当前位置:文档之家› 最新高等代数作业 第一章 多项式答案

最新高等代数作业 第一章 多项式答案

最新高等代数作业  第一章 多项式答案
最新高等代数作业  第一章 多项式答案

高等代数第一次作业 1

第一章 多项式 §1—§3 2

一、填空题 3

1. 如果()|()f x g x ,()|()g x h x ,则 。()|()f x h x 4

2. 若()|()()f x g x h x +,()|()f x g x ,则 。()|()f x h x 5

3. 若()|()f x g x ,()|()/f x h x ,则 。()|()()/f x g x h x + 6

二、判断题 7

1. 数集}{1,,|2-=+i b a bi a 是有理数是数域( )√ 8

2. 数集}{1,,|2-=+i b a bi a 是整数是数域 ( )× 9

3. 若()|()()f x g x h x ,()|()/f x g x ,则()|()f x h x ( ) × 10

4. 若()|()()f x g x h x +,()|()f x g x ,则()|()f x h x ( )√ 11

5. 数集}{是有理数b a b a ,|2+是数域 ( )√ 12

6. 数集}{为整数n n |2是数域 ( )× 除法不封闭 13

7. 若()|()()f x g x h x ,则()|()f x g x 或()|()f x h x ( ) × 当()f x 是不可约时才成立 14

8. 若()|()/f x g x ,()|()/f x h x ,则()|()()/f x g x h x ( ) × 如2()f x x =,()()g x h x x ==时不15

成立 16

9. 若()|()()f x g x h x +,()|()()f x g x h x -,则()|()f x g x 且()|()f x h x ( ) √ 17

三、选择题 18

1. 以下数集不是数域的是( )B 19

A 、{是有理数b a bi a ,|+,21i =-}

B 、{是整数b a bi a ,|+,21i =-} 20

C 、{

}是有理数b a b a ,|2+ D 、{}全体有理数

21

2. 关于多项式的整除,以下命题正确的是 ( )C 22

A 、若()|()()f x g x h x 且()|()/f x g x ,则()|()f x h x 23

B 、若()|()g x f x ,()|()h x f x ,则()()|()g x h x f x 24

C 、若()|()()f x g x h x +,且()|()f x g x ,则()|()f x h x 25

D 、若()|()/f x g x ,()|()/f x h x ,则()|()()/f x g x h x

26 四、计算题 27

数域P 中的数q p m ,,适合什么条件时, 多项式q px x mx x ++-+32|1? 28

解:由假设,所得余式为0,即 0)()1(2=-+++m q x m p 29

所以当???=-=++0012m q m p 时有q px x mx x ++-+32|1 30

五、证明题 31

试证用21x -除()f x 所得余式为2)1()1(2)1(1-++--f f x f f )(。 32

证明:设余式为ax b +,则有2()(1)()f x x q x ax b =-++ 33

(1),(1)f a b f a b =+-=-+ 34 求得a =2)1()1(,2)1()1(-+=--f f b f f 35

高等代数第二次作业 36

第一章 多项式 §4—§6 37

一、填空题 38

1.

当()p x 是 多项式时,由()|()()p x f x g x 可推出()|()p x f x 或()|()p x g x 。不可约

39 2. 当()f x 与()g x 时,由()|()()f x g x h x 可推出()|()f x h x 。互素

40

3. 设32()3f x x x ax b =+++用1x +除余数为3,用1x -除余数为5,那么a = b = 。41

a=0,b=1 42

4. 如果((),())1f x g x =,((),())1h x g x =,则 。(()(),())1f x h x g x = 43

5. 设()p x 是不可约多项式,()|()()p x f x g x ,则 。()|()p x f x 或()|()p x g x 44

6. 设()p x 是不可约多项式,()f x 是任一多项式,则 。()|()p x f x 或((),())1p x f x = 45

7. 若()|()g x f x ,()|()h x f x ,且((),())1g x h x =,则 。()()|()g x h x f x 46

8. 若()|()()p x g x h x ,且 ,则()|()p x g x 或()|()p x h x 。()p x 是不可约多项式 47

二、判断题 48

1. 若()|()g x f x ,()|()h x f x ,则()()|()g x h x f x ( )× 49

2. 若(()(),())1f x g x h x =,则((),())1f x h x =,((),())1g x h x = ( ) √ 50

3. 若()|()()f x g x h x ,且()|()f x g x ,则((),())1f x h x = ( ) × 51

4. 设()p x 是数域P 上不可约多项式,那么如果()p x 是()f x 的k 重因式,则()p x 是()f x '的1k -重52

因式。 ( )√ 53

5. 若有()()()()()d x f x u x g x v x =+,则()d x 是()f x ,()g x 的最大公因式 ( )× 54

6. 若()p x 是()f x '内的k 重因式,则()p x 是()f x 的1k +重因式( )× 如1()1k f x x +=+ 55

三、选择题 56

1. 关于多项式的最大公因式,以下结论正确的是 ( )D 57

A 、若()|()()f x g x h x 且()|()f x g x ,则((),())1f x h x = 58

B 、若存在()u x ,()v x ,使得()()()()()f x u x g x v x d x +=,则()d x 是()f x 和()g x 的最大公因式 59

C 、若()|()d x f x ,且有()()()()()f x u x g x v x d x +=,则()d x 是()f x 和()g x 的最大公因式 60

D 、若(()(),())1f x g x h x =,则((),())1f x h x =且((),())1g x h x =

61

2. 关于不可约多项式()p x ,以下结论不正确的是( )C 62

A 、若()|()()p x f x g x ,则()|()p x f x 或()|()p x g x 63

B 、若()q x 也是不可约多项式,则((),())1p x q x =或()(),0p x cq x c =≠ 64

C 、()p x 是任何数域上的不可约多项式 65

D 、()p x 是有理数域上的不可约多项式 66

3. 关于多项式的重因式,以下结论正确的是( )D 67

A 、若不可约多项式()p x 是()f x '的k 重因式,则()p x 是()f x 的1k +重因式 68

B 、若不可约多项式()p x 是()f x 的k 重因式,则()p x 是()f x ,()f x '的最大公因式 69

C 、若不可约多项式()p x 是()f x '的因式,则()p x 是()f x 的重因式

70 D 、若不可约多项式()p x 是()f x 的重因式,则()p x 是

))(),(()(x f x f x f '的单因式 71 四、计算题 72

1.设,12)(,12)(3234+-=-+--=x x x g x x x x x f 求))(),((x g x f 以及),(),(x v x u 使 73

