当前位置:文档之家› 机械故障诊断技术7_滚动轴承故障诊断

机械故障诊断技术7_滚动轴承故障诊断

电气设备故障诊断汇总

电气故障诊断 一、电气设备的状态及检测技术 1、电气设备的状态 (1)正常状态:设备具备其应有的功能,没有缺陷或缺陷不明显,缺陷严重程度仍处于容限范围内。 (2)异常状态:缺陷有了进一步的发展,设备状态发生变化,性能恶化,但仍能维持工作。(3)故障状态:缺陷发展到使设备性能和功能都有所丧失的程度。 (4)事故状态:功能完全丧失,无法进行工作状态。 2、电气设备的状态检测 (1)判断设备所处的状态; (2)根据其状态决定对待的方式。 二、电气设备的现代检测技术 1、现代故障诊断技术的构成: (1)故障诊断机理的研究:(理化原因等) (2)故障诊断信息学的研究:(数据采集与分析) (3)诊断逻辑和数学原理方面的研究:(诊断与决策) 2、现代故障诊断四项技术: (1)检测技术(采集信号、参数) (2)信号处理技术(提取状态信息) (3)识别技术(分析、判断) (4)预测技术(决策和预测) 3、故障诊断与状态监测的关系 (1)工况监测:对反映设备或系统工作状态的信息进行全面监测和分析,实时掌握设备基本工作状态。 (2)状态监测:又称简易诊断,通过监测结果与设定阈值之间的对比,仅对设备运行状态作出正常、异常或故障的判断,而对故障的性质、严重程度等不予或无法进行更深入的诊断。

4、故障诊断的成功因素 (1)故障信息源 (2)诊断方法 5、故障诊断技术的发展趋势(与当代前沿科技相融合) (1)人工智能技术:人工神经网络、专家系统等; (2)前沿数学:小波分析、模糊数学、分析几何等; (3)信息融合技术:证据理论等。 6、故障诊断的关注点 (1)故障阶段:尚未发展造成事故的阶段; (2)其目的是:防患于未然; (3)作用阶段:继电保护动作之前。 三、电气设备的传统检测技术 如果把有故障的电气设备比作病人,电工就好比医生。由中医诊断学的经典四诊(望、闻、问、切),结合电气设备故障的特殊性和诊断电气故障的成功经验,电气设备的检测技术归纳为“六诊”要诀,另外引申出电气设备诊断特殊性的“九法”、“三先后”要诀。 “六诊”、“九法”、“三先后”是行之有效的电气设备诊断的思想方法和工作方法。 事物往往是千变万化的和千差万别的,电气设备出现的故障是五花八门,“六诊”、“九法”、“三先后”电气故障诊断要诀,只是一种思想方法和工作方法,切记不能死搬硬套。检修人员要善于透过现象看本质,善于抓住事物的主要矛盾。 (一)“六诊”检测法 “六诊”------口问、眼看、耳听、鼻闻、手模、表测六种诊断方法,简单地讲就是通过“问、看、听、闻、摸、测”来发现电气设备的异常情况,从而找出故障原因和故障所在的部位。前“五诊”是凭借人的感官对电气设备故障进行有的放矢的诊断,称为感官诊断,又称直观检查法。同样,由于个人的技术经验差异,诊断结果也有所不同。可以采用“多人会诊法”求得正确结论。“表测”即应用电气仪表测量某些电气参数的大小,经过与正常数值对比,来确定故障原因和部位。 (1)口问 当一台设备的电气系统发生故障后,检修人员首先要了解详细的“病情”。即向设备操作人员了解设备使用情况、设备的病历和故障发生的全过程。 如果故障发生在有关操作期间或之后,还应询问当时的操作内容以及方法、步骤。总的来讲,了解情况要尽可能详细和真实,这些往往是快速找出故障原因和部位的关键。 例如:当维修人员巡查时,操作人员反应前处理一台打水离心泵不能启动,需要及时处理。这时维修人就要询问,水罐是否有水,上班和本班是否曾经运行,具体使用情况,是否运行一段时间后停止,还是未运行就不能开启。还要询问故障历史等等。了解具体情况后,到现场进行处理就会有条理,轻松解决问题。 (2)眼看 1)看现场 根据所问到的情况,仔细查看设备外部状况或运行工况。如设备的外形、颜色有无异常,熔丝有无熔断:电气回路有无烧伤、烧焦、开路、短路,机械部分有无损坏以及开关、刀闸、按钮插接线所处位置是否正确,改过的接线有无错误,更换的元件是否相符等:还要观察信

