当前位置:文档之家› 高分子材料功能化改性

高分子材料功能化改性

高分子材料功能化改性
高分子材料功能化改性

深圳大学课程教学大纲

课程编号: 20015500

课程名称:高分子材料功能化改性

开课院系: 材料学院

制订(修订)人: 欧阳星

审核人:

批准人:

2015 年9月27 日制(修)订

课程名称:高分子材料功能化改性

英文名称: Functional Modification of Polymer Materials

总学时: 36学时

学分: 2

先修课程:有机化学、高分子物理、高分子化学

教材:

自编讲义

参考教材:

1. J E Mark, B Erman, F R Eirich. The Science and Technology of Rubber, Elsevier, 2013

2. John Meister.Polymer Modification: Principles, Techniques, and Applications,CRC Press, 2000

3. Helmut Münstedt, Friedrich Rudolf Schwarzl. Deformation and Flow of Polymeric Materials, Springer , 2014

4. Hee-Gweon Woo, Hong Li. Advanced Functional Materials, 浙江大学出版社,Springer , 2011

5.杨明山, 郭正虹. 高分子材料改性,化学工业出版社,2013

授课对象:高分子材料与工程专业本科生

课程性质:专业选修理科课程

教学目标:

通过本课程的学习使学生理解和掌握高分子材料功能化改性的基本理论、加工方法、应用领域等相关知识。掌握几种主要高分子材

料功能化改性的配方与性能;掌握高分子材料功能化改性助剂的种类、作用和进展;掌握高分子材料功能化改性基本加工工艺和流变性能;掌握高分子材料功能化改性过程中的表面与界面理论;掌握功能化改性高分子材料的相关功能如电性能、磁性能和热性能等与应用的关系。为今后从事高分子材料功能化改性的研发工作以及将高分子材料高附加值化奠定扎实的基础。

课程简介:

高分子材料功能化改性是高分子材料科学与工程专业的专业课,是建立在高分子物理、高分子化学、有机化学、无机化学、流变学、材料力学等学科基础上的课程。高分子材料的功能化改性是高分子材料广泛应用的基础,占据重要的地位。该课程系统介绍高分子材料功能化改性的结构、配方、应用、制备方法和加工工艺。并详细讲述高分子材料功能化改性所涉及的表面与界面性能、电性能、磁性能、热性能和流变性能等内容。重点讲述高分子材料功能化改性工艺、结构和性能内在关系,培养学生从事高分子材料功能化研发与应用工作的能力。

教学内容:

1.高分子种类和基本性能

高分子材料等的来源或制备方法。讲述各种高分子材料的概念、结构和基本性能的关系。各种高分子材料的优缺点及选用方法。

2.配方与各种助剂及其机理

高分子材料的基本配方。讲述各种助剂的结构、作用和机理以及各种助剂对高分子材料制品基本性能的影响规律。

3.高分子材料功能化改性加工工艺

讲述高分子材料功能化改性加工工艺,高分子材料功能化改性的基本原理,加工工艺对功能化改性高分子材料结构和性能的影响规律。

4.高分子功能化改性的表面与界面

表面与界面是高分子功能化改性广泛存在的现象。讲述高分子材料功能化改性中的表面与界面现象,表面与界面性能的表征和调控方法。

5.功能化改性之导热高分子材料

讲述通过高分子材料功能化改性方法制备导热高分子材料的基本原理,讲述其基本制备方法和表征方法;讲述其制备、结构和导热性能关系;讲述相关材料的研究进展以及应用领域。

6.功能化改性之导电高分子材料

讲述通过高分子材料功能化改性方法制备导电高分子材料的基本原理,讲述其基本制备方法和表征方法;讲述其制备、结构和导电性能关系;讲述相关材料的研究进展以及应用领域。

7.功能化改性之磁性高分子材料和介电材料

讲述通过高分子材料功能化改性方法制备磁性高分子材料和介电材料的基本原理,讲述其基本制备方法和表征方法;讲述其制备、结构和磁性能、介电性能的关系;讲述相关材料的研究进展以及应用领域。

8.功能化改性之流变性能

流变性能是高分子功能化改性加工的基础。讲述不同温度、剪切速率或频率下材料的弹性模量、粘性模量和损耗角正切等性能变化。讲述流变性能研究基本方法。讲述流变学研究在高分子材料功能化方面的作用。

9.其他

和高分子材料功能化改性有关的产业及行业发展前景等。

学时分配:

考试与成绩评定方式:

学期总成绩包括平时成绩和期末考试成绩两部分组成。平时成绩包括平时记录的出勤情况、课堂提问、以及习题等占30%,期末成绩占70%。

功能高分子材料

《功能高分子材料》复习 1、说明离子交换树脂的类型及作用机理?试述离子交换树脂的主要用途。 类型与作用机理:(1)离子交换树脂分为阳离子交换树脂和阴离子交换树脂两大类。能解离出阳离子、并能与外来阳离子进行交换的树脂被称作阳离子交换树脂;能解离出阴离子、并能与外来阴离子进行交换的树脂被称作阴离子交换树脂。 (2)按其物理结构的不同,可将离子交换树脂分为凝胶型、大孔型和载体型三类。 (3)氧化还原树脂。指带有能与周围活性物质进行电子交换、发生氧化还原反应的一类树脂。在交换过程中,树脂失去电子,由原来的还原形式转变为氧化形式,而周围的物质被还原。 (4)两性树脂。两性树脂中的两种功能基团是以共价键连接在树脂骨架上的,互相靠得较近,呈中和状态。但遇到溶液中的离子时,却能起交换作用。树脂使用后,只需大量的水淋洗即可再生,恢复到树脂原来的形式。 (5)热再生树脂。在同一树脂骨架中带有弱酸性和弱碱性离子交换基团。(6)螯合树脂。 用途:(1)水处理。水处理包括水质的软化、水的脱盐和高纯水的制备等。(2)冶金工业。离子交换是冶金工业的重要单元操作之一,离子交换树脂还可用于选矿。(3)原子能工业。利用离子交换树脂对核燃料进行分离、提纯、精制、回收等。离子交换树脂还是原子能工业废水去除放射性污染处理的主要方法。(4)海洋资源利用。利用离子交换树脂,可从许多海洋生物中提取碘、溴、镁等重要化工原料。(5)化学工业。离子交换树脂普遍用于多种无机、有机化合物的分离、提纯,浓缩和回收等。离子交换树脂用作化学反应催化剂,可大大提高催化效率。(6)食品工业。离子交换树脂在制糖、酿酒、烟草、乳品、饮料、调味品等食品加工中都有广泛的应用。(7)医药卫生。离子交换树脂在医药卫生事业中被大量应用。(8)环境保护。离子交换树脂在废水,废气的浓缩、处理、分离、回收及分析检测上都有重要应用。