)).(),(()()()()(x g x f x g x v x f x u =+ 74

解:利用辗转相除法得

75 2112122123()()()()()(1),

()()()()()(1)1,()()()(1)().

f x

g x q x r x g x x x x g x r x q x r x x x x x r x r x q x x x =+=-+-=+=-+-+==-+-

76 因此((),()) 1.f x g x x =-又

77 21212212()()()()()(()()())()

()()(1()()).r x g x r x q x g x f x g x q x q x q x f x q x q x =-=--=-++

78

2212((),())()()()(1()())()f x g x r x q x f x q x q x g x =-=-+. 79

所以2212()()1,()1()()1(1)(1).u x q x x v x q x q x x x x ==+=--=---+=- 80

2.设234)(235+-+-=x x x x x f 81

(1)判断)(x f 在R 上有无重因式?如果有,求出所有的重因式及重数; 82

(2)求)(x f 在R 上的标准分解式. 83

解:(1)42()538 3.f x x x x '=-+-运用辗转相除法可得:2((),())1f x f x x x '=-+. 84

21x x -+为)(x f 在R 上二重因式. 85

(2)由(1)可得)(x f 在R 上的标准分解式为 86

22()(1)(2)f x x x x =-++. 87

解法2: )(x f 的可能有理根为1,2±±,经检验2-为)(x f 的有理根,由综合除法可得 88 2101432

2464212

3210--------

89 因此有43222()(2321)(2)(1)(2)f x x x x x x x x x =-+-++=-++.21x x -+为)(x f 在R 上二重因式. 90

)(x f 在R 上的标准分解式为 91

22()(1)(2)f x x x x =-++.

92 五、证明题 93

1.设2≥k 为正整数,证明:()|()()|()k k f x g x f x g x ?. 94

证明:当()|()f x g x 时,有()()(),g x f x q x =因此()()(),k k k g x f x q x =即有()|()k k f x g x . 95

反之设

96

1212()()()()s r r r s f x p x p x p x = 97

1212()()()()s m m m s g x p x p x p x = 98

其中12(),(),

,()s p x p x p x 是互不相同的不可约多项式,0,0(1,2,,)i i r m i s ≥≥=.由()|()k k f x g x 99 可得(1,2,,)i i k r k m i s ≤=,即(1,2,,)i i r m i s ≤=.因此有()|()f x g x . 100

2. 已知(),(),()f x g x h x 是数域P 上的多项式,,,,,0,0a b c P a b a c ∈≠≠≠,且

101 22()()()()()()()()()()()()

x a f x x b g x x c h x x a f x x b g x x c h x +++=+??-+-=+? 102 则22(),()x c f x x c g x ++.

103 证明:两式相加得:22(()())2()()x f x g x x c g x +=+.由0c ≠得2(,)1x x c +=.因此有 104

2()()x c f x g x ++.

105 两式相减有2()2()0af x bg x +=,,因此有22()2()x c af x bg x ++.由2()()x c f x g x ++及106

22()2()x c af x bg x ++可得2(22)()x c a b f x +-.又a b ≠,因此有2()x c f x +.类似有2()x c g x +.

107 高等代数第三次作业

108 第一章 多项式 §7—§9

109 一、填空题

110 1. 设用1x -除()f x 余数为5,用1x +除()f x 余数为7,则用21x -除()f x 余数是 。6x -+

111 2. 设42()22f x x x kx =+-+用1x -除余数为3,则k = 。k =2

112 3. 如果2432(1)|36x x x x ax b --+++,则a = ,b = 。a =3, b =-7

113 4. 如果3()3f x x x k =-+有重根,那么k = 。k =±2

114 5. 以l 为二重根,2,1i +为单根的次数最低的实系数多项式为()f x = 。

115 543261520144x x x x x -+-+- 116

6. 已知1i -是432()4522f x x x x x =-+--的一个根,则()f x 的全部根是 。

117

1,1,1i i -+-118 7. α是()f x 的根的充分必要条件是 。|()x f x α-

119 8. ()f x 没有重根的充分必要条件是 。((),())1f x f x '= 120

二、判断题

121 1. 如果()f x 没有有理根,则它在有理数域上不可约。( )× 122

2. 奇次数的实系数多项式必有实根。( )√ 虚根成对 123

3. 63()1f x x x =++在有理数域上可约。( )× 1x y =+变形后用判别法知

不可约 124 4. 如果()f x 在有理数域上是可约的,则()f x 必有有理根。( )× 125 5. 43()2810f x x x x =-+-在有理数域上不可约。( )√

126 三、选择题

127 1. 关于多项式的根,以下结论正确的是 ( )D

128 A 、如果()f x 在有理数域上可约,则它必有理根。

129 B 、如果()f x 在实数域上可约,则它必有实根。

130 C 、如果()f x 没有有理根,则()f x 在有理数域上不可约。

131 D 、一个三次实系数多项式必有实根。

132 2. 关于多项式的根,以下结论不正确的是 ( )B

133 A 、α是()f x 的根的充分必要条件是|()x f x α-

134 B 、若()f x 没有有理根,则()f x 在有理数域上不可约

135 C 、每个次数≥1的复数系数多项式,在复数域中有根

136 D 、一个三次的实系数多项式必有实根

137

高数习题集(附答案)

第一章 函数与极限 §1 函数 必作习题 P16-18 4 (5) (6) (8),6,8,9,11,16,17 必交习题 一、一列火车以初速度0v ,等加速度a 出站,当速度达到1v 后,火车按等速运动前进;从 出站经过T 时间后,又以等减速度a 2进站,直至停止。 (1) 写出火车速度v 与时间t 的函数关系式; (2) 作出函数)(t v v =的图形。 二、 证明函数1 2+= x x y 在),(+∞-∞内是有界的。

三、判断下列函数的奇偶性: (1)x x x f 1sin )(2= ; (2)1 212)(+-=x x x f ; (3))1ln()(2++=x x x f 。 四、 证明:若)(x f 为奇函数,且在0=x 有定义,则0)0(=f 。

