当前位置:文档之家› 使用传输线理论的硅通孔电参数提取方法

使用传输线理论的硅通孔电参数提取方法

doi:10.3969/j.issn.1001-893x.2016.12.018

引用格式:周子琛,申振宁.使用传输线理论的硅通孔电参数提取方法[J].电讯技术,2016,56(12):1405-1408.[ZHOU Zichen,SHEN Zhenning.

Through-silicon-via parasitics extraction based on transmission line theory[J].Telecommunication Engineering,2016,56(12):1405-1408.]使用传输线理论的硅通孔电参数提取方法*

周子琛a,申振宁**b

(武警工程大学a.电子技术系;b.信息工程系,西安710086)

摘要:针对三维集成电路中的关键技术硅通孔的电特性,使用传输线理论提取了其单位长度RL-GC参数三将硅通孔等效为传输线,利用HFSS仿真结果并结合传输线理论给出了具体的参数提取方法三计算结果表明,硅通孔单位长度RLGC参数呈现较强的频变特性,当频率从1MHz增加到20GHz时,单位长度的电阻和导纳分别从0.45mΩ/μm和2.5μS/μm增加到2.5mΩ/μm和17μS/μm,而单位长度电感和电容分别从8.7pH/μm和8.8fF/μm减小至7.5pH/μm和0.2fF/μm三与传统的阻抗矩阵和导纳矩阵提取方法相比,该方法具有结果绝对收敛和适用频率高等诸多优点,可进一步应用于三维集成电路的仿真设计三

关键词:三维集成电路;通硅孔;电参数提取;传输线理论

中图分类号:TN406 文献标志码:A 文章编号:1001-893X(2016)12-1405-04

Through-Silicon-Via Parasitics Extraction Based on

Transmission Line Theory

ZHOU Zichen a,SHEN Zhenning b

(a.Department of Electronics Technology;b.Department of Information Engineering,

Engineering University of Chinese Armed Polic Force,Xi′an710086,China)

Abstract:Through-Silicon-Via(TSV)is a key technology for three-dimentional integrated circuits(3D ICs).The parasitic RLGC parameters are extracted through transmission line theory(TLT)according to its characteristic.Firstly,the TSV is treated as a lossy transmission line.Then,the parasitic electrical parame-ters are extracted from the simulation results of TSV pair with HFSS and TLT.The computation results show that per unit RLGC parameters vary with the change of frequency.The resistance and admittance per unit length increases from0.45mΩ/μm and2.5μS/μm to2.5mΩ/μm and17μS/μm respectively when the frequency increases from1MHz to20GHz.Meanwhile,the inductance and capacitor per unit length deceases from8.7pH/μm and8.8fF/μm to7.5pH/μm and0.2fF/μm https://www.doczj.com/doc/e811845192.html,pared with tradition methods,such as impedance matrix and admittance matrix,the proposed TLT method is fea-tured by absolute convergence and being more suitable for high frequency application.Moreover,the TLT method is further applicable to the design and analysis of3D ICs through the full circuit simulation.

Key words:three-dimensional integrated circuit;through-silicon-via(TSV);electrical parasitics extract; transmission line theory

1 引言

随着消费类电子的发展,越来越多的系统都集成有传感器二处理器二存储器二天线和各种无源器件以实现多种功能,从而要求更高的芯片集成密度三

四5041四

第56卷第12期

2016年12月电讯技术

Telecommunication Engineering Vol.56,No.12 December,2016

* **收稿日期:2016-03-14;修回日期:2016-07-07 Received date:2016-03-14;Revised date:2016-07-07基金项目:国家自然科学基金资助项目(61402529)

Foundation Item:The National Natural Science Foundation of China(No.61402529)

通信作者:zhenningshen@https://www.doczj.com/doc/e811845192.html, Corresponding author:zhenningshen@https://www.doczj.com/doc/e811845192.html,

万方数据

3D封装与硅通孔TSV工艺技术

万方数据

324电子工艺技术第30卷第6期 技术的不断进步发展而言。 图1三种不同基板MCM 图2键合工艺技术 3D封装的主要优势为:具有最小的尺寸和质量,将不同种类的技术集成到单个封装中,用短的垂直互连代替长的2D互连,降低寄生效应和功耗等。码V的关键技术是z轴互连和电隔离技术。包括通孔的形成;堆叠形式(晶圆到晶圆、芯片到晶圆或芯片到芯片);键合方式(直接Cu—Cu键合、粘接、直接熔合和焊接);绝缘层、阻挡层和种子层的淀积;铜的填充(电镀)和去除;再分布引线(RDL)电镀;晶圆减薄;测量和检测等。而这种集成技术会使IC制造与封装发生工艺交叠HJ。 l偈V关键工艺技术 rI.SV集成被定义为一种系统级集成结构,在这一结构中,多层平面器件被堆叠起来,并经由穿透硅通孔(1'sV)在z方向连接起来,主要工艺技术为层减薄技术、通孔工艺、对准和键合技术等。 1,1减薄工艺 大多数3D—IC工艺中,单个Ic的厚度要求都远低于75Ixm。减薄器件晶圆成为很重要的工艺之一。减薄技术面临的首要挑战就是超薄化工艺所要求的<50斗m的减薄能力。传统上,减薄工艺仅仅需要将硅片从晶圆加工完成时的原始厚度减薄到300斗m~400斗m。在这个厚度上,硅片仍然具有相当的厚度来容忍减薄工程中的磨削对硅片的损伤及内在应力,同时其刚性也足以使硅片保持原有的平整状态㈣。 在传统减薄工艺的粗精磨之后残留在磨削表面的损伤是造成破片的主要直接原因。之所以产生这样的损伤是因为磨削工艺本身就是一种物理损伤性工艺,其去除硅材质的过程本身就是一个物理施压、损伤、破裂和移除的过程。为了消除这些表面损伤及应力,人们考虑了各种方法:干抛、湿抛、干法刻蚀和湿法刻蚀等,目前在实际批量生产中应用最多目前业界的主流解决方案是采用东京精密公司所率先倡导的一体机思路,将硅片的磨削、抛光、保护膜去除和划片膜粘贴等工序集合在一台设备内,通过独创的机械式搬送系统使硅片从磨片一直到粘贴划片膜为止始终被吸在真空吸盘上,始终保持平整状态。当硅片被粘贴到划片膜上后,比划片膜厚还薄的硅片会顺从膜的形状而保持平整,不再发生翘曲和下垂等同题,从而解决了搬送的难题。如日本东京精密公司的一体机PG200/300RM硅片在不用离开真空吸盘的情况下就可以顺次移送到粗磨、精磨和抛光等不同的加工位,完成整个减薄的过程。这一独创的设计完全克服了磨片后硅片的严重翘曲所造成的难以搬送到抛光机的问题。同时也避免了磨片后的严重翘曲使表面损伤扩大,进而破裂的危险。1.2通孔工艺 I.2.1通孔制造 晶圆上通孔制造是TsV技术的核心,目前“钻蚀”TSV的技术主要有两种,一种是干法刻蚀或称博世刻蚀,另一种是激光烧蚀。博世工艺为MEMS工业而开发,快速地在去除硅的SF6等离子刻蚀和实现侧壁钝化的C4F8等离子沉积步骤之间循环切换‘6‘。, 激光技术作为一种不需掩膜的工艺,避免了光刻胶涂布、光刻曝光、显影和去胶等工艺步骤,已取得重大进展。三星(韩国)已经在存储器叠层中采用了这一技术。激光加工系统供应商Xsil公司(爱尔兰)为偈V带来了最新解决方案,Xsil称激光钻 孔工艺将首先应用到低密度闪存及CMOS传感器万方数据

