当前位置:文档之家› 小波降噪在齿轮箱故障诊断中的应用_蔡建进

小波降噪在齿轮箱故障诊断中的应用_蔡建进

小波降噪在齿轮箱故障诊断中的应用_蔡建进
小波降噪在齿轮箱故障诊断中的应用_蔡建进

 第16卷 第2期

厦门理工学院学报Vol .16 No .2 2008年6月Journal of Xia men University of Technol ogy Jun .2008

[收稿日期]2008-03-06 [修回日期]2008-05-06

[基金项目]福建省教育厅科技项目(JB07177)

[作者简介]蔡建进(1979-),男,福建厦门人,助理实验师,硕士,从事设备监测与诊断方面的研究.

小波降噪在齿轮箱故障诊断中的应用

蔡建进,邵明亮

(厦门理工学院机械工程系,福建厦门361024)

[摘 要]以JZ Q250型号齿轮箱为实验对象,根据实际状况下齿轮箱的故障机理和振动特点,通过小

波变换将振动信号分解为位于不同频段和时段内的成分,使干扰信号和有用信号位于不同的频带内,将干扰信号所对应的那一阶小波系数置零,进行信号重构,再得到降噪后的信号.作包络功率谱分析,能有效地对齿轮箱故障进行诊断分析.

[关键词]齿轮箱;小波变换;降噪;包络功率谱

[中图分类号]TP206 [文献标志码]B [文章编号]1008-3804(2008)02-0028-04

0 引言

在机械设备的故障诊断中,当故障信息是平稳信号时,一般是利用确定信号的已知特点和噪声的特点采取傅里叶分析方法达到消噪目的.但在实际工程应用中,所分析的信号常常是非平稳信号,用传统的傅里叶变换方法则不能满足非平稳信号滤波预处理的要求,这就需要用小波分析法.

小波分析是一种全新的时-频分析方法,它继承了傅里叶分析用简谐函数来逼近任意信号的思想,只不过小波分析的基函数是一系列尺度可变函数.这使得小波分析具有良好的时-频定位特性以及对信号的自适应能力,能够对各种时变信号进行有效的分解,为控制系统故障诊断提供了新的、强有力的分析手段.小波变换属线性变换,无干扰项,且在低频处频率分辨率高,在高频处时间分辨率高,即时、频分辨率可变,具有“变焦”特性.特别是对信号奇异性、奇异点的位置及奇异度大小的分析尤为有效,能对信号的高频、短时成分准确地在时域和频域中进行分析,可将故障特征信号有

效地分离出来.因此,用小波变换进行消除噪声信号是可行的[1].

1 小波分析在信号分解中的应用

建立利用小波分解对时间序列进行降噪的模型,应先对高斯白噪声信号进行分析.白噪声信号如

图1所示,根据Mallat 塔式分解算法[2],采用Daubechies 小波基函数,将信号分成了不同频率通道成

分,且将每一频率通道成分又按相位进行了分解:频率越高,则相位划分越细,反之则越疏

.

通过小波变换对高斯白噪声信号进行五层分解,原信号的采样频率为1024.图2为第五层小波分解结果.

 第2期蔡建进,等:

小波降噪在齿轮箱故障诊断中的应用同样根据Mallat 塔式分解算法,对一般时间序列作五层小波分解,原信号的采样频率仍为1024.如图3,图4所示

.

比较图2和图4可以看出,高斯白噪声和一般时间序列的小波分解结果不同,高斯白噪声在各层小波分解的幅值都比较均匀,而一般时间序列经过小波分解后,其小波分解系数反在部分点处的值较大,基于此,可以利用小波分解去除信号的高斯白噪声[3].

2 建立小波降噪模型

假定带噪声的信号

y i =f i +e i (1)

式中e i 为方差为σ2的高斯白噪声,即(0,σ2).令^f i 为f i 的估计值,则构造估计模型^f i 的均方

差为E ^f -f 2=∑n

i =1^f i -f )2(2)

白噪声e i 影响所有的小波系数中的每一项,而信号f i 只影响小波系数中的极少数.在此设定一个阈值λ,把低于阈值λ的每一项系数置为零,而保存高于阈值λ的系数.处理后的小波系数即为信号f i 的估计值.

因此小波降噪模型的建立可描述如下.

1)计算信号y i 的小波系数w j ,k .

2)阈值计算

λ=

2lg (n )(3)

式中n 为输入样本的长度.

如果|y |≥λ,则ηλ=sign (y )(|y |-λ)

(4)

否则ηλ=0.?

92?

厦门理工学院学报2008年

把w j ,k 代入式(4),得到小波系数估计值^θ=ηλ(w j ,k ).

3)对^θ进行小波重构,得到f (t i )的估计信号^f (t i )=W T ^θ即为降噪之后的信号,W 为小波分解

算子.

对于上述降噪模型,小波系数θ=W T f,则f (t i )的估计值的均方差为E ^f -f 2=E ^θ-θ2=∑n

i =1(^θi

-θ)2(5)

因此,f (t i )的估计误差取决于^θ的值,而由式(4)求得的^θ值为θ的理想估计值,因此由式(5)可以得到f (t i )均方意义下的理想估计值[4].

3 齿轮箱故障分析诊断

按上述小波降噪模型,通过监测小波变换系数的模极大值的位置和幅度来完成对信号的表征与分析.将突变信号从混有噪声的振动信号中有效地识别出,即能同时利用信号与噪声在时域和频域内的差别,实现有效的信噪分离,获得较为理想的降噪效果,从而实现对齿轮箱进行状态监测和故障诊断.

本实验以JZ Q250型闭式传动齿轮箱作为研究对象,其内部结构模型如图5所示,轴承参数见表1.齿轮装置是机械加工设备中最复杂的机械部件之一,由于传感器很难安装到故障的部位.齿轮径向振动是通过轴承传递到轴承座上

,引起轴承座的振动.该径向振动包含了丰富的齿轮故障信息,利用安装在轴承座上的加速度传感器来拾取轴承座的振动信号.

