当前位置:文档之家› 三次函数的性质

三次函数的性质

三次函数的性质
三次函数的性质

三次函数的切线问题

三次函数的切线蕴含着许多美妙的性质,用导数方法探求切线的性质,为分析问题和解决问题提供了新的视角、新的方法,不仅方便实用,而且三次函数的切线性质变得十分明朗.纵览近几年高考数学试题,三次函数的切线问题频频出现,本文给出三次函数切线的三个基本问题.

一、已知斜率为k 与三次函数图象相切的切线

三次函数)0()(23≠+++=a d cx bx ax x f

1、0>a ,斜率a

b a

c k 332

-=时,有且只有一条切线; a

b a

c k 332

->时,有两条不同的切线; a

b a

c k 332

-<时,没有切线; 2、0

b a

c k 332

-=时,有且只有一条切线; a

b a

c k 332

-<时,有两条不同的切线; a

b a

c k 332

->时,没有切线; 证明 c bx ax x f ++=23)(2/

1、 0>a 当a b x 3-=时,.33)(2

min /a

b a

c x f -= ∴ 当a b ac k 332-= 时,方程a

b a

c c bx ax 33232

2-=++有两个相同解, 所以斜率为k 的切线有且只有一条;其方程为: ).3(33)3(2a

b x a b a

c a b f y +-=--

当a

b a

c k 332

->时,方程k c bx ax =++232,有两个不同的解21,x x ,且21x x +=-a

b 32-,即存在两个不同的切点))(,()),(,(2211x f x x f x ,且两个切点关于三次函数图象对称中心对称。所以斜率为k 的切线有两条。 当a

b a

c k 332

-<时,方程k c bx ax =++232无实根,所以斜率为k 的切线不存在。

2、0

二、过三次函数图象上一点的切线

设点P 为三次函数)0()(23≠+++=a d cx bx ax x f 图象上任一点,则过点P 一定有直线与)(x f y =的图象相切。若点P 为三次函数图象的对称中心,则过点P 有且只有一条切线;若点P 不是三次函数图象的对称中心,则过点P 有两条不同的切线。

证明 设),(11y x P 过点P 的切线可以分为两类。

1 P 为切点 c bx ax x f k ++==1211/123)(

切线方程为:))(23(112

11x x c bx ax y y -++=-

2 P 不是切点,过P 点作)(x f y =图象的切线,切于另一点Q (22,y x ) 12122122313212122x x cx cx bx bx ax ax x x y y k --+-+-=--= c bx bx ax x ax ax +++++=212

12122

又 c bx ax x f k ++==2222/223)( (1) ∴ c bx bx ax x ax ax +++++21212122c bx ax ++=22

223 即0)2)((1212=++-a b x x x x ∴ a

b x x 22112--=代入(1)式 得

c a

b bx ax k +-+=421432

1212

讨论:当21k k =时,=++c bx ax 12

123c a b bx ax +-+421432

121 ∴

a

b x 31-=,也就是说, ∴ 当a

b x 31-=时,两切线重合,所以过点P 有且只有一条切线。 当a b x 31-≠时,21k k ≠,所以过点P 有两条不同的切线。 其切线方程为:))(23(112

11x x c bx ax y y -++=- ))(42143(12

1211x x c a b bx ax y y -+-+=- 由上可得下面结论:

过三次函数)0()(23≠+++=a d cx bx ax x f 上异于对称中心的任一点

),(111y x P 作)(x f y =图象的切线,

切于另一点),(222y x P ,过),(222y x P 作)(x f y =图象的切线切于),(333y x P ,如此继续,得到点列),(444y x P ----),(n n n y x P ----,则a

b x x n n 2211--=+,且当+∞→n 时,点趋近三次函数图象的对称中心。 证明 设过),(n n n y x P 与)(x f y =图象切于点),(111+++n n n y x P 的切线为1+n n P P ,

c bx bx ax x ax ax x x y y k n n n n n n n

n n n +++++=--=+++++1212111 又 c bx ax x f k n n n ++==+++12

11/23)( ∴ c bx bx ax x ax ax n n n n n n ++++++++12121=c bx ax n n ++++12

123

即 0)2)((11=++-++a b x x x x n n n n ∴ a

b x x n n 2211--=+ 设)(211λλ+-=++n n x x 则a

b 3=λ ∴ 数列}3{a b x n +是公比为21-的等比数列, 11)21)(3(3--++-=n n a b x a b x 即 a

b x n n 3lim -

=∞→。 三、过三次函数图象外一点的切线

设点),(00y x P 为三次函数)0()(23≠+++=a d cx bx ax x f 图象外

一点,则过点P 一定有直线与)(x f y =图象相切。

(1) 若,30a

b x -

=则过点P 恰有一条切线; (2) 若,30a b x -≠且)3()(0a

b g x g -0>,则过点P 恰有一条切线; (3) 若,30a b x -≠且)3()(0a

b g x g -=0,则过点P 有两条不同的切线; (4)若,30a b x -≠且)3()(0a b g x g -0<,则过点P 有三条不同的切线。 其中).)(()()(0/0x x x f x f y x g -+-=

证明 设过点P 作直线与)(x f y =图象相切于点),,(11y x Q 则切线方程为 ),)(23(112

11x x c bx ax y y -++=-

把点),(00y x P 代入得: 02)3(200102

1031=--+--+cx d y x bx x ax b ax , 设.2)3(2)(000203cx d y x bx x ax b ax x g --+--+=

,2)3(26)(002/bx x ax b ax x g --+=

,)3(448)3(420020b ax abx ax b +=+-=? 令,0)(/=x g 则.3,0a b x x x -== 因为0)(=x g 恰有一个实根的充要条件是曲线)(x g y =与X 轴只相交一次,即)(x g y =在R 上为单调函数或两极值同号,所以,30a b x -=或,30a

b x -≠且)3()(0a b g x g -0>时,过点P 恰有一条切线。 0)(=x g 有两个不同实根的充要条件是曲线)(x g y =与X 轴有两个公共点且其中之一为切点,所以,30a b x -