功能性高分子聚氨基酸生物制备培训资料

功能性高分子聚氨基酸生物制备

功能性高分子聚氨基酸生物制备 摘要:聚氨基酸共聚物是一类新型生物降解高分子材料。聚氨基酸共聚物作为一种新型生物降解高分子材料具有许多优点。随着其应用领域的不断拓展, 必将有力地促进这类材料在生物领域各个方面的应用。 关键词:聚氨基酸,γ-聚谷氨酸,.ε-聚赖氨酸 聚氨基酸材料在降解过程中能够释放出天然的小分子氨基酸, 因此材料无毒, 具有良好的生物相容性, 容易被机体吸收和代谢, 是一类生物降解高分子,至今已有许多通过化学合成的聚氨基酸被应用于食品、医药、化工等多个领域,在医学领域如药物控释、手术缝线和人工皮肤等方面具有广泛的应用。Hoste和Giammona等人分别研究了聚谷氨酸和降解性。但是, 聚氨基酸的溶解性差别较大, 只有少数的聚氨基酸溶于水, 大多数都是疏水性的, 能溶于通用溶剂的也不多, 降解周期及速度很难控制, 其应用具有一定的局限性, 作为生物医用材料, 已经不能满足要求。 通过向材料中引入第二组分制备共聚物是改善高分子材料性能的重要途径之一, 通过共聚物分子量、共聚单体种类及配比等控制聚合物材料的降解速度和周期。不同结构的共聚物把不同材料的优点结合起来, 能赋予新材料特殊的性质。 1.γ-聚谷氨酸 γ-聚谷氨酸[Poly (γ-glutamic acid), γ-PGA]是由D-/L-谷氨酸通过γ-酰胺键聚合而成的一种高分子阴离子多肽型聚合物。生物合成的γ-聚谷氨酸通常由500?5000 个谷氨酸单体组成, 分子量为10 kD?10 000 kD, 立体构型分为γ-聚D-谷氨酸(γ-D-PGA)、γ-聚L-谷氨酸(γ-L-PGA)和γ-聚D/L-谷氨酸(γ-D/L-PGA) 3 种。γ-聚谷氨酸主链上含有大量游离羧基, 可发生交联、螯合、衍生化等反应, 具有强水溶性、生物相容性、生物降解性等。随着人们环保意识日益增强, γ-聚谷氨酸作为可生物降解高分子材料已备受关注。

水溶性粘结剂

铸造用水溶性高分子粘结剂的研究与应用 济南鲁源铸造材料有限公司李涛摘要:水溶性高分子粘结剂具有较好的溶解性、优良的成膜性及粘合性,通过用国际上先进的物理、化学等方法对天然的水溶性高分子材料进行复合改性,满足铸造用型芯粘结剂的基本要求,且具有干强度高、蠕变性小,环保节能等优点,是一种理想的无公害铸造粘结剂。 关键词:水溶性高分子改性制芯 一、前言 水溶性高分子粘结剂因其含有亲水基团,具有很好的粘合性、成膜性、分散性等,在化学粘结剂、水处理、化学助剂等行业日益扩大。自80年代起,以α-淀粉为主的水溶性粘结材料,因其具有制备工艺简单,生产成本低廉,用于制芯具有干强度高、蠕变性小、溃散性好、旧砂复用性好等特点,特别是操作过程中清洁、节能和浇注过程中几无有害气体产生的优点,即引起铸造界的广泛关注。但由于α-淀粉用于制芯存在吸湿性强、高温强度低、比强度低等缺陷,一定程度地限制了其推广应用。济南鲁源铸造材料有限公司在多年来潜心研究充分满足型芯性能要求的淀粉类粘结材料的基础上,结合新的水溶性高分子材料加工工艺,通过将β-淀粉等多种水溶性高分子材料先进行物理、化学改性,再进行预糊化处理,并添加多种助剂以改善芯砂性能和型芯性能,成功地开发了新一代环保型制芯用粘结材料LYN型铸造用水溶性高分子粘结剂,并成功地应用于铸造生产中。

二、LYN型水溶性高分子粘结剂复合改性工艺及机理分析 1、改性机理分析: 理想的型芯粘结合剂应当具备高的干拉强度、适宜的湿压强度、良好的流动性、低的吸湿性以及良好的溃散性。玉米淀粉支链淀粉高达72%,表观DP分布400-1500,在适当的条件下可与三聚磷酸纳、氯氧化磷等交联剂发生下列反应: 淀粉—OH+HO—淀粉交联剂淀粉—O—X—O—淀粉 控制磷含量0.07~0.09%,其反应产物磷酸酯淀粉具有一定的疏水特性,且在高温下具有很好的耐热性。将磷酸酯淀粉在一定条件下进行预糊化处理即α化,淀粉显微结构发生较大改变,通过控制其反应程度,成糊粘度、比强度大提高。再将预糊化处理后的磷酸酯淀粉与拒水剂B、抗高温冲刷剂C机械混合,在型芯制作过程中充分反应,拒水剂B可形成一层拒水膜覆盖在淀粉粘结网络上,显著提高其高温强度和拒水性。经过以上处理的水溶性高分子粘结剂基本上具备了型芯粘结剂应具有的性能。 2、试验用材料 玉米淀粉(水分≤13%)、三聚磷酸钠、氯氧化磷(交联剂)、拒水剂B、抗高温冲刷剂C 3、试验设备 10kg自制膨化罐 1台 75kg/h挤压机 1台 500kg搅拌罐 1台

功能高分子材料研究进展

功能高分子材料研究进展 摘要 功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 关键词:高分子材料;功能高分子;功能材料; Abstract Functional polymer materials is an important branch of polymer science, it is the study of various functional polymer molecular design and synthesis of relationship between structure and properties and application technology as a new material. its importance is that contains every kind of polymer has special function it light functional polymer materials mainly include chemical functional polymer materials electric magnetic functional polymer materials acoustic functional polymer materials, polymer liquid crystal sections medical polymer materials, the research of this field mainly includes the study of the function of the molecular structure and formation of various sorts of special relationship, which is from the macro and go deep into the micro, and from the quantitative and semi-quantitative into from the chemical composition and structure principle to explain the special function of regularity, to explore and this paper mainly discusses the synthesis of new functional materials. Keywords:high polymer materials; functional polymer; functional Materials;

功能高分子材料讲义

第三章功能高分子材料 3.1 概述 功能高分子是高分子化学的一个重要领域,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。 3.1.1 功能高分子材料的概念和分类 高分子材料按其使用性能可以分为结构高分子材料和功能高分子材料,结构高分子材料具有较高的比刚度和比强度,可以代替金属作为结构材料,如我们熟知的工程塑料和聚合物基复合材料。 对功能高分子材料,目前尚未有明确的定义,一般认为是指