§2 初等函数 必作习题 P31-33 1,8,9,10,16,17 必交习题 一、 设)(x f 的定义域是]1,0[,求下列函数的定义域: (1))(x e f ; (2))(ln x f ; (3))(arcsin x f ; (4))(cos x f 。 二、(1)设)1ln()(2x x x f +=,求)(x e f -; (2)设23)1(2+-=+x x x f ,求)(x f ; (3)设x x f -= 11)(,求)]([x f f ,})(1{x f f 。)1,0(≠≠x x

三、设)(x f 是x 的二次函数,且1)0(=f ,x x f x f 2)()1(=-+,求)(x f 。 四、设???>+≤-=0, 20, 2)(x x x x x f ,???>-≤=0, 0,)(2x x x x x g ,求)]([x g f 。

高等数学同济大学第六版 第八章 单元练习题 参考答案

第八章 空间解析几何与向量代数 单元测试题 参考答案: 一、填空题 1.点(),,M x y z 关于x 轴的对称点为1M (),,x y z --;关于x O y 平面的对称点为 2M (),,x y z -;关于原点的对称点为3M (),,x y z ---. 2. 平行于a ={1,1,1} 若向量}5,1,{λ=a 与向量}50,10,2{=b 平行,λ为 15 . 3.已知两点() 1,2,41M 和()2,0,32M ,则向量21M M 在三个坐标轴上的投影分别是 –1 2- 、 1 ,在坐标轴方向上的分量分别是i - 、j 2- 、k , = 2 , 方向余弦 =αcos 21-、 =βcos 2 2-、=γcos 21 , 方向角=α 0120、 =β 0 135、 =γ 060, 与21M M 同方向的单位向量是??????--21,22,21 . 4. 已知两向量k j i a 1046+-=,k j i b 943-+=,则=+b a 2k j i 8412-+, =-b a 23k j i 482012+-,b a 23-在oz 轴上的投影为48 . 5.过点(1,2,1)M -且与直线2341x t y t z t =-++??=-??=-? 垂直的平面方程是340x y z --+= 二、选择题 1. 向量a 与b 的数量积?a b =( C ). A a rj P b a ; B ?a rj P a b ; C a rj P a b ; D b rj P a b . 2. 非零向量,a b 满足0?=a b ,则有( C ). A a ∥b ; B =λa b (λ为实数); C ⊥a b ; D 0+=a b . 3. 设a 与b 为非零向量,则0?=a b 是( A ). A a ∥b 的充要条件; B a ⊥b 的充要条件; C =a b 的充要条件; D a ∥b 的必要但不充分的条件.

《高等数学》第八章习题答案

8.1(A ) 1、(1){ }y x y x y x ≥≥≥2,0,0),(;(2){}1),(2>-x y y x ; (3){ }1),(22>+y x y x ; (4){}0,0,0),,(>>>z y x z y x 。 2、(1)0;(2)6 1-;(3)e ;(4)1;(5)0. (B ) 1、提示:令kx y =。 8.2(A ) 1、(1)223y y x x z -=??;xy x y z 23-=??。(2)2x y y x z -=??;x x y z 1+=??。 (3)]1)1[ln()1(xy xy xy xy x z x ++++=??;12)1(-+=??x xy x y z 。 (4)22y x y x z +-=??;22y x x y z +=??。 (5) )sin()cos(y x x y x x z +-+=??;)sin(y x x y z +-=??。 (6)21y x x z +=??;2 2y x y y z +=??。 (7)1-=??z y x z y x u ;x z x y u z y ln =??;x z yx z u z y ln 2-=??。 (8)x y x y x z 2csc 22-=??;x y x y z 2csc 2=??。 2、(1)222)(2y x y x x z --=??;2 2)(y x y y x z -=???。 (2)2222222)(y x x y x z +-=??;2222) (2y x xy y x z +-=???。 (3)222)1(--=??y x y y x z ;222)(ln x x y z y =??。 3、2)1,0,0(=xx f ;0)0,1,0(=yz f 。 (B )

(word完整版)高等数学习题集及答案

第一章 函数 一、选择题 1. 下列函数中,【 】不是奇函数 A. x x y +=tan B. y x = C. )1()1(-?+=x x y D. x x y 2sin 2 ?= 2. 下列各组中,函数)(x f 与)(x g 一样的是【 】 A. 3 3)(,)(x x g x x f = = B.x x x g x f 22tan sec )(,1)(-== C. 1 1)(,1)(2+-=-=x x x g x x f D. 2 ln )(,ln 2)(x x g x x f == 3. 下列函数中,在定义域内是单调增加、有界的函数是【 】 A. +arctan y x x = B. cos y x = C. arcsin y x = D. sin y x x =? 4. 下列函数中,定义域是[,+]-∞∞,且是单调递增的是【 】 A. arcsin y x = B. arccos y x = C. arctan y x = D. arccot y x = 5. 函数arctan y x =的定义域是【 】 A. (0,)π B. (,) 22ππ- C. [,] 22ππ- D. (,+)-∞∞ 6. 下列函数中,定义域为[1,1]-,且是单调减少的函数是【 】 A. arcsin y x = B. arccos y x = C. arctan y x = D. arccot y x = 7. 已知函数arcsin(1)y x =+,则函数的定义域是【 】 A. (,)-∞+∞ B. [1,1]- C. (,)ππ- D. [2,0]- 8. 已知函数arcsin(1)y x =+,则函数的定义域是【 】 A. (,)-∞+∞ B. [1,1]- C. (,)ππ- D. [2,0]- 9. 下列各组函数中,【 】是相同的函数 A. 2()ln f x x =和 ()2ln g x x = B. ()f x x =和()g x = C. ()f x x =和()2 g x = D. ()sin f x x =和()arcsin g x x = 10. 设下列函数在其定义域内是增函数的是【 】 A. ()cos f x x = B. ()arccos f x x = C. ()tan f x x = D. ()arctan f x x = 11. 反正切函数arctan y x =的定义域是【 】 A. (,)22 ππ - B. (0,)π C. (,)-∞+∞ D. [1,1]- 12. 下列函数是奇函数的是【 】

高等数学习题集[附答案及解析]