≠且)3()(0a

b g x g -=0时,过点P 有两条不同的切线。 0)(=x g 有三个不同实根的充要条件是曲线)(x g y =与X 轴有三个公共点,即)(x g y =有一个极大值,一个极小值,且两极值异号。所以,30a b x -≠

且)3()(0a b g x g -0<时,过点P 有三条不同的切线。

高中数学-三次函数的性质:单调区间和极值测试

高中数学-三次函数的性质:单调区间和极值测试 1.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是 ( ) A .f (2),f (3) B .f (3),f (5) C .f (2),f (5) D .f (5),f (3) 答案 B 解析 ∵f ′(x )=-2x +4, ∴当x ∈[3,5]时,f ′(x )<0, 故f (x )在[3,5]上单调递减, 故f (x )的最大值和最小值分别是f (3),f (5). 2.函数f (x )=x 3-3x (|x |<1) ( ) A .有最大值,但无最小值 B .有最大值,也有最小值 C .无最大值,但有最小值 D .既无最大值,也无最小值 答案 D 解析 f ′(x )=3x 2-3=3(x +1)(x -1),当x ∈(-1,1)时,f ′(x )<0,所以f (x ) 在(-1,1)上是单调递减函数,无最大值和最小值,故选D. 3.函数y =x -sin x ,x ∈??????π2,π的最大值是 ( ) A .π-1 B.π2 -1 C .π D .π+1 答案 C 解析 因为y ′=1-cos x ,当x ∈??????π2,π,时,y ′>0,则函数在区间???? ??π2,π上为增函数,所以y 的最大值为y max =π-sin π=π,故选C. 4.(2012·安徽改编)函数f (x )=e x sin x 在区间? ?????0,π2上的值域为 ( ) A. B. C. D. 答案 A 解析 f ′(x )=e x (sin x +cos x ).

∵x ∈? ?????0,π2,f ′(x )>0. ∴f (x )在? ?????0,π2上是单调增函数, ∴f (x )min =f (0)=0,f (x )max =f ? ?? ??π2=. 5.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为________. 答案 -71 解析 f ′(x )=3x 2 -6x -9=3(x -3)(x +1). 由f ′(x )=0得x =3或x =-1. 又f (-4)=k -76,f (3)=k -27, f (-1)=k +5,f (4)=k -20. 由f (x )max =k +5=10,得k =5, ∴f (x )min =k -76=-71. 1.求函数y =f (x )在[a ,b ]上的最值 (1)极值是部分区间内的函数的最值,而最值是相对整个区间内的最大或最小值. (2)求最值的步骤: ①求出函数y =f (x )在(a ,b )内的极值; ②将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值. 2.极值与最值的区别和联系 (1)函数的极值表示函数在某一点附近的局部性质,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较. (2)函数的极值不一定是最值,需要将极值和区间端点的函数值进行比较,或者考查函数在区间内的单调性. (3)如果连续函数在区间(a ,b )内只有一个极值,那么极大值就是最大值,极小值就是最小值. (4)可导函数在极值点的导数为零,但是导数为零的点不一定是极值点.例如,函数y =x 3 在x =0处导数为零,但x =0不是极值点.

三次函数的性质及在高考中的应用(附解答)

三次函数的性质及在高考中的应用 一、三次函数的常用性质 性质1:函数y ax bx cx d a =+++320()≠, 若a >0,当?≤0时,y =f(x)是增函数;当?>0时,其单调递增区间是(][)-∞+∞,,x x 12,单调递增区间是[]x x 12,; 若a <0,当?≤0时,y f x =()是减函数;当?>0时,其单调递减区间是(]-∞,x 2,[)x 1,+∞,单调递增区间是[]x x 21,。 推论:函数y ax bx cx d a =+++320()≠,当?≤0时,不存在极大值和极小值;当?>0时,有极大值f x ()1、极小值f x ()2。 根据a 和?的不同情况,其图象特征分别为: 性质2:函数y ax bx cx d a =+++320()≠是中心对称图形,其对称中心是(--b a f b a 33,())。 二、三次函数的性质在高考中的应用 高考试题对三次函数主要考查:函数图象的切线方程,函数的单调性,函数的极值,函数的最值,证明不等式,函数零点的个数等。 1.(2004重庆卷)设函数()(1)(),(1)f x x x x a a =--> (1)求导数/()f x ; 并证明()f x 有两个不同的极值点12,x x ; (2)若不等式12()()0f x f x +≤恒成立,求a 的取值范围。 2. (2008福建卷)已知函数321()23 f x x x =+-. (1)设{a n }是正数组成的数列,前n 项和为S n ,其中a 1=3.若点211(,2)n n n a a a ++-(n ∈N*)在函数y =f ′(x )的图象上,求 证:点(n ,S n )也在y =f ′(x )的图象上; (2)求函数f (x )在区间(a -1,a )内的极值.

高三数学三次函数的性质以及在高考中的应用

三次函数的性质以及在高考中的应用 三次函数y ax bx cx d a =+++320()≠已经成为中学阶段一个重要的函数,在高考和一些重大考试中频繁出现有关它的单独命题。2004年高考,在江苏卷、浙江卷、天津卷、重庆卷、湖北卷中都出现了这个函数的单独命题,特别是湖北卷以压轴题的形式出现,更应该引起我们的重视。单调性和对称性最能反映这个函数的特性。下面我们就来探讨一下它的单调性、对称性以及图象变化规律。 函数y ax bx cx d a =+++320()≠的导函数为y ax bx c '=++322。我们不妨把方程3202ax bx c ++=称为原函数的导方程,其判别式?=-432()b ac 。若?>0,设其两根为 x b b ac a x b b ac a 12223333=---=-+-、,则可得到以下性质: 性质1:函数y ax bx cx d a =+++320()≠, 若a >0,当?≤0时,y =f(x)是增函数;当?>0时,其单调递增区间是(][)-∞+∞,,x x 12,单调递增区间是[]x x 12,; 若a <0,当?≤0时,y f x =()是减函数;当?>0时,其单调递减区间是(]-∞,x 2, [)x 1,+∞,单调递增区间是[]x x 21,。 (证明略) 推论:函数y ax bx cx d a =+++320()≠,当?≤0时,不存在极大值和极小值;当?>0 时,有极大值f x ()1、极小值f x ()2。 根据a 和?的不同情况,其图象特征分别为: 图1 性质2:函数f x ax bx cx d a x m n ()()[]=+++∈32 0≠,,,若x m n 0∈[],,且f x '()00=,则: f x f m f f n ()m a x {()()()}max =,,0; f x f m f x f n ()m i n {()()()}min =,,0。 (证明略) 性质3:函数y ax bx cx d a =+++320()≠是中心对称图形,其对称中心是(--b a f b a 33,())。

