稳定的遗传给后代。基因枪法基本原理是通过动力系统将带有基因的金属颗粒(金粒或钨粒),将DNA吸附在表面,以一定的速度射进植物细胞,从而实现稳定转化的

基因工程药物的设计研究进展和应用前景

基因工程药物研究与应用新进展 郭小周 生物技术药物(biotech drugs)或称生物药物(biopharmaceutics)是集生物学、医学、药学的先进技术为一体,以组合化学、药学基因(功能抗原学、生物信息学等高技术为依托,以分子遗传学、分子生物、生物物理等基础学科的突破为后盾形成的产业。现在,世界生物制药技术的产业化已进入投资收获期,生物技术药品已应用和渗透到医药、保健食品和日化产品等各个领域,尤其在新药研究、开发、生产和改造传统制药工业中得到日益广泛的应用,生物制药产业已成为最活跃、进展最快的产业之一。 摘要:自20 世纪70 年代基因工程诞生以来,以DNA重组技术为核心的现代生物技术一直是人们研究的热点,本文主要介绍了基因药物的定义、获得途径、一些前沿技术以及基因药物的应用与发展前景。 关键词:生物技术药物基因工程药物基因发展前景 1. 引言 近年来1953年Waston和Crick发现遗传物质DNA的双螺旋结构,给整个生物学乃至整个人类社会带来了一场革命。此后,一系列有关遗传信息即基因研究的成果很快的向应用和开发拓展。1972年,美国斯坦福大学P.Berg博士研究小组使用EcorRⅠ,第一次在体外获得了包括SV40 DNA和λ噬菌体DNA的重组DNA分子。1973年,S.Cohen等将两中分别编码卡那霉素和四环素的抗性基因相连,构建出重组的DNA分子,然后转化大肠杆菌,获得了既抗卡那霉素又抗四环素的转化子菌落,这是第一次成功的基因克隆实验,标志着基因工程的诞生。1977年Boyer首次获得生长激素抑制因

子的克隆,1982年第一个基因工程重组产品——人胰岛素被批准应用,进入市场。迄今为止,已有50多种基因工程药物上市,近千种处于研发状态。基因工程药物已经形成一个巨大的高新技术产业,产生了不可估量的社会效益和经济效益,由于基因药物的出现,可以大大改善人类的生命质量,对于一些重大疾病的治疗将会有新的突破。 2 基因工程 2.1 基因 基因是脱氧核糖核酸(DNA)分子上的一个特定片段。不同基因的遗传信息,存在于各自片段上的碱基排列顺序之中。基因通过转录出的信使使核糖核酸(mRNA),知道合成特定的蛋白质,使基因得以表达。 2.2 基因工程 基因工程是利用重组DNA技术,在体外对生物的基因进行改造和重新组合,然后导入受体细胞内进行无性繁殖,使重组基因在受体细胞内表达,产生出需要的基因产物。 3 基因药物 基因工程药物又称生物技术药物,是根据人们的愿望设计的基因,在体外剪切组合,并和载体DNA 连接,然后将载体导入靶细胞(微生物、哺乳动物细胞或人体组织靶细胞) ,使目的基因在靶细胞中得到表达,最后将表达的目的蛋白质纯化及做成制剂,从而成为蛋白类药或疫苗。 基因工程药物的本质是蛋白质,生产基因工程药物的方法是:将目的基因连接在载体上,然后将导入靶细胞(微生物、哺乳动物细胞或人体组织靶细胞),使目的基因在靶细胞中的到表达,最后将表达的目的蛋白质提纯做成制剂,从而成为蛋白类药或疫苗。若目的基因直接在人体组织靶细胞表达,就称为基因治疗。 利用基因工程技术生产药品的优点在于:大量生产过去难以获得的生理活性物质和

