当前位置:文档之家› 大肠杆菌耐药性研究进展

大肠杆菌耐药性研究进展

大肠杆菌耐药性研究进展
大肠杆菌耐药性研究进展

大肠杆菌耐药性研究进展

刘蔚雯 11动科类丁颖班

【摘要】大肠埃希氏菌(E.coli)俗称大肠杆菌,是一种常见致病菌。由于抗生素的广泛持续的不当使用,导致大肠杆菌耐药株的大量出现,使人医临床和兽医临床对大肠杆菌病的治疗变得十分困难,有时甚至找不到可治之药。近年来,大肠杆菌的耐药性问题已经引起了国内外医药界的广泛重视。本文对大肠杆菌耐药现状、产生耐药性机制的研究以及减少大肠杆菌耐药性的措施综述如下。

【关键字】大肠杆菌细菌耐药性抗生素

大肠杆菌寄生在人和动物的肠道内,大多是肠道的正常菌群。人和动物出生后数小时即可经口进入消化道后段,大量繁殖而定居,终身伴随,并经粪便不断散播于周围环境。但在特定条件下可致病。随着抗菌药物长期的大量的应用,特别是近年来抗菌药物的盲目滥用,大肠杆菌耐药株引起的感染在临床上不但有增多趋势,而且其耐药性还通过质粒在细菌间传递耐药基因而不断蔓延、变迁。大肠杆菌的多重交叉耐药株的出现使大肠杆菌的治疗变得十分困难,而且还造成了动物源性食品的安全问题。因此,大肠杆菌耐药性问题引起了师姐的广泛关注。各国学者对大肠杆菌耐药性的探索也从未停止,并从多方面阐述了细菌产生耐药性的机制以及提出了一些建设性的措施。

1.大肠杆菌耐药性现状

1.1家畜源大肠杆菌耐药性现状

自1929年弗来明发现青霉素以来,伴随着养殖业的发展,抗生素在动物疾病防控过程中发挥着重要的作用。但由于抗生素和抗菌药被广泛、长期使用,细菌的耐药情况也逐渐凸显出来。世界各地均有分离得到耐药家畜源性大肠杆菌的报道。目前病原细菌对青霉素的耐药率达70%以上,对大多数喹诺酮类药的耐药率也达50%以上。瑞普公司研发中心药敏实验发现,近几年在临床上常用抗菌药物有80%大肠杆菌已对其产生严重的耐药性,处于被淘汰的境地。在试验中同时发现,家禽大肠杆菌多重耐药菌株普遍,占所有耐药菌株的50%以上,且仍呈现上升趋势。二重、三重耐药菌株所占比例下降,而五重、六重、七重耐药菌株占主导优势。在实验中发现一株对12种抗菌药都产生耐药性的超级

大肠杆菌。由此表明大肠杆菌的耐药性日益严重,其药敏谱越来越窄,可选择药物的余地也越来越小,随着多重耐药增加,联合用药的效果必然也会越来越差。由于养殖规模、养殖历史、饲养水平和用药习惯的不同,不同地区大肠杆菌的耐药性差异也比较大。

1.2野生动物源大肠杆菌耐药性现状

野生动物与抗生素的接触机会较少,但国内外多个报道表明野生动物写到耐药大肠杆菌,说明耐药大肠杆菌已经向环境扩散,因为野生动物流动性较大,尤其是野生鸟类,又易于将耐药大肠杆菌传递给家畜,在一定程度上加速了耐药大肠杆菌和耐药基因的扩散。2.大肠杆菌的耐药机制

2.1细菌耐药性分类

固有耐药(intrinsic resistance),又称天然耐药,由细菌染色体基因决定,代代相传,如肠道阴性杆菌对青霉素的耐药;绿脓杆菌对氨苄西林的耐药;链球菌对庆大霉素的耐药等。

获得耐药(acquired resistance),是指细菌在接触抗生素后,改变代谢途径,使自身不被抗菌药物杀灭的抵抗力。这种耐药可通过耐药基因的传代、转移、传播、扩散、变异形成高度和多重耐药。

2.2大肠杆菌的耐药机制

2.2.1减少药物的摄入量

细菌可通过各种途径阻止药物进入菌体,提高细菌的耐药程度。生物被膜和细菌外膜构成药物进入菌体的一道屏障,细菌可通过增加生物被膜的生成量、改变细菌外膜的通透性减少药物的摄入量。

2.2.1.1 细菌生成生物被膜

细菌生物被膜是指细菌粘附于固体或有机腔道表面,形成微菌落,并粉笔细胞外多糖蛋白复合物将自身包裹其中而形成的膜状物。细菌间的多糖蛋白复合物形成孔道维持细菌物质代谢。细菌生物被摸生成后,往往对抗菌药物产生耐药性。生物被摸具有以下功能:①减少抗菌药物渗透。②吸附抗菌药物钝化酶,促进抗菌药物水解。③细菌生物被摸下细菌代谢低下,对抗菌药物不敏感。④生物被膜的存在阻止了机体对细菌的免疫力。大肠杆菌可通过提高与生物被膜产生相关的基因的表达量,提高生物被膜的生成量。如acrA、agn43、csgD和pgnA基因的表达量与细菌生物被膜的生成量直接相关,而抗生素的浓度可以影响大肠杆菌相关基因的表达量。一定浓度的抗生素可提高细菌生物被膜的

生成量。

2.2.1.2 细菌外膜通透性的改变

药物进入菌体必须通过菌体外膜,因而菌体外膜的通透性直接影响药物通过菌体外膜。LPS(lipopolysaccharide)由脂质A、1分子核心多糖和O抗原构成,是构成大肠杆菌细胞细胞壁的脂多糖,能降低脂质双分子层对疏水分子的通透性。青霉素、氯霉素、氟喹诺类抗生素进入革兰氏阴性菌菌体需通过细菌外膜上的孔蛋白OmpA、OmpF、OmpC,而大肠杆菌通过改变外膜上孔蛋白的数量、大小和选择性减少抗菌药物的摄入,提高菌体耐药性。OmpF在保持细菌外膜正常通透性中起重要作用,OmpF数量减少可以使细胞膜对抗生素的通透性下降,造成细菌对多种抗生素的敏感性下降;OmpC的增多(有时下降)致使某些药物失去抗菌作用。显然这些膜孔蛋白的表达水平的变化可对细菌的耐药性产生影响。

2.2.2增加药物的外排量

外排泵系统是细菌增加药物外排的一种主要途径,有针对一种或几种药物的具有选择性的外排泵,也有没有药物选择性的外排泵系统超家族。目前,将外排泵分为5个家族:SMR(small multidrug resistance protein)家族、MFS(major facilitator superfamily)超家族、ABC(ATP-binding cassette)超家族、RND(resistance-nodulation-cell division)超家族、MATE(multidrug and toxic compound extrusion)家族,其中RND、MFS、SMR为H+/药转运,MATE为Na+/药转运。在大肠杆菌中RND家族的成员起到较为重要的作用。大肠杆菌具有AcrA/AcrB/TolC三重外排泵系统及MexAB-OprM,可以排除多种抗生素,使大肠杆菌可以同时对多种抗生素的抵抗力增强。其中,AcrA、AcrB、MexAB 都为RND家族成员。上述5个外排泵家族的底物种类很多,可以排出多种抗生素,与大肠杆菌的多重耐药机制有关。