表1 齿轮箱轴承参数

Ta b 11 B ea ri ng πs p a ram e te r o f gea rbo x

型号

内径r/mm 外径R /mm 滚珠直径d /mm 节径D /mm 滚珠数目/个接触角α/(°)64061545191

056060

齿轮箱输入轴转速调为780r/m in,采集齿轮箱振动信号,图6为含噪声的原始振动信号,利用

?03?

 第2期蔡建进,等:小波降噪在齿轮箱故障诊断中的应用所建立的小波降噪模型对齿轮箱振动信号进行分析,降噪后的信号如图7所示.比较图6和图7可以看出:利用小波变换对振动信号进行降噪处理,信号无失真现象,进一步对齿轮箱故障信号进行数据预处理,保留齿轮箱的故障冲击信号

.

为了提取齿轮箱故障频率,对降噪处理后的振动

信号做H ilbert 包络并进行谱分析,结果如图8所示,

从功率谱的分析中可以发现频率33818Hz 的存在,

而轴承故障特征频率为外圈通过频率f 0及其倍频,理

论计算得到f 0=33811Hz,通过对照可知,轴承的外

圈发生了点蚀故障.

4 结论

在齿轮箱故障分析诊断中,利用安装在轴承座上

的振动传感器测量齿轮的振动信号,如果使用传统的

功率谱分析方法,那么由于振动信号十分复杂,一些

微弱的故障信号常常被淹没.而利用小波变换对原信号先降噪,再进行重构运算,既可提高信噪比,又使所分析的信号得到较高的分辨率,迅速得到可供分析的原信号.然后进行包络谱分析,比较好地检测出轴承中的故障信号成分.经试验验证,能有效地诊断出齿轮箱系统的一些典型故障模式,比传统的功率谱分析方法诊断精度要高.

[参考文献]

[1]徐长发,李国宽.实用小波方法[M ].武汉:华中科技大学出版社,2001.

[2]MALLAT S .A wavelet t our of signal p r ocessing [M ].US A :Acade m ic Press,1999.

[3]薛年喜.MAT LAB 在数字信号处理中的应用[C ].北京:清华大学出版社,2003:1262131.

[4]冯象初,甘小冰,宋国乡.数值泛涵与小波理论[M ].西安:西安电子科技大学出版社,2003.

On the Fault D i a gnosis of Gearbox

CA I J ian 2jin,SHAO M ing 2liang

(Depart m ent of Mechanical Engineering,Xiamen University of Technol ogy,Xia men 361024,China )

Abstract:I n this paper,the type of the gearbox JZ Q250is made as test object .W e can app ly the wavelet transf or m t o decompose the vibrat ory signal int o several ele ments,which are l ocated in different frequency fields and different ti m e fields,s o the vibrat ory signal can be denoised .It is an effective and reliable method t o analyze signals and diagnose gearbox by H ilbert power s pectru m analysis .

Key words:gearbox;wavelet transf or m;denoising;H ilbert power s pectrum ?13?

小波变换降噪分析(精)

第四章小波变换降噪分析 小波变换是一种崭新的时域 (频域信号分析工具。它的发展和思想都来自于傅里叶分析,且在保留了傅里叶分析优点的基础上,较好的解决了时间和频率分辨率的矛盾,在频域与空间域中能够同时具有良好的局部化特性,可进行局部分析。小波去噪的基本原理是根据原始信号和噪声的小波系数在不同尺度上所具有的不同性质,构造相应的规则,在小波域采用其他数学方法对含噪信号的小波系数进行处理。 4.1 小波变换理论的研究 连续小波变换 设2( ( t L R ψ∈(2( L R 表示平方可积的的空间,即能量有限的信号空间, 其傅立叶变换为( ψ ω。当( ψω满足允许条件 (Admissible Condition: 2 ( C φωωω +∞ -∞ =<∞? (4.1 时,我们称( t ψ为一个基本小波或母小波 (Mother Wavelet 。将母小波函数 ( t ψ经伸缩和平移后,就可以得到一个小波序列。对于连续情况,小波序列 为: , ( (

a b t b t a ψ-= , a b R ∈ 0a ≠ (4.2 其中, a ——伸缩因子; b ——平移因子; ——能量归一化因子。 这样对于任一信号 20 1 1( (, ( f t b f t a b dadb C a a φ ωψ∞ ∞ -∞-= ? ?,连续小波变换定义为: , , (, (, ( ( ( a b a b CWT a b f t t f t t dt

ψ∞-∞ ==? (4.3 其逆变换为: 20 11( (, ( f t b f t a b dadb C a a φ ωψ∞ ∞ -∞-= ? ? (4.4 离散小波变换 实际应用中,尤其是在计算机上实现,如在信号处理领域,必须对连续小波加以离散化。需要强调的是,这一离散化都是针对连续的尺度参数 a 和连续平移参数 b 的,而不是针对时间变量 t 的,这与其它形式的离散化不同。在连续小波中,考虑函数(4.5: , ( ( a b t b

matlab小波去噪详解

小波去噪 [xd,cxd,lxd]=wden(x,tptr,sorh,scal,n,'wname') 式中: 输入参数x 为需要去噪的信号; 1.tptr :阈值选择标准. 1)无偏似然估计(rigrsure)原则。它是一种基于史坦无偏似然估计(二次方程)原理的自适应阈值选择。对于一个给定的阈值t,得到它的似然估计,再将似然t 最小化,就得到了所选的阈值,它是一种软件阈值估计器。 2)固定阈值(sqtwolog)原则。固定阈值thr2 的计算公式为:thr 2log(n) 2 = (6)式中,n 为信号x(k)的长度。 3)启发式阈值(heursure)原则。它是rigrsure原则和sqtwolog 原则的折中。如果信噪比很小,按rigrsure 原则处理的信号噪声较大,这时采用sqtwolog原则。 4)极值阈值(minimaxi)原则。它采用极大极小原理选择阈值,产生一个最小均方误差的极值,而不是没有误差。 2.sorh :阈值函数选择方式,即软阈值(s) 或硬阈值(h). 3.scal :阈值处理随噪声水平的变化,scal=one 表示不随噪声水平变化,scal=sln 表示根据第一层小波分解的噪声水平估计进行调整,scal=mln 表示根据每一层小波分解的噪声水平估计进行调整. 4.n 和wname 表示利用名为wname 的小波对信号进行n 层分解。输出去噪后的数据xd 及xd 的附加小波分解结构[cxd,lxd]. 常见的几种小波:haar,db,sym,coif,bior haar db db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 sym sym2 sym3 sym4 sym5 sym6 sym7 sym8 coif coif1 coif2 coif3 coif4 coif5 coif6 coif7 coif8 coif9 coif10 bior bior1.1 bior1.3 bior1.5 bior2.2 bior2.4 bior2.6 bior2.8 bior3.5 bior3.7 bior3.9 bior4.4