三次函数性质总结

三次函数性质的探索 我们已经学习了一次函数,知道图象是单调递增或单调递减,在整个定义域上不存在 最大值与最小值,在某一闭区间取得最大值与最小值.那么,是什么决定函数的单调性呢? 利用已学过的知识得出:当k>0时函数单调递增;当k<0时函数单调递增;b决定函数与y轴相交的位置. 其中运用的较多的一次函数不等式性质是: 在上恒成立的充要条件 接着,我们同样学习了二次函数, 利用已学知识归纳得出:当时(如图1) ,在对称轴的左侧单调递减、右侧单调递增, 对称轴 上取得最小值; 当时(图2) ,在对称轴的左侧单调递增、右侧单调递减, 对称轴 上取得最大值. 在某一区间取得最大值与最小值. 其中决定函数的开口方向,同时决定对称轴,决定函数与轴相交的位置. 总结:一次函数只有一个单调性,二次函数有两个单调性,那么三次函数是否就有三个单调性呢? 三次函数专题 一、定义 定义1 形如的函数,称为“三次函数”(从函数解析式的结构上命名)。 定义 2 三次函数的导数 ,把叫做三次函数导函数的判 别式。 由于三次函数的导函数是二次函数,而二次函数是高中数学中的重要内容,所以三次函数的问题,已经成为高考命题的一个新的热点和亮点。 系列探究1: 从最简单的三次函数开始 反思1 :三次函数的相关性质呢? 反思2 :三次函数的相关性质呢? x y O

反思3 :三次函数的相关性质呢? 例题 1.(2012天津理4) 函数在区间内的零点个数是( ) (A)0 (B)1 (C)2 (D)3 探究一般三次函数的性质: 先求导 1、单调性: (1 )若,此时函数() f x在R上是增函数; (2 )若 ,令两根为 12 ,x x 且, 则 在 上单调递增,在上单调递减。 导函数 图 象 极值点 个数 2 0 2 0 2、零点 (1) 若0 3 2≤ -ac b,则恰有一个实根; (2) 若,且,则恰有一个实根; (3) 若,且,则有两个不相等的实根; (4) 若,且,则有三个不相等的实根. 说明: (1)(2) 有一个实根的充要条件是曲线与轴只相交一次,即在上为单调函数或两极值 同号. x x1x 2 x0x x1x2 x x0 x

特征函数的概念及意义

特征函数的概念及意义 目录: 一.特征函数的定义。 二.常用分布的特征函数。 三.特征函数的应用。 四.绪论。 一.特征函数的定义 设X 是一个随机变量,称 ()() itX e t E =?, +∞<<∞-t , 为X 的特征函数. 因为=1Xit e ,所以() itX e E 总是存在的,即任一随机变量的特征函数总是存在的. 当离散随机变量X 的分布列为() ,3,2,1,P p k ===k x X k ,则X 的特征函数为 ()∑+∞ ==1k k itx p e t k ?, +∞<<∞-t . 当连续随机变量X 的密度函数为()x p ,则X 的特征函数为 ()()?+∞ ∞-=dx x p e t k itx ?, +∞<<∞-t . 与随机变量的数学期望,方差及各阶矩阵一样,特征函数只依赖于随机变量的分布,分布相同则特征函数也相同,所以我们也常称为某分布的特征函数. 二.常用分布的特征函数 1、单点分布:().1P ==a X 其特征函数为 ().e t it a =?

2、10-分布:()(),10x p 1p x X P x 1x =-==-,,其特征函数为 ()q pe t it +=?,其中p 1q -=. 3、泊松分布()λP :()λλ-= =e k k X P k ! ,k=0,1, ,其特征函数为 ()()∑+∞ =---===0k 1e e k ikt it it e e e e k e t λλλλλ?! . 4、均匀分布()b a U ,:因为密度函数为 ()?????<<-=.;, 0, 1其他b x a a b x p 所以特征函数为 ()() ? --= -=b a iat ibt itx a b it e e dx a b e x ?. 5、标准正态分布()1,0N :因为密度函数为 ()2 221x e x p -= π , +∞<<∞-x . 所以特征函数为 ()() ? ?∞+∞-∞+∞ ---- - ∞== dx it x t x itx e e dx e x 22 22 222121 π ? =? -∞+-∞--- - =it it t t t e dz e e 2 2 2 22221π . 其中 ? -∞+-∞-- =it it x dz e π22 2 . 三.特征函数的应用 1、在求数字特征上的应用 求() 2N σμ,分布的数学期望和方差. 由于()2N σμ,的分布的特征函数为()2 t i 2 2e t σμ ?=,

