当前位置:文档之家› 13.HyperWorks 在疲劳失效预测分析中的应用

13.HyperWorks 在疲劳失效预测分析中的应用

13.HyperWorks 在疲劳失效预测分析中的应用
13.HyperWorks 在疲劳失效预测分析中的应用

HyperWorks在疲劳失效预测分析中的应用

张建振常连霞

中国第一汽车集团公司

HyperWorks 在疲劳失效预测中的应用HyperWorks Application in Fatigue FailurePredication

张建振常连霞

(中国第一汽车集团公司技术中心)

摘要: 产品开发过程中制造加工、台架试验和耐久性试验成本高、周期长,而且失效大多出现在设计完成后,对设计更改带来难度,使用Altair公司的HyperWorks软件进行有限元疲劳预测,将零部件设计水平从寿命定性设计到寿命定量设计变为可能。本文借助HyperMesh和RADIOSS 软件,以平衡悬架大支架为例,介绍疲劳分析的使用过程,将计算结果与试验结果对比,并对改进结构进行验证。

关键词: 疲劳失效,HyperMesh, RADIOSS9.0

Abstract:Based on the theory of finite element analysis and fatigue failure analysis, this paper analyze the fatigue failure of components. The analysis can advance the fatigue life of vehicle components and reduce the design cycle.

Key words:fatigue failure, HyperMesh, RADIOSS9.0

1 概述

在重型自卸车在矿山服役过程中,平衡悬架系统承受着多种恶劣的载荷工况,大支架作为其中的支撑件,一旦出现疲劳失效,会造成悬架系统失效,甚至有可能引起汽车侧翻。利用传统的静强度设计方法已不能满足设计要求,需要选择适当的疲劳设计方法,在设计完成之前进行疲劳失效预测,从而为平衡悬架系统的设计安全性提供保障。利用Altair公司的HyperWorks软件,在一个HyperMesh环境下利用RADIOSS求解器进行静强度和疲劳强度分析,并可利用HyperView软件进行结果显示,既省去了从静强度分析软件到疲劳分析软件相互传递的麻烦,又缩短了零件的设计周期,解决了疲劳失效的预测的难题,是目前零部件分析比较完美的一种结合。

2 疲劳理论及RADIOSS疲劳特点

2.1 疲劳失效实质

疲劳失效在是交变应力作用下而产生,常表观为低应力脆性断裂(宏观上均表现为无明显塑性变形的突然断裂),并且常带有局部性质,局部改变细节设计或工艺措施,就可增强疲劳寿命。它是一个累积损伤的过程,需要经历三个过程:a.裂纹形成(成核),即.在零

件的高局部应力处,较弱晶粒在交变应力作用下形成微裂纹,然后发展成宏观裂纹;b.裂纹扩展;c.裂纹扩展到临界尺寸时快速断裂。因此,疲劳失效与应力循环次数有关[1]。

2.2 疲劳失效与静态破坏的区别

静强度破坏是在静应力(或等效静应力)作用下的失效,其主要失效形式是产生过大的残余变形(对于塑性材料),或脆性断裂(对于脆性材料);其所用材科的强度指标是屈服极限和强度极限。其设计应力是按静载荷或少量出观的峰值载荷进行计算出的名义应力。

2.3 RADIOSS疲劳失效分析步骤

RADIOSS疲劳分析方法是根据S—N曲线,应用线性疲劳累积损伤理论进行高周疲劳寿命估算,流程见图1[2]。

(1) 静态分析确定结构中的

危险部位及相应名义应

力;

(2) 根据载荷时间历程,确

定危险部位的名义应力

时间历程;

(3) 根据疲劳试验数据修正

材料S—N曲线,得到

图1 RADIOSS疲劳失效分析步

零部件S—N曲线;

(4) 应用疲劳损伤累积理论,求出危险部位的疲劳寿命。

2.3 RADIOSS疲劳分析特点

利用RADIOSS9.0进行疲劳分析存在下面几个突出的特点:

(1) 相同的疲劳分析方法得出的结果比ncode软件更加快速和准确;

(2) 可定义无限层的疲劳载荷和工况,为复杂的疲劳载荷工况的分析提供了方便;

(3) 疲劳分析和有限元分析可在同一界面下操作和进行,避免了界面操作和数据转换时带来的不必要的麻烦,后处理仍然使用HyperView模块;

(4) 由于是在HyperWorks平台下开发的,数据接口上将实现无缝连接,今后结合HyperMorph的网格自动变形可实现疲劳优化,结合process Manager可实现

疲劳分析流程固化等,其后期将具有很大的功能扩展性。

3. 模型的建立与分析

3.1 单元划分

在保证大支架分析精度的基础上对平衡悬架系统进行简化,对相关连接件如车架纵梁、

加强板等进行等效处理,模型见图2。基于关注区域细化、非关键区域粗化的原则对大支

架进行网格划分,该有限元模型的结点数和单元数见表1。

表1平衡悬架大支架的结点数和单元数

零件结点数单元数

平衡悬架大支架200464 51027

图2. 大支架有限元模型

3.2 材料特性

计算中所使用的材料参数如下:图2

表2. QT600的材料参数

材料弹性模量泊松比条件屈服疲劳极限最高拉应力

QT600-3 169GPa 0.286 370MPa 251MPa 400MPa

QT600-3属于屈强比高,偏脆的球铁材

料,静强度按最大抗拉强度设计,疲劳强度

材料需要根据实测材料数据,对图3[2]的材

料S-N曲线[2]进行修正得到零部件的S-N曲

线。

图3 QT600-3铸样P-S—N曲

3.3 大支架线性静态步分析

约束与车架纵梁和横梁加强板的连接位置,在板簧与平衡轴接触面中心加载垂直向上载荷,时间载荷历程为方便,做了简化,如下表3。

表3.垂直载荷的时间载荷历程表

时间/秒垂直载荷/KN

0 3.5

1 10.5

2 17.5

进行线性计算,得到结果见图5. 位置2、3拉应力超过了条件屈服强度,并且高应力

区已经贯穿了两处的截面,应力集中最为严重;其次为位置5、6处,应力集中程度相对小

一些。

3.4 定义大支架疲劳分析卡片

在RADIOSS9.0中进行疲劳分析需定义下列卡片,分为疲劳定义卡片和疲劳载荷时间历程卡片两大类(图4)。

图4. 大支架疲劳分析卡片

3.4 大支架疲劳分析

疲劳分析是根据疲劳载荷历程与静态载荷历程的关系,基于线性迭代方法,对静态分析得到的应力时间历程进行转化得到疲劳时使用的应力时间历程。其中应力历程转换公式为

此处:为时刻t时的结果应力张量.

is 静态分析的应力张量.

is t时刻载荷历程中的载荷值.