2.2.3产生灭活酶

大肠杆菌可以产生酶加工修饰进入菌体内的抗生素,使抗生素识货,提高菌体的耐药性。如可以灭活β-内酰胺类药物的β-内酰胺酶、超广谱β内酰胺酶、可以使氨基糖苷类药物失活的氨基糖苷修饰酶等。

3.减少大肠杆菌耐药性的措施

3.1加强环境管理

从饲养管理做起,因为大肠杆菌是条件致病菌,若密度过大、通风不良、转群应激、突

然变换饲料等均会引起大肠杆菌的暴发。所以只有良好的环境卫生,才可以减少疾病的产生。因此制定科学的饲料管理制度,加强饲养管理,至关重要。做好消毒工作必然首当其冲。消毒工作应当依据养殖场自身情况进行计划,做到定期消毒。而消毒剂也应科学选择,做到真正有效。研究表明:消除环境诱因,是减少大肠杆菌病发生的有效措施。

3.2新药和疫苗的应用

为了减少药物在预防工作中的大量应用,现在主要采取的办法是应用疫苗。疫苗的使用虽然在大肠杆菌的控制上起较大的作用,且国内外研制了各种类型的基因工程菌苗与多价灭活菌苗,但由于大肠杆菌的血清型复杂,各个地方的流行菌株各不相同,免疫效果并不理想,一般以自制的灭活菌苗效果更好。研制新药是以变质变来对耐药性产生后的一种弥补措施,它能为药物抵抗细菌注入新的血液。

3.3提高药物生产应用的科学化

药物生产的规范化是避免因假冒伪劣药品成分不足所产生耐药性的根本解决办法。而科学的使用抗生素,包括合理的疗程、适宜的剂量、轮换交替用药、针对性用药。这样不但能有效地控制和预防疾病,避免损失,而且也是减少大肠杆菌耐药性产生的有效措施。

3.4耐药性质粒的消除

在防止耐药性产生的同时,人们也在积极寻找耐药性消除剂,希望通过一些方式消除细菌的耐药性,其中针对耐药性质粒的消除和阻止传递方面国内外的一些实验室已经取得了一定进展。目前质粒消除剂分为二类:一类是作用于细菌细胞表面,包括大分霉素、SDS、EDTA等能特异性地杀死带有质粒的菌株,从菌群中除去耐药菌;另一类是吖啶类染料和丝裂霉素C等DNA抑制剂,可一直质粒的复制。

4.小结

大肠杆菌作为环境常在菌,在公共卫生学上具有重大的意义。有助于我们对耐药性传播问题进行更多更深入的探讨。以及提示医用、饲用、农用抗生素对环境微生态所造成的影响。这些抗菌药作为环境外源性化学物对环境生物及生态产生广泛而深远的影响,并与耐药菌株一起对环境中的敏感细菌进行耐药性“改造”。而这些耐药菌株出现后,猪场隔离、消毒是否得力,将会影响耐药菌株的传播与增长速度。大肠杆菌耐药性的产生和发展无疑给畜牧业带来无穷无尽的烦恼,而大肠杆菌耐药性的监测工作给抵制这些烦恼指引了道路。耐药性机制的研究已经审图到生化和分子生物学等科学领域,这就是对我们今后研究工作指引了方向。相信在不远的将来耐药性不再是难题。

参考文献:

[1]朱力军.动物大肠杆菌耐药性的变化趋势.中国兽药杂志,2001,35(2):16-18

[2]王波云,李立安,顾亚夫.细菌耐药性研究进展与对策.解放军药学学报出版社,2001

17(5):259-261,287

[3]金升藻,金巍,叶微.大肠杆菌耐药性研究进展.上海畜牧兽医通讯,2008,6:17-18

[4]程龙,程明等.控制细菌耐药性发展与抗生素的合理使用.中国医药导

报,2008,5(25):101-102

[5]张凤珍.大肠杆菌耐药机制和消除耐药性方法概述.内蒙古民族大学学报(自然科学

版),2009,24(2):84-87

[6]杨微.大肠杆菌耐药性的研究进展.畜牧与饲料科学,2011,6(32):116-118

[7]王瑞庆.禽类大肠杆菌产生耐药性的原因分析及防治对策.中国动物保

健,2010,(3):64-65

[8]常维山,王应文,孙金华等.我国部分地区鸡源大肠杆菌耐药性分析.山东畜牧兽医,

2009,30(1)

[9]夏利宁,赵红琼,苏艳等.新疆某猪场分离和大肠杆菌对抗生素耐药性调查.新疆农

业科学,2012,49(12):2299-2303

[10]刘坤友.耐药性大肠杆菌研究进展.中外健康文摘.2011,31

大肠杆菌耐药性研究进展

大肠杆菌耐药性研究进展 教郁,高维凡,胡彩光 (沈阳农业大学,辽宁省沈阳市,110000) 摘要:大肠杆菌是典型的革兰氏阴性杆菌,其引起的大肠杆菌病是一种常见疾病,在治疗过程中 容易产生耐药性,且耐药谱广,耐药机制复杂,给养鸡业预防和治疗该病带来很大困难。大肠杆茵对抗生素的耐药问题是当前国内外研究的热点。本文对大肠杆菌耐药的现状以及产生耐药性机制的研究进行了综述,以便正确理解大肠杆菌耐药性的特点及其规律,从而为防治大肠杆菌耐药性的产生及合理用药提供理论依据。 关键词:大肠杆菌;耐药性;作用机制 The research progress on mechanism of Drg-resistance of Escherichia coli Abstract: E.coli is gram-negative bacteria, colibacillosis is a kind of common disease. Escherichia coli strains showed high levels of resistance, resistance spectrum to expand, and multiple drug resistance. The drug resistant gene is complex and diverse. So the prevention and treatment of the disease bring a lot of difficulties. Antibiotic resistance is the current domestic and international research hot spot. The advances on mechanism of resistance and the present situation of E coli resistance are summarized.Thus the trend of the drug-resistance on the E coli resistance can be understood better and the basis for preventing the production of the resistant stains and using drugs reasonablely can be furtherly provided. Keywords: Eescherichia coli; resistance; resistance mechanism 致病性大肠杆菌为医学和兽医学临床感染中最常见的病原菌之一。从发病情况看,大肠杆菌病发病率在细菌病引发的疾病中居世界首位。兽医临床上大肠杆菌造成的危害十分严重,它一年四季均可致病,一直是困扰养殖业发展的常见病、多发病,给养禽业造成了严重的经济损失;大肠杆菌病的主要防治措施是应用疫苗及抗生素。国内外已研制出多种疫苗对大肠杆菌病进行预防,但因大肠杆菌具有多种血清型,仅国内报导就有80余种,应用疫苗对大肠杆菌病进行防治尚不能满足对该病的防治要求。抗生素在大肠杆菌病预防及治疗方面有着不可替代的作用,但是随着抗生素的广泛、持续及不当使用,大肠杆菌耐药谱不断扩大和耐药水平不断提高,大肠杆菌耐药及多重耐药现象已十分严重。虽然新型抗生素不断问世,但抗生素的研制速度远远低于耐药菌的产生速度。因此了解大肠杆菌耐药状况,掌握大肠杆菌耐药趋势,研究大肠杆菌耐药机理,对控制耐药菌株的蔓延具有十分重要的意义。 1.大肠杆菌耐药性现状 近年来,随着抗生素及各种化学合成药物在我国畜牧业生产中的广泛应用,大量的抗生素、消毒剂等不断进入水、土壤、河流、沉积物等各种环境中。使得大肠杆菌耐药谱不断扩大和耐药水平不断提高,给我国畜牧业的持续发展和人类健康带来潜在的危害。国内外各地均分离得到耐药家畜源性大肠杆菌,并对这些病原菌进行了耐药谱系的检测。梅姝等[1]报道分离得到的长春地区127株鹿源大肠杆菌对5种抗菌药物呈现不同