小波阈值去噪及MATLAB仿真

哈尔滨工业大学华德应用技术学院毕业设计(论文) 摘要 小波分析理论是一种新兴的信号处理理论,它在时间上和频率上都有很好的局部性,这使得小波分析非常适合于时—频分析,借助时—频局部分析特性,小波分析理论已经成为信号去噪中的一种重要的工具。利用小波方法去噪,是小波分析应用于实际的重要方面。小波去噪的关键是如何选择阈值和如何利用阈值来处理小波系数,通过对小波阈值化去噪的原理介绍,运用MATLAB 中的小波工具箱,对一个含噪信号进行阈值去噪,实例验证理论的实际效果,证实了理论的可靠性。本文设计了几种小波去噪方法,其中的阈值去噪的方法是一种实现简单、效果较好的小波去噪方法。 关键词:小波变换;去噪;阈值 -I-

哈尔滨工业大学华德应用技术学院毕业设计(论文) Abstract Wavelet analysis theory is a new theory of signal process and it has good localization in both frequency and time do-mains.It makes the wavelet analysis suitable for time-frequency analysis.Wavelet analysis has played a particularly impor-tant role in denoising,due to the fact that it has the property of time- frequency analysis. Using wavelet methods in de-noising, is an important aspect in the application of wavelet analysis. The key of wavelet de-noising is how to choose a threshold and how to use thresholds to deal with wavelet coefficients. It confirms the reliability of the theory through the wavelet threshold de-noising principle, the use of the wavelet toolbox in MATLAB, carrying on threshold de-noising for a signal with noise and actual results of the example confirmation theory.In this paper,the method of Wavelet Analysis is analyzed.and the method of threshold denoising is a good method of easy realization and effective to reduce the noise. Keywords:Wavelet analysis;denoising;threshold -II-

齿轮箱故障诊断

风力发电机组齿轮箱故障诊断 摘要: 通过对不同齿轮箱振动频谱的检测结果的分析,论述了判断齿轮箱由于长期处于某些恶劣条件下,如交变载荷或润滑油失效,引起的齿轮和轴承损坏的检测方法。分析了齿轮箱出现故障的原因以及应采取的措施。 关键词:风电机齿轮箱轴承状态检测 一、风电机组齿轮箱的结构及运行特征 我国风电场中安装的风电机组多数为进口机组。近几年来,一批齿轮箱发生故障,有些由厂家更换,也有的由国内齿轮箱专业厂进行了修理。有的风场齿轮箱损坏率高达40~50%,极个别品牌机组齿轮箱更换率几乎接近100%。虽然齿轮箱发生损坏不仅仅在我国出现,全世界很多地方同样出现过问题,但在我国目前风电机组运行出现的故障中已占了很大比重,应认真分析研究。 1) 过去小容量风电机组齿轮箱多采用平行轴斜齿轮增速结构,后来为避免齿轮箱造价过高、重量体积过大,500kW以上的风电机组齿轮箱多为平行轴与行星轮的混合结构。由于风电机组容量不断增大,轮毂高度增加,齿轮箱受力变得复杂化,这样就造成有些齿轮箱可能在设计上就存在缺陷。 2) 由于我国有些地区地形地貌、气候特征与欧洲相比有特殊性,可能对标准设计的齿轮箱正常运行有一定影响。我国风电场多数处于山区或丘陵地带,尤其是东南沿海及岛屿,地形复杂造成气流受地形影响发生崎变,由此产生在风轮上除水平来流外还有径向气流分量。我国相当一部分地区气流的阵风因子影响较大,对于风电机组机械传动力系来说,经常出现超过其设计极限条件的情况。作为传递动力的装置-齿轮箱,由于气流的不稳定性,导致齿轮箱长期处于复杂的交变载荷下工作。由于设备安装在几十米高空,不可能容易地送到工厂检修,因此经常进行状态监视可以及时发现问题,及时处理,还可以分析从出现故障征兆到彻底失效的时间,以便及时安排检修。

小波阈值降噪

一种基于小波阈值降噪方法的图像降噪效果研究 电子信息学院 赵华 2015201355 一、引言 数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。 然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所?干扰?的现象。如果图像被干扰得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。根据研究表明,当一张图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。本文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。 二、基本原理 1.小波基本原理 在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数ψ(x )来构造,ψ(x )称为母小波(mother wavelet ),或者叫做基本小波。一组小波基函数, {ψa,b (x )},可以通过缩放和平移基本小波来生成: ?? ? ??-ψ=ψa b x a x b a 1)(, 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波ψ(x )为基的连续小波变换定义为函数f (x )和ψa,b (x )的内积: ( )()dx a b x a x f f x W b a b a ?? ? ??-ψ=ψ=?∞ ∞-1,,,