因此,在疲劳计算之前,先进行静态计算,确认得到的应力-时间历程是正确的,然后进行疲劳分析计算才是合理的。

4 计算结果与试验结果对比

经大量的大支架疲劳载荷破坏试验,经若干次循环载荷作用下,大支架首先在位置2、3位置处产生主裂纹,然后裂纹扩展,导致位置1、4产生次生裂纹,位置5、6处也相应有裂纹出现,证明计算结果与试验结果一致,如图5所示。

图4 计算结果与试验结果对比图片

5 结论

利用Altair公司的RADIOSS软件计算出分析结果与试验结果一致,证明RADIOSS 能够实现疲劳失效位置预测的功能,而且这种在同一HyperMesh环境下能够把静强度与疲劳强度分析有效结合起来指导零部件设计的方案,无疑是目前比较完美的。

6 参考文献

[1] 张祖明编《机械零件强度的现代设计方法》航空工业出版社 1990

[2] 姚卫星编《结构疲劳寿命分析》国防工业出版社 2003

[3] Altair Inc, Altair help document 2008

电子产品失效分析大全

电子产品失效分析大全 继电器失效分析 1、样品描述 所送样品是3种继电器,其中NG样品一组15个,OK样品2组各15个,代表性外观照片见图1。委托单位要求分析继电器触点的元素成分、各部件浸出物的成分,确认是否含有有机硅。 图1 样品的代表性外观照片 2、分析方法 2.1 接触电阻 首先用毫欧计测试所有继电器A、B接点的接触电阻,A、B接点的位置见图2所示,检测结果表示NG样品B点的接触电阻均大于100 mΩ,而2种OK样品的A、B点的接触电阻均小于100 mΩ。 图2 样品外观照片

2.2 SEM&EDS分析 对于NG品,根据所测接点电阻的结果,选取B接点接触电阻值高的2个继电器,对于2种OK品,每种任选2个继电器,在不污染触点及其周围的前提下,将样品进行拆分后,用SEM&EDS分析拆分后样品的触点及周围异物的元素成分。触点位置标示如图3所示。所检3种样品共6个继电器的触点中,NG品的触点及触点周围检出大量的含碳(C)、氧(O)、硅(Si)等元素的异物,而OK品的触点表面未检出异物。典型图片如图4、图5所示。 图3 触点位置标识(D指触点C反面) 图4 NG样品触点周围异物SEM&EDS检测结果典型图片

图5 OK样品触点的SEM&EDS检测结果典型图片 2.3 FT-IR分析 在不污染各部件的前提下,将2.2条款中剩下的继电器进行拆分,并将拆分后的部件分成3组,即A组(接点、弹片(可动端子、固定端子))、B组(铁片、铁芯、支架、卷轴)、C组(漆包线),分别将A、B、C组部件装入干净的瓶中,见图6所示,处理后用FT-IR分析萃取物的化学成分,确认其是否含有有机硅。 图6 拆分后样品的外观照片 结果表明,所检3种样品各部件的萃取物中,NG样品B组(铁片、铁芯、支架、卷轴)和C 组(漆包线)检出有机硅,其他样品的部件未检出有机硅。典型图片见图7所示。

材料失效分析

材料失效分析 ——金属的疲劳破坏 1.1材料失效简介 材料失效分析在工程上正得到日益广泛的应用和普遍的重视。失效分析对改进产品设计、选材等提供依据,并可防止或减少断裂事故的发生;可以提高机械产品的信誉,并能起到技术反馈作用,明显提高经济效益。大力开展失效分析研究,无论对工业、民生、科技发展,都具有极其重要的作用。 所谓失效——主要指机械构件由于尺寸、形状或材料的组织与性能发生变化而引起的机械构件不能完满地完成指定的功能。亦可称为故障或事故。一个机械零部件被认为是失效,应根据是否具有以下三个条件中的一个为判据: (1)零件完全破坏,不能工作; (2)严重损伤,继续工作不安全; (3)虽能暂时安全工作,但已不能满意完成指定任务。 上述情况的任何一种发生,都认为零件已经失效。 机械零部件最常见的失效形式有以下几种: 1.断裂失效:通常包括塑性(韧性)断裂失效;低应力脆性断裂失效;疲劳断裂失效; 蠕变断裂失效;应力腐蚀断裂失效。 2.表面损伤失效:通常包括磨损失效;腐蚀失效;表面疲劳失效 3.变形失效:包括塑性变形失效;弹性变形失效,同一种零件可有几种不同失效形式。一个零件失效,总是由一种形式起主导作用,很少以两种形式主导失效的。但它们可以组合为更复杂的失效形式,例如腐蚀磨损、腐蚀疲劳等。 2.1疲劳破坏 飞机、船舶、汽车、动力机械、工程机械 、冶金、石油等机械以及铁路桥梁等的主要零件和构件,大多在循环变化的载荷下工作,疲劳是其主要的失效形式。 金属疲劳是指材料、零构件在循环应力或循环应变作用下,在一处或几处逐渐产生局部永久性累积损伤,经一定循环次数后产生裂纹或突然发生完全断裂的过程。当材料和结构受到多次重复变化的载荷作用后,应力值虽然始终没有超过材料的强度极限,甚至比弹性极限还低的情况下就可能发生破坏,这种在交变载荷重复作用下材料和结构的破坏现象,就叫做金属的疲劳破坏。 2.2疲劳断裂的特征 1、疲劳断裂应力1σ(周期载荷中的最大应力 max σ)远比静载荷下材料的抗拉强度 b σ低,甚至比屈服强度s σ也低得多。 2、不管是脆性材料或延性材料,其疲劳断裂在宏观上均表现为无明显塑性变形的脆性突然断裂,故疲劳断裂一般表现为低应力脆断。 3、疲劳破断是损伤的积累,积累到一定程度,即裂纹扩展到一定程度后才突然断裂。 断裂前要经过较长时间的应力循环次数N (=104;105;106……)才断裂,所以疲劳断 裂是与时间有关的断裂。在恒应力或恒应变下,疲劳将由三个过程组成:裂纹的形成(形核);裂纹扩展到临界尺寸;余下断面的不稳定断裂。在宏观上可清楚看到后二个过程。 4、材料抵抗疲劳载荷的抗力比一般静载荷要敏感得多。疲劳抗力不仅决定于材料本 身,而且敏感地决定于构件的形状,尺寸、表面状态、服役条件和所处环境等。

失效案例分析

工程材料失效分析 姓名:丁静 学号:201421803012

案例一乙烯裂解炉炉管破裂原因分析某石化公司化工一厂裂解车间CBL一Ⅲ型乙烯裂解炉于1998年9月投入运行,1 999年4月检查发现一根裂解炉管发生泄漏。为查明炉管泄漏原因,对失效炉管进行了综合分析。 CBL一Ⅲ型乙烯裂解炉炉管工作温度为1050~llOO℃,材质化学成分(质量分数)为0.35~0.60%C;1.0%~2.0%Si;1.O%~1.50%Mn;33%~38%Ni;23%~28%Cr及微量Nb.Ti.Zr等。宏观观察失效炉管表面可以看出,泄漏部位炉管内、外壁均有两个孔坑,两个孔坑在内、外表面相互对应,孔坑边缘金属略有凸起,呈火山口状。仔细观察发现,在内壁两个孔坑附近表面有一约3 mm xl mm凸棱,凸棱略高于附近炉管表面(图11-1、图11-2)。

化学成分分析结果表明,失效炉管化学成分符合厂家技术要求。金相检查结果表明,失效炉管显微组织基体为奥氏体,晶界分布有骨架状碳化物,晶内和晶界分布有一定数量的颗粒状碳化物(图11-3)。 能谱分析结果表明,这些颗粒状碳化物为Nb.Zr.Ti或Cr的