射频及传输线基础知识

传输线的基本知识 传输射频信号的线缆泛称传输线,常用的有两种:双线与同轴线。频率更高则会用到微带线与波导,虽然结构不同,用途各异,但其基本传输特性都由传输线公式所表征。 不妨先让我们作一个实验,在一台PNA3620上测一段同轴线的输入阻抗。我们会发现在某个频率上同轴线末端开路时其输入阻抗却呈现短路,而末端短路时入端反而呈现开路。通过这个实验可以得到几个结论或想法:首先,这个现象按低频常规电路经验看是想不通的,因此一段线或一个网络必须在使用频率上用射频仪器进行测试才能反映其真实情况。其二,出现这种现象时同轴线的长度为测试频率下的λ/ 4或其奇数倍;因此传输线的特性通常是与长度的波长数有关,让我们习惯用波长数来描述传输线长度,而不是绝对长度,这样作就更通用更广泛一些。最后,这种现象必须通过传输线公式来计算(或阻抗圆图来查出),熟悉传输线公式或圆图是射频、天馈线工作者的基本功。 传输线公式是由著名的电报方程导出的,在这里不作推导而直接引用其公式。对于一般工程技术人员,只需会利用公式或圆图即可。 这里主要讲无耗传输线,有耗的用得较少,就不多提了。 射频器件(包括天线)的性能是与传输线(也称馈线)有关的,射频器件的匹配过程是在传输线上完成的,可以说射频器件是离不开传输线的。先熟悉传输线是合理的,而电路的东西是比较具体的。即使是天线,作者也尽量将其看成是个射频器件来处理,这种作法符合一般基层工作者的实际水平。 1.1 传输线基本公式 1.电报方程 对于一段均匀传输线,在有关书上可 查到,等效电路如图1-1所示。根据线的 微分参数可列出经典的电报方程,解出的 结果为: V 1= 2 1(V 2+I 2Z 0)e гx + 2 1 (V 2-I 2Z 0)e -гx (1-1) I 1= 21Z (V 2+I 2Z 0)e г x - 21Z (V 2-I 2Z 0)e -г x (1-2) 2 x 为距离或长度,由负载端起算,即负载端的x 为0 2г= α+j β, г为传播系数,α为衰减系数, β为相移系数。无耗时г = j β. 一般情况下常用无耗线来进行分析,这样公式简单一些,也明确一些,或者说理想化一些。而这样作实际上是可行的,真要计算衰减时,再把衰减常数加上。 2 Z 0为传输线的特性阻抗。 2 Z i 为源的输出阻抗(或源内阻),通常假定亦为Z 0;若不是Z 0,其数值仅影响线上电压的幅度大小,并不影响其分布曲线形状。

实验01_传输线理论

实验一:传输线理论 * (Transmission Line Theory) 一. 实验目的: 1.了解基本传输线、微带线的特性。 2.利用实验模组实际测量以了解微带线的特性。 3.利用MICROWAVE软件进行基本传输线和微带线的电路设计和仿真。 二、预习容: 1.熟悉微波课程有关传输线的理论知识。 2.熟悉微波课程有关微带线的理论知识。 项次设备名称数量备注 1 MOTECH RF2000 测量仪1套亦可用网络分析仪 2 微带线模组1组RF2KM1-1A, 3 50Ω BNC 连接线2条CA-1、CA-2 (粉红色) 4 1MΩ BNC 连接线2条CA-3、CA-4(黑色) 5 MICROWAVE软件1套微波电路设计软件 四、理论分析: (一)基本传输线理论 在传输线上传输波的电压、电流信号会是时间及传输距离的函数。一条单位长度传输线的等效电路可由R、L、G、C等四个元件来组成,如图1-1所示。 假设波的传播方向为+Z轴的方向,则由基尔霍夫电压及电流定律可得下列二个传输线方程式: ) ( ) ( ) ( ) ( ) (2 2 2 = + - - -z V LG RC j z V LC RG dz z V d ω ω ) ( ) ( ) ( ) ( ) (2 2 2 = + - - -z I LG RC j z I LC RG dz z I d ω ω 图1-1单位长度传输线的等效电路