大肠杆菌的研究与应用

大肠杆菌的研究与应用 中文摘要:大肠埃希氏菌(E.coli)通常称为大肠杆菌,是Escherich在1885年发现的,在相当长的一段时间内,一直被当作正常肠道菌群的组成部分,认为是非致病菌。直到20世纪中叶,才认识到一些特殊血清型的大肠杆菌对人和动物有病原性,尤其对婴儿和幼畜(禽),常引起严重腹泻和败血症。本文通过对大肠杆菌的结构及其致病机理等进行分析描述,以供大家参考学习。 关键词:大肠杆菌;致病性;危害;预防 The English abstract:Escherichia coli (E.c oli) are usually called escherichia coli, Escherich is found in 1885, in a long period of time, has been regarded as the normal bowel flora, that is part of the pathogen. Until the 20th century, realized some special type of escherichia coli serum of people and animals, especially for the infants and young (birds), often cause severe diarrhea and sepsis. Based on the structure and pathogenic escherichia coli mechanism analysis of reference, the study. Keywords:escherichia coli;The pathogenicity;Hazards;prevent 一、结构特征 大肠杆菌是人和许多动物肠道中最主要且数量最多的一种细菌,周身鞭毛,能运动,无芽孢。主要生活在大肠内。能发酵多种糖类产酸、产气,是人和动物肠道中的正常栖居菌,婴儿出生后即随哺乳进入肠道,与人终身相伴,其代谢活动能抑制肠道内分解蛋白质的微生物生长,减少蛋白质分解产物对人体的危害,还能合成维生素b和k,以及有杀菌作用的大肠杆菌素。正常栖居条件下不致病。它侵入人体一些部位时,可引起感染,如腹膜炎、胆囊炎、膀胱炎及腹泻等。人在感染大肠杆菌后的症状为胃痛、呕吐、腹泻和发热。感染可能是致命性的,尤其是对孩子及老人。其主要具有以下一些特征: 1、大肠杆菌是细菌,属于原核生物;具有由肽聚糖组成的细胞壁,只含有核糖体简单的细胞器,没有细胞核有拟核;细胞质中的质粒常用作基因工程中的运载体。 2、大肠杆菌的代谢类型是异养兼性厌氧型。 3、人体与大肠杆菌的关系:在不致病的情况下(正常状况下),可认为是互利共生(一般高中阶段认为是这种关系);在致病的情况下,可认为是寄生。 4、培养基中加入伊红美蓝遇大肠杆菌,菌落呈深紫色,并有金属光泽,可鉴别大肠杆菌是否存在。 5、大肠杆菌在生物技术中的应用:大肠杆菌作为外源基因表达的宿主,遗传背景清楚,技术操作简单,培养条件简单,大规模发酵经济,倍受遗传工程专家的重视。目前大肠杆菌是应用最广泛,最成功的表达体系,常做高效表达的首选体系。 6、大肠杆菌在生态系统中的地位,假如它生活在大肠内,属于消费者,假如生活在体外则属于分解者。[1]

pET-32b(+)大肠杆菌表达载体说明

pET-32b(+) 编号 载体名称 北京华越洋生物VECT5030 pET--‐32b(+) pET32b载体基本信息 别名: pET32b, p et 32b 质粒类型: 大肠杆菌蛋白表达 表达水平: 高 克隆方法: 多克隆位点,限制性内切酶 载体大小: 5899bp 5' 测序引物: T7或者Trx--‐F 5' 测序引物序列: T7: 5'--‐TAATACGACTCACTATAGGG--‐3'; Trx--‐F: 5' T TCCTCGACGCTAACCTG 3' 载体标签: thioredoxin (N端); H is (中间和C端) 载体抗性: Ampicillin 备注: Production of soluble, active target proteins; N--‐term thrombin cleavage s ite; Nterm e nterokinase c leavage s ite; a,b,c v ary b y M CS 稳定性: 瞬时表达 Transient 组成型: 组成型 Constitutive 病毒/非病毒: 非病毒 pET32b载体质粒图谱和多克隆位点信息