碳化物。晶界分布的骨架状碳化物系以铬为主的碳化物。首先,采用扫描电镜观察了泄漏部位炉管内、外表面的放大形貌,观察发现,所有孔坑均存在白亮色块状物。通常,不导电的非金属氧化物或金属氧化物在电子束作用下因积累电荷而呈白亮色。能谱分析结果表明,白亮色块状物含有很高的稀土铈。分析认为,白亮色块状物为稀土氧化物。在泄漏部位,分别在内壁凸棱和孔坑两处,垂直于内表面制备了炉管横截面金相试样。可以看出,不论是凸棱对应部位,还是炉管内、外表面两个孔坑之间,炉管横截面均分布有宏观深灰色金属夹杂物,夹杂物在内、外表面两个孔坑之间连续贯通(图11-4)。 在扫描电镜下进一步观察、分析结果表明,两个横截面深灰色区域同样是稀土铈的氧化物(图11-5)。采用微型拉伸试样,对失效炉管进行了1100℃短时高温拉伸试验,其结果如表11-1所示。可以看出,失效炉管1100℃高温短时拉伸性能低于厂家相关技术要求。

市场调查与预测【模板】

市场调查与预测 一、填空题(20分) 1.对较大规模的调查对象总体随时间推移而发生的变化进行的研究叫________。 2.依据概率理论,按照随机原则选择样本,完全不带调查者的主观意识的抽样被称为_____。 3.科学研究的基本程序首先是提出问题和________。 4.用一种高层次的分析单位做调查,却用另一种低层次的分析单位做结论,这属于_______。 5.社会测量的效度分为内容效度、________和构念效度。 二、名词解释(每小题4分,20分) 1、文献法 2、统计分析 3、抽样 4、测量 5、推论统计 三、简答题(每小题10分,共40分) 1、统计调查有什么特点? 2、社会计量法的应用范围有哪些? 3、简述结构式访问的特点。 4、观察法的优点。 (1)通过观察可以直接获取资料 (2)\能直接观察自然状态下的比较可靠的社会学现象 (3)\获取的资料及时生动 四、论述题(结合实际进行论述。共20分) 试述参与观察的实施过程。

市场调查与预测试题答案 一、填空题(20分) 1.趋势研究 2.概率抽样 3.研究假设 4.层次谬误 5.准则效度 二、名词解释(每小题4分,20分) 1、文献法:是指根据一定的目标和题目通过有关文献收集资料的社会调查方法。 2、统计分析:就是从量的方面来分析事物之间的相互关系和相互作用,并通过对事物量的规定性分析,来把握和认识事物质的规定性。 3、抽样:指的是从调查对象的总体中,按一定的方式选择抽取一部分调查对象的过程。 4、测量:就是按照一定规则,将某种物体或现象所具有的特征用一组符号或数来表示的方法。 5、推论统计就是利用样本的统计值对总体的参数值进行估计的方法. 三、简答题(每小题10分,共40分) 1.统计调查是一种利用结构化的调查方法,调查大量样本,收集数据资料,并对资料进行统计分析的调查研究方式。 它的特点是: (1)利用标准化、结构化的调查方法收集资料。 (2)调查资料可以精确地分类或转换为数据形式。 (3)可以对资料进行数量分析。 2.社会计量法广泛应用于教育、工业和行政管理、军事及社会服务等领域。这些应用集中于以下几个方面: (1)领导才能的评价与干部选拔。 (2)工作分配。 (3)士气的考察。

疲劳断裂失效分析与表面强化预防

栏目主持李牟翔疲劳断裂失效分析与表面强化预防 北京航空材料研究院(100095)高玉魁 对于航空航天零部件而言,随着结构设计不断使用高强度结构材料来制造承力构件,越来越多的零件以疲劳断裂的方式发生失效事故。因此,总结疲劳断裂的失效特征,分析其影响凶素,探讨疲劳失效的预防措施一直是材料和力学等学科的研究工作者和工程师们所关心的课题。 对疲劳断裂失效而言,应该将疲劳裂纹的萌生与疲劳裂纹的扩展(包括疲劳小裂纹和长裂纹的扩展)结合起来,综合考虑疲劳裂纹的“裂”与“断”的过程,定量计算疲劳寿命,以便为设计提供数据支持和依据。目前的研究,材料工作者多从材料的组织结构特征方面来分析组织结构对疲劳寿命的影响,而断裂力学研究者则多从疲劳裂纹扩展寿命来计算安全的使用寿命。这两种方法都有一定的道理,并分别侧重于裂纹的萌生与扩展阶段的研究。对于疲劳断裂失效而言,疲劳断裂的过程都是先“裂”后“断”的。“疲劳断裂”不如“疲劳裂断”科学,这不仅是因为“疲劳裂断”可反映疲劳裂纹的萌生、扩展与断开的先后次序,而且“裂”还同时强调了裂纹的萌生和扩展两个阶段。一个零件要“裂”必须有裂纹的产生并使裂纹长大,要想“断”必须是零件上一定尺寸的裂纹在一定外力或环境的单独或共同作用下才能发生。因此,从“疲劳裂断”的进程来看,如何“防裂”、“止裂”、“防断”和“止断”不仅在科学理论上,而且在工程应用中都具有十分重要意义的研究课题。的强度潜力和使用性能;另一方面可提前预防失效事故并避免灾难的发生。为便于理解和使用,除了在此强凋“裂”外,下文仍采用“疲劳断裂”来描述疲劳失效。 1.结构材料的疲劳失效特征 疲劳失效是材料在循环载荷作用下发生的损伤和破坏过程。一般而言疲劳断裂包括裂纹的萌生、裂纹的扩展和最终的断裂三个过程,因此疲劳断口上有三个相对应的区域,即裂纹源区、裂纹扩展区和瞬断区。根据所受载荷的水平、材料的力学特性、试样的形状尺寸与约束条件的不同,这三个区域的大小、形状和分布特征也不尽相同,但总体而言可归纳为下列的4个宏观规律特征: (1)疲劳失效为低应力长时间无明显塑性变形的宏观脆性断裂。 (2)疲劳失效是由材料局部的组织不断发生损伤变化并且逐渐累积而成,疲劳总是从最薄弱的区域开始(见图1)。 图l疲劳裂纹萌生于内部的夹杂物缺陷 (3)疲劳断裂必须在循环应力和微观局部发生塑性 “防裂”和“止裂”是在“裂”上下功夫,通过分变形,以及拉伸应力作用下发生。前者是裂纹形成的条析裂的规律,找出裂的原因,提出防裂的措施,采用合 理的结构设计、合适的材料、适宜的热处理制度及可靠 的零件加工与适当的表面强化来改进开裂的方式,提高 开裂的抗力。“防断”和“止断”是在“断”字上做文 章,对存在一定尺寸的裂纹或缺陷,通过分析剩余寿命 /剩余强度来计算构件的安全,一方面可充分发挥材料 囵踅Q里堡箜!!塑整丝型堡旦箜蕉www.machinist.com.cn参磊卢工热lm-r 件,后者是裂纹扩展的需要。 (4)疲劳失效具有随机性,裂纹的形成与扩展都需 要一定的晶体学条件、力学条件和变形的协调条件,而 且材料本身的组织结构、成分偏析与夹杂缺陷等的不均 匀性,决定了疲劳失效具有随机性。 从疲劳失效的断口分析而言,微观上讲具有以下 万方数据