除了具有一定的力学功能之外还具有特定功能(如导电性、光敏性、化学性和生物活性等)的高分子材料,所谓材料的功能,从根本上说,是指向材料输入某种能量,经过材料的传输转换等过程,再向外界输出的一种作用。材料的这种作用与材料分子中具有的特殊功能的基团和分子结构分不开的。 请注意,不可将功能高分子和功能高分子材料混为一谈,这两者是有明显区别的。功能高分子材料从组成和结构上可以分为结构型和复合型两大类。结构型功能高分子材料是指在高分子链中具有特定功能基团的高分子材料,这种材料所表现的特定功能是由高分子本身的因素决定的。构成结构型功能高分子材料中的高分子叫功能高分子,而复合型功能高分子材料,是指以普通高分子材料为基体或载体,与具有某些特定功能(如导电、导磁)的其它材料进行复合而制得的功能高分子材料,这种材料的特殊功能不是由高分子本身提供的。 功能高分子材料涉及范围广、品种繁多,还未有统一的分类方法,一般按其使用功能来分类,大致可以分为以下几类:(1)化学功能高分子材料 主要包括离子交换树脂,高分子催化剂、高分子试剂、螯合树脂、高分子絮凝剂和高吸水性树脂等。

功能高分子材料

上海大学2015~2016学年冬季学期研究生课程报告课程名称:功能高分子材料课程编号:11S009005 论文题目:TPU防水透湿薄膜的研究进展 研究生姓名: 汪胜学号: 15722180 论文评语: 成绩: 任课教师: 陈捷贾少晋 评阅日期:

TPU防水透湿薄膜的研究进展 汪胜 (上海大学环境与化学工程学院,上海200444) 摘要:热塑性聚氨酯弹性体(TPU)是一种应用范围非常广的聚氨酯材料,兼具橡胶和塑料的特性,已经被广泛应用于汽车、鞋材、服饰、医疗、电线电缆、薄膜及薄板、胶黏剂等。其中,热塑性聚氨酯在服装行业中的应用是它可以制成薄膜贴附在织物上以提供给使用者更好的防护性、舒适感和美感。文在国内外文献的基础上,总结了近几年TPU防水透湿薄膜的制备与研究进展,以期为今后的TPU防水透湿薄膜的制备和应用发展提供参考。 关键词:热塑性聚氨酯弹性体;聚氨酯材料;TPU防水透湿薄膜;橡胶和塑料 The Research ProgressofTPU waterproof moisturepermeable membrane products Sheng Wang (School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China) Abstract: Thermoplasticpolyurethaneelastomer (TPU)whichischaracteristicofrubberandplastic's, cl othing, medical, wireare applied widely to the field of automotive, shoes, clothing, medical, wire and cable, thin film and sheet, adhesive composition ect. Among them,the application of thermoplastic polyurethane in the clothing industry is that it can be made into a film attached to the fabric in order to provide users with better protection, comfort and beauty.This paper, on the basis of the literature at home and abroad, summarizes preparation and research of TPU waterproof moisture permeable membrane, and also provides the reference the TPU waterproof moisture permeable membrane preparation and research in the future. Key word:thermoplasticpolyurethane elastomer; polyurethane materials; TPU waterproof moisture permeable membrane; rubber and plastic

功能性高分子-气凝胶

气凝胶 ── 一种结构可控的新型功能材料 摘要:气凝胶是一种结构可控的新型轻质纳米多孔性非晶固态材料,由于它特有的纳米多孔、三维网络结构,气凝胶具有许多独特的性能,尤其表现在高孔隙率、低密度、低热导率等方面,研究领域广泛,因而蕴藏着广阔的应用前景。 关键词:气凝胶;性质;研究领域;应用;结构控制 气凝胶简介: 气凝胶是世界上已知密度最低的人造发泡物质,是一种固体物质形态,世界上密度最小的固体之一。 气凝胶问世于1931年,由斯坦福大学S.S.Kistler 利用临界干燥法将凝胶里的液体成分抽出。这种方法会令液体缓慢地被脱出,但不至于使凝胶里的固体结构因为伴随的毛细作用被挤压破碎。气凝胶的种类很多,有硅系,碳系,硫系,金属氧化物系,金属系等。用途广泛。一般常见的气凝胶为硅气凝胶,但也有碳气凝胶存在。目前最轻的气凝胶是由浙江大学高分子系高超教授的课题组制备出的一种超轻气凝胶。它刷新了目前世界上最轻材料的纪录,拥有高弹性和强吸油能力。这种被称为“全碳气凝胶”的固态材料密度为每立方厘米0.16毫克,仅是空气密度的1/6。气凝胶因其半透明的色彩和超轻重量,有时也被称为“固态烟”或“冻住的烟”。这种新材料看似脆弱不堪,其实非常坚固耐用,最高能承受1400摄氏度的高温。它可以承受相当于自身质量几千倍的压力,此外它的导热性和折射率也很低,绝缘能力比最好的玻璃纤维还要强39倍。 硅气凝胶结构的形成: 硅气凝胶是典型的无机气凝胶之一,制备硅气凝胶的第一步是在TMOS(硅酸甲酯)或TEOS(硅酸乙酯)等有机硅中加入适量水和催化剂,使之发生水解反应 )1()(4)(424ROH OH S O H OR Si i +→+ 式中R 为烷基,水解生成的硅酸再脱水缩聚,即 O H OH OS S OH H S i i i 234)()()0(2+→(2)