WORD 格式 第一章 函数与极限 §1 函数 必作习题 P16-18 4 (5) (6) (8),6,8,9,11,16,17 必交习题 一、一列火车以初速度0v ,等加速度a 出站,当速度达到1v 后,火车按等速运动前进;从 出站经过T 时间后,又以等减速度a 2进站,直至停止。 (1) 写出火车速度v 与时间t 的函数关系式; (2) 作出函数)(t v v =的图形。 二、 证明函数1 2+= x x y 在),(+∞-∞内是有界的。

三、判断下列函数的奇偶性: (1)x x x f 1sin )(2= ; (2)1 212)(+-=x x x f ; (3))1ln()(2++=x x x f 。 四、 证明:若)(x f 为奇函数,且在0=x 有定义,则0)0(=f 。

WORD 格式 §2 初等函数 必作习题 P31-33 1,8,9,10,16,17 必交习题 一、 设)(x f 的定义域是]1,0[,求下列函数的定义域: (1))(x e f ; (2))(ln x f ; (3))(arcsin x f ; (4))(cos x f 。 二、(1)设)1ln()(2x x x f +=,求)(x e f -; (2)设23)1(2+-=+x x x f ,求)(x f ; (3)设x x f -= 11)(,求)]([x f f ,})(1{x f f 。)1,0(≠≠x x

三、设)(x f 是x 的二次函数,且1)0(=f ,x x f x f 2)()1(=-+,求)(x f 。 四、设???>+≤-=0, 20, 2)(x x x x x f ,???>-≤=0,0,)(2x x x x x g ,求)]([x g f 。

高等数学作业集答案第八章

第八章 空间解析几何与向量代数 §8.1向量及其线性运算 1.填空题 (1)点)1,1,1(关于xoy 面对称的点为()1,1,1(-),关于yoz 面对称的点为()1,1,1(-),关于xoz 面对称的点为()1,1,1(-). (2)点)2,1,2(-关于x 轴对称的点为()2,1,2(-),关于y 轴对称的点为()2,1,2(---),关于z 轴对称的点为()2,1,2(-),关于坐标原点对称的点为()2,1,2(--). 2. 已知两点)1,1,1(1M 和)1,2,2(2M ,计算向量21M M 的模、方向余弦和方向角. 解:因为)0,1,1(21=M M ,故2||21=M M ,方向余弦为2 2 cos = α,2 2 cos = β,0cos =γ,方向角为4πα=,4πβ=, 2πγ=. 3. 在yoz 平面上,求与)1,1,1(A 、)2,1,2(B 、)3,3,3(C 等距离的点. 解:设该点为),,0(z y ,则 222222)3()3(9)2()1(4)1()1(1-+-+=-+-+=-+-+z y z y z y , 即?????-+-+=-+-+-+=-+2 2222 2) 3()3(9)2()1(4)2(4)1(1z y z y z z ,解得???==33y z ,则该点为)3,3,0(. 4. 求平行于向量k j i a 432-+=的单位向量的分解式. 解:所求的向量有两个,一个与a 同向,一个与a 反向. 因为 29)4(32||222=-++=a ,所以)432(29 1k j i e a -+± =. 5.设k j i m 22-+=,k j i n ++=2,求向量n m a +=4在各坐标轴上的投影及分向量. 解:因为k j i k j i k j i n m a 796)2()22(44-+=+++-+=+=, 所以在x 轴上的投影为6=x a ,分向量为i i a x 6=,y 轴上的投影为 9=y a ,分向量为j j a y 9=,z 轴上的投影为7-=z a ,分向量为k k a z 7-=. 6. 在yOz 平面上,求与)1,2,1(A 、)0,1,2(B 和)1,1,1(-C 等距离的点.

《高等数学》第八章练习题及答案

《高等数学(下册)》第八章练习题 一、填空题 1、________________ )sin(==dz xy z 则, 设 2、设),cos(2y x z =,则=??)2,1(πx z 3、函数22)(6y x y x z ---=的极值点为 4、设xy e z =,则=dz 5、设y z ln z x =,则=?zx z 二、选择题 )2 0( D. )0 2( C. )0 0( B. )2 2( A.) (33) ( 12233,,,,的极小值点为,函数、y x y x y x f --+= 2、),(y x f 在点),(00y x 处偏导数),(),(0000y x f y x f y x ''、存在就是),(y x f 在该点连续的( )、 (a)充分条件, (b)必要条件, (c)充要条件, (d)既非充分条件又非必要条件。 3、设)2ln(),(x y x y x f +=,则=())1,1(-'x f 、 (A),31 (B),31- (C),65 (D).6 5- 三、计算题 方程。处的切线方程与法平面,,在点求曲线、)1 2 1( 2 132 ???==x z x y 2、设),(y x z z =就是由方程0),(=--z y z x F 确定的隐函数,F 具有一阶连续偏导数,且,0≠'+'v u F F 其中,,z y v z x u -=-=求.,y z x z ???? 3、求曲面3222-=+-z xz y x 在点)1,2,1(处的切平面及法线方程。 4、设,222z y x e u ++=而y x z sin 2=,求x u ??、 5、求曲线t z e y e x t t ===-,,,对应于0=t 点处的切线与法平面方程。 6、求函数)4(2y x y x z --=在闭域4,0,0≤+≥≥y x y x 上的最大值及最小值。

高等数学习题集[附答案及解析]

--------------------------------------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------------------------------------------- 第一章 函数与极限 §1 函数 必作习题 P16-18 4 (5) (6) (8),6,8,9,11,16,17 必交习题 一、一列火车以初速度0v ,等加速度a 出站,当速度达到1v 后,火车按等速运动前进;从 出站经过T 时间后,又以等减速度a 2进站,直至停止。 (1) 写出火车速度v 与时间t 的函数关系式; (2) 作出函数)(t v v =的图形。 二、 证明函数1 2+=x x y 在),(+∞-∞内是有界的。

--------------------------------------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------------------------------------------- 三、判断下列函数的奇偶性: (1)x x x f 1sin )(2= ; (2)1 212)(+-=x x x f ; (3))1ln()(2++=x x x f 。 四、 证明:若)(x f 为奇函数,且在0=x 有定义,则0)0(=f 。