电子产品失效模式分析

电子产品失效模式分析 失效分析是一门发展中的新兴学科,近年开始从军工向普通企业普及,它一般根据失效模式和现象,通过分析和验证,模拟重现失效的现象,找出失效的原因,挖掘出失效的机理的活动。在提高产品质量,技术开发、改进,产品修复及仲裁失效事故等方面具有很强的实际意义。 01、失效分析流程 图1 失效分析流程 02、各种材料失效分析检测方法 1、PCB/PCBA失效分析

PCB作为各种元器件的载体与电路信号传输的枢纽已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。 图2 PCB/PCBA 失效模式 爆板、分层、短路、起泡,焊接不良,腐蚀迁移等。 常用手段 无损检测:外观检查,X射线透视检测,三维CT检测,C-SAM检测,红外热成像 表面元素分析: ?扫描电镜及能谱分析(SEM/EDS) ?显微红外分析(FTIR)

?俄歇电子能谱分析(AES) ?X射线光电子能谱分析(XPS) ?二次离子质谱分析(TOF-SIMS) 热分析: ?差示扫描量热法(DSC) ?热机械分析(TMA) ?热重分析(TGA) ?动态热机械分析(DMA) ?导热系数(稳态热流法、激光散射法) 电性能测试: ?击穿电压、耐电压、介电常数、电迁移 ?破坏性能测试: ?染色及渗透检测 2、电子元器件失效分析 电子元器件技术的快速发展和可靠性的提高奠定了现代电子装备的基础,元器件可靠性工作的根本任务是提高元器件的可靠性。 图3 电子元器件 失效模式开路,短路,漏电,功能失效,电参数漂移,非稳定失效等

常用手段电测:连接性测试电参数测试功能测试 无损检测: ?开封技术(机械开封、化学开封、激光开封) ?去钝化层技术(化学腐蚀去钝化层、等离子腐蚀去钝化层、机械研磨去钝化层) ?微区分析技术(FIB、CP) 制样技术: ?开封技术(机械开封、化学开封、激光开封) ?去钝化层技术(化学腐蚀去钝化层、等离子腐蚀去钝化层、机械研磨去钝化层) ?微区分析技术(FIB、CP) 显微形貌分析: ?光学显微分析技术 ?扫描电子显微镜二次电子像技术 表面元素分析: ?扫描电镜及能谱分析(SEM/EDS) ?俄歇电子能谱分析(AES) ?X射线光电子能谱分析(XPS) ?二次离子质谱分析(SIMS) 无损分析技术: ?X射线透视技术 ?三维透视技术 ?反射式扫描声学显微技术(C-SAM)

失效分析

失效分析 第三章失效分析的基本方法 1.按照失效件制造的全过程及使用条件的分析方法:(1)审查设计(2)材料分析(3)加工制 造缺陷分析(4)使用及维护情况分析 2.系统工程的分析思路方法:(1)失效系统工程分析法的类型(2)故障树分析法(3)模糊故 障树分析及应用 3.失效分析的程序:调查失效时间的现场;收集背景材料,深入研究分析,综合归纳所有信息 并提出初步结论;重现性试验或证明试验,确定失效原因并提出建议措施;最后写出分析报告等内容。 4.失效分析的步骤:(1)现场调查①保护现场②查明事故发生的时间、地点及失效过程③收集 残骸碎片,标出相对位置,保护好断口④选取进一步分析的试样,并注明位置及取样方法⑤询问目击者及相关有关人员,了解有关情况⑥写出现场调查报告(2)收集背景材料①设备的自然情况,包括设备名称,出厂及使用日期,设计参数及功能要求等②设备的运行记录,要特别注意载荷及其波动,温度变化,腐蚀介质等③设备的维修历史情况④设备的失效历史情况⑤设计图样及说明书、装配程序说明书、使用维护说明书等⑥材料选择及其依据⑦设备主要零部件的生产流程⑧设备服役前的经历,包括装配、包装、运输、储存、安装和调试等阶段⑨质量检验报告及有关的规范和标准。(3)技术参量复验①材料的化学成分②材料的金相组织和硬度及其分布③常规力学性能④主要零部件的几何参量及装配间隙(4)深入分析研究(5)综合分析归纳,推理判断提出初步结论(6)重现性试验或证明试验 5.断口的处理:①在干燥大气中断裂的新鲜断口,应立即放到干燥器内或真空室内保存,以防 止锈蚀,并应注意防止手指污染断口及损伤断口表面;对于在现场一时不能取样的零件尤其是断口,应采取有效的保护,防止零件或断口的二次污染或锈蚀,尽可能地将断裂件移到安全的地方,必要时可采取油脂封涂的办法保护断口。②对于断后被油污染的断口,要进行仔细清洗。③在潮湿大气中锈蚀的断口,可先用稀盐酸水溶液去除锈蚀氧化物,然后用清水冲洗,再用无水酒精冲洗并吹干。④在腐蚀环境中断裂的断口,在断口表面通常覆盖一层腐蚀产物,这层腐蚀产物对分析致断原因往往是非常重要的,因而不能轻易地将其去掉。 6.断口分析的具体任务:①确定断裂的宏观性质,是延性断裂还是脆性断裂或疲劳断裂等。② 确定断口的宏观形貌,是纤维状断口还是结晶状断口,有无放射线花样及有无剪切唇等。③查找裂纹源区的位置及数量,裂纹源的所在位置是在表面、次表面还是在内部,裂纹源是单个还是多个,在存在多个裂纹源区的情况下,它们产生的先后顺序是怎样的等。④确定断口的形成过程,裂纹是从何处产生的,裂纹向何处扩展,扩展的速度如何等。⑤确定断裂的微观机理,是解理型、准解理型还是微孔型,是沿晶型还是穿晶型等。⑥确定断口表面产物的性质,断口上有无腐蚀产物,何种产物,该产物是否参与了断裂过程等。 7.断口的宏观分析(1)最初断裂件的宏观判断①整机残骸的失效分析;②多个同类零件损坏的 失效分析;③同一个零件上相同部位的多处发生破断时的分析。(2)主断面(主裂纹)的宏观判断①利用碎片拼凑法确定主断面;②按照“T”形汇合法确定主断面或主裂纹;③按照裂纹