简析滚动轴承故障诊断方法及要点

简析滚动轴承故障诊断方法及要点 滚动轴承是应用最为广泛的机械零件质疑,同时,它也是机器中最容易损坏的元件之一。许多旋转机械的故障都与滚动轴承的状态有关。据统计,在使用滚动轴承的旋转机械中,大约有30%的机械故障都是由于轴承而引起的。可见,轴承的好坏对机器工作状态影响极大。 通常,由于轴承的缺陷会导致机器产生振动和噪声,甚至会引起机器的损坏。而在精密机械中(如精密机床主轴、陀螺等),对轴承的要求就更高,哪怕是在轴承上有微米级的缺陷,都会导致整个机器系统的精度遭到破坏。 最早使用的轴承诊断方法是将听音棒接触轴承部位,依靠听觉来判断轴承有无故障。这种方法至今仍在使用,不过已经逐步使用电子听诊器来替代听棒以提高灵敏度。后来逐步采用各式测振仪器、仪表并利用位移、速度或加速度的均方根值或峰峰值来判断轴承有无故障。这可以减少对设备检修人员的经验的依赖,但仍然很难发现早期故障。 滚动轴承在设备中的应用非常广泛,滚动轴承状态好坏直接关系到旋转设备的运行状态,尤其在连续性大生产企业,大量应用于大型旋转设备重要部位,因此,实际生产中作好滚动轴承状态监测与故障诊断是搞好设备维修与管理的重要环节。我们经过长期实践与摸索,积累了一些滚动轴承实际故障诊断的实用技巧。 一、滚动轴承故障诊断的方式及要点: 对滚动轴承进行状态监测和故障诊断的实用方法是振动分析。 实用中需注意选择测点的位置和采集方法。要想真实准确反映滚动轴承振动状态,必须注意采集的信号准确真实,因此要在离轴承最近的地方安排测点,在电机自由端一般有后风扇罩,其测点选择在风扇罩固定螺丝有较好监测效果。另外必须注意对振动信号进行多次采集和分析,综合进行比较。才能得到准确结论。 二、滚动轴承正常运行的特点与实用诊断技巧: 我们在长期生产状态监测中发现,滚动轴承在其使用过程中表现出很强的规律性,并且重复性非常好。正常优质轴承在开始使用时,振动和噪声均比较小,但频谱有些散乱,幅值都较小,可能是由于制造过程中的一些缺陷,如表面毛刺等所致。 运动一段时间后,振动和噪声维持一定水平,频谱非常单一,仅出现一、二倍频。极少出现三倍工频以上频谱,轴承状态非常稳定,进入稳定工作期。 继续运行后进入使用后期,轴承振动和噪声开始增大,有时出现异音,但振动增大的变化较缓慢,此时,轴承峭度值开始突然达到一定数值。我们认为,此时轴承即表现为初期故障。

机械故障诊断技术课后复习资料

机械故障诊断技术 (第二版张建)课后答案 第一章 1、故障诊断的基础是建立在能量耗散的原理上的。 2、机械故障诊断的基本方法课按不同观点来分类,目前流行的分类方法有两种:一是按机械故障诊断方法的难易程度分类,可分为简易诊断法和精密诊断法;二是按机械故障诊断的测试手段来分类,主要分为直接观察法、振动噪声测定法、无损检测法、磨损残余物测定法、机器性能参数测定法。 3、设备运行过程中的盆浴曲线是指什么? 答:指设备维修工程中根据统计得出一般机械设备劣化进程的规律曲线(曲线的形状类似浴盆的剖面线) 4、机械故障诊断包括哪几个方面内容? 答:(1)运行状态的检测根据机械设备在运行时产生的信息判断设备是否运行正常,其目的是为了早期发现设备故障的苗头。 (2)设备运行状态的趋势预报在状态检测的基础上进一步对设备 运行状态的发展趋势进行预测,其目的是为了预知设备劣化的速度,以便生 产安排和维修计划提前做好准备。 (3)故障类型、程度、部位、原因的确定最重要的是设备类型的确定,它是在状态检测的基础上,确定当机器已经处于异常状态时所需进一步解决的问题,其目的是为了最后诊断决策提供依据。 5、请叙述机械设备的故障诊断技术的意义? 答:设备诊断技术是一种了解和掌握设备在使用过程中的状态,确定其整体或局部是正常或异常,早期发现故障及其原因,并能预报故障发展趋势的技术。机械设备的故障诊断可以保证整个企业的生产系统设备的运行,减少经济损失,还可以减少某些关键机床设备因故障存在而导致加工质量降低,保证整个机器产品质量。 6、劣化曲线沿横、纵轴分别分成的三个区间分别是什么,代表什么意义? 答:横轴包括1、磨合期 2、正常使用期 3、耗损期纵轴包括1、绿区(故障率最低,表示机器处于良好状态)2、黄区(故障率有抬高的趋势,表示机器