水溶性高分子简介

水溶性高分子简介 摘要:本文介绍了水溶性高分子的分类,物理性能,制造以及未来的发展前景。关键词:水溶性高分子聚乙烯醇聚乙二醇 引言 水溶性高分子化合物又称为水溶性树脂或水溶性聚合物。是一种亲水性的高分子材料,在水中能够溶解或溶胀而形成溶液或分散液。在水溶性聚合物的分子结构中含有大量的亲水基团。亲水基团通常可分为三类:①阳离子基团,如叔胺基、季胺基等;②阴离子基团,如羧酸基、磺酸基、磷酸基、硫酸基等;③极性非离子基团,如羟基、醚基、胺基、酰胺基等。这些集团不但使得高分子有亲水性,而且还带来很多宝贵的性能,如粘合性,成膜性,润滑性,分散性,减磨性等等。 1水溶性高分子的分类 1.1天然水溶性高分子。 以天然动植物为原料,通过物理过程或者物理化学的方法提取而成。最常见的如淀粉类、纤维素、植物胶、动物胶等。天然高分子虽然受到合成高分子的不断冲击,产量逐渐下降,但是仍然有很大一部分市场被其牢牢统治着。 1.2改性天然高分子。 主要有改性纤维素和改性淀粉两大类。如羧甲基淀粉、醋酸淀粉、羟甲基纤维素、羧甲基纤维素等。这类高分子兼有天然高分子和合成高分子的优点,拥有广泛的市场,因此产量很大。 1.3合成高分子。 合成高分子材料分为聚合类和缩合类两类,如聚丙烯酰胺(PAM)、水解聚丙烯酰胺(HPAM))、聚乙烯吡咯烷酮(PVP)等。按大分子链连接的水化基团分为:非离子型和离子型。按荷电性质分为:非离子、阳离子、阴离子和两性离子高分子,其中后三类为聚电解质。按基团间是否存在较强的非共价键联结又分为缔合聚合物和非缔合聚合物。 2水溶性高分子的物理性能 2.1溶解性 溶解性是达到平衡的溶液便不能容纳更多的溶质,在特殊条件下,溶液中溶解的溶质会比正常情多,这时它便成为过饱和溶液。每份溶剂所能溶解的溶质的最大值就是“溶质在这种溶剂的溶解度”。 为了提高水溶性,一是在分子中引入足够的亲水基团到大分子上面变为水溶性高分子。二是降低聚合物的结晶度。三是利用聚电解质的反离子力作用促进溶解。

功能高分子材料

种类繁多的功能高分子材料 功能高分子材料目前尚无严格的定义。一般认为,是指除了具有一定的力学性能之外,还具有某些特定功能(如化学性、导电性、磁性、光敏性、生物活性等)的高分子材料。或者理解为是一种当受到外部刺激时,能通过化学或物理方法做出响应的材料。 材料的性能是指材料对外部作用的抵抗特性。而功能是指向材料输入某种能量和信息,经过材料的储存、传输或转换等过程,再向外输出的一种特性。按照功能高分子材料的组成和结构,可将其分为结构型功能高分子材料和复合型功能高分子材料。按照来源又可分为天然功能高分子材料、半合成功能高分子材料和合成功能高分子材料。通常对于功能高分子材料是按照功能和应用特点进行分类。据此大致可将功能高分子材料分为化学、光、电、磁、热、声、机械、生物等八大类。 (1)聚苯乙烯型吸附树脂80%以上的吸附树脂是聚苯乙烯型的吸附树脂,它们主要是以苯乙烯为主要的合成单体,以二乙烯苯作为交联单体制备的。聚苯乙烯是最早工业化的塑料品种之一,其苯环上的邻、对位具有一定的活性,便于和其他的化合物反应,引入其他的化学基团,实现对聚苯乙烯的改性,同时将之作为吸附树脂使用时,为了提高其稳定性,还需对其进行一定的交联。聚苯乙烯的主要缺点在于,机械强度不够高,抗冲击性和耐热性较差。

在水溶液中悬浮聚合得到的聚苯乙烯型吸附树脂其外观是白色或浅黄色,直径不同的多孔球粒。通过选择不同的引发剂,苯乙烯可以实现光引发、热引发聚合,利用所加入的交联剂如二乙烯苯的用量来调节其交联度。同时聚苯乙烯上的活性点为其改性提供了条件,可以引入其他极性基团,甚至可以引入配位结构形成螯合树脂或引入离子型基团得到离子交换树脂。 (2)离子交换树脂是结构上带有可离子化基团的一类高分子,它由高分子骨架、与高分子骨架以化学键相连的固定离子以及可在一定条件下离解出来并与周围的外来离子相互交换的反离子组成。其功能基团为固定离子与反离子组成的离子化基团。功能基团中的可交换离子与外来离子完成交换过程后,通过改变条件又可再生为原有的反离子。 根据离子交换树脂的合成方式,可将其分为缩聚型和加聚型。根据树脂的物理结构,可分为凝胶型、大孔型和载体型离子交换树脂。离子交换树脂在重金属的提取、水处理、化学反应的催化方面均有重要的应用。 (3) 复合型导电高分子材料是采用各种复合技术将导电性物质与树脂复合而成的。按照复合技术分类有导电表面膜形成法,导电填料分散复合法、导电填料层压复合法三种。 常用的导电填料有金粉、银粉、铜粉、镍粉、钯粉、钼粉、铝粉、钴粉镀银二氧化硅粉、镀银玻璃微珠、炭黑、碳化钨、碳化镍等。复合型导电高分材料可用作防静电材料、导电涂料、电路板的制作、压

高分子材料改性(郭静主编)课后习题标准答案剖析

第一章绪论 第二章高分子材料共混改性 1.什么是相容性,以什么作为判断依据? 是指共混无各组分彼此相互容纳,形成宏观均匀材料的能力,其一般以是否能够产生热力学相互溶解为判据。 2.反应性共混体系的概念以及反应机理是什么? 是指在不相容或相容性较差的共混体系中加入(或就地形成)反应性高分子材料,在混合过程中(例如挤出过程)与共混高分子材料的官能团之间在相界面上发生反应,使体系相容性得到改善,起到增容剂的作用。 3.高分子材料体系其相态行为有哪几种形式,各自有什么特点,并举例加以说明。 (1)具有上临界混溶温度UCST,超过此温度,体系完全相容,为热力学稳定的均相体系;低于此温度为部分相容,在一定的组成范围内产生相分离。如:天然橡胶-丁苯橡胶。 (2)具有下临界混溶温度LCST,低于此温度,体系完全相容,高于此温度为部分相容。如:聚苯乙烯-聚甲基乙烯基醚、聚己内酯-苯乙烯/丙烯腈共聚物。 (3)同时出现上临界混溶温度UCST和下临界混溶温度LCST,如苯乙烯/丙烯腈共聚物-丁腈橡胶等共混体系。 (4)UCST和LCST相互交叠,形成封闭的两相区 (5)多重UCST和LCST 4.什么是相逆转,它与旋节分离的区别表现在哪些方面? 相逆转(高分子材料A或高分子材料B从分散相到连续相的转变称为相逆转)也可产生两相并连续的形态结构。 (1)SD起始于均相的、混溶的体系,经过冷却而进入旋节区而产生相分离,相逆转主要是在不混溶共混物体系中形态结构的变化。 (2)SD可发生于任意浓度,而相逆转仅限于较高的浓度范围 (3)SD产生的相畴尺寸微细,而相逆转导致较粗大的相畴, 5.相容性的表征方法有哪些,试举例加以说明。 玻璃化转变法、红外光谱法、差热分析(DTA)、差示扫描量热法(DSC) 膨胀计法、介电松弛法、热重分析、热裂解气相色谱等。 玻璃化转变法:若两种高分子材料组分相容,共混物为均相体系就只有一个玻璃化温度,