风力发电机齿轮箱振动测试方法

风力发电机组齿轮箱振动测试与分析 唐新安谢志明王哲吴金强 摘要对齿轮箱做振动测试和分析,通过模式识别找到齿轮箱损坏时呈现的特性,为齿轮箱故障诊断提供依据。 关键词风力发电机组齿轮箱振动分析故障诊断 中图分类号 TH113. 21 文献标识码 A 我国风电场中安装的风力发电机组多为进口机组。因为在恶劣环境下工作,其损坏率高达40%~50%。随着清洁能源的普及,齿轮箱的故障诊断和预知维修已迫在眉睫。本文就齿轮箱的故障诊断作一些探索性研究。 一、齿轮箱振动测试 采用北京东方所开发的DASP(Data Acquisition and SignalProcessing)测振系统,对某风电场4#、5#机组齿轮箱的不同测点(图1)做振动测试和分析,4#机组刚进行过检修运行正常作为对照机组,5#机组噪声异常为待检机组,对两机组齿轮箱的振动信号对比分析,判断存在故障。齿轮箱特征频率见表1。 表1 齿轮箱特征频率表 Hz

二、信号分析 1.统计分析 由统计表2、表3可看出,5#机组振动值明显偏大,尤其是5~10测点振动值基本上是4#机组相应测点的2倍以上。 表2 4#机组幅域统计表 m/s2 表2 5#机组幅域统计表 m/s2 5#机组概率分布及概率密度函数反映其时间序列分布范围较宽(图2),峭度系数(即四阶中心距)与4#机组的(图3)明显,同(若以4#机组为标准g=0,那么5#机组g=0),预示5#机组存在古障。

2.时域分析 通过时域分析(图4、图5),发现5#机组齿轮箱振动信号有明显异常.幅值转大,且 有明显的周期性,其频率约大20Hz 。

3.频坷分析 由图6可见,5#机组齿轮箱的频谱图既有调幅成分又有调频成分(调制频率对中心频率 的幅值不对称)。

一种基于小波的图像降噪方法(精)

一种基于小波的图像降噪方法 张静1 孙俊2 (1江苏科技大学电子信息学院江苏镇江 212003 (2江苏大学电气信息工程学院,江苏镇江212013 摘要:通过对图像的小波变换系数进行阈值操作,可有效降低噪声,但还是保留一些噪声。Wiener 滤波是一种线性滤波方法,用小波阈值方法结合Wiener 滤波,可进一步对图像噪声进行降噪。实验结果表明小波阈值Wiener 滤波方法是一种有效的图像降噪方法,其在图像恢复上和人眼视觉上都优于小波阈值方法。 关键词:小波变换;wiener 滤波;软阈值;图像降噪;Mallat 算法 文献标识码:A 中图分类号:TN911.7 1 引言 图像一般都会受到噪声的影响,由于噪声影响图像的输入传输、输出等环节,使得图像分辨率下降,同时破坏了图像的精细结构,给图像的后续处理(图像二值化操作和图像特征提取带来不便,因此如何有效抑制噪声已成为图像处理中极重要和首要的任务。图像降噪 的目的是提高图像的信噪比,突出图像的应用的特征[1] 。 小波图像降噪已被视为图像处理中的重要降噪算法,是基于噪声和信号在频域上分布不同而进行的,一般信号和噪声分别分布在低频区域和高频区域,图像的细节也分布在高频区域。小波变换是一种调和变换,其同时具有空间域和频域的局域性,其具有多分辨分析的性质,能适应信号频率的局域变化,在每一层小波分解上选取各自阈值,可以消除多数噪声。在MSE 意义上,最优信号估计是wiener 滤波器,Wiener

滤波在信噪比较高的图像去噪中效果更好,所以基于小波降噪后的图像,进一步应用wiener 滤波降噪,可达到更好的去噪, 并且这种综合降噪方法能在保护细节之间取得较好的效果[6] 。 2 图像小波分解[2][3] 二维图像信号通常可用二元函数(,(22R L y x f ∈表示,对于二元函数,有相应的二维小波变换和多尺度逼近。设(,(22R L y x f ∈,,(y x ψ满足容许条件 ∫∫+∞∞?+∞ ∞ ?=0,(dxdy y x ψ,称积分dxdy a b y a b x a y x f b b a W f ,(1 ,(,,(2121??= ∫∫+∞∞?+∞ ∞ ?ψ 为,(y x f 的二维连续小波变换,其中,(y x ψ为二维小波函数。与此对应的小波变换的重 构公式为 2121210 3,(,,(1 ,(db db a b y a b x b b a W a da c y x f R

风力发电机组齿轮箱的故障及其分析

毕业设计(论文)2010 级风能与动力技术专业 题目:风力发电机组齿轮箱的故障及其分析 毕业时间: 学生姓名:X X X 指导教师:X X X 班级:10风电(1)班

目录 一、绪论 (1) (一)风力发电机组齿轮箱故障诊断的意义 (1) 二、风力发电机组齿轮箱的故障诊断 (2) (一)风力发电机组齿轮箱的常见故障模式及机理分析 (2) (二)齿轮箱典型故障振动特征与诊断策略 (6) (三)针对齿轮箱不同故障的改进措施 (9) 三、结论 (12) 参考文献: (12) 致谢 (13)

风力发电机组齿轮箱的故障及其分析 摘要:随着全球经济的发展和人口的增长,人类正面临着能源利用和环境保护两方面的压力,能源问题和环境污染日益突出。风能作为一种蕴藏量丰富的自然资源,因其使用便捷、可再生、成本低、无污染等特点,在世界范围内得到了较为广泛的使用和迅速发展。风力发电己成为世界各国更加重视和重点开发的能源之一。随着大型风力发电机组装机容量的增加,其系统结构也日趋复杂,当机组发生故障时,不仅会造成停电,而且会产生严重的安全事故,造成巨大的经济损失。 本论文先探讨了课题的实际意义以及风力发电机常见的故障模式,在这个基础上对齿轮箱故障这种常见故障做了详尽的阐述,包括引起故障的原因、如何识别和如何改进设计。通过对常见故障的分析,给风力发电厂技术维护提供故障诊断帮助,同时也给风电设备制造和安装部门提供理论研究依据。 关键词:风力发电机;故障模式;齿轮箱;故障诊断 一、绪论 (一)风力发电机组齿轮箱故障诊断的意义 风电对缓解能源供应,改善能源结构、保护环境和电力工业的持续发展意义重大。这些年来,风电机组在我国得到了广泛的安装使用。随着大型风力发电机组装机容量的增加,其系统结构也日趋复杂,风力发电机的故障也成为一个不容忽视的问题。 随着风电机组运行时间的加长,目前这些机组陆续出现了故障(包括风轮叶片、变流器、齿轮箱、变桨轴承,发电机、以及偏航系统等都有),导致机组停止运行。当机组发生故障时,不仅会造成停电,而且会产生严重的安全事故。风电机组的部分部件一旦损坏,在风电场无法修复,必须运到专业厂家进行修理。因其维修费用高、周期长、难度大,势必给风电场造成巨大的经济损失,严重影响了风电的经济效益。 风电机组的输出功率是波动的,可能影响电网的电能质量,如电压的偏差、电压的波动和闪变、谐波以及周期电压脉动等。当风电机组发生故障时,输往电网的