高等数学作业题及参考答案

高等数学作业题(一) 第一章 函数 1、填空题 (1)函数1 1 42-+-=x x y 的定义域是 2、选择题 (1)下列函数是初等函数的是( )。 A.3sin -= x y B.1sin -=x y C.??? ??=≠--=1 ,01, 112x x x x y D. ?? ?≥<+=0 , , 1x x x x y (2)x y 1 sin =在定义域内是( )。 A. 单调函数 B. 周期函数 C. 无界函数 D. 有界函数 3、求函数2)1ln(++-=x x y 的定义域 4、设,1)(2+-=x x x f 计算x f x f ?-?+) 2()2( 5、要做一个容积为250立方米的无盖圆柱体蓄水池,已知池底单位造价为池壁单位造价的两倍,设池底单位造价为a 元,试将总造价表示为底半径的函数。 6、把一个圆形铁片,自中心处剪去中心角为α的一扇形后,围成一个无底圆锥,试将此圆锥体积表达成α的函数。 第二章 极限与连续

1、填空题 (1)3 2 += x y 的间断点是 (2)0=x 是函数x x y +=1的第 类间断点。 (3)若极限a x f x =∞ →)(lim 存在,则称直线a y =为曲线=y ()x f 的 渐近线。 (4)有界函数与无穷小的乘积是 (5)当0→x ,函数x 3sin 与x 是 无穷小。 (6)x x x 1)21(lim 0 +→= (7)若一个数列{}n x ,当n 时,无限接近于某一个常数a ,则称a 为数列{}n x 的极限。 (8)若存在实数0>M ,使得对于任何的R x ∈,都有()M x f <,且()0lim 0 =→x g x , 则()()=→x g x f x 0 lim (9)设x y 3sin =,则=''y (10) x x x )211(lim - ∞ →= 2、选择题 (1)x x x sin lim 0→的值为( )。 A.1 B.∞ C.不存在 D.0 (2)当x →0时,与3 100x x +等价的无穷小量是( )。 A. 3x B x C. x D. 3 x (3)设函数x x x f 1 sin )(?=,则当0)(>-x f 时,)(x f 为 ( ) A. 无界变量 B.无穷大量 C. 有界,但非无穷小量 D. 无穷小量 (4)lim sin sin x x x x →0 21 的值为( )。 A.1 B.∞ C.不存在 D.0 (5)下列函数在指定的变化过程中,( )是无穷小量。 A .e 1 x x , ()→∞ B. sin ,()x x x →∞ C. ln(), ()11+→x x D. x x x +-→11 0,()

高等数学同济大学第六版第八章单元练习题参考答案.doc

第八章空间解析几何与向量代数单元测试题参考答案: 一、填空题 1. 点M x, y, z关于x轴的对称点为M1 x, y, z ;关于xOy平面的对称点为M 2x, y, z ;关于原点的对称点为M3 x, y, z . 2. 平行于a ={1 ,1,1} 的单位向量为1 1,1,1 ;若向量 a { ,1,5} 与向量 b { 2,10,50} 3 平行,为1 . 5 3. 已知两点M1 4, 2,1 和 M 2 3,0,2 ,则向量M1M2在三个坐标轴上的投影分别是–1 2 、1 ,在坐标轴方向上的分量分别是i 、 2 j 、 k , M1M 2 2 , 方向余弦cos 1 、 cos 2 、 cos 1 , 方向角1200 、 2 2 2 1350 、60 0 , 与M1M2 同方向的单位向量是 1 , 2 , 1 . 2 2 2 4. 已知两向量a 6i 4 j 10k , b 3i 4 j 9k ,则 a 2b 12i 4 j 8k , 3a 2b 12i 20 j 48k , 3a 2b 在oz轴上的投影为48 . x t 2 5.过点 M (1,2, 1) 且与直线y 3t 4 垂直的平面方程是 x 3 y z 4 0 z t 1 二、选择题 1.向量a与b的数量积 a b=(C). A a rj 2.非零向量 A a ∥b b a ;B a rj a b ; C a rj a b ; D b rj a b.a, b 满足a b0 ,则有(C). ; B a b (为实数);C a b ;D a b0 . 3.设 a 与b为非零向量,则a A a ∥b的充要条件; C a b 的充要条件;b0是(A). B a ⊥b的充要条件; D a ∥b的必要但不充分的条件.

高等数学同济大学第六版第八章单元练习题参考标准答案.doc

第八章 空间解析几何与向量代数 单元测试题 参考答案 : 一、填空题 1. 点 M x, y, z 关 于 x 轴 的 对 称 点 为 M 1 x, y, z ; 关 于 xOy 平 面 的 对 称 点 为 M 2 x, y, z ;关于原点的对称点为 M 3 x, y, z . 2. 平行于 a ={1,1,1}的单位向量为 1 1,1,1 ;若向量 a { ,1,5} 与向量 b { 2,10,50} 3 平行, 为 1 . 5 3. 已知两点 M 1 4, 2,1 和 M 2 3,0,2 ,则向量 M 1 M 2 在三个坐标轴上的投影分别是 1 – 2 、 1 ,在坐标轴方向上的分量分别是 i 、 2 j 、 k , M 1 M 2 2 , 方向余弦 cos 1 、 cos 2 、 cos 1 , 方向角 1200 、 2 2 2 1350 、 60 0 , 与 M 1 M 2 同方向的单位向量是 1 , 2 , 1 . 2 2 2 4. 已知两向量 6 4 j 10 k , b 3i 4 j 9k , 则 a 2b 12i 4 j 8k , ai 3a 2b 12i 20 j 48k , 3a 2b 在 oz 轴上的投影为 48 . x t 2 5.过点 M (1,2, 1) 且与直线 y 3t 4 垂直的平面方程是 x 3 y z 4 0 z t 1 二、选择题 1. 向量 a 与 b 的数量积 a b =( C ). A a rj b a ; B a rj a b ; C a rj a b ; D b rj a b . 2. 非零向量 a, b 满足 a b 0 ,则有( C ). A a ∥ b ; B a b ( 为实数 ); C a b ; D a b 0. 3. 设 a 与 b 为非零向量,则 a b 0 是( A ). A a ∥ b 的充要条件; B a ⊥ b 的充要条件 ; C a b 的充要条件; Da ∥ b 的必要但不充分的条件.