pET32b载体简介 The pET--‐32a--‐c series is designed for cloning and high--‐level expression of peptide sequences fused with the 109aa Trx?Tag? thioredoxin protein (1). Cloning sites are available for producing fusion proteins also containing cleavable His?Tag? and S?Tag? sequences for detection and purification. Unique sites are shown on the circle map. Note that t he s equence i s n umbered b y t he p BR322 c onvention, s o t he T7 e xpression r egion i s reversed on the circle map. The cloning/expression region of the coding strand transcribed by T7 RNA polymerase is shown below. The f1 origin is oriented so that infection with helper phage will produce virions containing single--‐stranded DNA that corresponds to the coding strand. Therefore, single--‐stranded sequencing should be performed u sing t he T7 t erminator p rimer . pET32b载体序列 ORIGIN 1 ATCCGGATAT AGTTCCTCCT TTCAGCAAAA AACCCCTCAA GACCCGTTTA GAGGCCCCAA 61 GGGGTTATGC TAGTTATTGC TCAGCGGTGG CAGCAGCCAA CTCAGCTTCC TTTCGGGCTT 121 TGTTAGCAGC CGGATCTCAG TGGTGGTGGT GGTGGTGCTC GAGTGCGGCC GCAAGCTTGT 181 CGACGGAGCT CGAATTCGGA TCCGATATCG CCATGGCCTT GTCGTCGTCG TCGGTACCCA 241 GATCTGGGCT GTCCATGTGC TGGCGTTCGA ATTTAGCAGC AGCGGTTTCT TTCATACCAG 301 AACCGCGTGG CACCAGACCA GAAGAATGAT GATGATGATG GTGCATATGG CCAGAACCAG 361 AACCGGCCAG GTTAGCGTCG AGGAACTCTT TCAACTGACC TTTAGACAGT GCACCCACTT 421 TGGTTGCCGC CACTTCACCG TTTTTGAACA GCAGCAGAGT CGGGATACCA CGGATGCCAT 481 ATTTCGGCGC AGTGCCAGGG TTTTGATCGA TGTTCAGTTT TGCAACGGTC AGTTTGCCCT 541 GATATTCGTC AGCGATTTCA TCCAGAATCG GGGCGATCAT TTTGCACGGA CCGCACCACT 601 CTGCCCAGAA ATCGACGAGG ATCGCCCCGT CCGCTTTGAG TACATCCGTG TCAAAACTGT 661 CGTCAGTCAG GTGAATAATT TTATCGCTCA TATGTATATC TCCTTCTTAA AGTTAAACAA 721 AATTATTTCT AGAGGGGAAT TGTTATCCGC TCACAATTCC CCTATAGTGA GTCGTATTAA 781 TTTCGCGGGA TCGAGATCGA TCTCGATCCT CTACGCCGGA CGCATCGTGG CCGGCATCAC 841 CGGCGCCACA GGTGCGGTTG CTGGCGCCTA TATCGCCGAC ATCACCGATG GGGAAGATCG 901 GGCTCGCCAC TTCGGGCTCA TGAGCGCTTG TTTCGGCGTG GGTATGGTGG CAGGCCCCGT 961 GGCCGGGGGA CTGTTGGGCG CCATCTCCTT GCATGCACCA TTCCTTGCGG CGGCGGTGCT 1021 CAACGGCCTC AACCTACTAC TGGGCTGCTT CCTAATGCAG GAGTCGCATA AGGGAGAGCG 1081 TCGAGATCCC GGACACCATC GAATGGCGCA AAACCTTTCG CGGTATGGCA TGATAGCGCC 1141 CGGAAGAGAG TCAATTCAGG GTGGTGAATG TGAAACCAGT AACGTTATAC GATGTCGCAG 1201 AGTATGCCGG TGTCTCTTAT CAGACCGTTT CCCGCGTGGT GAACCAGGCC AGCCACGTTT 1261 CTGCGAAAAC GCGGGAAAAA GTGGAAGCGG CGATGGCGGA GCTGAATTAC ATTCCCAACC 1321 GCGTGGCACA ACAACTGGCG GGCAAACAGT CGTTGCTGAT TGGCGTTGCC ACCTCCAGTC 1381 TGGCCCTGCA CGCGCCGTCG CAAATTGTCG CGGCGATTAA ATCTCGCGCC GATCAACTGG 1441 GTGCCAGCGT GGTGGTGTCG ATGGTAGAAC GAAGCGGCGT CGAAGCCTGT AAAGCGGCGG 1501 TGCACAATCT TCTCGCGCAA CGCGTCAGTG GGCTGATCAT TAACTATCCG CTGGATGACC 1561 AGGATGCCAT TGCTGTGGAA GCTGCCTGCA CTAATGTTCC GGCGTTATTT CTTGATGTCT 1621 CTGACCAGAC ACCCATCAAC AGTATTATTT TCTCCCATGA AGACGGTACG CGACTGGGCG 1681 TGGAGCATCT GGTCGCATTG GGTCACCAGC AAATCGCGCT GTTAGCGGGC CCATTAAGTT 1741 CTGTCTCGGC GCGTCTGCGT CTGGCTGGCT GGCATAAATA TCTCACTCGC AATCAAATTC

抗菌药物对肠道大肠杆菌耐药性的影响

抗菌药物对肠道大肠杆菌耐药性的影响 抗菌药物对肠道大肠杆菌耐药性的影响 2009-10-17 张小林汪复 随着抗菌药物的广泛应用,细菌耐药性变得越来越严重。研究表明[1,2],细菌耐药性的变化和抗菌药物应用有关。我们检测了4个月内未使用过抗菌药物和最近2周内使用过抗菌药物的成人肠道大肠杆菌对12种抗菌药物的敏感性,以期了解抗菌药物选择压力和细菌耐药性之间的关系。 材料和方法 一、检测对象 四个月内未使用过抗菌药物的健康成人51例,年龄26~70岁,平均52.8岁;两周内使用过抗菌药物的成人16例,年龄30~70岁,平均46.3岁,两组均为男性,来自上海医科大学基础部。在使用抗菌药物组中,2例服用诺氟沙星,8例头孢氨苄,4例复方新诺明,2例头孢拉定,均为口服常规剂量,疗程1~4天,使用抗菌药物组中,10例为上呼吸道感染,2例腹泻,4例无明显病症,检测时所有病例症状均已消失。 二、标本采集 用消毒棉签采集受试者肛拭标本,置于卡里-布莱尔(Cary-Blair)培养基制成的培养管保存。标本采集时间为1995年11月。 三、药敏试验 采用K-B纸片法,结果按NCCLS1993年版标准判定。药敏试验用两种方法:1. 将肛拭标本直接涂布于麦康凯琼脂(Mac Conkty Agar)平板,作纸片药敏试验,在耐药范围内有5个以上的菌落生长即判定为携带有对该抗菌药物耐药的菌株。2. 将肛拭标本在麦康凯琼脂平板作细菌分离,随机选择出10株乳糖发酵菌落,进一步纯化,用MH琼脂平板作药敏试验,药敏质控菌为ATCC25922。 12种药敏纸片为:氨苄西林、哌拉西林、庆大霉素、阿米卡星、链霉素、氯霉素、四环素、甲氧苄氨嘧啶、诺氟沙星、氧氟沙星、环丙沙星(卫生部北京药品生物制品检验所)、磺胺甲基异 FDA3 唑(上海第十五制药厂)。 结果 一、耐药菌株携带率 见表1。 未使用抗菌药物组和使用抗菌药物组,氨苄西林、哌拉西林、庆大霉素、链霉素、氯霉素、诺氟沙星、氧氟沙星、环丙沙星耐药株携带率在使用抗菌药物组均高于未使用组,其中氧氟沙星、庆大霉素两组间差异有显著性(均P<0.05)。 表1 12种抗菌药物的耐药株携带率(%)

大肠杆菌表达系统的研究进展综述

基因工程制药综述 班级:生技132 : 学号:

大肠杆菌表达系统的研究进展综述 自上世纪 70 年代以来, 大肠杆菌一直是基因工程中应用最为广泛的表达系统。尽管基因工程表达系统已经从大肠杆菌扩大到酵母、昆虫、植物及哺乳动物细胞,并且近年来出现了很多新型的真核表达系统, 但是大肠杆菌仍然是基因表达的重要工具。尤其是进入后基因组时代以来, 有关蛋白结构以及功能研究的开展 ,对基因表达的要求更高,这时大肠杆菌往往是表达的第一选择。文章综述了近年来有关大肠杆菌表达载体及宿主细胞的改造工作。 1 表达载体 1. 1 表达调控 构建有效的表达载体是表达目的基因的基本要求, 同时也是影响基因表达水平以及蛋白活性的重要因素。标准的大肠杆菌表达载体的主要组成: 启动子、操纵子、核糖体结合位点、翻译起始区、多克隆位点、终止子、复制起点以及抗性筛选因子等。理想的表达载体要求在转录和翻译水平上可以控制目的基因的表达 ,然而目的基因在宿主体过分表达(选用较强的启动子等)会对宿主造成压力, 引起相关的细胞应答反应, 影响蛋白的活性等。基因组、RNA 转录组、蛋白质组、代调控组等领域的研究成果给我们提供了大量关于基因表达调控的信息[ 1]。现已能从基因和细胞的整体水平来方便地选择合适的启动子或合理开发新的载体系统。譬如 Lee 等利用二维凝胶电泳法比较了重组载体和空载体被分别转入宿主细胞后蛋白组学的差异,发现两者都产生了大肠杆菌热休克蛋白并引起了 cAMPCRP 调节蛋白的应答, 其中重组子的影响更为强烈;另外, 还发现外源基因的表达使宿主核糖体合成速率、翻译延长因子和折叠酶表达水平、细胞生长率下降 , 而使细胞呼吸活力上升[ 2]。目前应用的表达载体主要问题是表达过程中出现的全或无的情况, 通常表达的培养物都是非纯种的细胞群, 其中有一些细胞可以最大限度地被诱导,而另一些细胞在诱导后基因的表达被关闭。分离具有合适强度启动子及翻译速率的载体变种可以优化表达水平,说明启动子的选择对于基因的诱导表达非常重要。 Deborahat 提出在芯片上排列具有不同强度级别启动子的载体进行互补分析, 可能有助于筛选最为适合的启动子[3]。开发非 IPTG 或阿拉伯糖诱导的载体也可以提高基因表达水平, Qing 等利用 cspA 基因的独特性开发了一系列冷休克表达载体pCold, 使目的基因在低温下(<15℃) 诱导表达,提高了产物的溶解性和稳定性[4]。 1. 2 融合表达载体 除了表达载体的调控性,为了提高蛋白产物的活性以及简化下游纯化的操作等 ,往往在表达载体上插入其它辅助的基因序列与目的基因构成融合蛋白表达。融合信号肽(PelB、Om pA 、MalE、PhoA 等)表达可以使融合蛋白通过经典的 Sec 途径分泌到周质或胞外表达, 有利于形成二硫键以及避免胞质蛋白酶的水解和 N 端甲硫氨酸的延伸。另外,最近开发的双精氨酸转运体系(Tat)可以有效分泌正确折叠的重组蛋白[5]。常见的纯化标签多根据亲和层

大肠杆菌文献综述

文献综述 禽大肠杆菌病的研究进展 郑琳红 西南大学荣昌校区动物医学系,重庆荣昌402460 摘要:禽大肠杆菌病是由致病性大肠杆菌引起各种禽类的一种急性或慢性传染病,主要侵害鸡、鸭、鹅,以及各类珍、特禽,临床上有多种表现形式,其中以急性败血型、卵黄性腹膜炎和生殖器官损害较常见,危害性也最为严重。本文主要在病原学、流行病学、临床症状、病理变化和诊断与防治等方面对禽大肠杆菌病进行了综述。 关键词:禽大肠杆菌;流行特点;疫病防治;研究进展 禽大肠杆菌病(colibacillosis)是由致病性大肠埃希氏菌( E. coli )引起禽类的一种急性、慢性传染病的总称。其病型和病变复杂多样。本菌抗原结构复杂,血清型多,变异菌株不断出现,分布极广,不同地区有不同血清型,同一地区不同养殖场甚至同一养殖场同一种群也可能有多个血清型。本病的普遍性,给养禽业造成严重威胁和重大经济损失[1,2]。 禽大肠杆菌病常继发于其他致病因子或与其他致病因子一同作用,使其表现得复杂多变,往往使真正的罪魁祸首得以掩盖。禽大肠杆菌病发病频繁,容易反复发作,加上用药较乱,病原菌血清型多、抗原结构复杂,极易产生耐药性,使其防不胜防。1976年Smits等发现新城疫疫苗、传染性支气管炎疫苗免疫,支原体感染与大肠杆菌感染之间的关系,气雾免疫法及支原体感染大幅提高大肠杆菌感染率[3]。 1.病原学 大肠杆菌是人和动物肠道中的常见菌,多为条件性致病菌,当机体健康,抵抗力强时,这些菌株不表现致病性,当机体健康状况下降,特别是在应激情况下,其致病性增强,引起发病。致病性大肠杆菌在自然界中广泛存在,凡有哺乳动物和禽类活动的环境空气、水源和土壤中均有本菌存在。当禽舍通风不良、饲养密度大、卫生条件差、饲料质量不好、禽舍污染严重时,该病传播途径可经过消化道、呼吸道、交配等途径水平传播,还可通过其它多种途径,使种蛋被污染而进行垂直传播[1]。 禽大肠杆菌病病原是革兰氏阴性、非抗酸性、染色均一,不形成芽孢,两端钝圆的短杆菌,需氧或兼性厌氧。有时大小和形态可能是多变的,许多菌株有运动性,有周身

pET-48b(+)大肠杆菌表达载体说明

pET-48b(+) 编号 载体名称 北京华越洋生物VECT4670 pET--‐48b(+) pET48b载体基本信息 别名: pET48b, p ET 48b 质粒类型: 大肠杆菌蛋白表达 表达水平: 高 克隆方法: 多克隆位点,限制性内切酶 载体大小: 5605 b p 5' 测序引物序列: T7: 5'--‐TAATACGACTCACTATAGGG--‐3'; Trx--‐F: 5'--‐TTCCTCGACGCTAACCTG--‐3' 3' 测序引物序列: T7t: 5'--‐TGCTAGTTATTGCTCAGCGG--‐3' 载体标签: N--‐Trx, N--‐His,N--‐HRV 3C, C--‐S, C--‐Thrombin 载体抗性: Kanamycin (卡那霉素) 备注: Same as pET47 but also has Nterm Trx Tag; contains HRV 3C Protease cleavage site for fusion tag removal at low temperatures; Cterm thrombin c leavage s ite. 稳定性: 瞬时表达 组成型: 组成型 病毒/非病毒: 非病毒 pET48b载体质粒图谱和多克隆位点信息

pET48b载体简介 pET--‐48b载体含有N端Trx和His标签,在标签后面紧跟着的是HRV 3C蛋白酶切位点。HRV 3C蛋白酶能够高特异性的识别LEVLFQ↓GP蛋白序列,能够在低温下高效切割掉融合标签序列。pET--‐48b载体还含有一个可选择的C端Thrombin蛋白酶切位点,紧接着位点后是S标签。 pET48b载体的单一的多克隆位点见上面的环状质粒图谱。注意:载体序列是以pBR322质粒的编码规矩进行编码的,所以T7蛋白表达区在质粒图谱上面是反向的。 T7 RNA聚合酶启动的克隆和表达区域在质粒图谱中也被标注了出来。质粒的F1复制子是被定向的,所以在T7噬菌体聚合酶的作用下,包含有蛋白编码序列的病毒 粒子能够