三次函数的性质-的总结练习

三次函数的性质 三次函数f(x)=ax3+bx2+cx+d(a≠0)在高中阶段学习导数后频繁出现,同时也是其他复杂函数的重要组成部分,因此有必要对其性质有所了解,才可以做到知己知彼,百战不殆. 性质一单调性 以a>0为例,如图1,记Δ=b2?3ac为三次函数图象的判别式,则 图1 用判别式判断函数图象 当Δ?0时,f(x)为R上的单调递增函数; 当Δ>0时,f(x)会在中间一段单调递减,形成三个单调区间以及两个极值. 性质一的证明f(x)的导函数为 f′(x)=3ax3+2bx+c, 其判别式为4(b2?3ac),进而易得结论. 例1 设直线l与曲线y=x3+x+1有三个不同的交点A,B,C,且|AB|=|BC|=5√,求直线l的方程. 解由|AB|=|BC|可知B为三次函数的对称中心,由性质一可得B(0,1),进而不难求得直线l的方程y=2x+1. 性质二对称性 如图2,f(x)的图象关于点P(?b3a,f(?b3a))对称(特别地,极值点以及极值点对应的图象上的点也关于P对称). 图2 图象的对称性

反之,若三次函数的对称中心为(m,n),则其解析式可以设为 f(x)=α?(x?m)3+β?(x?m)+n, 其中α≠0. 性质二的证明由于 f(x)=a(x+b3a)3+(c?b23a)(x+b3a)?bc3a+2b327a2+d, 即 f(x)=(x+b3a)3+(c?b23a)(x+b3a)+f(?b3a), 于是性质二得证. 例2 设函数f(x)=x(x?1)(x?a),a>1. (1)求导数f′(x),并证明f(x)有两个不同的极值点x1,x2; (2)若不等式f(x1)+f(x2)?0成立,求a的取值范围. (1)解f(x)的导函数 f′(x)=(x?1)(x?a)+x(x?a)+x(x?1)=3x2?2(a+2)x+a, 而 f′(0)f′(1)f′(a)=a>0,=1?a<0,=a(a?1)>0, 于是f′(x)有两个变号零点,从而f(x)有两个不同的极值点. (2)解根据性质二,三次函数的对称中心(a+13,f(a+13))是两个极值点对应的函数图象上的点的中点.于是 f(x1)+f(x2)=2f(a+13)?0, 即 2?a+13?a?23??2a+13?0, 结合a>1,可得a的取值范围是[2,+∞). 注本题为2004年高考重庆卷理科数学第20题. 性质三切割线性质 如图3,设P是f(x)上任意一点(非对称中心),过P作函数f(x)图象的一条割线AB与一条切线PT(P点不为切点),A、B、T均在f(x)的图象上,则T点的横坐标平分A、B点的横坐标. 图3 切割线性质

三次函数的三大性质初探

三初探 随着导数内容进入新教材,函数的研究范围也随之扩大,用导数的方法研究三次函数的性质,不仅方便实用,而且三次函数的性质变得十分明朗,本文给出三次函数的三大主要性质. 1 单调性 三次函数)0()(23>+++=a d cx bx ax x f , (1) 若032 ≤-ac b ,则)(x f 在),(+∞-∞上为增函数; (2) 若032>-ac b ,则)(x f 在),(1x -∞和),(2+∞x 上为增函数,)(x f 在),(21x x 上为减函数,其中a ac b b x a ac b b x 33,332221-+-=---=. 证明 c bx ax x f ++=23)('2, △=)3(412422ac b ac b -=-, (1) 当0≤? 即032 ≤-ac b 时,0)('≥x f 在 R 上恒成立, 即)(x f 在),(+∞-∞为增函数. (2) 当0>? 即032 >-ac b 时,解方程0)('=x f ,得 a ac b b x a ac b b x 33,332221-+-=---= 0)('>x f ?1x x <或2x x > ?)(x f 在),(1x -∞和),(2+∞x 上为增函数. ?<0)('x f 21x x x <+++=a d cx bx ax x f , (1) 若032≤-ac b ,则)(x f 在R 上无极值; (2) 若032>-ac b ,则)(x f 在R 上有两个极值;且)(x f 在1x x =处取得极大值,在2x x =处取得极小值.

根式函数的性质及其应用

根式函数b ax y += 2的性质及其应用 摘要: 关键词: 1、 引言 高考题中经常会出现含根式函数b ax y +=2的相关试题,根据试题的条件和结论的内在联系,抓住关键的结构特征,借助其图象和性质,即可快速准确地解决试题. 下面,我们对形如)0,(2>+=b a b ax y 的根式函数的性质进行归纳,以期抛砖引玉. 2、 性质归纳 性质1(定义域) R 性质2( 值域 ) ),[+∞b 性质3(单调性) 在()0,∞-上单调递减,在()+∞,0上单调递增 性质4(奇偶性) 偶函数 性质5(对称性) 关于y 轴对称 将根式函数)0,(2>+=b a b ax y 变形为),0,(22b y b a b ax y ≥>=-,得 性质6(特殊性) ① 该函数的图象是焦点在y 轴上的双曲线的上支 ② 有两条渐近线,方程为x a y ±= ③ 该函数是R 上的凹函数 有了性质作辅助,遇题便有章可依. 3、 典例分析 例1 已知+∈R b a ,,且1=+b a ,求证:22141422≥+++b a 证明:设函数14)(2 +=x x f ,它的图象是双曲线14 12 2 =-x y 的上支(如右图)

)(x f 是R 上的凹函数, ∴ )2 (2)()(b a f b f a f +≥+ ∴ 124214142 22+?? ? ??+≥+++b a b a 即得2214142 2≥+++b a 证毕. 推广: 若),,2,1(n i R x i i =∈,且11 =∑=n i i x ,则有21 2bn a b ax n i i +≥+∑= 例2 已知R b a ∈,,求证:||2|1414|22b a b a -≤+-+ 证明:① 若b a =,显然成立. ② 若b a ≠,原不等式等价于2|1 414|22≤-+-+b a b a 设函数14)(2 +=x x f ,则b a b a -+-+1 41422可看作函数)(x f 图象上任意两点 ()14,2+a a P ,() 14,2+b b Q ()b a ≠连线的斜率, 即转化为求导函数)('x f 的值域问题. 1 44)(2'+= x x x f ,∴ 2| |2| |41 4||4|)(|2'<< += x x x x x f ∴ 2|1 414| 22≤-+-+b a b a . 综上所述,||2|1414|22b a b a -≤+-+ 点拨:本题的实质是考查双曲线上支上任意两点连线的斜率必介于两渐近线的斜率2-与2之间. 例3 当b a <<0时,求证:()14414142 22+-> +-+a a b a a b 证明:原不等式等价于 1 441 4142 22+>-+-+a a a b a b 设函数14)(2 +=x x f ,则a b a b -+-+1 41422可看作函数)(x f 图象上任意两点 ()()a f a P ,,()()b f b Q ,连线的斜率.由高等数学中的拉格朗日中值定理可知,在 ()b a ,上存在一点ξ,使得 )() ()('ξf a b a f b f =--.