设备故障诊断技术说明

设备故障诊断技术简介

上海华阳检测仪器有限公司 Shanghai Huayang MeasuringInstruments Co., Ltd 目录 设备故障诊断技术定义

-----------------------------------------------( 3)一.设备维修制度的进展-----------------------------------------------( 4)二.检测参数类型-------------------------------------------------------( 5) 三.振动检测中位移、速度和加速度参数的选择-----------------------------( 5) 四.测点选择原则------------------------------------------------------( 6) 五.测点编号原则------------------------------------------------------( 7) 六.评判标准----------------------------------------------------------( 7) 七.测量方向及代号----------------------------------------------------

(10) 八.搜集和掌握有关的知识和资料----------------------------------------(10) 九.故障分析与诊断----------------------------------------------------(11) 十.常见故障的识不----------------------------------------------------(14) 1.不平衡------------------------------------------------------------(14) 2.不对中------------------------------------------------------------(14) 3.机械松动----------------------------------------------------------(15) 4. 转子或轴裂纹

机械设备故障诊断技术研究

题目:机械设备故障诊断技术研究 学号: 姓名: 专业: 指导教师: 2016 年 8 月 30 日

摘要 故障诊断技术对于机械设备的安全运行有着至关重要作用,一直是工程应用领域的重点和难点, 国内外已经对此问题进行了大量的研究工作。该论文介绍了机械设备故障诊断技术的基本概念,在总结研究各种诊断技术的基础上全面分析了现代故障诊断技术存在的问题, 并针对这些问题提出了故障诊断领域将来的研究方向。故障诊断是一项实用性很强的技术, 对其进行理论上的分析研究具有重要的现实意义。 关键词:机械设备故障;诊断技术;研究

第一章引言 随着现代科学技术在设备上的应用,现代设备的结构越来越复杂,功能越来越齐全,自动化程度也越来越高。由于许多无法避免的因素影响,会导致设备出现各种故障,从而降低或失去预定的功能,甚至会造成严重的以至灾难性的事故。国内外接连发生的由设备故障引起的各种空难、海难、爆炸、断裂、倒塌、毁坏、泄漏等恶性事故,造成了极大的经济损失和人员伤亡。生产过程中经常发生的设备故障事故,也会使生产过程不能正常运行或机器设备遭受损坏而造成巨大的经济损失。因此机械设备故障诊断技术在社会中的重要性越来越高,主要体现在[1]:(1)预防事故,保证人员和设备安全。 (2)推动设备维修制度的改革。维修制度从预防制度向预知制度的转变是必然的,而真正实现预知维修的基础是设备故障诊断技术的发展和成熟。 (3)提高经济效益。设备故障诊断的最终目的是避免故障的发生,使零部件的寿命得到充分发挥,延长检修周期,降低维修费用。 因此,机械设备故障诊断技术日益受到广泛重视,对机械设备故障诊断技术的研究也不断深入。但受于机械设备故障成因的复杂性和诊断技术的局限性,目前机械设备故障诊断仍存在一些问题。