基因工程药物的综述

基因工程药物的研究及进展 摘要:20世纪70年代,随着DNA重组技术的成熟,诞生了基因工程药物,高产值、高效率的基因药物给医药产业带来了一场革命,推动了整个医药产业的发展,医药产业进入了新的历史时期。本文以基因工程药物的发展为导向,简要的介绍了国内外基因工程药物的发展概况、研究现状、研究方向、发展方向。 关键词:基因工程,药物,现状,发展 1 基因工程药物的发展概况 20世纪70年代,随着DNA重组技术的成熟,诞生了基因工程药物,高产值、高效率的基因药物给医药产业带来了一场革命,推动了整个医药产业的发展,医药产业进入了新的历史时期。 基因药物经历了三个阶段:第一阶段是把药用蛋白基因导入到大肠杆菌等细菌中,通过大肠杆菌等表达药用蛋白,但这类药物往往有缺陷,人类的基因在低等生物的细菌中往往不表达或表达的蛋白没有生物活性。第二阶段是人们用哺乳动物的细胞代替细菌,生产第二代基因工程药物。但由于哺乳动物细胞培养条件相对苛刻,生产的药物成本居高不下。第一、二代基因药物的研制和生产已经成熟。从第一个反义核酸药物Vitrovene于1998年和1999相继在美国和欧洲上市以来,发展迅速。第三阶段是到了80年代中期,随着基因重组和基因转移技术的不断发展和完善,科学家可以将人们所需要的药用蛋白基因导入NN-~L动物体内,使目的基因在哺乳动物身上表达,从而获得药用蛋白。携带外源基因并能稳定遗传的这种动物,我们称之为转基因动物。由于从哺乳动物乳汁中获取的基因药物产量高、易提纯,因此利用乳腺分泌出的乳汁生产药物的转基因动物称为“动物乳腺生物反应器”。90年代中后期,国际上用转基因牛、羊和猪等家畜生产贵重药用蛋白的成功实例已有几十种,一些由转基因动物乳汁中分离的药物正用于临床试验,但还没有一例药品成功上市。 2 基因工程药物的研究现状 2.1国外基因工程药物研究现状 随着1971年第一家生物制药公司Cetus公司在美国的成立,1973年重组DNA技术的出现,生物医药即已显示出巨大的应用价值和商业前景。1976年,世界第一家应用重组DNA 技术开发新药的公司Genentech建立,l982年第一个基因重组药物——基因重组人胰岛素在美国投放市场以来,生物医药产业以一种前所未有的速度迅猛发展。如在基因重组制药产业中做出过卓越贡献的Genentech和Amgen公司,早期的几个“重型炸弹”的基因重组