高三数学三次函数图象和性质与四次函数问题

三次函数与四次函数 大连市红旗高中王金泽 wjz9589@https://www.doczj.com/doc/e810678182.html, 在初中,已经初步学习了二次函数,到了高中又系统的学习和深化了二次函数,三次函数是继二次函数后接触的新的多项式函数类型,它是二次函数的发展,和二次函数类似也有“与x轴交点个数”等类似问题。三次函数是目前高考尤其是文科高考的热点,不仅仅如此,通过深化对三次函数的学习,可以解决四次函数问题。2008年高考有多个省份出现了四次函数高考题,本文的目的就是,对三次函数做个重点的归纳,并且阐述在四次函数中的应用 第一部分:三次函数的图象特征、以及与x轴的交点个数(根的个数)、极值情况 三次函数图象说明 a对图象 的影响 可以根据极限的思想去分析 当a>0时,在x→+∞右向上 伸展,x→-∞左向下伸展。 当a<0时,在x→+∞右向下 伸展,x→-∞左向上伸展。 (可以联系二次函数a对开口的影 响去联想三次函数右侧伸展情况) 与x轴有三 个交点 若0 3 2> -ac b,且 ) ( ) ( 2 1 < ?x f x f,既两个极 值异号;图象与x轴有三个交点 与x轴有二 个交点 若0 3 2> -ac b,且 ) ( ) ( 2 1 = ?x f x f,既有一 个极值为0,图象与x轴有两个 交点 与x轴有一 个交点 1。存在极值时即0 3 2> -ac b, 且0 ) ( ) ( 2 1 > ?x f x f,既两个 极值同号,图象与x轴有一个交点。 2。不存在极值,函数是单调函数 时图象也与x轴有一个交点。

1.()0f x =根的个数 三次函数d cx bx ax x f +++=23)( 导函数为二次函数:)0(23)(2/≠++=a c bx ax x f , 二次函数的判别式化简为:△=)3(412422ac b ac b -=-, (1) 若032 ≤-ac b ,则0)(=x f 恰有一个实根; (2) 若032>-ac b ,且0)()(21>?x f x f ,则0)(=x f 恰有一个实根; (3) 若032>-ac b ,且0)()(21=?x f x f ,则0)(=x f 有两个不相等的实根; (4) 若032>-ac b ,且0)()(21-ac b ,且0)()(21>?x f x f ). (3)0)(=x f 有两个相异实根的充要条件是曲线)(x f y =与X 轴有两个公共点且其中之一为切点,所以 032>-ac b ,且0)()(21=?x f x f . (4)0)(=x f 有三个不相等的实根的充要条件是曲线)(x f y =与X 轴有三个公共点,即)(x f 有一个极大值,一个极小值,且两极值异号.所以032 >-ac b 且0)()(21++=a c bx ax x f , 二次函数的判别式化简为:△=)3(412422ac b ac b -=-, (1) 若032 ≤-ac b ,则)(x f 在),(+∞-∞上为增函数; (2) 若032>-ac b ,则)(x f 在),(1x -∞和),(2+∞x 上为增函数,)(x f 在),(21x x 上为减函数,其中 a ac b b x a a c b b x 33,332221-+-= ---=. 证明:c bx ax x f ++=23)('2, △=)3(41242 2ac b ac b -=-, (1) 当0≤? 即032 ≤-ac b 时,0)('≥x f 在 R 上恒成立, 即)(x f 在),(+∞-∞为增函数.

三次函数的图象与性质

三次函数的图象与性质 河源市河源中学 钟少辉 三次函数()f x =32(0)ax bx cx d a +++≠是中学阶段一个重要的函数,已经成为高考的高频考点。本文研究了三次函数的图象,并且得到它的几个性质,以及例说性质的应用。 已知三次函数:32(0)y ax bx cx d a =+++≠定义域(,)-∞+∞ 则232y ax bx c '=++ , 62y ax b ''=+。由0y '=得 2320ax bx c ++= (1) 依一元二次方程根的判别式知: 1.1若24120b ac ?=-> , 即23b ac >。则方程(1)必有两个不相等的实根12,x x ,即三次函数必有两个驻点12,x x (这里不妨设21x x >), 且123()()y a x x x x '=--。由函数极值的判定定理则有: 1.a >0 当1(,)()0x x f x '∈-∞时,>,()f x 单调递增。 当12(,)()0x x x f x '∈时,<, ()f x 单调递减。当2(,)()0x x f x '∈+∞时,> ,()f x 单调递增。 驻点即为极值点,且在两个驻点中值较小的一个点上取得极大值,在值较大的一个点上 取得极小值,且12,x =。 Ⅱ.0a < 情况正好与I 相反,在此不再赘述。 由以上讨论知:1223b x x a +=-,而由0y ''= 得33b x a =-,因而:6()3b y a x a ''=+,当a>0, (,)3b x a ∈-∞- 时,()0f x ''<,曲线是(向下凹) 。(,)3b x a ∈-+∞时,()0f x ''>曲线是(向上凹)。当 0a <, (,)3b x a ∈-∞-时,()0f x ''>,曲线是(向上凹),(,)3b x a ∈-+∞时,()0 f x ''<曲线是(向下凹)。 所以,无论a 的正负,3x 为曲线拐点的横坐标,且12 32 x x x += 即:曲线拐点的横坐标为两极值点(或二驻点)连线的中点 通过以上的讨论知:三次函数3 2 y ax bx cx d =+++,当23b ac >时,其图形的一般形状见 图1。 图1 0a > 0a <