此两个方程式的解可写成: z z e V e V z V γγ--++=)( (1-1) ,z z e I e I z I γγ--+-=)((1-2) 其中V +,V -,I +,I - 分别是信号的电压及电流振幅常数,而+、-则分别表示+Z ,-Z 的传输方向。γ则是传输系数(propagation coefficient ),其定义如下: ))((C j G L j R ωωγ ++= (1-3) 而波在z 上任一点的总电压及电流的关系则可由下列方程式表示: I L j R dz dV ?+-=)(ω V C j G dz dI ?+-=)(ω (1-4) 式(1-1)、(1-2)代入式(1-3)可得: C j G I V ωγ +=++ 一般将上式定义为传输线的特性阻抗(Characteristic Impedance )——Z O : C j G L j R C j G I V I V Z O ωωωγ++=+===--++ 当R=G=0时,传输线没有损耗(Lossless or Loss-free )。因此,一般无耗 传输线的传输系数γ及特性阻抗Z O 分别为: LC j j ωβγ== , C L Z O = 此时传输系数为纯虚数。大多数的射频传输线损耗都很小;亦即R<<ωL 且G<<ωC 。所以R 、G 可以忽略不计,此时传输线的传输系数可写成下列公式: βαωγj C G L R LC LC j +=?? ? ??++≈2 (1-5) 式(1-5)中与在无耗传输线中是一样的,而α定义为传输线的衰减常数(Attenuation Constant ),其公式分别为: LC j ωβ=, )(2 1 2o o GZ RY C G L R LC +=??? ??+= α 其中Y 0定义为传输线的特性导纳(Characteristic Adimttance), 其公式为: L C Z Y O O == 1 (二)负载传输线(Terminated Transmission Line )

馈线基本概念

馈线(传输线)的基本概念 a) 传输线(天馈线)的基本概念 连接天线和基站输出(或输入)端的导线称为传输线或馈线。传输线的主要任务是有效地传输信号能量。因此它应能将天线接收的信号以最小的损耗传送到接收机输入端,或将发射机发出的信号以最小的损耗传送到发射天线的输入端,同时它本身不应拾取或产生杂散干扰信号。这样,就要求传输线必须屏蔽或平衡。当传输线的几何长度等于或大于所传送信号的波长时就叫做长传输线,简称长线。 b) 传输线的种类、阻抗和馈线衰减常数 超短波段的传输线一般有两种:平行线传输线和同轴电缆传输线(微波传输线有波导和微带等)。平行线传输线通常由两根平行的导线组成。它是对称式或平衡式的传输线。这种馈线损耗大,不能用于UHF频段。同轴电缆传输线的两根导线为芯线和屏蔽铜网,因铜网接地,两根导体对地不对称,因此叫做不对称式或不平衡式传输线。同轴电缆工作频率范围宽,损耗小,对静电耦合有一定的屏蔽作用,但对磁场的干扰却无能为力。使用时切忌与有强电流的线路并行走向,也不能靠近低频信号线路。GSM系统所用天馈为同轴电缆。无限长传输线上各点电压与电流的比值等于特性阻抗,用符号Z。表示。同轴电缆的特 性阻抗Z。=〔138/√εr〕×log(D/d)欧姆。 通常Z。=50欧姆/或75欧姆; D为同轴电缆外导体铜网内径;d为其芯线外径;εr为导体间绝缘介质的相对介电常数。 由上式不难看出,馈线特性阻抗与导体直径、导体间距和导体间介质的介电常数有关,与馈线长短、工作频率以及馈线终端所接负载阻抗大小无关。一般GSM 工程上采用的馈线为口径为7/8 inch;在Alcatl系统的双频小区中DCS1800使用13/8 inch口径的馈线。 信号在馈线里传输,除有导体的电阻损耗外,还有绝缘材料的介质损耗。这两种

(完整word版)传输线理论

实验一:传输线理论* (Transmission Line Theory) 一.实验目的: 1.了解基本传输线、微带线的特性。 2.利用实验模组实际测量以了解微带线的特性。 3.利用MICROWA VE软件进行基本传输线和微带线的电路设计和仿真。 二、预习内容: 1.熟悉微波课程有关传输线的理论知识。 2.熟悉微波课程有关微带线的理论知识。 项次设备名称数量备注 1 MOTECH RF2000 测量仪1套亦可用网络分析仪 2 微带线模组1组RF2KM1-1A, 3 50ΩBNC 连接线2条CA-1、CA-2 (粉红色) 4 1MΩBNC 连接线2条CA-3、CA-4(黑色) 5 MICROWA VE软件1套微波电路设计软件 四、理论分析: (一)基本传输线理论 在传输线上传输波的电压、电流信号会是时间及传输距离的函数。一条单位长度传输线的等效电路可由R、L、G、C等四个元件来组成,如图1-1所示。 假设波的传播方向为+Z轴的方向,则由基尔霍夫电压及电流定律可得下列二个传输线方程式: 此两个方程式的解可写成: ) ( ) ( ) ( ) ( ) (2 2 2 = + - - -z V LG RC j z V LC RG dz z V d ω ω ) ( ) ( ) ( ) ( ) (2 2 2 = + - - -z I LG RC j z I LC RG dz z I d ω ω 图1-1单位长度传输线的等效电路

z z e V e V z V γγ--++=)( (1-1) ,z z e I e I z I γγ--+-=)((1-2) 其中V +,V -,I +,I -分别是信号的电压及电流振幅常数,而+、-则分别表示+Z ,-Z 的传输方向。γ则是传输系数(propagation coefficient ),其定义如下: ))((C j G L j R ωωγ++= (1-3) 而波在z 上任一点的总电压及电流的关系则可由下列方程式表示: I L j R dz dV ?+-=)(ω V C j G dz dI ?+-=)(ω (1-4) 式(1-1)、(1-2)代入式(1-3)可得: C j G I V ωγ+=++ 一般将上式定义为传输线的特性阻抗(Characteristic Impedance )——Z O : C j G L j R C j G I V I V Z O ωωωγ++=+===--++ 当R=G=0时,传输线没有损耗(Lossless or Loss-free )。因此,一般无耗传 输线的传输系数γ及特性阻抗Z O 分别为: LC j j ωβγ== , C L Z O = 此时传输系数为纯虚数。大多数的射频传输线损耗都很小;亦即R <<ωL 且G <<ωC 。所以R 、G 可以忽略不计,此时传输线的传输系数可写成下列公式: βαωγj C G L R LC LC j +=?? ? ??++ ≈2 (1-5) 式(1-5)中与在无耗传输线中是一样的,而α定义为传输线的衰减常数(Attenuation Constant ),其公式分别为: LC j ωβ=, )(2 1 2o o GZ RY C G L R LC +=??? ??+= α 其中Y 0定义为传输线的特性导纳(Characteristic Adimttance), 其公式为: L C Z Y O O ==1 (二)负载传输线(Terminated Transmission Line ) (A )无损耗负载传输线(Terminated Lossless Line ) 考虑一段特性阻抗为Zo 的传输线,一端接信号源,另一端则接上负载,如