机械故障诊断考试题目

机械故障诊断考试--题库 (部分内容可变为填空题) 第一章: 1、试分析一般机械设备的劣化进程。 答:1)早期故障期 阶段特点:开始故障率高,随着运转时间的增加,故障率很快减小,且恒定。 早期故障率高的原因在于:设计疏忽,制造、安装的缺陷,操作使用差错。 2)偶发故障期 阶段特点:故障率恒定且最低,为产品的最佳工作期。 故障原因:主要是使用不当、操作失误或其它意外原因。 3)耗损故障期 阶段特点:故障率再度快速上升。 故障原因:零件的正常磨损、化学腐蚀、物理性质变化以及材料的疲劳等老化过程。 2、根据机械故障诊断测试手段的不同,机械故障诊断的方法有哪些? 答:1′直接观察法-传统的直接观察法如“听、摸、看、闻”是最早的诊断方法,并一直沿用到现在,在一些情况下仍然十分有效。 2′振动噪声测定法-机械设备在动态下(包括正常和异常状态)都会产生振动和噪声。进一步的研究还表明,振动和噪声的强弱及其包含的主要频率成分和故障的类型、程度、部位和原因等有着密切的联系。 3′无损检验-无损检验是一种从材料和产品的无损检验技术中发展起来的方法 4′磨损残余物测定法(污染诊断法 5′机器性能参数测定法-机器的性能参数主要包括显示机器主要功能的一些数据 3、设备维修制度有哪几种?试对各种制度进行简要说明。 答:1o事后维修 特点是“不坏不修,坏了才修”,现仍用于大批量的非重要设备。 2o预防维修(定期维修) 在规定时间基础上执行的周期性维修 3o预知维修 在状态监测的基础上,根据设备运行实际劣化的程度决定维修时间和规 模。预知维修既避免了“过剩维修”,又防止了“维修不足”;既减少了 材料消耗和维修工作量,又避免了因修理不当而引起的人为故障,从而 保证了设备的可靠性和使用有效性。 第二章: 1、什么是故障机理? 答:机械故障的内因,即导致故障的物理、化学或机械过程,称为故障机理。 2、什么是机械的可靠性?机械可靠性的数量指标有哪两个?他们之间互为什么关系?

机械故障诊断技术的现状及发展趋势

机械故障诊断技术的现状及发展趋势 摘要:随着机械行业的不断发展,机械故障诊断的研究也不断提出新的要求,进20年来,国内外的故障诊断技术得到了突飞猛进的发展,对机械故障诊断的发展现状进行了详细的论述,并对其发展趋势进行了展望。 关键词:故障诊断;现状;发展趋势 引言 机械故障诊断技术作为一门新兴的科学,自二十世纪六七十年代以来已经取得了突飞猛进的发展,尤其是计算机技术的应用,使其达到了智能化阶段,现在,机械故障诊断技术在工业生产中起着越来越重要的作用,生产实践已经证明开展故障诊断与状态预测技术研究其重要的现实意义。 我国的故障诊断技术在理论研究方面,紧跟国外发展的脚步,在实践应用上还是基本锣鼓后语国外的发展。在我国,故障诊断的研究与生产实际联系不是很紧密,研究人员往往缺乏现场故障诊断的经验,研究的系统与实际情况相差甚远,往往是从高等院校或者科研部门开始,在进行到个别企业,而国外的发展则是从现场发现问题进而反应到高等院校或者科研单位,是的研究有的放矢。 记过近二十年的努力,我国自己开发的故障诊断系统已趋于成熟,在工业生产中得到了广泛应用。但一些新的方法和原理的出现,使得故障诊断技术的研究不断向前发展,正逐步走向准确、方便、及时的轨道上来。 1.故障诊断的含义及其现状 故障诊断技术是一门了解和掌握设备运行过程中的状态,进而确定其整体或者局部是否正常,以便早期发现故障、查明原因,并掌握故障发展趋势的技术。其目的是避免故障的发生,最大限度的提高机械地使用效率。 1.1设备诊断技术的研究内容主要包括以下三个环节: (1)特征信号的采集:这一过程属于准备阶段,主要用一些仪器测取被测仪器的有关特征值,如速度、湿度、噪音、压力、流量等。 现在信号的采集主要用传感器,在这一阶段的主要研究基于各种原理的传感技术,目标是能在各种环境中得到高可靠、高稳定的传感测试信号。国内传感器类型:电涡流传感器、速度传感器、加速度传感器和湿度传感器等;最近开发的传感技术有光导纤维、激光、声发射等。(2)信号的提取与处理:从采集到的信号中提取与设备故障有关的特征信息,与正常信息只进行对比,这一步就可以称之为状态检测。目前,小波分析在这方面得到广泛应用,尤其是在旋转机械的轴承故障诊断中。基于相空间重构的GMD数据处理方法也刚刚开始研究,此方法对处理一些复杂机械的非线性振动,从而进一步预测故障的发展趋势非常有效。(3)判断故障种类:从上一步的结果中运用各种经验和知识,对设备的状态进行识别,进而做出维修决策。这一步关键是研究系统参数识别和诊断中相关的实用技术,探讨多传感器优化配置问题,发展信息融合技术、模糊诊断、神经网络、小波变换、专家系统等在设备故障诊断中的应用。 1.2故障诊断及时的发展历程· 故障诊断技术的大致三个阶段: (1)事后维修阶段;(2)预防维修阶段;(3)预知维修阶段。现在基本处于预知维修阶段,预知维修的关键在于对设备运行状态进行连续监测或周期检测,提取特征信号,通过对历史数据的分析来预测设备的发展趋势。 1.3故障诊断的发展现状 目前,国内检测技术的研究主要集中在以下几个方面:

设备故障诊断原理技术及应用

设备故障诊断原理技术及应用 机械设备故障诊断技术随着近十多年来国际上电子计算机技术、现代测量技术和信号处理技术的迅速发展而发展起来,是一门了解和掌握机械设备在使用过程中的状态,确定其整体或局部是否正常,早期发现故障及原因,并预报故障发展趋势的技术。 1.机械设备故障诊断的发展过程 设备故障诊断是指在一定工作环境下,根据机械设备运行过程中产生的各种信息判别机械设备是正常运行还是发生了异常现象,并判定产生故障的原因和部位,以及预测、预报设备状态的技术,故障诊断的实质就是状态的识别。 诊断过程主要有3 个步骤: ①检测设备状态的特征信号; ②从所检测的特征信号中提取征兆; ③故障的模式识别。其大致经历以下3 个阶段: ①基于故障事件原故障诊断阶段,主要缺点是事后检查,不能防止故障造成的损失; ②基于故障预防的故障诊断阶段; ③基于故障预测的故障诊断阶段,它是以信号采集与处理为中心,多层次、多角度地利用各种信息对机械设备的状态进行评估,针对不同的设备采取不同的措施。 2.开展故障诊断技术研究的意义 应用故障诊断技术对机械设备进行监测和诊断,可以及时发现机器的故障和预防设备恶性事故的发生,从而避免人员的伤亡、环境的污染和巨大的经济损失。应用

故障诊断技术可以找出生产设备中的事故隐患,从而对机械设备和工艺进行改造以 消除事故隐患。状态监测及故障诊断技术最重要的意义在于改革设备维修制度,现在多数工厂的维修制度是定期检修,造成很大的浪费。由于诊断技术能诊断和预报设备的故障,因此在设备正常运转没有故障时可以不停车,在发现故障前兆时能及时停车。按诊断出故障的性质和部位,可以有目的地进行检修,这就是预知维修—现代化维修 技术。把定期维修改变为预知维修,不但节约了大量的维修费用,而且,由于减少了许多不必要的维修时间,而大大增加了机器设备正常运转时间,大幅度地提高生产率,产生巨大的经济效益。因此,机械状态监测与故障诊断技术对发展国民经济有相当重要的作用。 3.机械故障诊断的研究现状 机械故障诊断作为一门新兴的综合性边缘学科,经过30 多年的发展,己初步形成了比较完整的科学体系。就其技术手段而言,已逐步形成以振动诊断、油样分析、温度监测和无损探伤为主,其他技术或方面为辅的局面。这其中又以振动诊断涉及的领域最广、理论基础最为雄厚、研究得最具生机与活力。目前,对振动信号采集来说, 计算机技术足以胜任各种场合的需要。在振动信号的分析处理方面,除了经典的统计分析、时频域分析、时序模型分析、参数辨识外,近来又发展了频率细化技术、倒谱分析、共振解调分析、三维全息谱分析、轴心轨迹分析以及基于非平稳信号假设的短时傅立叶变换、Wign2er 分布和小波变换等。就诊断方法而言,除了单一参数、 单一故障的技术诊断外,目前多变量、多故障的综合诊断已经兴起。 人工智能的研究成果为机械故障诊断注入了新的活力,故障诊断的专家系统不

故障诊断技术发展历史(最新版)