二次函数图像性质及应用

二次函数图象性质及应用 一选择题 1.已知抛物线y=﹣x2+2x﹣3,下列判断正确的是() A.开口方向向上,y 有最小值是﹣2 B.抛物线与x轴有两个交点 C.顶点坐标是(﹣1,﹣2) D.当x<1 时,y 随x增大而增大 2.若二次函数y=x2+bx+5 配方后为y=(x-2)2+k,则b、k 的值分别为() A.0、5 B.0、1 C.﹣4、5 D.﹣4、1 3.将抛物线先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是 A. B. 3 =x D.3 - )2 y2- =x + (5 y2- (52+ )2 - =x )2 y C. 3 (5 4.把抛物线y=﹣2x2+4x+1 图象向左平移2个单位,再向上平移3个单位,所得的抛物线函数关系式是() A.y=﹣2(x-1)2+6 B.y=﹣2(x-1)2﹣6 C.y=﹣2(x+1)2+6 D.y=-2(x+1)2-6 5.函数y=ax+b 和y=ax2+bx+c 在同一直角坐标系内的图象大致是() A. B. C. D. 6.二次函数y=ax2+bx+c 的图象如图,则a bc,b2﹣4ac,2a+b,a+b+c 这四个式子中,值为正数的有() A.4 个 B.3 个 C.2 个 D.1 个 第6题图第8题图

7.二次函数y=ax2+bx+c 对于x的任何值都恒为负值的条件是() A.a>0,△>0 B.a>0,△<0 C.a<0,△>0 D.a<0,△<0 8.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是() A.y=x2-x-2 B.y=﹣x2﹣x+2 C.y=﹣x2﹣x+1 D.y=﹣x2+x+2

“双勾函数”的性质及应用

“双勾函数”的性质及应用 问题引入 :求函数2y = 的最小值. 问题分析 :将问题采用分离常数法处理得,2y = =,此时 如果利用均值不等式, 即2y = ,等式成立的条件 为 = 显然无实数解,所以“=”不成立,因而最小值 不是2,遇到这种问题应如何处理呢?这种形式的函数又具有何特征呢?是否与我们所熟知的函数具有相似的性质呢?带着种种疑问,我们来探究一下这种特殊类型函数的相关性质. 一、利用“二次函数”的性质研究“双勾函数”的性质 1.“双勾函数”的定义 我们把形如()k f x x x =+ (k 为常数,0k >)的函数称为“双勾函数”.因为函数()k f x x x =+ (k 为常数,0k >)在第一象限的图像如“√”,而该函数为奇函数,其图像关于原点成中心对称,故此而得名. 2.类比“二次函数”与“双勾函数”的图像 3.类比“二次函数”的性质探究“双勾函数”的性质 (1)“二次函数”的性质 ①当0a >时,在对称轴的左侧,y 随着x 的增大而减小;在对称轴的右侧,y 随着x 二次函数图像 “双勾函数”图像

的增大而增大;当2b x a =-时,函数y 有最小值2 44ac b a - . ②当0a <时,在对称轴的左侧,y 随着x 的增大而增大;在对称轴的右侧,y 随着x 的增大而减小.当2b x a =-时,函数y 有最大值2 44ac b a -. (2)“双勾函数”性质的探究 ①当0x > 时,在x =y 随着x 的增大而减小;在x =y 随着x 的增大而增大;当x = y 有最小值. ②当0x <时, 在x =y 随着x 的增大而增大; 在x =y 随着x 的增大而减小.当x =y 有最大值-. 综上知,函数()f x 在(,-∞ 和)+∞ 上单调递增,在[ 和上单调递减. 下面对“双勾函数”的性质作一证明. 证明:定义法.设12,x x ∈R ,且12x x <,则 1212121212121212 ()()()()()(1)x x x x k a k k f x f x x x x x x x x x x x ---=+ --==-- . 以下我们怎样找到增减区间的分界点呢? 首先0x ≠,∴0x =就是一个分界点,另外我们用“相等分界法”,令120x x x ==, 2 010k x - = 可得到x = 因此又找到两个分界点 这样就把()f x 的定义域 分为(,-∞ ,[ , ,)+∞四个区间,再讨论它的单调性. 设120x x <<120x x -<,120x x >,120x x k <<, ∴120x x k -<. ∴121212121212 ()()()()0x x x x k k k f x f x x x x x x x ---=+ --=> ,即12()()f x f x >. ∴()f x 在上单调递减. 同理可得,()f x 在)+∞ 上单调递增;在(,-∞ 上单调递增;在[上

三次函数的性质与应用

三次函数的性质及应用 蔚县一中 苏翠林 三次函数的一般形式为)、、、,0()(23R d c b a a d cx bx ax x f ∈≠+++=,全国各省市高考试卷以导数为工具,有重点地考查了有关三次函数的单调性、极值、在闭区间上的最值等函数性态,凸显“在知识网络交汇点上命题”的理念。三次函数的导数为二次函数 ,因此 ,三次函数交汇了函数、不等式、方程等众多知识点以它为载体的试题 ,背景新颖独特 ,选拔功能强 。如果学生对三次函数的图象、性质以及三次方程根的情况有所了解,那就更加得心应手了。 一、三次函数的图象 1、学生对以下两个三次函数的图象比较熟悉 y y x 2、d cx bx ax x f +++=23)(的图象有以下四种情况 0,0≤?>a 0,0>?>a 0,0≤??