第三章传输线理论

第三章传输线理论 本章的目的是概述由集总电路向分布电路表示法过度的物理前提。在此过程中,推导出一个最有用的公式:一般的射频传输线结构的空间相关阻抗表示公式。正如我们知道的,频率的提高意味着波长的减小,该结论用于射频电路,就是当波长可与分立的电路元件的几何尺寸相比拟时,电压和电流不再保持空间不变,必须把它们看做是传输的波。因为基尔霍夫电压和电流定律都没有考虑到这些空间的变化,我们必须对普通的集总电路分析进行重大的修改。本章重点介绍传输线理论,首先介绍传输线理论的实质,再介绍常用的几种传输线,其中重点介绍微带传输线,以及一般的传输线方程及阻抗的一般定义公式。 3.1传输线的基本知识 传输微波能量和信号的线路称为微波传输线。本节主要介绍传输线理论的实质以及理论基础 3.1.1传输线理论的实质 传输线理论是分布参数电路理论,它在场分析和基本电路理论之间架起了桥梁。随着工作频率的升高,波长不断减小,当波长可以与电路的几何尺寸相比拟时,传输线上的电压和电流将随着空间位置而变化,使电压和电流呈现波动性,这一点与低频电路完全不同。传输线理论用来分析传输线上电压和电流的分布,以及传输线上阻抗的变化规律。在射频阶段,基尔霍夫定律不再成立,因而必须使用传输线理论取代低频电路理论。 现在举例说明:分析一个简单的电路,该电路由内阻为R1的正弦电压源V1通过1.6cm的铜导线与负载电阻R2组成。电路图如下: 图3.1 简单电路

并且我们假设导线的方向与z轴方向一致,且它们的电阻可以忽略。我们假设振荡器的频率是1MHz,由公式 (3.1) 10m/s, rε=10, rμ=1 因此可以得到波长其中是相速度,=9.49×7 λ=94.86m.连接源和负载的1.6cm长的导线,在如此小的尺度内感受的电压空间变化是不明显的。 但是当频率提高到10GHz时情况就明显的不同了,此时波长降低到λ=p v/10 10=0.949cm,近似为导线长度的2/3,如果沿着1.6cm的导线测量电压,确定信号的相位参考点所在的位置是十分重要的。经过测量得知电压随着相位参考点的不同而发生很大的不同。 现在我们面临着不同的选择,在上图所示的电路中,假设导线的电阻可以忽略,当连接源和负载的导线不存在电压的空间变化时,如低频电路情况,才能有基尔霍夫电压定律进行分析。但是当频率高到必须考虑电压和电流的空间特性时,基尔霍夫电路定律将不能直接用。但是这种情况可以补救,假如该线能再细分为小的线元,在数学上称为无限小长度在该小线元上假定电压和电流保持恒定值。对于每一段小的长度的等效电路为: 图3.2 微带线的等效电路 但是具体到什么时候导线或者分立元件作为传输线处理,这个问题不能用简单的数字还给以确切的回答。从满足基尔霍夫要求的集总电路分析到包含有电压和电流的分布电路理论的过度与波长有关。此过度是在波长变得越来越与电路的平均尺寸可比拟的过程中,逐渐发生。根据一般的科研经验,当分立的电路元件平均尺寸长度大于波长的1/10时,就应该用传输线理论。例如在本例中1.6cm的导线我们能估算出频率为:

硅橡胶工业发展现状

本文摘自再生资源回收-变宝网(https://www.doczj.com/doc/e811845192.html,) 硅橡胶工业发展现状 自1943年美国道康宁(DC)公司首先实现有机氯硅烷工业化生产以来,经过50多年的发展,在当今国际有机硅市场上形成DC、GE、R-P、Wacker、信越公司五强的新局面。世界上大型有机硅专业公司有十多家,甲基氯硅烷的生产规模越来越大,各种硅油及二次加工品、硅橡胶、硅树脂、硅烷偶联剂、硅烷表面活性剂等为各个工业部门广泛应用,有机硅产品品种规格多达5000余种,产量和销售额与日俱增。近30年来,有机硅工业产品的增长率保持在8%~15%,远远超过一般国家国民经济的增长率。目前有机硅在我国的应用已很广泛,数量和品种持续增长,应用领域不断拓宽,我国已成为有机硅产品最具潜力的市场。 1、热硫化硅橡胶 由于各国各地区产业结构不同,有机硅的高层结构也不尽相同,如美国硅橡胶占有机硅市场的25~30%、欧洲约占40%、日本则超过50%,其中近一半为热硫化硅橡胶,我国硅橡胶占的比例更大,约60%。在我国,热硫化硅橡胶主要用于电子电气工业、办公自动化装备及汽车工业,随着国民经济的发展,对热硫化硅橡胶的需求正以每年不低于20%的速度增长。 热硫化硅橡胶生产技术复杂,产品附加值高,在世界有机硅市场上,其销售量份额约占10%,销售额则高达30~40%。热硫化硅橡胶的用途可大致分为挤出成型制品35%,模压制品30%,电线电缆用30%,涂覆材料用5%,消费量增长率为4~6%。在发达国家,热硫化硅橡胶生胶及混炼胶的生产规模和生产技术已达到较高水平,早在60年代初期美国DowCorning公司就有了千吨级连续聚合装置。在我国最早从事热硫化硅橡胶研究和和生产的单位主要有晨光化工研究院和吉化公司研究院等,第一套生产装置建于1960年,生产规模为5t/a。到现在,全国已建成生胶生产装置40多套,总生产