PCB失效分析技术与案例

PCB失效分析技术与典型案例 2009-11-18 15:10:05 资料来源:PCBcity 作者: 罗道军、汪洋、聂昕 摘要| 由于PCB高密度的发展趋势以及无铅与无卤的环保要求,越来越多的PCB出现了润湿不良、爆板、分层、CAF等等各种失效问题。本文首先介绍针对PCB在使用过程中的这些失效的分析技术,包括扫描电镜与能谱、光电子能谱、切片、热分析以及傅立叶红外光谱分析等。然后结合PCB的典型失效分析案例,介绍这些分析技术在实际案例中的应用。PCB失效机理与原因的获得将有利于将来对PCB的质量控制,从而避免类似问题的再度发生。 关键词| 印制电路板,失效分析,分析技术 一、前言 PCB作为各种元器件的载体与电路信号传输的枢纽已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。随着电子信息产品的小型化以及无铅无卤化的环保要求,PCB也向高密度高Tg以及环保的方向发展。但是由于成本以及技术的原因,PCB在生产和应用过程中出现了大量的失效问题,并因此引发了许多的质量纠纷。为了弄清楚失效的原因以便找到解决问题的办法和分清责任,必须对所发生的失效案例进行失效分析。本文将讨论和介绍一部分常用的失效分析技术,同时介绍一些典型的案例。 二、失效分析技术 介于PCB的结构特点与失效的主要模式,本文将重点介绍九项用于PCB失效分析的技术,包括:外观检查、X射线透视检查、金相切片分析、热分析、光电子能谱分析、显微红外分析、扫描电镜分析以及X射线能谱分析等。其中金相切片分析是属于破坏性的分析技术,一旦使用了这两种技术,样品就破坏了,且无法恢复;另外由于制样的要求,可能扫描电镜分析和X射线能谱分析有时也需要部分破坏样品。此外,在分析的过程中可能还会由于失效定位和失效原因的验证的需要,可能需要使用如热应力、电性能、可焊性测试与尺寸测量等方面的试验技术,这里就不专门介绍了。 2.1 外观检查

实验3预测分析法模板

一、分析 语法分析部分我们我们采用LL(1)方法实现,采用LL(1)方法实现语法发分析要求文法满足以下要求: 一个文法能否用确定的自顶向下分析与文法中相同左部的每个产生式右部的开始符号集合有关,当有右部能=*=>ε时则与其左部非终结符的后跟符号集合也有关,此外在产生式中不存在左递归,无回溯。它的基本思想是从左到右扫描源程序,同时从识别符号开始生成句子的最左推导,并只向前查看一个输入符号,便能唯一确定应选择的规则。 下面将确切地定义满足确定的自顶向下分析条件的文法即LL(1)文法及LL(1)文法的判别并介绍如何对非LL(1)文法进行等价变换问题,也就是消除一个文法中的左递归和左公共因子。 注意: 一个文法中含有左递归和左公共因子绝对不是LL(1)文法,所以也就不可能用确定的自顶向下分析法,对此结论可以证明。然而,某些含有左递归和左公共因子的文法在通过等价变换把它们消除以后可能变为LL(1)文法,但需要用LL(1)文法的定义判别,也就是说文法中不含左递归和左公共因子,只是LL(1)文法的必要条件。 LL(1) 文法的定义(5种定义): 一个文法符号串的开始符号集合定义如下: 定义 1.设G=(VT,VN,S,P)是上下文无关文法,α是任意的文法符号串,FIRST(α)是从α推导出的串的开始符号的终结符集合。。。。 FIRST(α)={a|α=*=>aβ,a∈VT,α,β∈V*}若α=*=>ε,则规定ε∈FIRST(α). 当一个文法中相同左部非终结符的右部存在能=*=>ε的情况则必须知道该非终结符的后跟符号的集合中是否含有其它右部开始符号集合的元素。为此,我们定义一个文法非终结符的后跟符号的集合如下: 定义2.设G=(VT,VN,S,P)是上下文无关文法,A∈VN,S是开始符号 FOLLOW(A)={a|S=*=>μAβ,且a∈VT,a∈FIRST(β),μ∈VT* ,β∈V+} 若S=*=>μAβ,且βε, 则#∈FOLLOW(A)。也可定义为:FOLLOW(A)={a|S=*=> …Aa…,a ∈VT} 若有S=*=> …A,则规定#∈FOLLOW(A) 这里我们用'#'作为输入串的结束符,或称为句子括号,如:#输入串#。 定义 3.给定上下文无关文法的产生式A→α, A∈VN,α∈V*, 若α==>ε,则SELECT(A→α)=FIRST(α) 如果α=*=>ε,则SELECT(A→α)=FIRST(αε)∪FOLLOW(A)。FIRST(αε)表示FIRST(α)的非{ε}元素。 更进一步可以看出能够使用自顶向下分析技术必须使文法满足如下条件,我们称满足条件的文法为LL(1)文法,其定义为: 定义4.一个上下文无关文法是LL(1)文法的充分必要条件是: 对每个非终结符A的两个不同产生式,A→α, A→β,满足SELECT(A→α)∩SELECT(A→β)=空,其中α,β不同时能ε. 定义5. LL(1)文法也可定义为: 一个文法G是LL(1)的,当且仅当对于G的每一个非终结符A的任何两个不同产生式A→α|β,下面的条件成立: (1)FIRST(α)∩FIRST(β)= 空,也就是α和β推导不出以某个相同的终结符a为首的

失效分析技术之基础知识篇

失效分析技术之基础知识篇 摘要:本文介绍失效分析与预防技术相关的概念、失效及失效分析分类、失效分析的目的、特点及作用,以及对失效分析实验室、人员和管理的要求等。 关键词:失效,失效分析,失效预防 1基本概念[1] 1.1失效 产品丧失规定的功能称为失效。 1.2失效分析 判断失效的模式,查找失效原因和机理,提出预防再失效的对策的技术活动和管理活动称为失效分析。 1.3失效模式 失效的外在宏观表现形式和规律称为失效模式。 1.4失效机理 失效机理是指引起失效的微观物理化学变化过程和本质。 1.5失效学 研究机电产品失效的诊断、预测和预防理论、技术和方法的交叉综合的分支学科。失效学与相关学科的边界还不够明确,它是一个发展中的新兴学科。 1.6风险 风险是失效的可能性与失效后后果的乘积,风险评估就是对系统发生失效的危险性进行定性和定量的分析。 1.7失效和事故 失效与事故是紧密相关的两个范畴,事故强调的是后果,即造成的损失和危害,而失效强调的是机械产品本身的功能状态,如由于涡轮叶片的疲劳断裂失效,

导致某型号的某某事故。失效和事故常常有一定的因果关系,但二者没有必然的联系。 1.8失效和可靠性 失效是可靠性的反义词。产品的可靠度R(t)是产品在规定的条件下、规定的时间内完成规定的功能的能力。失效率F(t)是指工作到某一时刻尚未失效的产品,在该时刻后,单位时间内发生失效的概率,即F(t)=1-R(t)。 1.9失效件和废品 失效件是指进入商品流通领域后发生故障的零件,而废品则是指进入商品流通领域前发生质量问题的零件。废品分析采用的方法常与失效分析方法一致。 1.10失效分析和状态诊断 失效分析是指事后的分析,而状态诊断是针对可能的主要失效模式、原因和机理方面事先的,即在线、适时、动态的诊断。 1.11失效分析和安全评定 失效分析是指事故后的失效模式、原因和机理诊断,而安全评定是指事故前,按“合于使用”原则的安全与否的评价。 1.12失效分析与维修 维修是维护和修理的总合,维护指将可能造成维修对象功能缺损的因素排除掉,修理指将维修对象缺损的功能恢复,主要是以替换失效件的方式进行。而失效分析是针对失效件的失效模式、原因和机理进行分析。维修主要是针对整机进行修复,而失效分析是对已经定位的失效构件或材料进行分析。 1.13痕迹[2] 主要指力学、化学、热学、电学等因素单独地或共同地作用于制件,而在制件上形成的各种印迹、颜色或材料粘结等。 1.14痕迹分析 对痕迹进行诊断鉴别,找出其形成和变化的原因,为失效分析提供线索和依据的过程。