中国基因工程药物研究进展

尚珂 胡鹤 胡又佳 中国基因工程药物研究进展 有关作者: 尚珂博士,女,1980年生,现就职于上海医药工业研究院,创新药物与制药工艺国家重点实验室(筹),任助理研究员。2001年毕业于中国药科大学,2006年获上海医工院微生物与生化药学博士学位。主要研究方向:链霉菌基因工程;重大抗生素品种产生菌的基因工程改造。我国生物技术药物工业总产值至2006年为400~500亿元,仍然保持了高速的增长,新批准的进行临床研究和注册的基因工程药物及新剂型有17个,但其中大部分属于新剂型。创新药物的研究更多地体现在科研领域,尤其是在基因重组蛋白方面,无论是研究的创新性还是品种的多样性都体现了我国在基因工程药物研究领域所取得的长足进步。近年来有越来越多的研究结果发表在国外SCI收录的杂志上,引起了国际上广泛的关注。 1重组蛋白 1.1 活性多肽 1.1.1 志贺毒素抑制多肽 志贺毒素是痢疾志贺菌的主要毒力因子,是一种烈性蛋白质毒素。以制备的重组志贺毒素B亚单位(StxB)为靶标,利用噬菌体展示亲和淘选技术的4轮筛选,从随机十二肽库中筛选到与StxB结合的一批噬菌体克隆,对特异结合活性较高的27个噬菌体克隆的表面展示肽进行序列测定,克隆展示肽出现频率最高的A6噬菌体,在体外与志贺毒素孵育进行动物试验,动物存活率达33.3%,表明毒素的毒性得到部分抑制,A6短肽可能发展成为志贺毒素的拮抗剂[1]。 1.1.2 降钙素 降钙素是甲状腺滤泡旁细胞产生的一种多肽类激素,它是体内钙平衡和骨代谢的调节因子,鲑降钙素已经在临床上用于骨质疏松症,但需要反复多次的注射,且与人降钙素的同源性仅为50%,易产生抗体。将人降钙素在成肌细胞中进行表达,能持续表达人降钙素的细胞进行微囊包埋后仍能持续分泌重组人降钙素到培养液中,这为利用包埋的重组成肌细胞释放人降钙素以及进一步采用移植细胞来治疗绝经后骨质疏松提供了可能[2]。 降钙素基因相关肽(Calcitonin gene-related peptide,CGRP)是从甲状腺髓样癌细胞中克隆发现的一种神经肽,由降钙素基因初级转录产物选择性剪接产生,属于降钙素(Calcitonin,CT) 超家族。CGRP 有两种分子异构肽:αCGRP和βCGRP。采用大肠杆菌偏爱的密码子人工合成hαCGRP 基因,构建了原核融合表达载体,对融合蛋白成功地进行了表达和纯化,Western免疫印迹验证该蛋白具有αCGRP 抗原性,为下一步hαCGRP 纯品的获得及动物实验的研究奠定了基础[3]。 1.1.3 葡萄糖依赖性促胰岛素多肽 GIP,即葡萄糖依赖性促胰岛素多肽或抑胃肽(glucose-dependent insulinotropic polypeptide or gastric inhibitory peptide)是由42个氨基酸组成的胃肠调节肽,具有广泛的临床应用价值。人工合成具有大肠杆菌偏爱密码子的编码GIP成熟肽的cDNA序列,利用pET32a(+)系统 进行原核表达。诱导表达的rhGIP占细胞总蛋白质的35%,纯化后的

基因工程药物开发利用前景

基因工程药物开发利用前景 摘要:生物制药是以基因工程为基础的现代生物工程,即利用现代生物技术对DNA进行切割、连接、改造,生产出传统制药技术难以获得的生物药品。而现代生物技术是以基因为源头,基因工程和基因组工程为主导技术,与其他高技术相互交叉、渗透的高新技术。比尔·盖茨预言:下一个首富可能是从事生物技术的投资者。本文简要分析了国内外基因工程药物开发的现状和前景。 以基因工程,细胞工程,发酵工程和酶工程为主体的现代生物技术是70年代开始异军突起的高新技术领域,近一,二十年来发展极为神速,它与微电子技术,新材料和新能源技术并列为影响未来国计民生的四大科学技术支柱,被认为是21世纪世界科学技术的核心。现代生物技术又是一项与医药产业结合极为密切的高新技术,它的发展已带给了某些医学基础学科的革命性变化,并给医药工业开辟了更为广阔的心领域。 自1982年全世界第一个基因重组医药产品“人胰岛素”在美国面市以来,至今已有数十个生物技术药物上市。现代生物技术开辟了人体内源性多肽,蛋白质药物的新天地。于此同时它也正渗透到传统医药的哥哥领域,以抗生素,氨基酸,细胞融合及基因工程菌,化学合成药物的生物转化性,到单克隆抗体靶向制剂等等。不久之前美国的Eli Lilly公司又提出了生物技术在医药上的更大应用,是在新药研究筛选方法上的革命,即用基因工程受体实验代替传统的动物实验,所有这一切都表明了医药产业的技术基础正在发生战略性的变革。世界各大医药企业已瞅准目标,纷纷投入巨资围绕以现代生物技术为核心的产品和技术结构开拓,展开了面向21世纪的空前激烈的竞争。 1 基因药物的前沿技术及部分基因药物 基因药物的直接体内基因治疗发展迅速,新型基因药物不断产生。现着重介绍对效果比较肯定关于基因药物的几项前沿技术,基因疫苗、反义RNA 药物、三链DNA 药物这三种新型基因药物技术的基本方法。 1.1基因疫苗 基因疫苗的免疫方法即基因疫苗的给药途径,目前使用的方法有以下几种: (1)裸DNA 直接注射:将裸质粒DNA 直接注射到机体的肌肉、皮内、皮下、粘膜、静脉内。这种方法简单易行。 (2)脂质体包裹DNA 直接注射:包裹DNA 的脂质体能与组织细胞发生膜融合,而将DNA 摄入,减少了核酸酶对DNA 的破坏。注射途径同裸DNA直接注射。 (3)金包被DNA 基因枪轰击法:将质粒DNA 包被在金微粒子表面,用基因枪使包被DNA 的金微粒子高速穿入组织细胞.。 (4)繁殖缺陷细菌携带质粒DNA 法:选择一种容易进入某组织器官的细菌,将其繁殖基因去掉,然后用质粒DNA 转化细菌,当这些细菌进入某组织器官后,由于不能繁殖,则自身裂解而释放出质粒DNA。 1.2反义RNA 反义RNA 指与mRNA 互补后,能抑制与疾病发生直接相关基因的表达的RNA。它封闭基因表达,具有特异性强、操作简单的特点,可用来治疗由基因突变或过度表达导致的疾病和严重感染性疾病,反义RNA 治疗的基本方法有: 1) 反义寡核苷酸:体外合成十至几十个核苷酸的反义寡核苷酸或反义硫代磷酸酯寡核苷酸序列,用脂质体等将反义寡核苷酸导入体内靶细胞,然后反义寡核苷酸与相应mRNA特异性结合,从而阻断mRNA 的翻译。 2) 反义RNA表达载体:合成或PCR 扩增获取反义RNA 的DNA ,将它克隆到表达载体,然后