行业分析-有机硅行业最新分析 精品

国内外有机硅行业市场现状与发展趋势 一.概述 有机硅作为一种新型的高科技材料,从20世纪40年代初工业化生产以来,被广泛应用于电子、电器、航空、航天、建筑、纺织、医药、日化等领域,成为国民经济发展和人民生活水平提高不可或缺的新材料。 有机氯硅烷单体是整个有机硅化学的支柱,其中绝大多数有机硅材料都含有由二甲基二氯硅烷所制得的聚硅氧烷,如果引入其他基团、如苯基、乙烯基、氯苯基以及氟烷基等,可衍生出一系列性能各异的有机硅聚合物。制备有机硅产品需用众多的有机硅单体,其中甲基氯硅烷单体的用量占90%以上,甲基氯硅烷单体中又以二甲基二氯硅烷用量最大,约占80%,另外还有苯基氯硅烷单体、乙烯基氯硅烷单体等。所以,有机硅工业的发展是和有机氯硅烷(尤其是甲基氯硅烷)的合成技术分不开的。 有机硅产品种类繁多,按其基本形态分为4大类,即硅油、硅橡胶、硅树脂和硅烷(包括硅烷偶联剂和硅烷化试剂)。表1是按行业分类有机硅产品主要应用领域。 2 国外市场分析与预测 2.1 供应及生产发展趋势

随着需求的增加,国外有机硅单体的生产能力一直在不断的扩大,截止到20XX年底,生产能力已达到319万t(以二甲基二氯硅烷计,以下同。二甲基二氯硅烷经水解得到DMC和D4,通常按2t粗二甲基二氯硅烷得1tDMC或D4计)。 由于有机硅单体生产以及后加工均为技术密集型,因此长期以来有机硅为相对垄断性行业。主要生产企业有美国道康宁公司、美国迈图公司、德国瓦克公司、中国蓝星集团和日本信越公司,该五大公司产能合计占全球总产能的77%。20XX年世界有机硅市场竞争结构见图1。 道康宁公司是目前世界上最大的有机硅单体及材料的生产商,其有机硅单体的生产能力总计为86万t/a,占全球产能的27%,分别在美国、英国和日本建有生产装置,目前正在张家港与德国瓦克公司合作建设新的生产装置,20XX年其有机硅业务的销售额为49.4亿美元,较20XX年增长了13%(主要来自Hemlock Semiconductor Corp。多晶硅业务的增长)。其次是Monentive Performance Materials(迈图,前身是美国的GE公司有机硅事业部)公司,其有机硅单体的生产能力总计为45万t/a,占全球产能的14%。表3列出20XX年世界主要有机硅生产厂家的生产能力。

TSV硅通孔技术的研究解析

西安电子科技大学 硕士研究生课程考试试卷 科目集成电路封装与测试 题目硅通孔(TSV)工艺技术 学号 1511122657 班级 111504 姓名马会会 任课教师包军林 分 数 评卷人 签名 注意事项 1.考试舞弊者做勒令退学或开除学籍 2.用铅笔答题一律无效(作图除外) 3.试题随试卷一起交回 硅通孔TSV工艺技术

1511122657 马会会 摘要:本文主要介绍近几年封装技术的快速发展及发展趋势。简单介绍了TSV技术的发展前景及其优势。详细介绍了硅通孔工艺以及其关键技术。并针对TSV 中通孔的形成,综述了国内外研究进展,提出了干法刻蚀、湿法刻蚀、激光钻孔和光辅助电化学刻蚀法(PAECE)等四种TSV通孔的加工方法、并对各种方法进行了比较,提出了各种方法的适用范围。 关键词:后摩尔时代;封装技术;TSV;硅通孔 Abstract:This paper mainly introduces the rapid development and development trend of packaging technology in recent years.In the brief introduction of several vertical packaging technology, the paper focuses on the development of TSV technology and its advantages. The technology of Si - through hole and its key technologies are introduced in detail. In this paper, the research progress of TSV was summarized, and the method of dry etching, wet etching, laser drilling and photo assisted electrochemical etching (PAECE) was proposed, and four kinds of TSV through hole were compared. Keywords:Post Moore era; packaging technology; TSV; silicon through hole 引言 集成电路技术在过去的几十年里的到了迅速的发展。集成电路的速度和集成度得到了很大的提高并且一直遵循摩尔定律不断发展,即单位集成电路面积上可容纳的晶体管数目大约每隔18个月可以增加一倍。然而,当晶体管尺寸减小到几十纳米级后,想再通过减小晶体管尺寸来提升集成电路的性能已经变得非常困难,要想推动集成电路行业继续遵循摩尔定律发展就不得不寻求新的方法。 自从集成电路发明以来,芯片已无可辩驳地成为电子电路集成的最终形式。从那以后,集成度增加的速度就按照摩尔定律的预测稳步前进。摩尔定律的预测在未来若干年依然有效的观点目前仍然被普遍接受,然而,一个同样被广泛认同的观点是,物理定律将使摩尔定律最初描述的发展趋势停止。在这种情况下,电子电路技术和点路设计的概念将进入一个新的发展阶段,互连线将在重要性和价值方面得到提升。在被称作“超越摩尔定律”的新兴范式下,无论是物理上还是使用上,在z轴方向组装都变得越来越重要。目前在电子封装业中第三维正在被广泛关注,成为封装技术的主导。 图1 封装的技术演变与长期发展图

中国有机硅产业研究热点与发展现状[1]