高周疲劳失效分析

发动机叶片高周疲劳失效分析 090605 鲍海滨 摘要:为了降低航空发动机叶片的高循环疲劳失效。分析了导致高循环疲劳失效的原因、失效准则,以及一种研究材料多轴高周疲劳的新途径。 关键词:航空发动机叶片高循环疲劳失效 1 引言 航空发动机结构完整性和可靠性设计,对满足现代高性能航空发动机高推重比(高功质比)、高适用性、高可靠性、耐久性和低成本的要求起着至关重要的作用。采用先进的气动设计和先进结构、新材料、新工艺是现代高性能航空发动机最重要的特征,而无论是先进的气动设计,还是先进的结构、材料和工艺,都必须建立在结构完整性和可靠性的基础上。 航空发动机结构完整性和可靠性方面的不足严重地制约着在研发动机的研制目标和周期。在中国航空发动机研制过程中,科研人员最深刻的体会是,相对而言实现发动机性能指标的周期要短一些,也有一些有效的办法,而大量的结构完整性和可靠性问题特别是叶片断裂故障却显著地影响着发动机的质量和设计定型的周期。 导致叶片断裂失效的原因是多方面的[1,2],根据不同的参考标准和参量,疲劳断裂二级失效模式如图1所示[3] 据统计,在燃气涡轮发动机中,由高循环疲劳引发的事故约占总事故的25%。因此,最大限度地降低航空发动机叶片高循环疲劳失效是最现实、亟待解决的任务。

根据频率 根据应力大小 根据温度 穿晶型疲劳断裂 沿晶型疲劳断裂 剪切型疲劳断裂 正断型疲劳断裂 晶格型 非晶格型 机械疲劳断裂 热疲劳断裂 拉—压疲劳断裂 弯曲疲劳断裂 扭转疲劳断裂 接触疲劳断裂 低温疲劳断裂 高温疲劳断裂 机械疲劳断裂 腐蚀疲劳断裂 应力疲劳断裂 应变疲劳断裂 高周疲劳断裂 低周疲劳断裂 高频疲劳断裂 低频疲劳断裂 室温疲劳断裂 图1 疲劳二级失效模式分类 2 高周疲劳失效的影响因素 2.1名义应力的影响 很早的时候就确认名义应力会引起失效。125年前Wohler[4]发现随着名义拉应力的增加引起失效的交变应力幅将随之减少。后来Gerber[5]提出抛物线关系理论,即应力幅与名义应力间存在着抛物线关系,相应于零幅值交变应力的名义应力极限等于材料的拉伸极限。Goodmen用对称交变应力和名义应力的线性关系代替抛物线关系增加了设计的安全裕度。事实上,设计中很多有疲劳极限低于此直线值,Goodmen曲线实为一种保守设计。Miller用循环应力代替但相对屈服应力对这一理论作了另一种解释。 令人惊讶的是,这些理论中的关系式没有一条被试验验证。而我们却已把这些理论广泛用于工程实际,因此使用诸如Goodmen这些保守理论并非有什么不合理。还有一种情况我们引起注意,即压应力并不减少改变许用的交变载荷。事实上,平均压应力常会增加疲劳强度,所以对于设计计算,疲劳强度考虑成与零平均应力的疲劳强度相一致。

齿轮失效分析实例

齿轮失效分析实例 齿轮是传递运动和动力的一种机械零件。齿轮的类型以及特点不仅可决定齿轮的运转特性,并且也决定了它是否会过早地失效。 齿轮失效的类型可划分为四种: (1)磨损失效,是指轮齿接触表面的材料损耗; (2)表面疲劳失效,是指接触表面或表面下应力超过材料疲劳极限所引起的材料失效。进一步又可分为初始点蚀、毁坏性点蚀和剥落。 (3)塑性变形失效,是指在重载荷作用下表面金属屈服所造成的表面变形。它又可进一步分为压塌和飞边变形、波纹变形和沟条变形。 (4)折断失效,是指整个轮齿或轮齿相当大的一部分发生断裂。可以进一步分为疲劳折断、磨损折断、过载折断、淬火或磨削裂纹引起的折断等。 本章主要介绍变速箱齿轮及被动齿轮的失效分析实例,供读者参考。 变速箱齿轮失效分析 1.45号钢齿坯裂纹分析 45号钢齿坯,由φ80mm圆钢落料后直接粗车成外径为φ78mm的柱体形状。其化学成分为:C:0.49%,Mn: 0.68%,Cr<0.2%。热处理工艺过程:在X—45箱式电炉中加热,到温度(820℃)装炉,装炉量109只,保温时间为一小时(工件达到温度后计算时间),工件用盐水冷却(冷却液不循环),水温20~30℃。回火温度为520~530℃(零件淬火后隔天回火)。经车削后,发现零件内孔平面和内孔上有较多裂纹,如图1和2所示。 图1 OPI 图象说明: 零件实物经SM-3R型渗透剂着色探伤后宏观形貌。经肉眼与放大镜观察,在齿坯内孔平面与内孔中有距离大致相等的5~6处较长的裂纹,裂纹均由内孔之平面与孔交界处为起始分别向内孔壁与平面扩展;内孔平面上和内孔交界处加工纹路明显且尖锐。

图象说明: 内孔平面试样作金相观察,有 数条裂纹交叉分布,其内充满氧化皮 夹杂。其微观裂纹长度不等,分别为 0.63mm,0.29mm,0.23mm及0.19等。 图2 OMI 200× 2.汽车变速箱齿轮失效 失效齿轮为载重汽车变速箱一挡齿轮,由渗碳钢制造,在进行台架试验时,未达到设计要求就发生断齿现象。 根据断口的形貌可断定该齿轮的断裂为高应力作用下引起的快速断裂。主动齿轮心部断口基本为韧窝,被动齿轮具有准解理断裂形貌,说明主动齿轮韧性较好,但强度较低。显微硬度证实了主动齿轮硬度较被动齿轮低。两只齿轮渗碳层中均有网状渗碳体析出,这将使表层韧性较低,致使在运转过程经受不了启动冲击应力的作用。本次断裂事故是由主动齿轮先断裂,进而引起被动齿轮崩齿,故在被动齿轮上还能看到碰伤的痕迹。因此,可以认为齿轮失效的原因为渗碳工艺控制不当(热处理不当)而引起断齿。 变速箱一挡齿轮发生断齿后的宏观实物如图3所示。主动齿轮及被动齿轮断齿后的宏观断口形貌见图4所示。 图象说明: 变速箱齿轮发生断齿后的宏观 实物形貌。 图3 OPI