功能高分子材料论文

生物医用高分子材料 摘要:简述了对功能高分子材料的认识,功能高分子材料的特征和功能高分子材料的分类,接着重点写生物医用高分子的发展前景和趋势,对生物医用功能高分子的认识和其重要性的认识。 关键词:功能高分子材料,生物医用高分子材料。 功能高分子材料 功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。功能高分子材料是上世纪60年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50% 所谓功能性高分子材料,一般是指具有某种特别的功能或者是能在某种特殊环境下使用的高分子材料,但这是相对于一般用途的通用高分子材料而言。这一定义只是一个概括,不一定很确切,较多的人认为所谓功能性高分子材料是指具有物质能量和信息的传递、转换和贮存作用的高分子材料及其复合材料。如有光电、热电、压电、声电、化学转换等功能的一些高分子化合物。可以看出,这是一类范围相当大、用途相当广、品种相当多,而又是在生活、生产活动中经常遇见的一类高分子材料。 功能高分子材料按照功能特性通常可分成以下几类: (1)分离材料和化学功能材料;(2)电磁功能高分子材料;(3)光功能高分子材料;(4)生物医用高分子材料。功能高分子材料是高分子学科中的一个重要分支,它的重要性在于所包含的每一类高分子都具有特殊的功能。 随着时代的发展,在医学领域中越来越迫切地需要开发出能应用于医疗的各种新型材料,经多年的研究已发现有多种高分子化合物可以符合医用要求,我们也把它归属于功能性高分子材料。 一般归纳起来医用高分子材料应符合下列要求: 1、化学稳定性好,在人体接触部分不能发生影响而变化; 2、组织相容性好,在人体内不发生炎症和排异反应; 3、不会致癌变;

高分子水性树脂的研究现状及发展趋势

高分子水性树脂的研究现状及发展趋势 摘要:本文简要地介绍了水性环氧树脂的原理和特点,系统地介绍了当前国内外水性环氧树脂的制备方法和研究现状,,并对其研究前景进行了展望,指出了今后研究的方向。 关键词:水性;环氧树脂;研究 第一章前言 近些年来,涂料有向绿色环保方向迈进的趋势。其中水性环氧树脂具有其突出的性能优势,使制备得到的水性环氧树脂涂料同样具有优异的性能,从而在水性产品大家族里地位越来越重要,专家认为水性环氧树脂在环保化的今天,前景十分开阔[1]。水性环氧树脂(waterborneepoxyresin,WER)是指以水为连续相,以环氧树脂微粒或液滴为分散相的稳定分散体系[2],其重要用途是用于水性环氧树脂涂料。 第二章水性树脂 2.1 定义 水性树脂是以水代替有机溶剂作为分散介质的新型树脂体系。与水融合,形成溶液,待水挥发后,形成树脂模材料。水性树脂不是用水性树脂本身,而是需要水挥发后获得的膜材料。 2.2 分类 水性树脂包括三大类:水溶性高分子、高吸水树脂和水性涂料,是自70年代发展起来的高分子学科新领域。由于其具有一系列独特的无可替代的功能,随着科研生产的不断发展,产品的工业化,现已形成一个独立的行业,属精细化工的范畴。由于水性树脂具有极其广泛的用途,以极高附加值,多年来一直被列为化工行业发展的重点[3]。 2.3用途 取代溶剂型产品在各个领域中的应用。水性聚氨酯为代表,可广泛应用于涂料、胶粘剂、织物涂层与整理剂、皮革涂饰剂、纸张表面处理剂和纤维表面处理

剂。 2.3.1水性涂料 (1)建筑装修包括地坪漆、弹性漆、建筑物外墙漆、家具木器漆,水性内墙涂料,产品的同质化情况严重,产品型号及性能类似,同类企业众多。未来这种低技术型产品会竞相压价。 (2)工业涂料包括工业漆、车辆漆、防腐漆、水性金属漆、金属表面处理(抛光);水性塑胶漆(在消费电子产品领域有着广泛的应用)等。目前水性工业涂料技术难度高,国内拥有技术的企业少,多被国际树脂巨头垄断,为巩固垄断地位巨头与国内个别企业联合研发创新。 2.3.2水溶性高分子 主要应用:石油勘探开发、水处理、造纸、纺织、涂料、食品、日用化工等领域。 (1)粘合剂:广泛的应用在高档家具、人造板(瓦楞纸板的生产)、木材加工、皮革加工、工艺品加工,装饰装修及非金属等材料粘接等行业。 (2)密封剂:广泛应用到传统密封剂当中,包括汽车、建筑装修等行业。如:水性混凝土密封剂是一种可以渗透到混凝土当中增强混凝土密封、防尘、耐磨硬化作用,具有无色、无臭、无毒、不燃。 (3)纺织工业:水性树脂用于合成革的生产,生态型半PU箱包革、沙发革;生态型水性发泡沙发革、服装革;生态型水性汽车内饰革、家具内饰革;仿真皮水性超纤革等。 (4)油墨:水性油墨应用于烟、酒、食品、饮料、药品、儿童玩具等卫生条件要求严格的包装印刷产品。 (5)石油开采:固井水泥外加剂和强化采油驱油剂等。 2.3.3高吸水树脂 主要应用:工农业、日常生活、医疗卫生等各个领域,用做干燥剂、脱氧保鲜剂、膨胀橡胶、医用材料、建筑材料、化妆品、日化用品等。 (1)日用生活:婴儿尿不湿及妇女卫生中是高吸水性树脂的保水特点应用。 (2)电器保护:高吸水性树脂还应用中电缆包覆防潮。

功能高分子材料的分类

功能高分子材料的分类 功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。 按照高分子的功能特性,功能高分子材料可分为以下几种: 1.分离材料和化学功能材料 2.电磁功能高分子材料 3.光功能高分子材料 4.生物医用高分子材料 现对这几种材料进行简单的介绍一下。 分离材料和化学功能材料 以化学功能为主的功能高分子材料称为化学功能高分子材料。化学功能包括生成离子键、配位键、共价键的化学反应,上述价键断裂的分解反应,以及与上述反应有关的催化作用等,包括具有离子交换功能的离子交换树脂,对各种阳离子有络合吸附作用的螯合聚合物,光化学性聚合物,具有氧化还原能力的聚合物,在有机合成反应中使用的高分子试剂和高分子催化剂,降解型高分子等。化学功能高分子材料的制备主要通过在高分子骨架上引入具有特定化学功能的官能团或者结构片段,也可以将具有类似功能的小分子功能材料高分子化得到化学功能高分子材料。高分子材料经过功能化或者小分子功能材料经过高分子化以后,材料的溶解度一般均有下降,熔点提高。对于化学试剂,经过高分子化后稳定性增加,均相反应转变成多相反应,产物与试剂和催化剂的分离过程简化,同时还产