2008年36卷第5期广州化工作者简介:郑景新(1983-),男,湖南湘潭人,硕士,工程师,主要从事纳米材料开发研究工作。 (广州吉必盛科技实业有限公司,广州510450) 中国有机硅产业研究热点与发展现状 郑景新,王跃林,段先健,吴利民 摘 要:介绍了第十四届中国有机硅学术交流会盛况, 综述了国内同行专家在有机硅方面的研究成果,对当前国内有机硅行业现状及研究热点作了阐述。中国有机硅行业当前面临着极大的机遇与挑战,国内各企业与科研院校当紧密合作,加强 交流协助,增强创新意识,加大科技投入,提高以自主知识产权为核心的竞争能力,在激烈的市场竞争中抢占一席之地。 关键词: 有机硅;硅产业链;研究热点;发展现状Research Hot and Development Status of Organic Silicone Industry in China ZHENG Jing-xin,WANG Yue-lin,DUAN Xian-jian,WU Li-min (Guangzhou GBS High-Tech &Industry Co.,Ltd,Guangzhou 510450,China) Abstract:The pomp of the Fourteenth Chinese Academic Forum on Silicone Material and Progress of research and application on silicone industry in China were introduced.The fruits of researching on silicon by experts were also described.Chinese silicon industry is now facing chances and challenges.Enterprises and academic organizations should enhance cooperation and communication to strengthen innovation and outlay devotion to obtain the ability of competition with overseas corporation. Key words:silicone material;silica industry;research hot;the development status 由中国氟硅有机材料工业协会有机硅专业委员会主办的第十四届中国有机硅学术交流会,于9月16日至19日在 杭州隆重举行, 400多名来自国内有机硅行业各公司、高校及科研院所的专家就国内外有机硅行业研究发展的新动向、新 理论、 新工艺和新的测试分析方法等进行了交流讨论。作为国内有机硅行业的学术盛会,该会议每两年举办一次。本次大会共收到论文68篇,其中收录64篇,并作了专题报告44场。会议分行业综述及专论,有机硅单体、中间体及基础研 究,硅橡胶研究及应用,硅油、 改性硅油及其二次加工制品研究和应用;硅树脂研究及应用;硅烷偶联剂研究及应用等专题。 1中国有机硅领域的现状及未来发展前景 在此次大会上,业内专家普遍认为,目前我国有机硅工 业面临三大新挑战。 中国化工信息中心傅积赉教授详细分析了这三大新挑战:一是跨国公司在中国的有机硅下游工厂越来越多,与中国企业争抢有机硅市场份额;二是适度发展我国有机硅工业,保护环境,节约资源,实现可持续发展是中国有机硅行业需要解决的问题;三是源于加拿大政府将十甲基环五硅氧烷(D5)、八甲基环四硅氧烷(D4)、十二甲基环六硅氧烷(D6)归入对环境有毒物质类,这三种物质对中国环境特别是有机硅工厂集中的长三角和珠三角等局部环境的直接污染和潜在危害将十分严重。 中蓝晨光化工研究院有限公司总工程师杨晓勇分析了 中国有机硅工业的现状,在对当前有机硅单体建设热潮冷静思考的同时,指出了中国有机硅工业存在的主要问题:(1)企 业规模小,综合实力弱;(2 )创新能力不强,产品技术含量较低;(3)市场划分粗放,产品单一老化;(4)物耗能耗大,生产 成本高,缺乏竞争力。 并针对有机硅单体、硅橡胶、硅油、硅树脂等方面的发展提出了建议。 广州吉必盛科技实业有限公司董事长王跃林教授针对整个硅产业链中硅资源的利用问题提出了自己独特见解。认为随着多晶硅太阳能产业的高速发展,势必会与有机硅工业争夺原料工业硅资源,一旦工业硅供应增速稍慢或有政策上的风吹草动,财大气粗的多晶硅企业必定会高价采购以确保自身的原料供应,工业硅价格也将由此获得暴涨理由,一些有机硅企业如仍在下游高端消费领域和规模化技术上无所突破,很有可能在几年内陷入活而无米可炊、或而无利可图的尴尬局面。鉴于未来原料之争,王教授认为第一要将多晶硅生产中的硅利用效率提高上去,另一种方法则是将有机硅与多晶硅结合在一起,实现资源互补,共同发展。 虽然目前有机硅工业面临着很大的挑战和不少的问题,但是有机硅产业的发展前景还是很喜人的。世界能源危机和石油价格的上涨,为有机硅工业提供了巨大的发展空间,以硅替碳是有机硅工作者的梦想。国内外需求强劲,市场潜力巨大,随着中国、俄罗斯、印度、巴西等新兴经济体的发展,国内外市场对有机硅材料的需求非常旺盛,目前的产能还达不是常需求,缺口较大。因此,无论从目前的生产现状、市场容量、出口前景,还是从行业发展趋势看,中国有机硅工业都有巨大的发展空间。在 21··

传输线理论

实验一:传输线理论 * (Transmission Line Theory ) 一. 实验目的: 1. 了解基本传输线、微带线的特性。 2. 利用实验模组实际测量以了解微带线的特性。 3. 利用MICROWA VE 软件进行基本传输线和微带线的电路设计和仿真。 二、预习内容: 1.熟悉微波课程有关传输线的理论知识。 2.熟悉微波课程有关微带线的理论知识。 四、理论分析: (一)基本传输线理论 在传输线上传输波的电压、电流信号会是时间及传输距离的函数。一条单位长度传输线的等效电路可由R 、L 、G 、C 等四个元件来组成,如图1-1所示。 假设波的传播方向为+Z 轴的方向,则由基尔霍夫电压及电流定律可得下列 二个传输线方程式: 此两个方程式的解可写成: 0)()()()() (22 2=+---z V LG RC j z V LC RG dz z V d ωω0)()()()()(2 2 2=+---z I LG RC j z I LC RG dz z I d ωω 图1-1单位长度传输线的等效电路