基因工程药物

基因工程药物 蛋白质是生命活动最重要的物质之一,很多蛋白质与人类的疾病密切相关。大家所熟悉的侏儒症与病人缺少生长激素有关;一些糖尿病人则是由胰岛素合成不足引起的。在DNA重组技术出现之前,大多数的人用蛋白质药物主要是从人(如血液、尿液)或动物的组织或器官中提取的,成本特别高、产率和产量都很低,供应十分有限。并且由人体来源的材料进行提取,很难保证这种蛋白质药物不被某些病原体,如肝炎病毒、艾滋病病毒的污染,所以存在不安全因素。 1972年DNA重组技术诞生,直到 1982年出现世界第一个基因工程药物。基因工程药物开始进入人们的视线并逐渐得到重视。 基因工程药物是先确定对某种疾病有预防和治疗作用的蛋白质,然后将控制该蛋白质合成过程的基因取出来,即目的基因。将目的基因用DNA重组技术的方法连接在载体DNA上,然后将载体导入可以大量生产的靶细胞(微生物、哺乳动物细胞或人体组织靶细胞),使目的基因在靶细胞中得到表达,最后将表达的目的蛋白质提纯及做成制剂,从而成为蛋白类药物或疫苗。 目前基因工程药物主要分为四类:激素类及神经递质类药物;细胞因子类药物;酶类药物与凝血因子;基因工程活疫苗。这里就只做简单介绍,有兴趣的同学可以去详细了解。 我们来看一下基因工程药物合成的步骤:首先是目的基因DNA的取得——构建DNA重组体——构建工程菌——目的基因的表达——外源基因表达产物的分离纯化——最后是进行产品的检验。经临床试验才可投入市场。 我们来了解一下基因工程药物的发展历程 自1972年DNA重组技术诞生以来,作为现代生物技术核心的基因工程技术得到飞速的发展。1982年美国Lilly公司首先将重组胰岛素投放市场,标志着世界第一个基因工程药物的诞生。到1996年美国已拥有1300多家专门从事生物公司,70%从事生物医药开发。 我国基因工程药物的研究和开发起步较晚,1989年我国批准了第一个在我国生产的基因工程药物——重组人干扰素α1b,标志着我国生产的基因工程药物实现了零的突破。重组人干扰素α1b是世界上第一个采用中国人基因克隆和表达的基因工程药物,也是到目前为止唯一的一个我国自主研制成功的拥有自主知