疲劳断裂失效分析

1 5.1疲劳断裂失效的基本形式和特征 5.2疲劳断口形貌及其特征 5.3疲劳断裂失效类型与鉴别 5.4疲劳断裂失效的原因与预防 第5章疲劳断裂失效分析 2?按应力循环次数 当Nf>105时为低应力高周疲劳(通常所指) 当Nf<10 4时为高应力低周疲劳?按服役的温度及介质条件 机械疲劳、高温疲劳、低温疲劳 冷热疲劳、腐蚀疲劳?基本形式 切断疲劳:面心立方在单向压缩、拉伸及扭转条件下多以切断形式破坏 正断疲劳:大多数的金属构件的疲劳失效都是以此形式进行的,特别是体心立方金属 3 ?疲劳断裂的突发性?疲劳断裂应力很低 ?疲劳断裂是一个损伤积累的过程?疲劳断裂对材料缺陷的敏感性?疲劳断裂对腐蚀介质的敏感性 4 典型的疲劳断口一般有三个区,即疲劳源区、疲劳裂纹扩展区和瞬时破断区。疲劳断口的宏观特征与静载破坏的脆性断口相似,无明显的宏观塑性变形。 5 ?疲劳核心是疲劳破坏的起点,它总是位于零件强度最低或应力最高的地方。 ?零件承受弯曲、扭转疲劳负荷时,最大应力区是在零件的表面。 ?零件表面的加工刀痕、凹槽、尖角、台肩等处由于应力集中往往成为疲劳源。 ?如果零件内部存在缺陷,如脆性夹杂物、白点、空洞、化学成分的偏析等,则可能在零件内部产生疲劳源。 1、疲劳核心(或称疲劳源) 6 ù疲劳源的数目可以不止一个,在名义应力较高或是应力集中较为严重时,在高应力区域就可能产生几个疲劳源。 ù疲劳源的位置用肉眼或低倍放大镜就能判断,一般在疲劳区中磨得最光亮的地方。 ù在断口表面同时存在几个疲劳源的情况下,可按疲劳线的密度来确定疲劳源产生的次序,疲劳线的密度越大,表示起源的时间越早。

7 疲劳断口上最重要的特征区域 该区域上常有疲劳断裂独特的宏观标志,如贝纹状、蛤壳状、海滩波纹等。 贝纹线以疲劳源为中心,向四周推进呈弧形线条,垂直于 裂纹扩展方向。 对于光滑试样,疲劳弧线的圆心一般指向疲劳源区。扩展到一定程度时,也可能出现疲劳弧线的转向现象 当试样表面有尖锐缺口时,疲劳弧线的圆心指向疲劳源区的相反方向。 在低周疲劳断口上一般也不常能观察到贝壳状条纹线。 8 $疲劳裂纹达到临界尺寸后发生的快速破断,它的特征与 静拉伸断口中快速破坏的放射区及剪切唇相同,但有时仅出现剪切唇而无放射区。$对于非常脆的材料,此区为结晶状断口,即使是塑性良好的合金钢或铝合金,疲劳断件断口附近通常也观察不到宏观的塑性变形。 9 10 6与静载拉伸断裂时不同,拉压疲劳断裂的疲劳核心多源于表面而不是内部。缺口试样由于缺口根部有应力集中故靠近表面裂纹扩展快,结果形成波浪形的疲劳弧线。高应力导致疲劳稳定扩展区较小,而最终断裂区所占比例较大。 6旋转弯曲的疲劳源区一般出现在表面,但无固定地点,疲劳源可 以为多个。疲劳源区和最后断裂区相对位置一般总是相对于轴的旋转方向而逆转一个角度。而高应力集中时,最终撕裂面移向中心,呈现棘轮花样。交变扭转载荷也出现这种花样 6双向弯曲的疲劳源区可能在零件的两侧表面,最后断裂区在截面内部。在高名义应力下,光滑的和有缺口的零件瞬断区的面积都大于扩展区,且位于中心部位,形状似腰鼓形。随着载荷和应力程度的提高,瞬断区的形状逐渐变形成为椭圆形。在低名义应力下,两个疲劳核心并非同时产生,扩展速度也不一样,所以断口上的疲劳断裂区一般不完全对称,瞬断区偏离中心位置。 11 D第一阶段为切向扩展阶段。在交变应力作用下,使滑移形成的裂纹源扩展形成可观察的裂纹,裂纹尖端将沿着与拉伸轴呈45°角方向的滑移面扩展。该阶段中裂纹扩展范围较 小,一般在2~5个晶粒之内。 D第二阶段为正向扩展阶段。裂纹从原来与拉伸轴呈45 °的滑移面,发展到与拉伸轴呈90 °,该阶段的断口具有引人注目的独特形态-疲劳辉纹。 D第三阶段是由于裂纹扩展到一定长度后,使构件的有效截面减少而造成的一次性快速断裂,断口特征常为韧窝型撕裂。 12疲劳辉纹的一般特点 (1)疲劳裂纹是一系列基本上相平行的条纹,略带弯曲呈波浪形,并与裂纹局部扩展方向相垂直,其凸弧面指向裂纹扩展方向。 (2)在疲劳裂纹稳定扩展阶段,所形成的每一条辉纹相当于一次载荷循环。辉纹确定了裂纹前沿线在前进时的位置。(3)疲劳辉纹的间距随应力场强度因子而变化,应力越大,间距越宽;反之应力越小,则间距越窄。 (4)疲劳断口的微观范围内,通常由许多大小不同、高低不一的小断块组成,每一小断块上的疲劳辉纹连续且平行,而相邻小断块上的疲劳辉纹不一定连续和平行。(5)断口的两匹配面上的辉纹基本对应。

金属零件失效分析及实例 (DEMO)

金属零件失效分析及实例 一、轴的失效分析 1.1 轴的失效类型 轴是用来支承旋转,并传递动力和运动的部件。轴可以承受各种类型的载荷,如拉伸、压缩、弯曲或扭转及各种复合载荷。有时还承受振动应力。在这些载荷作用下,使轴失效的最常见的类型是轴的疲劳断裂。疲劳破坏起始于局部应力最高的部位,有些机械由于设计、制造、装配和使用不合理,也造成轴过早地发生疲劳断裂。 轴的疲劳通常可分为3种基本类型:弯曲疲劳、扭转疲劳和轴向疲劳。弯曲疲劳可由下面几种类型的弯曲载荷造成:单向的、交变的和旋转的。在单向弯曲时,任一点的应力都是变动的,变动应力只改变大小而不改变方向。在交变弯曲和旋转弯曲时,任意一点的应力都是交变的,即应力在方向相反的应力之间循环变化。扭转疲劳常因施加变动或交变的扭转力矩产生。轴向疲劳则由于施加交变或变动的拉伸—压缩载荷的结果。 承受了变应力的轴,由于机械的或冶金的因素,或两者综合的结果导致轴的疲劳断裂。机械影响因素包括了小圆角、尖角、凹槽、键槽、刻痕及紧配合处。冶金影响因素包括了淬火裂纹、腐蚀凹坑、粗大的金属夹杂物及焊接缺陷等。疲劳破坏占失效轴的50%以上。 在低温环境中或是在冲击及快速施加过载时,将会使轴发生脆性断裂。脆性断裂的特征是裂纹以极高的扩展速度(大约1800m/s或更大)发生突然断裂,而在断裂源处只有小的变形迹象。这种类型的断裂特征是断裂表面上存在着鱼骨状或人字形花样的标志,人字形的顶点指向断裂源。 一些表面处理能使氢溶解入高强度钢中,使轴脆化而断裂,例如,电镀金属会引起高强度钢的失效。 轴的韧性断裂(显微空穴聚合的结果)在断裂表面上呈现有塑性变形的迹象,类似在普通拉伸试验或扭转试验试样中所观察到的情况。对拉伸断裂的轴这种变形,用目视检验是容易见到的,但是,当轴扭转断裂时,则变形是不明显的。在正常工作条件下轴很少发生韧性断裂。但是,如果对工作要求条件估计过低,或者所用材料强度达不到预定数值,或者轴受到单一过负载,也可能发生韧性断裂。在通常情况下,材料的韧性随下列条件而降低:(1)以冷作加工或热处理提高金属的强度;(2)缺口敏感材料中存在缺口、圆角、孔洞、刮伤、夹杂物和疏松;(3)增加加载速度;(4)对于许多合金降低环境温度。 某些高温下工作的轴,在工作载荷远小于金属屈服强度的条件下,金属材料在高温及