小波变换去噪基础地的知识整理

1.小波变换的概念 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么? 有几种定义小波(或者小波族)的方法: 缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。在双正交小波的情况,分解和重建的滤波器分别定义。 高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。例如Daubechies和Symlet 小波。 缩放函数:小波由时域中的小波函数 (即母小波)和缩放函数 (也称为父小波)来定义。 小波函数实际上是带通滤波器,每一级缩放将带宽减半。这产生了一个问题,如果要覆盖整个谱需要无穷多的级。缩放函数滤掉变换的最低级并保证整个谱被覆盖到。 对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。例如Meyer小波。 小波函数:小波只有时域表示,作为小波函数。例如墨西哥帽小波。 3.小波变换分类 小波变换分成两个大类:离散小波变换 (DWT) 和连续小波转换 (CWT)。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。 DWT用于信号编码而CWT用于信号分析。所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。 4.小波变换的优点 从图像处理的角度看,小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口) (4)小波变换实现上有快速算法(Mallat小波分解算法) 另: 1) 低熵性变化后的熵很低; 2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性 3) 去相关性域更利于去噪; 4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。 小波变换的一个最大的优点是函数系很丰富, 可以有多种选择, 不同的小波系数生成的小波会有不同的效果。噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。图像经小波分解后可得到低频部分和高频部分, 低频部分体现了图像的轮廓, 高频部分体现为图像的细节和混入的噪声, 因此, 对图像去噪, 只需要对其高频系数进行量化处理即可。 5.小波变换的科学意义和应用价值

2004,小波降噪阈值选取的研究_余晃晶

小波降噪阈值选取的研究 余晃晶 (三明学院,福建 三明365004) 摘 要:小波分析用于信号降噪的过程中,核心的算法就是在小波系数上作用阈值,因为阈值的选取直接影响降噪的质量.笔者就阈值的选取做了一些理论分析并在MATLAB 环境下进行仿真研究,得出应用小波降噪过程中阈值选取的一些实际结论. 关键词:小波变换;阈值;降噪 中图分类号:TP301.6 文献标识码:A 文章编号:1008-293X (2004)09-0034-05 实际采集的信号中常含有噪声,只有作降噪处理才能有效地表现原信号中有用的信息.信号降噪方法有时域和频域两种方法,但是归根到底是利用噪声和信号在频域上分布的不同进行的:信号主要分布在低频区域,而噪声主要分布在高频区域,但同时信号的高频区域也存在被检测对象的某些重要特征.传统的Fourier 分析方法可将信号的高频成分滤除,虽然也能够达到降低噪声的效果,但却影响了信号的某些重要特征.如何构造一种既能够降低信号噪声,又能够保持信号某些重要特征的降噪方法是此项研究的目标,而这在小波变换这种强有力的信号分析工具出现以后已经成为可能.由于小波变换同时具有时域和频域上的局部性特性,优于傅立叶变换,所以它一出现,就很快被普遍应用于信号处理中.本文就小波分析用于信号降噪的过程中阈值的选取做一些理论分析,并在MATL AB 环境下做了仿真研究,得出应用小波降噪过程中阈值选取的一些实际结论. 1 小波变换用于降噪的基本原理 1988年,文献〔1〕提出了多分辨分析的概念,并给出了小波分解与重构的快速算法,即Mallat 算法.根据这一算法,若f k 为信号f (t )的离散采样数据,f k =c 0,k ,则信号f (t )的正交小波变换分解公式为 c j ,k =∑n c j -1,n h n -2k ; d j ,k =∑d j -1,n g n -2k .(k =0,1,2,…n -1)(1) 式中:c j ,k 为尺度系数;d j ,k 为小波系数;h ,g 为一对正交镜像滤波器组(QMF );j 为分解层数;N 为离散采样点数.小波重构过程是分解过程的逆运算,相应的重构公式为 c j -1,n =∑n c j ,n h k -2n +∑n d j ,n g k -2n (2) 小波的多分辨分析特性可将信号在不同尺度下进行多分辨率的分解,并将交织在一起的各种不同频率组成的混合信号分解成不同频段的子信号,因而对信号具有按频带处理的能力. 对于一个含噪声的一维信号的基本模型通常表示成如下的形式: s (n )=f (n )+σe (n ) (n =0,1,2,…n -1)(3) 式中:f (n )为原始信号;e (n )为噪声信号;s (n )为含噪声信号;σ为噪声强度.在最简单的情况下可以假设e (n )为高斯白噪声,且σ=1.小波变换的目的就是要抑制e (n )以恢复f (n ).在f (n )的分解系数比较稀疏(非零项很少)的情况下,这种方法的效率很高.为了从含噪信号s (n )中还原出真实信号f (n ),可以利用信号和噪声在小波变换下的不同特性,通过对小波分解系数进行处理来达到信号和噪声分离的目的.在实际工程应用中,有用信号通常表现为低频信号或是一些比较平稳的信号,而噪声信号则通常表现为高第24卷第9期2004年9月 绍 兴 文 理 学 院 学 报JOUR NAL OF SHAOXING UNIVERSITY Vol .24No .9Sep .2004 收稿日期:2004-07-06 作者简介:余晃晶(1965-),男,福建连江人,讲师.研究方向:单片机和信号处理等. DOI :10.16169/j .issn .1008-293x .s .2004.09.009