我国药物安全性评价及GLP的有效实施

陕西行政学院学报Journal of Shaanxi Administration School 2009年5月第23卷第2期 May ,2009Vol.23,No.2 收稿日期:2008-10-20 作者简介:白山稳(1963-),男,陕西韩城人,讲师,陕西省工商联直属商会会员,陕西省投资协会会员,陕西省残疾人创业协会副会长,主 要从事资金及资本运作研究;任璐(1982-),女,陕西宝鸡人,工商管理系助教,从事企业管理研究。 药物是一种用于预防、治疗、诊断疾病的特殊商品,在促进人类的发展和社会的进步中起到了十分重要的作用。药品使用不安全或使用不当都会给人们的健康、生活质量、社会的安定以及发展建设造成严重威胁。胡锦涛总书记在党的十七大报告中提出了:在新的发展阶段继续全面建设小康社会、发展中国特色社会主义,必须坚持以邓小平理论和“三个代表”重要思想为指导,深入贯彻落实科学发展观。而药物的安全性问题恰是政府和人民关心的头等大事,也是科学发展观中政府执政为民、以人为本的具体体现。在科技迅速发展、社会进步的新时代,我们要切实贯彻落实“全面、协调、可持续发展”的科学发展观,保证药物在上市后是安全有效的良药。 一、临床前药物安全性评价的重要性 药物有两个方面尤为重要,首先是安全性,其次 是它的有效性。其中药物的安全性是使用药物时所必须保证的。 (一)药物安全是人类生命安全的重要保障在人类历史长河中,因对药物的不安全使用,使人们经历了很多伤亡事件和惨痛教训,大量患者病情更加严重,甚至死亡。在20世纪重大的药害事件当中,一些看似有效的药物成份却对人体本身造成了巨大的伤害。比如:甘汞造成汞中毒,死亡585人;醋酸铊造成铊中毒,死亡1万人;氨基比林造成粒细胞缺乏症,死亡2082人;磺胺酏造成肝肾损害,死亡 107人;非那西丁造成肾损害、溶血,死亡500人;二 碘二乙基锡造成神经毒性、脑炎,失明、死亡110人;异丙基肾气雾剂造成严重心律失常、心衰,死亡3500人;氯碘喹啉造成骨髓变性、失明,受害7856人,死亡5%;心得宁造成眼-皮肤-粘膜综合征,受害2257 我国药物安全性评价及GLP 的有效实施 白山稳,任璐 (陕西省行政学院,西安710068) 摘要:我国新药在上市前,所进行的新药审批须经非临床与临床研究,其安全性评价尤为重要。新药非临床安全性研究的 最终目的就是为了降低临床研究安全性方面的风险性,只有当GLP 标准表明该药有充分的安全性和有效性,才可进入临床研究。由于我国医药行业存在诸多问题,多数新药临床前安全性评价不符合GLP 标准,不得上市造福人类,药企也面临着无法生存的难题。因此,必须坚持和落实科学发展观,确保新药安全性评价以及GLP 的有效实施。 关键词:药物;安全性评价;GLP ;规范;药品产业 中图分类号:R286.0 文献标识码:A 文章编号:1673-9973(2009)01-0125-04 经济管理 China's Drug Safety Evaluation and the Effective Implementation of GLP BAI Shan-wen ,REN Lu (Shaanxi Administration School,Xi'an 710068,China) Abstract:Now,in order to value the lives,new drugs must pass those two stages,which are non-clinical and clinical studies be -fore they are put on the market.The most important one is the safety study.The ultimate goal of the non-clinical drug safety study is to reduce the risks of testing the new drugs in the clinical study.And only if the GlP standards show the efficiency and safety of the dugs can they finally be allowed to use in the clinical studies.There are still many problems in China's pharmaceutical industry,and most of the pre-clinical drug safety evaluation is not up to the GLP standard.Thus,these new drugs can not benefit mankind,and the marketing of them will also cause the problems in the pharmaceutical enterprises.Therefore,we must implement the scientific concept of develop -ment to ensure the safety evaluation of new drugs,as well as the effective enforcement of the GLP. Key words:medicine;safety appraises;GLP;standardize;medicine is industrial 125

相关主题
文本预览
相关文档 最新文档