大肠杆菌的耐药性研究

大肠杆菌的耐药性研究 摘要:随着新的抗菌药物的不断出现和临床应用,引起医院感染的细菌种类也发生着变化,细菌耐药性的发展已成为抗感染治疗面临的一个严重问题,尤其是大肠杆菌对常用抗菌药物耐药的发展越来越令人担忧。本文就大肠杆菌的研究现状、耐药原因、耐药机制、以及耐药性的消除做一扼要概述,并全面的阐述了细菌耐药性的耐药机制。细菌耐药性产生的原因是多方面的,有细菌自身的原因也有滥用抗生素的原因等。就以上的问题本文提出了对抗细菌耐药性的对策,要合理使用抗生素,加强对抗菌药物的研发等,以及对细菌耐药性所引发的思考。 关键词:耐药性;大肠杆菌;耐药机制 近年来,随着临床上应用的抗菌药物的日益增多,特别是许多广谱抗生素及新型抗生素在临床上的广泛应用,使细菌耐药性成为全球关注的焦点。其中肠杆菌属细菌是目前临床感染中最重要的病原菌,对抗生素的耐药性更为显著。细菌的耐药性是普遍存在的,细菌耐药性产生的原因是多方面的,一方面,就细菌本身而言,细菌有显著的适应性和惊人的多变性,除了细菌先天固有的耐药性外,细菌也可以通过接合、转导和转化等方式,由染色体、质粒等介导产生基因突变,从而使细菌产生获得性耐药。另一方面,就抗生素而言,大量广谱抗生素的广泛应用,特别是第三代头孢菌素的使用,更易筛选出耐药菌株[1]。因此,适当的检测耐药菌株,了解细菌的分布及耐药情况,对防止和延缓细菌耐药性的产生,指导临床医生合理使用抗生素,控制病原菌特别是耐药菌株的播散和流行具有十分重要意义。 1 细菌耐药机制 细菌主要通过以下几种方式抵制抗菌药物作用: ①产生灭活酶,使抗菌药物失活或结构改变。细菌产生的灭活酶主有水解酶和钝化酶两大类。水解酶可破坏药物使之失效,如β内酰胺酶可水解青霉素或头孢菌素的β内酰胺环而使药物失效。这类酶可由染色体或质粒介导。钝化酶又称合成酶,它们多数为革兰阴性菌所产生的氨基糖苷类抗生素的钝化酶。该酶可修饰抗菌药物分子中某些保持抗菌活性所必需的基因,使其与作用靶位核糖体的亲和力大为降低,从而失去其抑制细菌蛋白质合成的作用。②改变细菌细胞壁的通透性,使抗菌药物不能进入菌体内。③细菌体内抗菌药物作用的靶位结构改变,使之不能与抗菌药物结合。抗生素对细菌作用靶位的改变是细菌获得抗药性的又一途径。抗生素通过作用于特异性的必要细胞组成部分抑制细菌生长繁殖。此组成部分的变化可阻止药物的结合和作用,因而使细菌对药物产生抗药性。如由质粒介导的对林可霉素和红霉素的抗药性,系细菌核蛋白体23 S 亚基上腺嘌呤甲基化,使药物不能与细菌结合所致。 ④形成代谢拮抗剂与药物争夺靶酶。细菌可通过代谢拮抗剂产量的增加来抑制抗菌药物的作用。如金黄色葡萄球菌与磺胺类药物多次接触后,对氨苯甲酸产量可增加至原敏感菌产量的20~100 倍,后者与磺胺药竞争二氢叶酸合成酶,使磺胺药的作用下降甚至消失[2]。⑤通过主动外排作用,将药物排出菌体外。⑥细菌分泌细胞外多糖蛋白复合物将自

pET-22b(+)大肠杆菌表达载体说明

pET-22b(+) 编号 载体名称 北京华越洋生物VECT5200 pET--‐22b(+) pet22b载体基本信息 别名: pET22b, p et 22b, p ET--‐22b(+) 质粒类型: 大肠杆菌蛋白表达 表达水平: 高 克隆方法: 多克隆位点,限制性内切酶 载体大小: 5500bp 5' 测序引物及序列: T7: 5'--‐TAATACGACTCACTATAGGG--‐3' 3' 测序引物序列: T7t: 5'--‐GCTAGTTATTGCTCAGCGG--‐3' 载体标签: N--‐pelB; C--‐His 载体抗性: 氨苄 备注: pET22b载体含有PelB信号肽序列, 能够将表达的目的蛋白定位在细胞外周质腔。 稳定性: 瞬时表达 Transient 组成型: 组成型 Constitutive 病毒/非病毒: 非病毒 pet22b载体质粒图谱和多克隆位点信息

pet22b载体简介 pET--‐22b(+)载体携带有一个N端的pelB信号肽序列,能够将表达的目的蛋白定位于外周质腔,同时载体含有C端His标签。载体的单一的多克隆位点见上面的环状质粒图谱。注意:载体序列是以pBR322质粒的编码规矩进行编码的,所以T7蛋白表达区在质粒图谱上面是反向的。 T7 RNA聚合酶启动的克隆和表达区域在质粒图谱中也被标注了出来。质粒的F1复制子是被定向的,所以在T7噬菌体聚合酶的作用下,包含有蛋白编码序列的病毒 粒子能够产生,并启动蛋白表达,同时蛋白表达将被T7终止子序列的作用下终止蛋白翻译。 pet22b载体序列 ORIGIN 1 ATCCGGATAT AGTTCCTCCT TTCAGCAAAA AACCCCTCAA GACCCGTTTA GAGGCCCCAA 61 GGGGTTATGC TAGTTATTGC TCAGCGGTGG CAGCAGCCAA CTCAGCTTCC TTTCGGGCTT 121 TGTTAGCAGC CGGATCTCAG TGGTGGTGGT GGTGGTGCTC GAGTGCGGCC GCAAGCTTGT 181 CGACGGAGCT CGAATTCGGA TCCGAATTAA TTCCGATATC CATGGCCATC GCCGGCTGGG 241 CAGCGAGGAG CAGCAGACCA GCAGCAGCGG TCGGCAGCAG GTATTTCATA TGTATATCTC 301 CTTCTTAAAG TTAAACAAAA TTATTTCTAG AGGGGAATTG TTATCCGCTC ACAATTCCCC 361 TATAGTGAGT CGTATTAATT TCGCGGGATC GAGATCTCGA TCCTCTACGC CGGACGCATC 421 GTGGCCGGCA TCACCGGCGC CACAGGTGCG GTTGCTGGCG CCTATATCGC CGACATCACC 481 GATGGGGAAG ATCGGGCTCG CCACTTCGGG CTCATGAGCG CTTGTTTCGG CGTGGGTATG 541 GTGGCAGGCC CCGTGGCCGG GGGACTGTTG GGCGCCATCT CCTTGCATGC ACCATTCCTT 601 GCGGCGGCGG TGCTCAACGG CCTCAACCTA CTACTGGGCT GCTTCCTAAT GCAGGAGTCG