风力发电机齿轮箱结构及其主要故障类型的处理方法

风力发电机齿轮箱结构及其主要故障类型的处理方法摘要 第一章绪论 1.1论文的目的和意义 1.2风力发电的现状 1.3风力发电齿轮箱的研究现状 第二章齿轮箱结构 2.1风力发电机的整体结构 2.2齿轮箱的结构及其传动方案 第三章风力发电机组齿轮箱故障类型 3.1齿轮箱的主要故障类型 3.2风力发电机组齿轮箱振动故障分析 3.3风力发电机组传动齿轮油温故障分析 第四章风力发电的发展存在问题和主要趋势 4.1我国风电齿轮箱设计生产存在问题 4.2风电发展的主要趋势 致谢 参考文献

中文摘要 摘要:风电产业的飞速发展促成了风电装备制造业的繁荣,风电齿轮箱作为风电机组的核心部件,倍受国内外风电相关行业和研究机构的关注。但由于国内风电齿轮箱的研究起步较晚,技术薄弱,特别是兆瓦级风电齿轮箱,主要依靠引进国外技术。因此,急需对兆瓦级风电齿轮箱进行自主开发研究,真正掌握风电齿轮箱设计制造技术,以实现风机国产化目标。 本文以兆瓦级风力发电机齿轮箱为对象,通过方案选取,齿轮参数确定等对其配套的齿轮箱进行阐述。 首先,介绍全球风力发电产业高速发展和国内外风电设备制造业概况,阐述我国风力发电齿轮箱的现状及齿轮箱的研究。 其次,确定齿轮箱的机械结构。选取两级行星派生型传动方案,通过计算,确定各级传动的齿轮参数。对行星齿轮传动进行受力分析,得出各级齿轮受力结果。依据标准进行静强度校核,结果符合安全要求。 然后,论述了风力发电机组齿轮箱故障诊断的主要类型,深入探究风电机组齿轮箱振动故障机理,研究了油温高的故障机理,分析了传动齿轮温度场和热变形的情况。 最后,阐述我国风力发电存在的主要问题和发展前景。 关键词:风电齿轮箱;结构;故障类型;存在问题

风电齿轮箱润滑状态监测与故障诊断系统开发

? 149 ? ELECTRONICS WORLD ?技术交流 我国的风力发电机组主要布置在偏远山区,环境较为恶劣,而且还有部分风力发电机组布置在高原、海上等,受到高强度风的冲击,可极易引发故障。本文主要针对风电齿轮箱润滑系统进行研究,提出当前风电齿轮箱润滑状态运行中存在的问题,针对问题提出装填监测与故障诊断系统设计方案,给出硬件和软件设计,并分析其功能。1.风电齿轮箱 风电齿轮箱作为风力发电机组中的重要组成部件,能够实现动力传递,将风能转化为机械能并将动力传递给发电机获得相应转速。在风力的作用下,发电机组能够获得一定的动力,但是风轮的转速往往很低,不能满足发电机发电要求,因此需要在风力发电机组中配备相应的齿轮箱来实现增速,提高风能利用率。根据风力发电机组运行的实际要求进行不同设置,对于传动轴(大轴)和齿轮箱既可以合为一体也可以分开进行布置,在两者之间还往往通过联轴节进行连接。在风力发电机组中还往往在齿轮箱的输入/出端配备相应的刹车装置来实现风力发电机组的制动能力。配合叶尖制动(定浆距风轮)或变浆距制动装置共同对机组传动系统进行联合制动。 2.风电齿轮箱润滑常见故障及原因分析2.1 润滑油黏度变化 对于风力发电机组而言,基本上每天都在运行进行发电工作。由于工作时间较长、负载较大,会导致油温升高出现氧化情况,而氧化会产生油泥沉积物等物质,这些物质会使得润滑油的粘度先下降后上升,润滑肉的承载能力下降明显,对于齿轮箱中的各个部件而言,没有很好的润滑会产生较大磨损,引发故障。而且润滑油的粘度增大,使用中油温和油压均会出现明显升高现象,出现齿面胶合等现象,甚至严重情况下会引发轴承受热变形。2.2 齿轮油水分影响 对于风力发电机组而言往往在海岛等地区进行工作,另外还在荒漠等地区这些地区的温度往往较低,如果不能及时的更换齿轮箱中的空气呼吸机,长期下来就会导致水分的沉积。而水分是影响齿轮箱润滑油质量的一个关键因素之一,如果水分含量过大会导致齿轮箱的油发生乳化,齿轮件极易出现锈蚀问题。2.3 氧化因素 由于风力发电机组长时间工作,润滑油也会长时间使用。而长时间的运行必然导致油温升高,油会出现氧化问题,而且在运行中还会由于各种不可控因素导致污染产生,最终导致润滑油的氧化程度升高,性能会随之下降,在齿轮箱当中产生酸性物质,对于齿轮箱中的各个部件而言会产生严重腐蚀,对于滤芯以及各个配件而言会产生不同程度的损耗。2.4 磨损检测 对于齿轮运行而言,通过渐开线接触的方式进行啮合,这种运行方式下齿轮不会发生相对滑动。在齿轮箱中引入润滑油主要是润滑齿轮,保证齿轮发生比较小的磨损。在风力发电机组的运行中必须关注异常磨损问题,卡阻异常会导致异常磨损更加严重。润滑油快速发黑并且在齿轮箱中有铁屑的时候应该考虑异常卡阻问题,异常磨损往往与油膜无法有效建立相关;磨屑增多及滑油粘度异常也有关联关系,另外是滑油变性,或水分等腐蚀齿轮的成分增大时,也会出现齿轮磨损增大。 3.风电齿轮箱润滑状态监测与故障诊断系统设计3.1 硬件系统设计及构成 对于风力发电机组的润滑状态监测系统而言,必须要有相应的系统硬件进行支持。整个监测系统由数据传感器来进行信息的采集,并由变送器来进行信息传递,另外还有数采模块以及工控机通信线路协调配合实现最终功能。 3.1.1 传感器 在风力发电机的齿轮箱中,往往涉及到多个参数以及变量的监控,针对不同的参数以及变量需要采用不同的传感器俩进行采集,传感器型号的选择如表1所示。 表1 传感器及其选型 测量对象型号参数 振动YD010量程:0-20mm/s 温度PT100量程:-60-200℃压力HDA4400 量程:6000-100000kPa 图1 软件系统程序设计图 3.1.2 温度变送器 前面提出油温是影响并反映齿轮箱润滑状态的重要参数,因此必须要对油温进行监控。在本设计中采用Pt100温度传感器来进行油温采集,这一温度传感器主要通过内部电阻值变化来反映温度变化值。另外还在系统中引入SBWZ-2280变送器,提供整个系统的变送电路支持。 3.1.3 数采模块 在该系统当中引入了COMWAYWRC-616来提供测控,这控制系统集成模拟和数字信号采集、过程IO控制和无线数据通道等功能。采用压力传感器与变送器的继承模块HAD4XX4-A来进行系统控制。对于系统中的油压以及温度模块而言,还往往采用两线制电流输出的接线方式;对于整个系统中的振动模块而言,往往采用三线制的连接方式。数采模块通过RS485串口输出接入到整个系统当中,另外还通过RS485-To-RS232转换串口接入到工控机串口当中。为实现其功能还在系统中引入远程通讯模块,能够通过智能手机实现监控系统和外部的通讯。 风电齿轮箱润滑状态监测与故障诊断系统开发 中广核新能源控股公司吉林分公司 杨 鹏 DOI:10.19353/https://www.doczj.com/doc/e39598808.html,ki.dzsj.2019.04.088