(完整版)高数答案(下)习题册答案第六版下册同济大学数学系编

第八章 多元函数的微分法及其应用 § 1 多元函数概念 一、设]),,([:,),(,),(22222y y x f y x y x y x y x f ??求-=+=. 二、求下列函数的定义域: 1、2 221)1(),(y x y x y x f ---= };1|),{(2 2≠+x y y x 2、x y z arcsin = };0,|),{(≠≤x x y y x 三、求下列极限: 1、222)0,0(),(sin lim y x y x y x +→ (0) 2、 x y x x y 3)2,(),()1(lim +∞→ (6e ) 四、证明极限 2 42)0,0(),(lim y x y x y x +→不存在. 证明:当沿着x 轴趋于(0,0)时,极限为零,当沿着2 x y =趋于(0,0)时,极限为2 1 , 二者不相等,所以极限不存在 五、证明函数?? ??? =≠+=)0,0(),(,0)0,0(),(,1sin ),(22y x y x y x xy y x f 在整个xoy 面上连续。 证明:当)0,0(),(≠y x 时,为初等函数,连续),(y x f 。当)0,0(),(=y x 时, )0,0(01 sin lim 2 2)0,0(),(f y x xy y x ==+→,所以函数在(0,0)也连续。所以函数 在整个xoy 面上连续。 六、设)(2y x f y x z +++=且当y=0时2x z =,求f(x)及z 的表达式. 解:f(x)=x x -2,z y xy y x -++=2222 § 2 偏导数 1、设z=x y xe xy + ,验证 z x y +=??+??y z y x z x 证明:x y x y x y e x ,e x y e y +=??-+=??y z x z ,∴z xy xe xy xy x y +=++=??+??y z y x z x 42244222222)()),,((y y x x y y x y y x f +-=+-=?答案:

第八章高等数学答案

1、党在过渡时期的总路线提出的主要任务是解决所有制问题 参考答案:错误。 党在这个过渡时期的总路线和总任务,是要在一个相当长的时期内,逐步实现国家的社会主义工业化,并逐步现实国家对农业、手工业和资本主义工商业的社会主义改造。过渡时期总路线构想出了一条经济文化落后国家发展社会主义的新思路,这就是建设与改造并举、发展与变革同行,把国家工业化和社会主义改造紧密结合起来,在变革生产关系中促进社会生产力发展的新思路。其中,社会主义工业化是目的,社会主义改造是不可或缺的条件和手段。 2、中国的民族资产阶级在社会主义革命阶段仍然具有两面性 参考答案:正确。 中国的民族资产阶级,不仅在民主革命阶段具有两面性,曾经是中国共产党的同盟者。在社会主义革命阶段仍然具有两面性,它有剥削工人阶级取得利润的一面,又有拥护宪法、愿意接受社会主义改造的一面。中国共产党正是根据中国民族资产阶级这一基本特点,制定了利用、限制、改造的政策,用和平赎买的方式完成了对资本主义工商业的社会主义改造。 3、对资本主义工商业的社会主义改造就是指的对生产资料所有制的改造 参考答案:错误。 国家对资本主义工商业的社会主义改造是把对所有制的改造和对人的改造结合起来进行的,在把生产资料私有制改造成为社会主义公有制的同时,把资本家由剥削者改造成为自食其力的劳动者。对资本主义工商业的和平改造在内容上包括两个方面:一方面是企业的、制度的改造,包括企业所有制和企业管理制度等,最终把资本主义私营工商企业改造为由工人当家作主,实行社会主义企业管理的全民所有制企业;另一方面是对人即对资本家的改造。对资本主义工商业的社会主义改造,是一场深刻的社会变革。如何在改造过程中,实施团结教育的功能,化解他们的消极甚至抵抗的情绪,使他们成为自食其力的劳动者,这同样十分重要。 4、社会主义改造的完成,标志着中国完全建成了社会主义社会 参考答案:错误。 社会主义改造完成后,中国进入社会主义社会初级阶段,不经过生产力的巨大发展,中国无法超越初级阶段这个现实。只有生产力高度发展了,物质精神成果丰富,我们才能完成建成社会主义社会。

《高等数学下》作业集答案.

第七章向量代数与空间解析几何 第一节向量及其标表示 2. (i)A、B间的距离为d=3;(ii)中点C的坐标为(0,1,);(iii)A、B联线与23 三坐标面交点为(-3,-2,0),(-1,0,-1),(0,1,) 3 2 3.(1) i+j+k不是单位向量,(2)三个单位向量之和有可能是零向量,此时a=-b-c。 5 5.prjba=2及prjab= m与b的夹角为arccos. 13 第二节数量积、向量积和混合积 一、1. 36. 2.λ= 3. 3.共面.4. 18 。二、计算下列各题,1 。arccos, 2、(1)3,{5,1,7};(2),18,{10,2,14};(3 )cos= 2. 3、 π 3 .4 3,cos=-

3,5.(0,0,)。 5第三节空间平面与空间直线 一、1.D,2.C, 3. C.4.A. 5. D.6.A.7. A.8. C. 二、1.1,2.x-y+z=0。3.过点(x-1)-(y-2)-(z+1)=0, 4.已知两条直线的方程是(x-1)+(y-2)-(z-3)=0。 三、(1)2(x-1)+3y+(z+1)=0;(2)3x-2y-1=0;(3)x-z=1; (4)2x-y+z=0;(5)y-3z=0;(6)4x+3(y-1)-z=0. 四、(1) x+53 =y+82= =z1 x+41 x3 y-40y-2-1 z x y-1 z ; (2) z-41 == 五、(1) x-2-1 y+33 =;(2)== 3z-42 ; (3);(3) -3x+13 = 12y-2z-1== -11 = 六、(1)异面,(2)d=1,(3)? ?3x+7y-6z-12=0?x=1 z2 第四节空间曲面与空间曲线