生许多小分子材料所不具备的其他性质。化学功能高分子材料是固相合成的基础。 电磁功能高分子材料 电磁功能材料主要指导电聚合物材料。复合型导电高分子材料是以有机高分子材料为基体,加入一定数量的导电物质(如炭黑、石墨、碳纤维、金属粉、金属纤维、金属氧化物等)组合而成。该类材料兼有高分子材料的易加工特性和金属的导电性。与金属相比较,导电性复合材料具有加工性好、工艺简单、耐腐蚀、电阻率可调范围大、价格低等优点。 与金属和半导体相比较,导电高分子的电学性能具有如下特点: (1)通过控制掺杂度,导电高分子的室温电导率可在绝缘体-半导体-金属态范围内变化。目前最高的室温电导率可达105S/cm,它可与铜的电导率相比,而重量仅为铜的1/12; (2)导电高分子可拉伸取向。沿拉伸方向电导率随拉伸度而增加,而垂直拉伸方向的电导率基本不变,呈现强的电导各向异性; (3)尽管导电高分子的室温电导率可达金属态,但它的电导率-温度依赖性不呈现金属特性,而服从半导体特性; (4)导电高分子的载流子既不同于金属的自由电子,也不同于半导体的电子或空穴,而是用孤子、极化子和双极化子概念描述。应用主要有电磁波屏蔽、电子元件(二极管、晶体管、场效应晶体管等)、微波吸收材料、隐身材料等。 光功能高分子材料 指在光的作用下能够产生物理(如光导电、光致变色)或化学变化(如光交联、

最新功能性高分子材料

功能性高分子材料

功能高分子 材料 高分子0721 0714141035 李旭

电致变色材料聚苯胺 摘要: 结合导电高分子材料聚苯胺目前研究的现状, 综述了聚苯胺的结构、特性, 聚苯胺的电化学合成法及化学合成法的影响因数及最佳条件, 聚苯胺的掺杂机制、无机酸掺杂和有机酸掺杂、二次掺杂,提高聚苯胺的溶解性和可加工性的方法以及聚苯胺的广泛用途。指出了聚苯胺的发展方向和发展前景。 关键词: 聚苯胺; 掺杂; 改性 聚合物一直被认为是绝缘体, 但是自从1976 年,美国宾夕法尼亚大学的化学家MacDiarmid 领导的研究小组首次发现掺杂后的聚乙炔具有类似金属的导电性以后, 人们对共轭聚合物的结构和认识不断深入和提高, 逐渐产生了导电高分子这门新兴学科。在随后的研究中逐步发现了聚吡咯、聚对苯撑、聚苯硫醚、聚噻吩、聚对苯撑乙烯撑、聚苯胺等导电高分子, 由于导电高分子材料作为新兴不可替代的基础有机材料之一,几乎可以用于现代所有新兴产业及高科技领域之中,因此对导电高分子研究不仅具有重大的理论价值, 而且具有巨大的应用价值。在众多的导电高分子材料中, 人们对聚乙炔的研究较早, 也最为深入, 但由于它的制备条件比较苛刻, 且它的抗氧化能力和环境稳定性差, 给它的实用化带来了极大困难。而聚苯胺原料便宜, 合成简便, 耐高温及抗氧化性能良好, 有较高的电导和潜在的溶液、熔融加工可能性, 易成膜且膜柔软、坚韧等优点和具有优良的电致变色性, 在日用商品及高科技等方面有着广泛的应用前景。因此虽然聚苯胺于1984 年才被MacDiarmid 等重新开发,却一跃

成为当今导电高分子研究的热点和推动力之一,倍受人们的广泛关注。在这十多年期间, 国内外相关研究者们已对聚苯胺的结构、特性、合成、掺杂、改性等方面进行了较为深入的研究。 1 聚苯胺的结构与特性 1. 1 聚苯胺的结构 MacDiarmid 重新开发聚苯胺后, 在固体13 C- NMR及IR 研究的基础 上提出聚苯胺是一种头- 尾连接的线性聚合物, 由苯环- 醌环交替 结构所组成, 但这种结构和后来出现的大量实验数据相矛盾。1987 年,MacDiarmid 进一步提出了后来被广泛接受的苯式- 醌式结构单 元共存的模型, 两种结构单元通过氧化还原反应相互转化。即本征 态聚苯胺由还原单元: 其中y 值用于表征聚苯胺的氧化还原程度, 不同的y 值对应于不同 的结构、组分和颜色及电导率, 完全还原型( y = 1) 和完全氧化型( y = 0) 都为绝缘体。在0< y< 1 的任一状态都能通过质子酸掺杂, 从绝缘体变为导体, 仅当y= 0. 5 时, 其电导率为最大。 1.2 聚苯胺的特性 1.2. 1 电化学性质及电致变色性