z z e V e V z V γγ--++=)( (1-1) ,z z e I e I z I γγ--+-=)((1-2) 其中V +,V -,I +,I - 分别是信号的电压及电流振幅常数,而+、-则分别表示+Z ,-Z 的传输方向。γ则是传输系数(propagation coefficient ),其定义如下: ))((C j G L j R ωωγ++= (1-3) 而波在z 上任一点的总电压及电流的关系则可由下列方程式表示: I L j R dz dV ?+-=)(ω V C j G dz dI ?+-=)(ω (1-4) 式(1-1)、(1-2)代入式(1-3)可得: C j G I V ωγ+=++ 一般将上式定义为传输线的特性阻抗(Characteristic Impedance )——Z O : C j G L j R C j G I V I V Z O ωωωγ++=+===--++ 当R=G=0时,传输线没有损耗(Lossless or Loss-free )。因此,一般无耗传 输线的传输系数γ及特性阻抗Z O 分别为: LC j j ωβγ== , C L Z O = 此时传输系数为纯虚数。大多数的射频传输线损耗都很小;亦即R <<ωL 且G <<ωC 。所以R 、G 可以忽略不计,此时传输线的传输系数可写成下列公式: βαωγj C G L R LC LC j +=?? ? ??++≈2 (1-5) 式(1-5)中与在无耗传输线中是一样的,而α定义为传输线的衰减常数(Attenuation Constant ),其公式分别为: LC j ωβ=, )(2 1 2o o GZ RY C G L R LC +=??? ??+= α 其中Y 0定义为传输线的特性导纳(Characteristic Adimttance), 其公式为: L C Z Y O O ==1 (二)负载传输线(Terminated Transmission Line ) (A )无损耗负载传输线(Terminated Lossless Line ) 考虑一段特性阻抗为Zo 的传输线,一端接信号源,另一端则接上负载,如

应用于三维封装中的硅通孔技术

- 18 - 收稿日期:2012-03-26 应用于三维封装中的硅通孔技术 邓小军1,曹正州2 (1.无锡创立达科技有限公司,江苏 无锡 214142;2.中国电子科技集团公司第58研究所,江苏 无锡 214035) 摘 要:随着集成电路日新月异的发展,当半导体器件工艺进展到纳米级别后,传统的二维领域封装已渐渐不能满足电路高性能、低功耗与高可靠性的要求。为解决这一问题,三维封装成为了未来封装发展的主流。文章简要介绍了三维封装的工艺流程,并重点介绍了硅通孔技术的现阶段在CSP 领域的应用,以及其未来的发展方向。关键词:三维封装;硅通孔;CSP 中图分类号:TN305.94 文献标识码:A 文章编号:1681-1070(2012)09-0018-06 The Through Silicon Via Technology Using in 3D Packaging DENG Xiao-jun 1, CAO Zheng-zhou 2 (1. Wuxi TreasureStar Technology Co ., LTD ., Wuxi 214142, China ; 2. China Electronics Technology Group Corporation No .58 Research Institute , Wuxi 214035, China ) Abstract: With the development of now day integrated circuit, the traditional 2D packaging can not satisfy the requirement of high function, low power and high reliability when the semiconductor device develops into nano level. To solve the problem, 3D packaging becomes the mainstream of future package. In this paper, authors introduce the process flow of 3D package and emphasize the through silicon via (TSV )technology using in CSP area and the further development’s direction. Key words: 3D packaging; TSV; CSP 1 引言 在过去的三十年间,半导体技术已经在二维领域得到了广泛的应用。一个关键原因就是金属氧化物半导体(MOS )器件数量的快速增长趋势是可以根据摩尔定律预测的[1] 。但是近年来实际的器件增长趋势已经和理想模型的预测有所差别了。因为随着芯片功能的增强,芯片内集成的晶体管数目越来越多,体积也越来越大,功耗也越来越高,kT /q 比无法继续在现有技术层面缩小,因此在不提高泄漏上限的基础上降低MOS 器件的阈值电压就变得十分困难。而阈值电压无法降低,降低功耗和提高器件 的性能这两种要求就会产生冲突。尤其是在高集成 度条件下,单个芯片内各个系统的互连引线过长和过多,其阻容延迟和寄生电容会使器件工作速度降低。另外,其所引发的信号传输延迟、信号带宽不足和控制时序的不一致性,会制约当前通信技术和大型计算机技术的发展。还有,互连引线过长引起的噪声问题也不容忽视,而各种噪声均与信号在互连引线中的传输距离密切相关。要满足上述性能要求,必须突破当前二维器件技术水平的制约。 大规模集成电路的结构是其中一种解决方案。随着电路集成度越来越高,信号的延迟主要取决于引线长度和引脚电容。三维大规模集成电路是一种能提升性能同时不需要增加功耗的解决途径。带来

国内外有机硅行业市场现状与发展趋势(精)

应用市场硅油及其二次加工制品 硅橡胶 硅树脂 十字头涂料、涂色加工的滚筒、运动服防滑 半导体元件节点涂料、电子元件保护用灌封料及涂料、电气粘 结密封、光导纤维涂层、电 绝缘、导电橡胶等 幕墙接缝密封、窗户玻璃密封、双层玻璃接缝密封、建筑物防水涂层等 各种粘结密封、耐热候耐腐蚀等垫圈垫片、制模材料等油封、衬垫、 O 型环、点火线、 火花塞保护罩、消声器衬里等 柔软整理剂、疏水剂、缝纫线润滑、 纤维滑爽剂、织机润滑、染色及乳胶配合消泡剂等 变压器油、电容器油、泡沫材料的均泡剂、仪器防湿、绝缘子防污、接点润滑等、电线芯线处理、配电盘防湿及绝缘 泡沫材料均泡剂、隔热材料疏水处理、乳胶配合消泡、沥青消泡、瓷砖疏水剂等 润滑油精制消泡、机器的防潮、绝缘、防爆密封、合成树脂聚合助剂、石棉垫表面处理等

缓冲油、工作油、刹车油、仪表减震油、汽车添加剂、润滑油等 纺织工业 电子电气工业 建筑建材 化工轻工 汽车工业 玻璃十字头、层压件的加工材料 绝缘材料、疏水和防潮处理 材料、玻璃及云母等的压层加工的处理材料和胶粘剂、电阻保护涂料等耐热涂料、耐候涂料、耐化学涂料等耐热涂料、耐候涂料、耐化 学品涂料等耐油耐候涂料、憎水剂等 表 1 有机硅产品主要应用领域 力一直在不断的扩大 , 截止到 2007年底 , 生产能力已达到 319万 t (以二甲基二氯硅烷计 , 以下同。二甲基二氯硅烷经水解得到 DMC 和 D4, 通 1概述 有机硅作为一种新型的高科技材料 , 从 20世 纪 40年代初工业化生产以来 , 被广泛应用于电子、电器、航空、航天、建筑、纺织、医药、日化等领域 , 成为国民经济发展和人民生活水平提高不可或缺的新材料。