IC失效分析中电测技术及其应用研究

IC失效分析中电测技术及其应用研究 林晓玲,费庆宇,师谦,肖庆中 电子元器件可靠性物理及其应用技术国家级重点实验室; 信息产业部电子第五研究所,广州,510610,euling@https://www.doczj.com/doc/e811375506.html, 摘要:IC失效分析中电测技术的研究介绍,包括敏感参数测试中的待机电流测试、瞬态电流测试、端口IV特性测试、扫描端口测试,并对各种电测技术举例说明。 关键词:失效分析;电测技术;连接性失效 1 引言 失效分析人员从失效现场获得的间接数据对开展失效分析有重要参考价值。失效分析人员在认真研究现场数据后,有可能推测出失效模式和失效机理,然后选择适当的失效分析方法验证上述推测,最终确定失效原因。然而,现场数据是以生产或使用为目的而获得,这些数据可能不完全或项目繁多重点不突出,或随时间的推移参数已发生变化。失效分析人员应尽可能以失效分析为目的重新对关键的参数进行电测,这种电测可以重现失效现象,确定失效模式、缩小故障隔离区,确定失效定位的激励条件,为进行信号寻迹法失效定位创造条件。在特定条件下,从一些敏感参数的电测结果可确定失效机理,简化失效分析步骤。为防止引入新的失效机理,进行开封、去钝化层的等样品制备过程后,需对样品重新进行电测。 2 IC电测技术及其应用介绍 2.1 电测的种类和相关性 IC的电测失效可分为连接性失效、电参数失效和功能失效。连接性失效包括开路、短路以及电阻值变化。这 类失效在所有失效种类中最常发生,也比较容易测试。在使用过程中失效,即现场失效的IC多数是由连接性 失效导致的,根据国内外整机失效统计分析,这类失效占总失效数的50%,这里的连接性失效多数由静电放电(ESD)损伤和过电应力(EOS)损伤引起。可见,连接性测试在失效分析中有广泛用途。优先进行连接性测试, 如能发现问题,可省去电参数测试和功能测试等繁琐步骤,简化测试手续,实现快速失效分析。 确定IC的电参数失效,需进行较复杂的测量。各种IC内部的元件都有各自特殊的参数,如双极晶体管的电流增益,MOS器件的阈值电压和跨导,光电二极管的暗电流和光电转换效率,数字集成电路的电源电流、输入电压、输入电流、输出电压等。电参数失效的主要表现形式有数值超出规定范围(超差)和参数不稳定。 确定IC的功能失效,需对IC输入一个已知的激励信号,测量输出结果。如测得的输出状态与预计状态相同,则IC功能正常,否则为失效。功能测试主要用于集成电路。简单的集成电路的功能测试需电源、信号源和示 波器,复杂的集成电路测试需自动测试系统(ATE)和复杂的测试程序。 同一个IC,上述三种失效有一定的相关性,即一种失效可能引起其它种类的失效。功能失效和电参数失效的 根源时常可归结于连接性失效。在缺乏复杂功能测试设备和测试程序的情况下,有可能用简单的连接性测试和参数测试方法进行电测,结合物理失效分析技术的应用仍然可获得令人满意的失效分析结果。以数字集成电路为例,连接性失效可引起电参数失效和功能失效。如输入端漏电使输入电流I IN、输入电压V IH达不到要求, 并引起功能失效和静态电源电流IDDQ失效。输入端开路和输出端开路也会引起功能失效。电源对地短路会引起功能失效和静态电源电流IDDQ失效。失效器件经电测可能有多种失效模式,如同时存在连接性失效、电参数 失效和功能失效,然而存在一种主要失效模式,该失效模式可能引发其它失效模式。 2.2 敏感参数测试法 作为功能测试的补充,敏感参数测试技术近来得到了国际测试界的重视,这些敏感参数测试包括:待机电流测试测试和瞬态电流测试等。 2.2.1待机(stand by)电流测试技术

电子元器件可靠性试验失效分析故障复现及筛选技术培训

电子元器件可靠性试验、失效分析、故障复现及筛选技术培训 讲讲师师介介绍绍:: 费老师 男,原信息产业部电子五所高级工程师,理学硕士,“电子产品可靠性与环境试验”杂志编委,长期从事电子元器件的失效机理、失效分析技术和可靠性技术研究。分别于1989年、1992-1993年、2001年由联合国、原国家教委和中国国家留学基金管理委员会资助赴联邦德国、加拿大和美国作访问学者。曾在国内外刊物和学术会议上发表论文三十余篇。他领导的“VLSI 失效分析技术”课题组荣获2003年度“国防科技二等奖”。他领导的“VLSI 失效分析与可靠性评价技术”课题组荣获2006年度“国防科技二等奖”。2001年起多次应邀外出讲学,获得广大学员的一致好评。 为了满足广大元器件生产企业对产品质量及可靠性方面的要求,我司决定在全国组织召开“电子元器件可靠性试验、失效分析、故障复现及筛选技术”高级研修班。研修班将由具有工程实践和教学丰富经验的教师主讲,通过讲解大量实例,帮助学员了解各种主要电子元器件的可靠性试验方法和试验结果的分析方法. 课程提纲: 第一部分 电子元器件的可靠性试验 1 可靠性试验的基本概念 1.1 概率论基础 1.2 可靠性特征量 1.3 寿命分布函数 1.4 可靠性试验的目的和分类 1.5 可靠性试验设计的关键问题 2 寿命试验技术 2.1 加速寿命试验 2.2 定性寿命保证试验 2.3 截尾寿命试验 2.4 抽样寿命试验 3 试验结果的分析方法:威布尔分布的图估法 4 可靠性测定试验 4.1 点估计法 4.2 置信区间 5 可靠性验证试验 5.1 失效率等级和置信度 5.2 试验程序和抽样表 5.3 标准和应用 6 电子元器件可靠性培训试验案例 案例1 已知置信度和MTBF 时的实验测定 案例2 已知置信度和可靠度时的实验测定 案例3 案例加速寿命实验测定法 第二部分 电子元器件的失效分析、故障复现

相关主题
文本预览
相关文档 最新文档