高等数学习题册参考答案

《高等数学》习题册参考答案 说明 本参考答案与现在的习题册中的题目有个别的不同,使用时请认真比对,以防弄错. 第一册参考答案 第一章 §1.1 1.??? ????+≤≤--<≤<≤+=--. ),(2, , , 0 , 211010101T t T T t a v T t v t at v v a v a v v a v v 图形为: 2.B. 3.)]()([)]()([)(2 121x f x f x f x f x f --+-+=, 其中)]()([)(21x f x f x F -+=为偶函数,而)]()([)(2 1x f x f x G --=为奇函数. 4.??? ????=<≤-<≤-<≤=.6 ,0, 64 ,)4(, 42 ,)2(, 20 ,)(22 2x x x x x x x x f 5.???.)]([,)2()]([,)1(单调减单调性相反,则单调增;单调性相同,则x g f g f x g f g f 6.无界. 7.(1)否,定义域不同;(2)否,对应法则不同;(3)否,定义域不同. §1.2 1.(1))1 ,0()0 ,1(?-=D ;(2)} , ,{2 Z ∈+≠=k k k x x D πππ;(3))1 ,0(=D . 2.1 ,4-==b a . 3.?????>-=<=,0 ,1,0 ,0 , 0 ,1 )]([x x x x g f ???? ???>=<=-. 1 ,,1 ,1 ,1 , )]([1x e x x e x f g 4.(1)]2 ,0[,)1arcsin(2 =-=D x y ; (2)Y ∞ =+=+=0 2 2),( , )(tan log 1k a k k D x y πππ. 5.(1)x x x f f 1 )]([-= ; (2)x x f f 1 )(1][=. 6.+∞<<=-h r V r h h r 2 ,2312 2π. 7.(1)a x =)(?; (2)h x x +=2)(?; (3)h a a h x x ) 1()(-= ?. §1.9 1.1-=e a . 2.(1)1=x 和2=x 都是无穷间断点(属第Ⅱ类); (2)1 ,0==x x 和1-=x 是间断点,其中:1是可去间断点(极限为21)(属第Ⅰ类); 0是跳跃间断点(左极限1-,右极限1)(属第Ⅰ类);-1 是无穷间断点(属第Ⅱ类); (3)0=x 为无穷间断点(属第Ⅱ类),1=x 为跳跃间断点(属第Ⅰ类) (注意:+∞==∞ +-→- e e x x x 11 lim ,而0lim 11 ==∞--→+ e e x x x );

南京工程学院高等数学第八章习题答案

习题8.1 1. 解 2. 解 3.解 4.解设 则 5. 解 A: Ⅴ B : Ⅳ C: Ⅶ D : Ⅲ 6. A点在XOY 面上,点 B在 YOZ 面上, C点在 Z轴上,点D 在Y轴上。 7. (1) A点关于 xOy 平面的对称点是(2,-3,1) B点关于 xOy 平面的对称点是(a,b,-c) A点关于 yOz 平面的对称点是(-2,-3,1) B点关于 xOy 平面的对称点是(-a,b,c) A点关于 xOz 平面的对称点是(2,3,-1) B点关于 xOz 平面的对称点是(a,-b,c) A点关于x轴、y轴、z轴的对称点分别是(2,3,1)(-2,-3,1)(-2,3,-1) B点关于 x轴、y轴、z轴的对称点分别是(a,-b,-c) (-a,b,-c) (-a,-b,c) A点关于原点的对称点为(-2,3-1) B点关于原点的对称点为(-a,-b,-c) 8. 9.解 所以△M1M2M3为等腰三角形。 10.解

11. 解 12. 解 13. 解 14. 解 15. 解(1) 16. 解 17. 解 18 解 19. 解 习题8.2 1. 解(1)

(2) (3) 2. 解(1)(2)(3) (4) (5) 3. 解 4. 解 5. 解 6. 解利用向量积的几何意义 7. 解(1) (2) 8. 解 (1)

(2) (3) 10. 解(1) (2) 13. 解 习题8.3 1. 解 2. 解 3. 解(1)(2) 4~8见课本P317

9. 10. 解习题 8.4 1. 解

2. 解(1)平面中表示点(-6,-8),空间中表示一条直线; (2)平面中表示点(2,0),空间中表示一条直线; (3)平面中表示点(1,0),(0,1),空间中表示两条直线; 3. 解 4. (1)解 (2)解 (3) 解 5. (1)解 (2) 解 6. 解由参数方程得于是 于是得到在xOy坐标面上的投影为 在xOz坐标面上的投影为 在xOz坐标面上的投影为

高数第八章

高数第八章

第八章 第一节 向量及其线性运算 重点:1.方向角与方向余弦 2.向量在轴上的投影 典型题目: 例7.已知两点M 1(2,2,2)和M 2(1.,3,0),计算向量21M M 的模、方向余弦和方向角。 解:21M M =(1-2,3-2,0-2)=(-1,1,-2), |21M M |= 2 222)(-(1)(-1)++= 2 211=++; COS α=-21,COS β=21 ,COS γ=-2 2 ; α=π32,β=3π,γ=4 3π. 例9.设立方体的一条对角线为OM ,一条棱为OA ,且|OA|=a ,求. P OM OA OA rj 方向上的投影在 解:记∠MOA=θ,有COS θ=3 1| || |=OM OA , θθ 于是OA rj P =|3 a θ||= COS .

θ 马云赵振 第二节数量积向量积混合积 1.两向量的数量积 a·b=│a││b│cos θ θ为两向量间的角度 (1)a·a=│a│2 (2)如果两个向量垂直,那么数量积为0,反之亦然(3)数量积满足交换律,分配率 结合律如下时才成立 (Λa)·b=Λ(a·b) 2.向量积 a·b=│a││b│sin θ (1)b×a=-a×b a×b=0的充分必要条件是a平行于b

(2)满足分配率 结合律如下时才成立 (3)(Λa)×b=a×(Λb )=Λ(a×b ) 用三阶行列式表示 i j k a×b= │ a x a y a z │ b x b y b z 例题 1.已知三角形ABC 的顶点分别是A (1,2,3),B (3,4,5),C (2,4,7),求三角形的面积 解:S ABC =1∕2│c ││b │sinA =1∕2│c ×b │ i j k c ×b= │ 2 2 2 │ =4i-6j+2k 1 2 4 S ABC =1∕2│4i-6j+2k │= 2222)6(4+-+=14 2.a=3i-j-2k ,b=i+2j-k ,求