小波去噪文献综述

图像去噪处理 1.1 小波去噪 在数学上,小波去噪问题的本质是一个函数逼近问题,即如何在有小波母函数伸缩和平移所展成的函数空间中,根据提出的衡量准则,寻找对原图像的最佳逼近,以完成原图像和噪声的区分。这个问题可以表述为: ()()s opt f f -=ββmin arg ()()代表最优解opt f f opt opt β= 为噪声图像为原图像n s n s f f f f f ,,+= {} (){} J j J j span W f f I 212,?ψ===,为实际图像 {} 的函数空间影射为W I T →=ββ 由此可见,小波去噪方法也就是寻找实际图像空间到小波函数空间的最佳映射,以便得到原图像的最佳恢复。从信号的角度看,小波去噪是一个信号滤波的问题,而且尽管在很大程度上小波去噪可以看成是低通滤波,但是由于在去噪后,还能成功地保留图像特征,所以在这一点上优于传统的低通滤波器。由此可见,小波实际上是特征提取和低通滤波功能的综合,其等效框图如图1-2所示。 图1-1小波去噪的等效框图 1.1.1小波变换理论基础 1.连续小波变换 设()()R L t 2∈ψ,其傅里叶变换为()w ψ,当()w ψ满足允许条件(完全重构条件):

?∞a 时变宽,而1

小波去噪三种方法

小波去噪常用方法 目前,小波去噪的方法大概可以分为三大类:第一类方法是利用小波变换模极大值原理去噪,即根据信号和噪声在小波变换各尺度上的不同传播特性,剔除由噪声产生的模极大值点,保留信号所对应的模极大值点,然后利用所余模极大值点重构小波系数,进而恢复信号;第二类方法是对含噪信号作小波变换之后,计算相邻尺度间小波系数的相关性,根据相关性的大小区别小波系数的类型,从而进行取舍,然后直接重构信号;第三类是小波阈值去噪方法,该方法认为信号对应的小波系数包含有信号的重要信息,其幅值较大,但数目较少,而噪声对应的小波系数是一致分布的,个数较多,但幅值小。基于这一思想,在众多小波系数中,把绝对值较小的系数置为零,而让绝对值较大的系数保留或收缩,得到估计小波系数,然后利用估计小波系数直接进行信号重构,即可达到去噪的目的。 1:小波变换模极大值去噪方法 信号与噪声的模极大值在小波变换下会呈现不同的变化趋势。小波变换模极大值去噪方法,实质上就是利用小波变换模极大值所携带的信息,具体地说就是信号小波系数的模极大值的位置和幅值来完成对信号的表征和分析。利用信号与噪声的局部奇异性不一样,其模极大值的传播特性也不一样这些特性对信号中的随机噪声进行去噪处理。 算法的基本思想是,根据信号与噪声在不同尺度上模极大值的不同传播特性,从所有小波变换模极大值中选择信号的模极大值而去除噪声的模极大值,然后用剩余的小波变换模极大值重构原信号。小波变换模极大值去噪方法,具有很好的理论基础,对噪声的依赖性较小,无需知道噪声的方差,非常适合于低信噪比的信号去噪。这种去噪方法的缺点是,计算速度慢,小波分解尺度的选择是难点,小尺度下,信号受噪声影响较大,大尺度下,会使信号丢失某些重要的局部奇异性。 2:小波系数相关性去噪方法 信号与噪声在不同尺度上模极大值的不同传播特性表明,信号的小波变换在各尺度相应位置上的小波系数之间有很强的相关性,而且在边缘处有很强的相关