功能高分子材料讲课教案

功能高分子材料 ▲1、什么是功能高分子?什么是特种高分子?两者的区别和关系如何? (1)功能高分子:是指当有外部刺激时,能通过化学或物理的方法做出相应输出的高分子材料。 功能高分子材料是指既有传统高分子材料的机械性能,又有某些特殊功能的高分子材料。 (2)特种高分子材料:是指带有特殊物理、力学、化学性质和功能的高分子材料,其性能和特征都大大超出了原有通用高分子材料的范畴。 (3)功能高分子属于特种高分子材料的范畴。特种高分子材料可细分为功能高分子和高性能高分子两类。 ▲2、功能和性能有什么区别?功能高分子和高性能高分子有什么不同? (1)性能:材料对外部作用的抵抗特性。(2)功能:指从外部向材料输入信号时,材料内部发生质和量的变化而产生输出的特性。 (3)功能高分子:是指当有外部刺激时,能通过化学或物理的方法做出相应输出的高分子材料。 (4)高性能高分子:是对外力有特别强的抵抗能力的高分子材料。 (从实用的角度看,对功能材料来说,人们着眼于它们所具有的独特的功能; 而对高性能材料,人们关心的是它与通用材料在性能上的差异。) 3B、功能高分子材料的类型 (1)力学功能材料:①强化功能材料,②弹性功能材料。 (2)化学功能材料:①分离功能材料,②反应功能材料,③生物功能材料。 (3)物理化学功能材料:①耐高温高分子,②电学功能材料,③光学功能材料,④能量转换功能材料。 (4)生物化学功能材料:①人工脏器用材料,②高分子药物,③生物分解材料。 这一分类,实际上包括了所有特种高分子材料。国内一般采用按其性质、功能或实际用途划分为8种类型。 (1)反应性高分子材料,(2)光敏型高分子,(3)电性能高分子材料,(4)高分子分 离材料,(5)高分子吸附材料,(6)高分子 智能材料,(7)医药用高分子材料,(8)高 性能工程材料。 ▲1、什么是活性聚合?阴离子活性聚合的 特征是什么? (1)活性聚合:是指引发速度远远大于增 长速度,并且在特定条件下不存在链终止反 应和链转移反应,亦即活性中心不会自己消 失的反应。二氯乙基氯/乙酸乙酯引发 (2)阴离子活性聚合的基本特点:①聚合 反应速度极快;②单体对引发剂有强烈的选 择性;③无链终止反应;④多种活性种共存; ⑤相对分子质量分布很窄。 ▲2、通过哪些途径可实现阳离子活性聚 合?哪些单体适合进行阳离子活性聚合? (1)途径①设计匹配性亲核反离子,如 采用HI/I2引发体系引发烷基乙烯基醚进行 阴离子活性聚合②适当的lewis酸碱配对 引发,如采用二氯乙基铝/乙酸乙酯引发 (2)目前,烷基乙烯基醚、异丁烯、苯乙 烯及其衍生物、1, 3 —戊二烯、茚和α-蒎烯 等都已经实现了阳离子活性聚合。 ▲3、为什么基团转移聚合也属于活性聚合 范畴? 基团转移聚合与阴离子型聚合一样,属“活 性聚合”范畴。基团转移聚合是以不饱和酯、 酮、酰胺和腈类等化合物为单体,以带有硅、 锗、锡烷基等基团的化合物为引发剂,用阴 离子型或路易士酸型化合物作催化剂,选用 适当的有机物为溶剂,通过催化剂与引发剂 之间的配位,激发硅、锗、锡等原子与单体 羰基上的氧原子结合成共价键,单体中的双 键与引发剂中的双键完成加成反应,硅、锗、 锡烷基团移至末端形成“活性”化合物的过 程。 包括①链引发反应,②链增长反应,③链终 止反应。 ▲4、自由基活性可控聚合有哪几类? 阴离子活性聚合、阳离子可控聚合、基团转 移聚合、原子转移自由基聚合、活性开环聚 合、活性开环歧化聚合等 ▲5、什么是高分子的化学反应?他们与小 分子的化学反应有什么异同点?影响高分 子化学反应的因素有哪些? (1)高分子的化学反应:可以将天然和合 成的通用高分子转变为具有新型结构与功 能的聚合物的化学反应。 (2)与小分子的化学反应的相同点: 高分子可以进行与低分子同系物相同的化 学反应。例如含羟基高分子的乙酰化反应和 乙醇的乙酰化反应相同;聚乙烯的氯化反应 和己烷的氯化反应类似。 (3)与小分子的化学反应的不同点: ①在低分子化学中,副反应仅使主产物产率 降低。而在高分子反应中,副反应却在同一 分子上发生,主产物和副产物无法分离,因 此形成的产物实际上具有类似于共聚物的 结构。 (4)高分子的反应活性的影响因素: ①聚集态结构因素:结晶和无定形聚集态结 构、交联结构与线性结构、均相溶液与非均 向溶液等结构因素均会对高分子的化学反 应造成影响。 ②化学结构因素:a)几率效应:当高分子 的化学反应涉及分子中相邻基团作无规成 对反映时,某些基团由于反应几率的关系而 不能参与反应,结果在高分子的分子链上留 下孤立的单个基团,使转化程度受到限制。 b)邻近结构效应:分子链上邻近结构的某 些作用,如静电作用和位阻效应,均可使基 团的反应能力降低或增加。 6、有哪些制备特种与功能高分子的制备方 法?各有什么优缺点? (1)功能高分子的制备方法主要有以下四 种类型: ①功能性小分子的高分子化;②已有高分子 材料的功能化;③多功能材料的复合;④已 有功能高分子的功能扩展。 (2)制备方法各自的优缺点: ①功能性小分子的高分子化:对功能性小分 子进行高分子化反应,赋予其高分子的功能 特点。 包括:a)带有功能性基团的单体的聚合,b) 带有功能性基团的小分子与高分子骨架的 结合,c)功能性小分子通过聚合包埋与高 分子材料结合。 主要优点是可以使生成的功能高分子功能 基分布均匀,聚合物结构可以通过聚合机理 预先设计,产物的稳定性较好。 精品文档