《高等数学》第八章单元自测题参考答案

第八章 单元自测题参考答案 一.填空题 1.设 xy z 3 =, 则 =??x z 3ln 3xy y . 2.设 2 21),(y x y x f += ,则 ' y f (1,3)=50 3-. 3.方程式 1=++zx yz xy 确定z 是y x ,的函数,则 =??x z y x z y ++- . 4.设 x e y z sin =,则 =???y x z 2x x e e cos . 5.设 )1ln(2122y x z ++= ,则 =)1,1(dz dy dx 3 131+. 6.设函数 ),(y x f z =的全微分 dy y ax dx xy dz 2 232+=,则常数 =a 3 . 7.函数 3 43y xy x z ++=在点A(1,2)处沿从点A 到B(2,1)方向的方向导数等于 8.函数 zx yz xy u ++=在点(1,2,3)处的梯度 =?)3,2,1(u k j i ? ??345++. 二.选择题 1.设 ,0,0, 0,),(2 22 222 =+≠+?????+=y x y x y x xy y x f 则 ).(y x f 在点(0,0)处( B ). (A) 连续,但偏导数不存在; (B )不连续,但偏导数存在; (C )连续,且偏导数存在; (D )不连续,且偏导数不存在. 2.设 =z ln ),2(y x e e -则 =??) 0,0(2 2x z (D ). (A) 1; (B) -1; (C ) 2; (D) -2. 3.设方程 0),,(=---x z z y y x F 确定z 是y x ,的函数,则 =??x z ( C ). (A) ;'3'2'2'1F F F F -- (B ;'3'2' 1'2F F F F -- (C) ;'3'2'3'1F F F F -- (D) ;' 3 '2'1'3F F F F --

高数答案(下)习题册答案 第六版 下册 同济大学数学系 编

第八章 多元函数的微分法及其应用 § 1 多元函数概念 一、设]),,([:,),(,),(22222y y x f y x y x y x y x f ??求-=+=. 二、求下列函数的定义域: 1、2 221) 1(),(y x y x y x f ---= };1|),{(22≠+x y y x 2、x y z arcsin = };0,|),{(≠≤x x y y x 三、求下列极限: 1、2 22)0,0(),(sin lim y x y x y x +→ (0) 2、 x y x x y 3)2,(),()1(lim +∞→ (6e ) 四、证明极限 2 42)0,0(),(lim y x y x y x +→不存在. 证明:当沿着x 轴趋于(0,0)时,极限为零,当沿着2 x y =趋于(0,0)时,极限为2 1 , 二者不相等,所以极限不存在 五、证明函数????? =≠+=)0,0(),(,0)0,0(),(,1sin ),(22y x y x y x xy y x f 在整个xoy 面上连续。 证明:当)0,0(),(≠y x 时,为初等函数,连续),(y x f 。当)0,0(),(=y x 时, )0,0(01sin lim 2 2 ) 0,0(),(f y x xy y x ==+→,所以函数在(0,0)也连续。所以函数 42244222222)()),,((y y x x y y x y y x f +-=+-=?答案:

在整个xoy 面上连续。 六、设)(2y x f y x z +++=且当y=0时2x z =,求f(x)及z 的表达式. 解:f(x)=x x -2,z y xy y x -++=2222 § 2 偏导数 1、设z=x y xe xy + ,验证 z x y +=??+??y z y x z x 证明:x y x y x y e x ,e x y e y +=??-+=??y z x z ,∴z xy xe xy xy x y +=++=??+??y z y x z x 2、求空间曲线??? ??=+=Γ2 1:2 2y y x z 在点( 1,21,23)处切线与y 轴正向夹角(4π) 3、设y x y xy y x f arcsin )1(),(2-+=, 求)1,(x f x ( 1) 4、设y z x u =, 求 x u ?? ,y u ?? ,z u ?? 解:1 -=??y z x y z x u , x x y z y u y z ln 2-=?? x x y z u y z ln 1=?? 5、设2 2 2 z y x u ++=,证明 : u z u y u x u 2 222222=??+??+?? 6、判断下面的函数在(0,0) 处是否连续是否可导(偏导)说明理由 ?????≠+≠++=0, 00,1sin ),(222 22 2y x y x y x x y x f )0,0(0),(lim 0 0f y x f y x ==→→ 连续; 2 01 sin lim )0,0(x f x x →= 不存在, 000 0lim )0,0(0=--=→y f y y 7、设函数 f(x,y)在点(a,b )处的偏导数存在,求 x b x a f b x a f x ) ,(),(lim --+→

吉林大学作业及答案-高数A1作业

高等数学作业 AⅠ 吉林大学数学中心 2017年8月

第一次作业 学院 班级 姓名 学号 一、单项选择题 1.下列结论正确的是( ). (A )x arctan 是单调增加的奇函数且定义域是),(∞+∞- ; (B )x arc cot 是单调减少的奇函数且定义域是),(π0; (C )x arctan 是无界函数; (D )4 -22arccos π =. 2.下列函数中不是奇函数的为( ). (A )x x x x e e e e --+-;(B )x x cos 3+;(C ))1ln(2 x x ++;(D )x arcsin . 3.函数x x y 3cos 2sin +=的周期为( ). (A )π; (B )π3 2 ; (C )π2; (D )π6. 4.. ??? ??-??? ??-??? ? ? -∞→22211311211lim n n Λ=( ) (A )0; (B )1; (C )0. 5; (D )2. 5.已知数列{}n x 是单调增加的.则“数列{}n x 收敛”是“数列{}n x 有上界”的( )条件 (A )充分必要;(B )必要非充分;(C )充分非必要;(D )即非充分也非必要. 6.设数列{}n a (Λ,2,1,0=>n a n )满足,0lim 1 =+∞→n n n a a 则( ). (A ){}n a 的敛散性不定; (B )0lim ≠=∞ →c a n n ; (C )n n a ∞ →lim 不存在; (D )0lim =∞ →n n a . 二、填空题

1.=???? ??-+ +-+-∞→n n n n n 2 2241 2 411 41 lim Λ . 2.设? ? ?<+≥+=,0,2, 0,12)(2 x x x x x f 42)(-=x x g . 则)]([x g f = . 3.函数1 )(+=x x e e x f 的反函数)(1x f -= . 4.“数列{}n x 2及数列{}12+n x 同时收敛”是“数列{}n x 收敛” 条件. 5. =++--+++∞ →])2()11(1sin [lim 1 n n n n n n n n n . 三、计算题 1.设6 331 34)11(x x x f + +=+,求)(x f . 2.求n n n x 1 3)|1(lim | +∞ →,

相关主题
文本预览
相关文档 最新文档