故障诊断技术发展历史 故障诊断(FD)始于(机械)设备故障诊断,其全名是状态监测与故障诊断(CMFD)。它包含两方面内容:一是对设备的运行状态进行监测;二是在发现异常情况后对设备的故障进行分析、诊断。设备故障诊断是随设备管理和设备维修发展起来的。欧洲各国在欧洲维修团体联盟(FENMS)推动下,主要以英国倡导的设备综合工程学为指导;美国以后勤学(Logistics)为指导;日本吸收二者特点,提出了全员生产维修(TPM)的观点。美国自1961年开始执行阿波罗计划后,出现一系列因设备故障造成的事故,导致1967年在美国宇航局(NASA)倡导下,由美国海军研究室(ONR)主持成立了美国机械故障预防小组(MFPG),并积极从事技术诊断的开发。 美国诊断技术在航空、航天、军事、核能等尖端部门仍处于世界领先地位。英国在60~70年代,以Collacott为首的英国机器保健和状态监测协会(MHMG & CMA)最先开始研究故障诊断技术。英国在摩擦磨损、汽车和飞机发电机监测和诊断方面具领先地位。日本的新日铁自1971年开发诊断技术,1976年达到实用化。日本诊断技术在钢铁、化工和铁路等部门处领先地位。我国在故障诊断技术方面起步较晚,1979年才初步接触设备诊断技术。目前我国诊断技术在化工、冶金、电力等行业应用较好。故障诊断技术经过30多年的研究与发展,已应用于飞机自动驾驶、人造卫星、航天飞机、核反应堆、汽轮发电机组、大型电网系统、石油化工过程和设备、飞机和船舶发动机、汽车、冶金设备、矿山设备和机床等领域。 故障诊断的主要理论和方法 故障诊断技术已有30多年的发展历史,但作为一门综合性新学科——故障诊断学——还是近些年发展起来的。从不同的角度出发有多种故障诊断分类方法,这些方法各有特点。从学科整体可归纳以下理论和方法。 (1)基于机理研究的诊断理论和方法从动力学角度出发研究故障原因及其状态效应。针对不同机械设备进行的故障敏感参数及特征提取是重点。 (2)基于信号处理及特征提取的故障诊断方法主要有时域特征参数及波形特征诊断法、时差域特征法、幅值域特征法、信息特征法、频谱分析及频谱特征再分析法、时间序列特征提取法、滤波及自适应除噪法等。今后应注重实时性、自动化性、故障凝聚性、相位信息和引入人工智能方法,并相互结合。 (3)模糊诊断理论和方法模糊诊断是根据模糊集合论征兆空间与故障状态空间的某种映射关系,由征兆来诊断故障。由于模糊集合论尚未成熟,诸如模糊集合论中元素隶属度的确定和两模糊集合之间的映射关系规律的确定都还没有统一的方法可循,通常只能凭经验和大量试验来确定。另外因系统本身不确定的和模糊的信息(如相关性大且复杂),以及要对每一个征兆和特征参数确定其上下限和合适的隶属度函数,而使其应用有局限性。但随着模糊集合论的完善,相信该方法有较光明的前景。 (4)振动信号诊断方法该方法研究较早,理论和方法较多且比较完善。它是依据设备运行或激振时的振动信息,通过某种信息处理和特征提取方法来进行故障诊断。在这方面应注重引入非线性理论、新的信息处理理论和方法。

滚动轴承故障诊断频谱分析

滚动轴承故障诊断1(之国外专家版) 滚动轴承故障 现代工业通用机械都配备了相当数量的滚动轴承。一般说来,滚动轴承都是机器中最精密的部件。通常情况下,它们的公差都保持在机器的其余部件的公差的十分之一。但是,多年的实践经验表明,只有10%以下的轴承能够运行到设计寿命年限。而大约40%的轴承失效是由于润滑引起的故障,30%失效是由于不对中或“卡住”等装配失误,还有20%的失效是由过载使用或制造上缺陷等其它 原因所致。 如果机器都进行了精确对中和精确平衡,不在共振频率附近运转,并且轴承润滑良好,那么机器运行就会非常可*。机器的实际寿命也会接近其设计寿命。然而遗憾的是,大多数工业现场都没有做到这些。因此有很多轴承都因为磨损而永久失效。你的工作是要检测出早期症状并估计故障的严重程度。振动分析和磨损颗粒分析都是很好的诊断方法。 1、频谱特征 故障轴承会产生与1X基频倍数不完全相同的振动分量——换言之,它们不是同步的分量。对振动分析人员而言,如果在振动频谱中发现不同步分量那么极有可能是轴承出现故障的警告信号。 振动分析人员应该马上诊断并排除是否是其它故障引起的这些不同步分量。 如果看到不同步的波峰,那极有可能与轴承磨损相关。如果同时还有谐波和边频带出现,那么轴承磨损的可能性就非常大——这时候你甚至不需要再去了解轴承准确的扰动频率。 2、扰动频率计算 有四个与轴承相关的扰动频率:球过内圈频率(BPI)、球过外圈频率(BPO)、保持架频率(FT)和球的自旋频率(BS)。轴承的四个物理参数:球的数量、球的直径、节径和接触角。其中,BPI 和BPO的和等于滚珠/滚柱的数量。例如,如果BPO等于3.2 X,BPI等于4.8 X,那么滚珠/滚柱 的数量必定是8。