高分子材料改性

1填充改性:在聚合物基体中或在聚合物加工成型过程中加入一系列在组成结构不同固体添加物。 2混杂增强:是一种以上不同品种的增强纤维或其他增强材料匹配在一起用于聚合物得到复合材料。3纤维的临界长度lc:以基体包裹纤维的复合物在顺纤维轴上拉伸。当从整体传到纤维上的应力刚能使纤维断裂时纤维的应有长度。 4IPN:是两种或两种以上的共混聚合物,分子链相互贯穿并至少一种聚合物分子链以化学键的方式交联而形成的网络结构。 5高分子合金:在显微镜下观察可以聚合物共混物具有类似金属合金的相结构(即宏观不分离,微观非均相结构)称为高分子合金。 6相容性:指聚合物彼此互相容纳,形成宏观均匀材料的能力。 7纳米复合材料:指其中至少有一相物质是纳米级(1—100nm)范围内的多相复合材料。 8海-岛结构:是一种两相体系,且一项为连续相,一相为分散相,分散相分散在连续相中,就好像海岛分散在大海中一样。 9等粘点:A组分与B组分熔体黏度相等的这一点,称为“等黏点” 问答可能题 1.熔融态化学反应类型及各自的影响因素? 答:类型:交联反应、接枝反应、降解反应、官能团反应。 影响交联因素:1过氧化物的品种与用量2交联时 间与温度3环境气氛4抗氧剂5酸性物质6填充剂 7助交联剂 影响接枝因素:1接枝单体的含量2引发剂3反应 温度4反应时间5交联或降解的控制6共单体 2填料的性质? 答:(1)几何形态特征:球状(加工流动性):玻璃微珠片状(刚性):云母、滑石粉 (2)粒径小,填充效果好(分散均匀) 粒径表示方法:1.平均粒径() 2.目数(每平方英寸筛网上的筛孔数) 3.比表面积()(3)表面形态与性质:光滑(加工流动性)、粗糙(机械互锁、有大量微孔(有一定互锁作用) 3.填料的分散混合过程? 答:大致分四个过程。<1>使聚合物添加剂粉碎。将聚合物和填料加入到体系中,在外界作用下将大块聚合物和添加剂破碎成较小粒子。 <2>使添加剂渗入到聚合物中。聚合物在剪切热和传导热作用下,降到黏流状时,使速度加快,较小粒子克服聚合物内聚力,渗入到聚合物中。、 <3>分散。较小粒子进一步减小,直到粒子大小,固相粒子逐渐分散。 <4>分布均化。分散固相粒子逐渐混合,直至均匀分散到聚合物中。 5增强纤维种类及各有那些常用的表面处理方法?答:玻璃纤维、碳纤维和植物纤维等。 玻璃纤维的表面处理方法:硅烷偶联剂处理、表面接枝处理、酸碱刻蚀处理。 碳纤维表面处理法:气相氧化法、液相氧化法、阳极氧化法、等离子体氧化法。 植物纤维的表面处理方法:热处理法、碱处理法、改变表面张力法、偶联法、表面接枝法。 7纤维状加工过程易碎问题?措施:1.后期加入纤 维 2.提高熔融温度 3.降低剪切力 8简述制造纤维增强材料片材的常用方法? (1)熔融浸渍法。首先将连续纤维或短切纤维制成毡或针刺毡,经预热与挤出机挤出的热塑性树脂薄层,通过浸渍,冷却固化,最后切割。 (2)悬浮沉积法。将纤维和树脂均匀分布在水中,使纤维釜单丝分散,树脂单粒分散,通过流浆箱和成型网加入絮凝剂,凝聚与水分离形成湿片,通过干燥,黏合,压扎成片材。 (3)静电吸附热压法。将热塑性树脂制成薄膜带电,通过短纤维槽时,纤维吸附在薄膜上,然后压合。(4)液态化床法。将一定粒度粉末树脂放在流动床的孔床上,使其带一定量静电荷,并翻腾是树枝附在接地纤维上通过切断器被切成定长再通过热轧区和冷却区而制成片材。 9影响共混物结构形态的因素? 答:1相容性。相容性越好,聚合物越容易扩散而 达到均匀混合。2配比与黏度的综合影响。(P157. 图4-16)3.内聚能密度。内聚能密度大的聚合物,其分子间作用力大,不易分散,因此在共聚物体系 中更趋于分散相。4制备方法不同的制备方法会产 生不同的形态结构。 10提高共混物相容性的方法? 答:(1)对聚合物进行化学改性(2)加入增溶剂(3) 改善共混加工工艺(4)在共混组分间交联(5)共 溶剂法和IPN法。 12.聚合物的填充效果通过哪几方面评价?为什么 答:1聚合物填充改性的经济效果利用填料实现 聚合物的填充改性,其目的是降低成本改善材料的 某些性能。2填充聚合物的力学性能作为材料使 用强度是应用的基础。3填充聚合物的热性能。 12.无机纳米粒子增韧机理? 答1.刚性无机粒子产生应力集中效应,引发周围树 脂产生微开裂,吸引一定的变形功: 2.刚性粒子存在使基体树脂裂纹扩展受阻和钝化, 终止裂纹继续开裂: 3.填料的微细化,例子比表面积增大,产生微开裂, 吸引更多冲击能量阻止材料的断裂: 6界面结合对力学性能的影响? 界面强度高低,对聚合物各方面的影响显著,最突 出的是力学性能。(1)拉伸强度:在平行于取向方 向,拉伸强度提高。垂直于取向方向时,若纤维与 聚合物结合强度比较好时,则强度提高,否则不提 高。当纤维无取向时,则各同性时,各方向强度均 有所提高。(2)韧性与冲击强度:当纤维自身的强 度小于界面强度与摩擦力之和时,即受到作用时, 纤维发生断裂。此时对其冲击性能不利,当纤维自 身的强度大于两者之和时,则会发生脱出,对冲击 作用有吸收作用,提高其冲击强度。 11层状纳米材料的性能? 答:1.力学性能和耐热性 2.高阻隔特性 3.阻燃性 4.导电功能 5.抗菌功能 6.吸波特性 7.各向异性 14什么是混杂增强、是混杂效应?混杂方式有哪 些? 答:增强聚合物复合材料是由两种或两种以上不同 品种的增强纤维或其他增强材料匹配在一起用于 聚合物二得到的材料。混杂效应:混杂效应是由 于多种纤维货增强材料与树脂基体的相互作用产 应的结果,有正效应和负效应。常见的形式:(1) 纤维——纤维混杂 2)纤维——无机离子混杂增强(3)纤维原位混杂 增强如 4填料体积成体的计算?P76 22配比与黏度的综合影响。(P157.图4-16) 高概率填空题 1充母料的理想横型:1填料核2偶联层3分散层4 增混层填充母料的方法1挤出法2密炼法3造粒法 4 开炼法 1改性的分类:物理改性:共混、填充、增强 化学改性:接枝、交联、嵌段、降解 2交联分为:物理交联:结晶或缠结 化学交联:以化学键形成交联 3化学反应形式:溶液形式,熔融形式(多数) 4熔融态化学反应器:密炼机、螺杆挤出机、高校 连续混合机组 5熔融态化学反应类型:交联、接指、断链、能团 反应 7填料的作用:增量,增强,赋予功能 8填料的种类:1.阻燃性的;2.增大硬度,石英 3. 减小硬度,滑石粉 9填料处理的目的:1.增加与聚合物的相容性 2. 提高界面粘合不产生分离 10常用的表面处理剂:1.表面活性剂 2.偶联剂(钛 酸酯,铝酸酯)3.有机高分子处理剂 4.无机物处 理剂 5.其他 11填充改性交联:1.经济效果 2.力学性能 3.热性 能 4.电性能,光学性能,加工性能 12加入纤维的作用:增强 13增强纤维种类:1.玻璃纤维 2.碳纤维 3…. 14纤维表面处理原则:1.极性相近原则 2.界面酸 碱匹配原则 3.形成界面化学键原则 4.引入可塑 界面原则 17共混改性方法:物理方法:机械共混法,干粉共 混法,熔融共混法,溶液共混法,乳液共混法。 化学方法:共聚-共混法,反应共混法,IPN法 18共混物的形态,结构 1.均相结构 2.非结晶聚 合物构成的多相共混体系 3.两相互锁成交错结构 4.相互贯穿的两相连续结果 5.结晶非结晶聚合物 共混物的形态,结构 19增溶剂类型 1.非反应型增溶剂 2.反应型增溶 剂 3.低分子增溶剂 20热塑性弹性体是由塑料和橡胶构成的,其中塑料 是连续的,橡胶是分散的。 21改善共混物透明性的方法 1.使参与共混的分散 相与连续相折射率相同 2.使共混物分散粒径小于 可见光波长 22在硬质PVC中加氯化PE起增韧改性作用:在软 质PVC中加氯化PE起增塑改性作用 23纳米复合材料的制备方法 1.溶胶-凝胶法 2.原 位聚合法 3.插层法 4.共混法 24共混物的形态首先划分为均相体系和两相体系。 两相体系又分:海-岛与海-海结构

相关主题
文本预览
相关文档 最新文档