1、定义域:R 2、值域:R 3、单调性: 易证:三次函数)(0)(23>+++=a d cx bx ax x f ,导函数为二次函数)0(23)(2/>++=a c bx ax x f ,导函数的判别式化简为:△=)3(412422ac b ac b -=-。 (1) 若032≤-ac b ,则)(x f 在),(+∞-∞上为增函数(图1); (2) 若032>-ac b ,则)(x f 在),(1x -∞和),(2+∞x 上为增函数,)(x f 在 ),(21x x 上为减函数,其中a ac b b x a ac b b x 33,332221-+-=---=(图2)。 三次函数d cx bx ax x f +++=23)((a<0)的情况为图3、图4 4、极值: 三次函数)0()(23>+++=a d cx bx ax x f , (1) 若032≤-ac b ,则)(x f 在R 上无极值(图1); (2) 若032>-ac b ,则)(x f 在R 上有两个极值;且)(x f 在1x x =处取得极大值,在2x x =处取得极小值(图2)。 三次函数)0()(23<+++=a d cx bx ax x f , (1) 若032≤-ac b ,则)(x f 在R 上无极值(图3); (2) 若032>-ac b ,则)(x f 在R 上有两个极值;且)(x f 在1x x =处取得极小值,在2x x =处取得极大值(图4). 5、对称性: 函数y ax bx cx d a =+++320()≠是中心对称图形,其对称中心是(--b a f b a 33,())。 证明:设函数f x ax bx cx d a ()()=+++320≠的对称中心为(m ,n )。

特征函数(Characteristic Function)的性质.

特征函数(Characteristic Function )的性质 1.;1)0(|)(|=≤??t ).0(11|||||)(|??==≤≤=E e E Ee t itX itX 2. )()(t t ??=-. )()(t Ee e E Ee t itX itX itX ??====--. 3. 若Y=aX+b, 其中a 和b 为常数,则 ).()(at e t X ibt Y ??= 4. 若X 的l 阶矩存在,则 .1,|)(0l k EX i t dt d k k t k k ≤≤==? k k t itX k k t itX k k t k k EX i e X E i Ee dt d t dt d ======000|)(||)(?. 注意求导和期望可交换的条件. 可利用特征函数求随机变量的各阶矩. 5. 特征函数具有一致连续性. ? ><>?>?M x dx x p t s M ||)(. .,0,0εε ? ∞ ∞ =-=-+|)()1(||)()(|x dF e e t h t itx ihx ?? ?∞ ∞--≤)(|1|x dF e ihx ?? ->-+-=M M M x i h x i h x x dF e x dF e ||)(|1|)(|1|

|||2 sin |2)(||1|2 /2 /2 /hx hx e e e e ihx ihx ihx ihx ≤=-=-- x hx e e e e ihx ihx ihx ihx ?≤=-=--,2|2 sin |2)(||1|2 /2 /2 / ? ?>-+≤-+M x M M x dF x dF x h t h t ||)(2)(|||)()(|?? ?-+≤+≤M M hM x dF hM εε22)(. 取,/M εδ=则 对 任意实数t ,和),0(δ∈h 有 .3|)()(|ε??≤-+t h t 所以,特征函数是一致连续的. 引理:狄利克雷积分 ). (2 1 21 00 2 1)sin(1)(0a sign a a a dt t at a I =??? ????<-=>==?∞+π 证明: ? ∞ = sin )(1 )(dt t t a sign a I π 以下证明 ? +∞ =0 2 sin π du u u .

三次函数的图像与性质

三次函数的图像与性质 形如f(x)=ax3+bx2+cx+d(a≠0)的函数叫做三次函数。由于三次函数的导函数是二次函数,而二次函数是高中数学中的重要内容,所以三次函数的问题已经成为高考命题的一个新的热点和亮点,尤其是文科数学更是如此。我们可以采用类比的方法,利用几何画板,较为深入地研究三次函数的图像与性质以及三次方程的解的个数的问题。 1三次函数的图像与性质 设三次函数f(x)=ax3+bx2+cx+d(a≠0),其导函数f’(x)=3ax2+2bx+c,其判别式△=4b2-12ac=4(b2-3ac)。当a>0时,若△>0,方程f’(x)=0有两个不相等的实数根,记作x1,x2,不妨令x1f(x2)。 结论1:f(x1)·f(x2)>0时,函数f(x)的图像与x轴有且仅有一个公共点;f(x1)·f(x2)=0时,函数f(x)的图像与x轴有且仅有两个公共点;f (x1)·f(x2)0,f(x2)0为例): 当a>0时,f(x)的四种图象 3推论 设三次函数f(x)=ax3+bx2+cx+d(a>0),其导函数f’(x)=3ax2+2bx+c 的判别式△=4b2-12ac=4(b2-3ac)>0。方程f’(x)=0有两个不相等的实数根,记作x1,x2,不妨令x1

用特性函数G与特征变量p,T求所有热力学函数的表达式

用特性函数G与特征变量p,T求所有热力学函 数的表达式 1.热力学函数间的关系 (1) H=U+pV (2) A=U-TS (3) G=H-TS (4) G=A+pV 根据定义,五个热力学函数有如下关系。这些关系一方面反映了体系的热力学函数之间的联系,另一方面可以利用这种关系从已知函数值求未知函数值。它们的关系用图示的方法可看得更清楚。

(1) 这是焓的定义式,因为在等压,不作非膨胀功的条件下,焓变等于等压热效应。等压热效应容易测定,所以定义了焓。 (2) 这是亥姆霍兹自由能的定义式。在等温可逆条件下,亥氏自由能的降低等于对外所作的最大功,可以衡量体系的作功能力,所以又称功函。 (3) 这是吉布斯自由能的定义式。在等温等压可逆条件下,吉布斯自由能的下降等于对外所作的最大非膨胀功。 (4) 从上面三个公式可导出G与A之间的关系式,该式也可看作吉布斯自由能的定义式. 2. 用特性函数G与特征变量p,T求所有热力学函数的表达式。