大肠杆菌耐药性研究进展

大肠杆菌耐药性研究进展 刘蔚雯 11动科类丁颖班 【摘要】大肠埃希氏菌(E.coli)俗称大肠杆菌,是一种常见致病菌。由于抗生素的广泛持续的不当使用,导致大肠杆菌耐药株的大量出现,使人医临床和兽医临床对大肠杆菌病的治疗变得十分困难,有时甚至找不到可治之药。近年来,大肠杆菌的耐药性问题已经引起了国内外医药界的广泛重视。本文对大肠杆菌耐药现状、产生耐药性机制的研究以及减少大肠杆菌耐药性的措施综述如下。 【关键字】大肠杆菌细菌耐药性抗生素 大肠杆菌寄生在人和动物的肠道内,大多是肠道的正常菌群。人和动物出生后数小时即可经口进入消化道后段,大量繁殖而定居,终身伴随,并经粪便不断散播于周围环境。但在特定条件下可致病。随着抗菌药物长期的大量的应用,特别是近年来抗菌药物的盲目滥用,大肠杆菌耐药株引起的感染在临床上不但有增多趋势,而且其耐药性还通过质粒在细菌间传递耐药基因而不断蔓延、变迁。大肠杆菌的多重交叉耐药株的出现使大肠杆菌的治疗变得十分困难,而且还造成了动物源性食品的安全问题。因此,大肠杆菌耐药性问题引起了师姐的广泛关注。各国学者对大肠杆菌耐药性的探索也从未停止,并从多方面阐述了细菌产生耐药性的机制以及提出了一些建设性的措施。 1.大肠杆菌耐药性现状 1.1家畜源大肠杆菌耐药性现状 自1929年弗来明发现青霉素以来,伴随着养殖业的发展,抗生素在动物疾病防控过程中发挥着重要的作用。但由于抗生素和抗菌药被广泛、长期使用,细菌的耐药情况也逐渐凸显出来。世界各地均有分离得到耐药家畜源性大肠杆菌的报道。目前病原细菌对青霉素的耐药率达70%以上,对大多数喹诺酮类药的耐药率也达50%以上。瑞普公司研发中心药敏实验发现,近几年在临床上常用抗菌药物有80%大肠杆菌已对其产生严重的耐药性,处于被淘汰的境地。在试验中同时发现,家禽大肠杆菌多重耐药菌株普遍,占所有耐药菌株的50%以上,且仍呈现上升趋势。二重、三重耐药菌株所占比例下降,而五重、六重、七重耐药菌株占主导优势。在实验中发现一株对12种抗菌药都产生耐药性的超级

大肠杆菌噬菌体的研究进展

龙源期刊网 https://www.doczj.com/doc/e811123136.html, 大肠杆菌噬菌体的研究进展 作者:吴伟胜李玉保王守荣等 来源:《江苏农业科学》2015年第08期 摘要:大肠杆菌病为畜牧养殖业常见疾病之一,目前临床上主要依赖于抗生素进行控 制。随着大肠杆菌耐药性增强以及人们对食品安全意识的提高,急需寻找安全、高效的抗生素替代品。噬菌体是能够感染细菌、真菌、放线菌或螺旋体等微生物的病毒总称,具有巨大的潜在应用价值。对近几年国内外有关大肠杆菌噬菌体的分布、分离纯化方法、保存方法、形态、pH值稳定性、温度稳定性、分子生物学以及应用方面作了简要概述,并对以后的科研和应用进行了思考和展望。 关键词:大肠杆菌;噬菌体;研究进展 中图分类号:S852.61+2 文献标志码: A[HK] 文章编号:1002-1302(2015)08-0008-03 近年来,由于畜牧养殖业大量使用抗生素,导致病原微生物的耐药性升高 [1],同时,抗生素的使用对食品安全构成威胁。噬菌体作为一类能够感染和裂解大肠杆菌等微生物的病毒,具有宿主专一、不产生耐药性 [2]、使用安全 [3-4]等优势,在美国已应用于儿童腹泻疾病的治疗 [5]。因此,噬菌体有望在防控畜牧业肠道性疾病中替代抗生素。本文对近几年国内外关于大肠杆菌噬菌体的分离和保存方法、生物学特性等进行综述,希望能够对大肠杆菌噬菌体更深入的研究和应用提供思路和方法。 1 大肠杆菌噬菌体的分布 目前研究发现的病毒种类数量庞大,其中大部分是噬菌体 [6]。大肠杆菌噬菌体在我们生活的周围环境中普遍存在。到目前为止,学者们已经从不同的样品中分离出来多种大肠杆菌噬菌体,并对所分离的噬菌体进行了分类和命名。在养殖场的鸡粪 [7-8]和污水中 [9],以不同的大肠杆菌为宿主菌分离到不同种类的大肠杆菌噬菌体;在养猪场的粪便中,以产肠毒素性大肠杆菌K88 为宿主菌分离并纯化了1株噬菌体PK88-4 [10];在城市的污水中,以肠出血性大肠杆菌O157 ∶ H7为宿主菌分离出裂性噬菌体 [11]。此外,在医院的污水中,用大肠杆菌E1~E17共17种细菌做指示菌分离出1种广谱噬菌体IME11 [12]。 2 大肠杆菌噬菌体的分离纯化方法 对于噬菌体的分离纯化,大致可以分为采样、富集、分离、纯化4个步骤。每个步骤又包含1种或多种不同的方法,可以根据自身的试验条件和试验状况将不同方法组合,进而得到最佳的分离纯化方法。