传输基础知识

传输基础知识 一、传输基础概述 1、电信网及其分类 电信网就是为公众提供信息服务、完成信息传递与交换的通信网络。电信网所提供的信息服务就就是通常所有的电信业务。 通常把电信网分为业务网、传输网与支撑网。业务网面向公众提供电信业务,传输网为业务网传送信号,支撑网支持业务网与传输网的正常运行,信令网、同步网与管理网并称电信三大支撑网络。 2、传输的概念与地位 通信的目的就就是把信息从一个地点传递到另一个地点,而传输就就是两点之间的桥梁与纽带,传输有单向传输(例如广播)与双向传输(例如通话)之分。如果要在多点间进行通信,则需要建设多点对多点的复杂的传输网络,现代的传输网常称作信息高速公路,为各种业务网提供传送通道。 传输网就是所有业务网的基础,投入大,建设期长,可靠、安全、稳定就是传输网追求的目标,传输网的建设必须以业务需求为导向,在进行科学合理的预测、规划指导下,适当超前建设。在我国,传输网尚未独立运营,通常无直接产出,但除直接服务于相关业务网外,可以通过置换、出租等方式创造利润。 传输网服务于业务网,因此要建设好传输网,需要对服务对象有足够的了解,掌握业务网的各种需求及发展趋势。传输网早期的建设方式通常就是针对于某单一业务网,服务对象比较单一,业务目标清晰,网络比较简单,如:GSM网传输网、PSTN传输网等,不过,为了整合资源、提高网络利用率、节省管理维护成本等,现在的越来越趋向于建设多业务综合传输平台,对规划设计提出了更高的要求。 3、传输网的网络拓扑 传输网由传输节点与节点之间的连接关系组成,通常存在多个节点,传输网内各节点之间的连接关系形成网络拓扑。 传输网的基本网络拓扑形式有5种:线形、星性、树形、环形、网孔形,不过,树形也可以瞧作就是星形互连而成。 传输网的网络拓扑选择一般要考虑下列因素: (1) 网络容量:指网络能够吞吐的通信业务量的总与; (2) 网络可靠性:指网络能够可靠地运行的程度,它跟网络故障的发生概率、影响范围与程度、网络的自愈能力以及网络对不可自愈故障的修复能力等有关;网络故障的发生概率一般取决于设备制造、网络安装与网络管理维护水平,而与网络拓扑关系不大,网络故障的影响则与拓扑有直接关系。网络的自愈能力就是指网络故障发生后,网络所具有的隔离故障、恢复通信业务以及故障修复后的恢复能力。网络对不可自愈故障的修复能力主要取决于网络维修人员的能力; (3) 网络经济性:指构建网络的费用,与所使用的设备及数量、网络的可靠性设计、工程施工费用等有关。 3、1、线形网 线形网就是用一条首尾不相接的线段将各个节点连接起来形成的网络。线形网的路由设置一般分为两种情况:有中心节点与无中心节点,中心节点可位于任一节点,有中心节点的线形网路由设置将物理上的线形网转变成了逻辑上的星形网。线形网一般采用1+1主备保护方式,对传输系统的发送器与接收器提供保护,线形网对线路与节点设备故障起不到保护作用。 线形网通常适用于各节点在地理位置上呈长条状分布的场合。

实验报告-传输线基本概念实验

传输线基本概念实验 当频率高到射频以后,电路元器件的性能发生了变化。甚至于一段线也要用传输线公式来表示,比如说λ/ 4线末端短路时始端等于开路,而末端开路时始端等于短路。这种概念一开始是很难接受的,但是有了PNA362X就可以进行实验验证了。 一实验目的 通过无耗短线的输入阻抗测试,加深对传输线公式与史密斯圆图的理解。 二仪器准备 PNA3620~3623的任一款及其成套附件,另加配保护接头一只。 仪器开机时所显示的主菜单第一项应为《频域》,若为《时域》,则按〖↓〗键使光标移到《时域》下,然后按〖→〗键选择想要的《频域》。 ? ?⑴? 扫频方案设置 ????1.选最小频距, 按〖↓〗键使光标移到《频域》旁边的数值下,按〖→〗在两种最小频距间作出选择(0.1MHz或0.025MHz,通常选0.1 MHz,有特殊要求时才用0.025MHz); 2.BF=30MHz, 按〖↓〗键, 使光标移到《BF》下面, 可按〖→〗〖←〗键对始频进行改动到所需数值为止, 仪器最低频与型号有关; 3.⊿F =30MHz, 按〖↓〗键, 使光标移到《⊿F》下面, 按〖→〗〖←〗键可对频距进行改动, 时域中⊿F不受控; 4.EF =1590MHz。 按〖↓〗键, 使光标移到《EF》下面, 按〖→〗〖←〗键可改变终止频率, 改EF时, 点数N随着变动, 点数N最小为1, 最大为81; EF = BF+(N - 1)⊿F。 注:一次性扫频方案可在主菜单下设置,若常用并需要保留的扫频方案,应按菜单键在扫频方案菜单下设置,应用时选定即可。 M:模式分为《常规》和《精

测》,应选《常规》,《精测》太费时间。 ⑵连接 1.按上图连接, 此时电桥测试端口应接上保护接头,保护接头末端开路作为新的测试端口(注); ??? 2.在主菜单下按〖↓〗键将光标移到《测:A B》下, 按〖→〗或〖←〗键使A下空白,B下为《回损》。 双通道仪器,A口与B口可以互换,连接应与选择相符。单通道机只有A口,所有测试皆由A口完成。 此时屏幕显示如下: 频域0.1 BF:0030.0 MHz ⊿F: 0030.0 MHz EF: 1590.0 MHz N: 053 M:常规 测:A B 回损 ?**************

相关主题
文本预览
相关文档 最新文档