用特性函数及其特征变量可以求出所有热力学函数的表达式。现以吉布斯自由能G为特性函数,其特征变量为T,p,从而求出热力学能,焓,熵,亥氏自由能和体积的表达式。之所以可以这样做是因为U,H,S,A,G,T,p,V这8个量之间只有两个变量是独立的,其它都是这两个变量的函数。所有根据两个变量热力学函数之间的关系可以写出其它热力学量的表达式。

画面中间是G与特征变量T,p之间的关系式。 (1) 保持p不变,对T求偏导,得到熵的表达式 (2) 保持T不变,对p求偏导,得到体积V 的表达式 (3) 根据焓的定义式代入熵的表达式,得到焓的表达式 (4) 根据亥氏自由能的定义式,代入体积的表达式,得到亥氏自由能的表达式 (5) 根据焓的定义式,代入焓和体积的表达式,就得到热力学能的表达式。

一元三次函数性质与图象探索

一元三次函数性质与图象探索 高中部宋润生 我们已经学习了一次函数,知道图象是单调递增或单调递减,在整个定义域上不存在最大值与最小值,在某一区间 取得最大值与最小值.那么,是什么决定函数的单调性呢?利用已学过的知识得出:当k>0时函数单调递增;当k<0时函数单调递增;b决定函数与y轴相交的位置. 接着,我们同样学习了二次函数,图象大致如下: 图1 图2 利用已学知识归纳得出:当时(如图1),在对称轴的左侧单调递减、右侧单调递增,对称轴上取得最小值;当时(图2),在对称轴的左侧单调递增、右侧单调递减,对

称轴上取得最大值.在某一区间取得最大值与最小值.其中a决定函数的开口方向,a、b同时决定对称轴,c决定函数与y轴相交的位置. 三次函数的图象有六类.如图: 图3 图4

图5 图6 图7 图8 分析:由图3函数有哪些特点呢?归纳:解析式是,整个定义域上函数单调递增,在图4中解析式是,整个定义域上函数单调递增减.整个定义域上不存在极值,函数必经过原点.单调性又与什么知识相关呢?导数,现在求出函数的导数是 ,验证与0的关系,当时,即 的图象在是单调递增;当时,即 的图象在是单调递减相一致.当 ,根据图象知道,在处不是函数f(x)的极值点.所以 的根是函数取得极值的必要不充分条件.现在思考并验证函数 与函数图象有什么关系?经过验证得 出:函数与相同,当

时函数图象是图象向上平移|d|个单位;当时函数图象是图象向下平移|d|个单位;函数的导数都是. 在图5中解析式是,整个定义域上函数单调递增.在图6中解析式是,整个定义域上函数单调递增减.整个定义域上不存在极值.函数的导数,经过验证在图5中因为即,所以的图象在是单调递增;在图6中因为即,所以 的图象在是单调递减;函数都不存在极大值或极小值.为什么在图5中a>0、,在图6中a<0、呢?a>0、 或a<0、是又有什么结果呢?因为导数是二次函数,当a>0、或a<0、时判别式,导数函数不小于0,方程有一个根.当a>0、或a<0、时 ,方程有两个根.那么函数图象有什么特点呢?猜想如果,那么有两根,函数f(x)应有增也有减,我们来验证一下图7、图8: 在图7中解析式是,在或 上函数单调递增,在上函数单调递减;在处取得极大值,在处取得极小值;在图8中解析式是 ,在或上函数单调递减,在上函数单调递增;在处取得极小值,在处取得极

一元三次函数的图象和性质

一元三次函数的图象和性质学案 一.考纲指要: 1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次)。 2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值;会求闭区间上函数的最大值、最小值。 二、命题落点 1.高考考查的热点集中在求导法则以及导数在函数研究上的应用. 2.函数的单调性是函数一条重要性质.利用导数与函数的单调性的关系,研究函数的性质(比初等方法精确细微)是高考的重点. 3.关于函数特征,最值问题较多,导数法求最值要比初等方法快捷简便. 4.关于三次函数的极值、对称性、证明不等式等问题,考察较多。 【常用结论】 1. (重点)三次函数的单调性由a 来决定;b 、c 决定函数有没有极值。 d 确定函数图象与y 轴交点。 2. (重点)函数f(x)的极值由导函数f '(x)=3ax 2+2bx+c 的判别式△决定: ①△≤0无极值,单调区间为R ②△>0既有极大值,又有极小值。有三个单调区间。 3.(了解)三次函数图象的对称性: 三次函数f(x)=ax 3+bx 2+cx+d(a ≠0)的图象是中心对称图形,其对称中心是()3(,3a b f a b --).(三次函数f(x)=ax 3+bx 2 +cx+d(a ≠0)的图象经过平移后能得到奇函数图象,可以用待定系数法求得) 三次函数f(x)=ax 3+bx 2+cx+d(a ≠0)的图象的对称中心在其导函数 f '(x)=3ax 2+2bx+c 的图象对称轴上.

若三次函数f(x)=ax3+bx2+cx+d(a≠0)有极值,那么它的对称中心是两个极值点的中点. 【典例精析】 例题.设a∈R,讨论关于x的方程x3+3x2-a=0的相异的实根的个数? 【实战演练】 1.若函数f(x)=ax3+x恰有三个单调区间,则实数a的取值范围是- 。 2.函数f(x)=x3+3ax2+3(a+2)x+3既有极大值又有极小值,则a的取值范围是 . 3.已知函数y=f(x)=x3+px2+qx的图象与x轴切于非原点的一点,且y极小=-4,那么p= ,q= . 4.已知函数f(x)=-x2+8x与g(x)=6lnx+m的图象有且只有两个不同的交点,求实数m的值? 5.已知f(x)=x3-3x,过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围? 6.设函数f(x)=x3-6x+5,x∈R. (1)求函数f(x)的单调区间和极值 (2)若关于x的方程f(x)=a有三个不同的实根,求实数a的取值范围. (3)已知当x∈(1,+∞)时, f(x)≥k(x-1)恒成立,求实数k的取值范围.

相关主题
文本预览
相关文档 最新文档