耐药性大肠杆菌研究进展

耐药性大肠杆菌研究进展 发表时间:2011-11-24T09:37:43.363Z 来源:《中外健康文摘》2011年第31期供稿作者:刘坤友 [导读] 由于大量使用以及滥用抗生素,大肠杆菌对抗生素的耐药性已经非常严重。 刘坤友(柳江县人民医院广西柳江 545100) 【中图分类号】R37【文献标识码】A【文章编号】1672-5085(2011)31-0119-03 大肠杆菌是最常见的微生物之一,在自然界广泛分布,在人和动物体内也存在。它具有生长快、易培养、易变异等特点。大肠杆菌易感人群是婴幼儿、老年人、旅游者等[1]。2006年全国9个城市13家三甲医院总结的院内感染致病菌常见的病因构成为:葡萄菌属占 19.2%,绿脓杆菌占13.8%,克雷伯菌属占13.4%,大肠杆菌占12.2%,不动杆菌属占9.7%,肠球菌属占6.1%,其他致病菌占25.6%[2]。可见大肠杆菌是感染性疾病的主要病原菌之一,其感染主要导致腹泻、出血性结肠炎(hemorrhagic colitis,HC),并经常伴发溶血性尿毒综合征(Hemolytic ruemic syndrome,HUS)、血栓形成的血小板减少性紫癜(thrombotic thrombocytopenic purpura,TTP) 等并发症[1]。2006年美国大肠杆菌的感染率稍有上升(3.4例/10万人),其中O157:H7血清型大肠杆菌逃脱消毒剂的作用和荧光的检测现在已经在美国、英国、加拿大等国家局部流行;我国福建、浙江、广东、广西、河北、宁夏等省均有O157 : H7血清型大肠杆菌发现,严重威胁着人类的生命健康[3]。2006年冬天我国腹泻的病例大幅度增加,卫生部已经紧急通知要及时上报腹泻病例,对腹泻病例加以监控,并对病因进行了调查研究,有些是由诺瓦克病毒感染,有些是病因不明。大肠杆菌也是引起腹泻的主要病原菌之一,此次腹泻是不是与大肠杆菌有关,还没有权威部门进行排除。可见近年来大肠杆菌感染常有发生,感染率逐渐升高,感染率上升势必造成抗生素的大量使用,因此耐药性问题也随之日益严重。 一、大肠杆菌对喹诺酮类药物的耐药性研究 由于大量使用以及滥用抗生素,大肠杆菌对抗生素的耐药性已经非常严重。2005年桓新,马颖等[4]人调查6类抗生素的耐药性,大肠杆菌对其耐药率高低顺序为:青霉素类(青霉素99.05%)、大环内酯类(红霉素79.72%)、氨基糖甙类(链霉素48.98%,庆大霉素 43.88%)、氯霉素41.84%、喹诺酮类(氧氟沙星37.76%,诺氟沙星36.02%)、头孢类(先锋 V9.18%,先锋必素6.12%)。对三类以上抗生素均耐药的占71.0%,耐药谱以青霉素类、大环内酯类、氨基糖苷类为主。因此选用敏感药物是以头孢类和喹诺酮类为主,而且由于喹诺酮类有毒副作用小,结构简单,给药方便,价格适中等特点,现在使用量已经超过头孢类药物,但是耐药率也逐渐升高,我们必须控制此类药物的耐药性。 随着上世纪60 年代第一代喹诺酮类药物的发现,人们打开了喹诺酮系列药品的大门[5]。萘啶酸是第一个报道的治疗革兰阴性杆菌引起的泌尿道感染的药物,第二代喹诺酮药物是氟喹诺酮类,其以结构中含氟原子为特征。目前主要有环丙沙星、诺氟沙星和氧氟沙星等。它们对G+或G-菌引起的泌尿生殖道、呼吸道、胃肠道、软组织感染以及性传播疾病的病原菌有广谱抗菌活性。但是由于长期使用喹诺酮类药物,大肠杆菌在选择性压力下不断发展其耐药机制,造成日益严重的耐药问题,给临床治疗带来很大的困难。国内治疗显示,环丙沙星对大肠杆菌的抑菌率1988年为100%,1995年为60%,2005年为10%。这与大肠杆菌对氟喹诺酮类容易产生耐药性有关,但也与近年来临床以及养殖业滥用此类抗生素有关[6]。我国每年生产的700吨喹诺酮,仅这一种抗生素就有一半用于养殖业。由于动物源细菌的耐药性升高也促使了人类源性细菌耐药率的升高。正因为细菌在喹诺酮类药物之间有交叉耐药性 [7] ,近年多个大医院ICU报告大肠杆菌耐环丙沙星者高达70%以上,甚至更高。大肠杆菌的耐药性日益严重, 其药敏谱越来越窄,可选择药物的余地也越来越小。随着多重耐药增加,联合用药的效果必然也越来越差,严重影响了临床治疗效果,增加了治疗成本,同时缩短了新药的应用周期,增加了新药的研究与开发成本,耐药性通过多种途径造成的交叉传播,直接对人类的健康构成严重威胁[8,9]。因此解决大肠杆菌对喹诺酮类药物的耐药性问题已经刻不容缓。 二、大肠杆菌对喹诺酮类药物产生耐药性机制研究 抗生素之所以有杀菌、抑菌作用,是与细菌不同部位上的靶位蛋白结合,抑制其功能而生效。细菌可以通过不同方式改变靶位蛋白结构,使抗菌药与其结合力下降或不能结合而出现耐药。DNA回旋酶和拓扑异构酶Ⅳ是喹诺酮类药物的主要作用靶位。DNA回旋酶是由2个A 亚基和2个B亚基构成的四聚体,分别由gyrA和gyrB基因编码。DNA回旋酶是Ⅱ型拓扑异构酶的一种,在DNA的复制过程中此酶结合到双链DNA环的其中一环上造成一缺口,允许另一DNA环由此穿过,然后连接DNA链,再生DNA环[10] 。喹诺酮类药物主要是通过干扰DNA回旋酶阻止DNA环的重新连接从而抑制DNA的合成起作用,DNA双链的解链和DNA合成的抑制对于细胞来说是致命的[11] 。从大肠杆菌的基因组学来说,喹诺酮类药物的最主要的靶位蛋白是DNA回旋酶,尤其是gyrA基因改变最常见,其次是gyrB,gyrB突变促进gyrA突变耐药性的产生。目前尚无资料表明gyrB突变作为独立的耐喹诺酮类的机制。拓扑异构酶Ⅳ是由2个C基因和2个E基因组成的四聚体,分别由parC和parE基因编码,与DNA回旋酶的同源性很强,对DNA的作用机制与DNA回旋酶几乎相同。gyrA和parC的N 末端均有与喹诺酮耐药决定区域(quinolones resistance determining regions,QRDR) 有关的区域,在此区发生氨基酸的替代影响了喹诺酮类药物与酶结合的紧密关系,从而使其耐药性增加[12]。可见大肠杆菌对喹诺酮类药物产生耐药性突变的主要基因是gyrA。如果能够抵抗gyrA基因发生耐药性突变或者诱导gyrA进行回复突变,对控制耐药性的产生以及有效治疗大肠杆菌感染性疾病意义重大。 三、研究农村地区耐药性大肠杆菌gyrA基因突变特点的意义及展望 由于滥用抗微生物药物,加快了微生物耐药基因蔓延的速度。而不同地区人群用药不同,可能产生的耐药不同,对抗耐药的作用也会不一样。但不管如何,耐药性的产生,使患者不能得到有效的治疗,延长患病时间,增加患者死亡的危险性,使流行病发生的时间更长,使其他人感染的危险性增大,使抗感染的费用急剧增加。对耐药菌治疗的所需费用为敏感菌的100倍,如美国因耐药性而使抗感染每年多花400亿美元,其中仅因耐药金黄色葡萄球菌所致感染每年要多花费1.22亿美元,院内感染每年要多花费45亿美元[13]。虽然没有确切报告因大肠杆菌耐药付出的沉重代价,但是大肠杆菌也是主要的院内感染病原菌之一,其所造成的经济损失是可想而知的。因此能对不同地区的耐药特点做出有针对性的研究,对抗耐药的药物选择就会有针对性,对治疗的效果也将有很大的帮助。 我们生活的环境中既存在着许多有致变作用的诱变剂,同时也存在着抗变剂。这为我们从天然产物中寻找和筛选抗变剂提供了物质基础。从天然产物中寻找和筛选抗变剂已引起世界各国的普遍关注,并且取得了较大进展,且逐渐成为防癌、防畸、防病的一条有效的化学预防途径。许多研究表明:维生素、蔬菜类、茶叶、中药等具有抗诱变作用[14-17]。中药是我国宝贵的医学遗产,长期以来在防病、治病

相关主题
文本预览
相关文档 最新文档