大数据处理技术在风电机组齿轮箱故障诊断与预警中的应用

大数据处理技术在风电机组齿轮箱故障诊断与预警中的应用 摘要风能有着很多的优点,在改善我国能源结构方面有着非常大的作用。本文包括五部分,第一部分进行概述,第二部分论述风电机组故障诊断和预警模型设计,第三部分论述基于大数据技术的齿轮箱故障诊断和预警方法实现,第四部分论述实验结果研究,第五部分进行总结。 关键词风电机组;故障诊断;故障预警 以主流大数据技术的风电机组故障诊断和预警模型为基础,利用storm实时处理状态监测流信息,提取故障诊断以及预警特点。 1 概论 随着大规模风电机组的投入运行,因为风电场选址的特殊性和负荷的不稳定性,很多机组都出现了故障,使得风电场的安全性受到了影响,所以对风电机组进行状态监测以及故诊断是相当关键的。不同厂家生产的风电机组会使采集的数据类型等出现差异。怎样通过风电机组状态监测大数据进行快速、有效的故障诊断和预警是新的课题。 大数据技术在电力体系监测领域还处于起步阶段,本文给出基于大数据技术的风电机组故障诊断和预警的模型结构,这个模型有着下面几个特点:第一,全体,收集和研究风电机组运行数据而不是样本数据。第二,混杂:由于是全样本,不可避免地要处理不同风电机组、不同种类的异构数据。第三,注重相关关系和效率,在故障诊断和预警环节中,使用数据挖掘方法找出故障,并在科学精确性的条件下利用并行计算技术实现快速的预警[1]。 2 风电机组故障诊断和预警模型设计 2.1 模型框架 基于大数据存储和处理的需要,本文基于X86集群,运用分布式技术,提出了融合各种相关异构状态检测数据的风电机组故障诊断和预警模型,模型架构见图1,主要由数据采集整合、数据存儲等模块组成。 数据来源有数据采集和监控系统、地理信息系统、项目管理信息系统,以及各种特殊传感器等业务系统的生产运行管理数据,除此之外,还有针对本文具体应用的各种故障知识库。这些数据来源不一,模态各异,形成了海量异构电力大数据。 2.2 齿轮箱故障诊断和预警运行流程 作为风机传动系统的关键组成部分,齿轮箱是风电机组中故障率较高的部

一维小波降噪的综合应用实例(matlab)

一维小波降噪的综合应用实例 %当前延拓模式是补零 %设置信噪比和随机数种子 snr=3;init=2055615866; %产生原始信号,并叠加标准高斯白噪声 [xref,x]=wnoise(3,11,snr,init); %对x使用sym8小波进行5层分解,得到高频系数。使用SURE阀值、软阀值进行降噪 lev=5; xd=wden(x,'heursure','s','one',lev,'sym8'); figure(1); set(gcf,'color','w'); %画出原始信号 subplot(311),plot(xref),axis([1 2048 -10 10]); title('原始信号'); subplot(312),plot(x), axis([1 2048 -10 10]); title(['降噪信号-信噪比为',num2str(fix(snr))]); subplot(313),plot(xd), axis([1 2048 -10 10]); title('降噪信号-heuristic SURE'); % 使用软SURE阀值降噪 xd=wden(x,'heursure','s','one',lev,'sym8'); %画出信号 figure(2); set(gcf,'color','w'); subplot(311),plot(xd), axis([1 2048 -10 10]); title('降噪信号-SURE'); % 对噪声标准差进行单层估计,使用fixed form 阀值降噪 xd=wden(x,'sqtwolog','s','sln',lev,'sym8'); % 画出信号 subplot(312),plot(xd), axis([1 2048 -10 10]); title('降噪信号-Fixed form 阀值'); % 对噪声标准差进行单层估计,使用minimax 阀值降噪 xd=wden(x,'minimaxi','s','sln',lev,'sym8'); % 画出信号 subplot(313),plot(xd), axis([1 2048 -10 10]); title('De-noised signal-Minimax'); % 如果需要多次尝试,最后是执行一次分解,多次设置阀值 % 分解 [c,l]=wavedec(x,lev,'sym8'); % 使用小波分解结构[c,l]设置阀值 xd=wden(c,l,' minimaxi','s','sln',lev,'sym8'); 结果如图所示。

基于小波分析的SAR影像去噪的原理与方法.

第四章 基于小波分析的SAR 影像去噪的原理与方法 4.1 小波变换及其特征 4.1.1 小波变换 小波(wavelet),即在时(空间)域延续度很小的“波”。如果函数)(t ψ是平方可积函数,即)()(2R L t ∈ψ,并且其傅立叶变换)(ωψ满足 ∞<ψ?ωωωd R | ||)(|2 (4-1) 我们就称)(t ψ为一基本小波或小波基函数。而我们通常所讲的小波则是由小波基函数经过伸缩和平移而得到的函数族)(,t a τψ: )( )(2 1,a t a t a τ ψψτ-=- R a ∈>τ,0 (4-2) 其中,a 是尺度(伸缩)因子,τ是平移因子。 由定义可知,小波基函数是一类特殊的函数:(I )通常,它们在时(空间)域内是紧支集或近似紧支集的,并且在频域内也具有良好的局部性,可以作为“带通滤波器”或“窗口”使用;(II )它们具有正负交替波动性,有0)0(=ψ;(III )它们经过伸缩和平移变化得到的函数族也同样具有时(空间)域、频域局部性和正负交替波动性,并且尺度因子a 越小,时(空间)域窗口越小,而对应频域窗口的中心频率和窗口宽度越大。 对于)(2R L 中的函数)(t f ,其小波变换可定义为 dt a t t f a t t f a WT R a f ?->==<)()(1)(),(),(,τ ψψττ (4-3) 相应的小波逆变换为 ??∞ ∞ -∞=τψττψd t a WT a da C t f a f )(),(1)(,02 (4-4) 其中,∞<ψ=?ωωωψd C R | ||)(|2 。 由公式(4-3)可知,小波变换实际上是信号)(t f 与小波函数)(,t a τψ的内积,即信号)(t f 在)(,t a τψ上的展开(投影)结果。那么,我们可以通过小波变换提取信号)(t f 在特定尺度a 下、特定位置τ处的信号特征。由于尺度因子a 在一定程度上决定了小波函数)(,t a τψ的频率特性,可以通过确定尺度因子a 来提取不同频率的信号特征,从这个意义上讲,小波变换具有一定的频率自适应性。 由公式(4-4)可知,信号)(t f 可由小波族)(,t a τψ,R a ∈>τ,0线性拟合而成,而各小波前的系数由相应的小波变换确定。此即为信号小波重建的依据。 若处理离散化的信号,就对a 、τ和t 进行离散化处理,通常,取n a m m ?==2,2τ,其中,Z n m ∈,,并且对t 进行与τ相同的归一化处理,取1=?=t dt 。那么,离散化的小波函数可写为

相关主题
文本预览
相关文档 最新文档