滚动轴承故障诊断与分析..

滚动轴承故障诊断与分析Examination and analysis of serious break fault down in rolling bearing 学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿

摘要:滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一, 旋转机械的许多故障都与滚动轴承有关,轴承的工作好坏对机器的工作状态有很大的影响,其缺陷会产生设备的振动或噪声,甚至造成设备损坏。因此, 对滚动轴承故障的诊断分析, 在生产实际中尤为重要。 关键词:滚动轴承故障诊断振动 Abstract: Rolling bearing is the most widely used in rotating machinery of the machine parts, is also one of the most easily damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, its defect can produce equipment of vibration or noise, and even cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约有30% 是因滚动轴承引起的,由此可见滚动轴承故障诊断工作的重要性。如何准确判断出它的末期故障是非常重要的,可减少不必要的停机修理,延长设备的使用寿命,避免事故停机。滚动轴承在运转过程中可能会由于各种原因引起损坏,如装配不当、润滑不良、水分和异物侵入、腐蚀和过载等。即使在安装、润滑和使用维护都正常的情况下,经过一段时间运转,轴承也会出现疲劳剥落和磨损。总之,滚动轴承的故障原因是十分复杂的,因而对作为运转机械最重要件之一的轴承,进行状态检测和故障诊断具有重要的实际意义,这也是机械故障诊断领域的重点。 一滚动轴承故障诊断分析方法 1滚动轴承故障诊断传统的分析方法 1.1振动信号分析诊断 振动信号分析方法包括简易诊断法、冲击脉冲法(SPM法)、共振解调法(IFD 法)。振动诊断是检测诊断的重要工具之一。 (1)常用的简易诊断法有:振幅值诊断法,反应的是某时刻振幅的最大值,适用于表面点蚀损伤之类的具有瞬时冲击的故障诊断;波峰因素诊断法,表示的

滚动轴承故障诊断(附MATLAB程序)

第二组实验 轴承故障数据: Test2.mat 数据打开后应采用 X105_DE_time 作为分析数据,其他可作为参考,转速 1797rpm 轴承型号: 6205-2RS JEM SKF, 深沟球轴承 采样频率: 12k Hz 1、确定轴承各项参数并计算各部件的故障特征频率通过以上原始数据可知次轴承的参数为: 轴承转速 r=1797r/min;滚珠个数 n=9;滚动体直径 d=7.938mm;轴承节径 D=39mm;:滚动体接触角α=0 由以上数据计算滚动轴承不同部件故障的特征频率为:外圈故障频率 f1=r/60 * 1/2 * n(1-d/D *cos α )=107.34Hz 内圈故障频率 f2=r/60 * 1/2 * n(1+d/D *cos α)=162.21Hz 滚动体故障频率 f3=r/60*1/2*D/d*[1-(d/D)^2* cos^2( α)]=70.53Hz 保持架外圈故障频率 f4=r/60 * 1/2 * (1-d/D *cos α )=11.92Hz 2.对轴承故障数据进行时域波形分析 将轴承数据Test2.mat导入 MATLAB 中直接做 FFT 分析得到时域图如下:

并求得时域信号的各项特征: 1)有效值:0.2909; 3)峰值因子:5.2441;2)峰值: 1.5256;4)峭度: 5.2793;6)裕度因子:

3.包络谱分析 对信号做 EMD 模态分解,分解得到的每一个 IMF 信号分别和原信号做相关分析,找出相关系数较大的 IMF 分量并对此 IMF 分量进行 Hilbert 变换。 Empirical Mode Decomposition im 由图中可以看出经过 EMD 分解后得到的9个 IMF 分量和一个残余量。 IMF 分量分别和原信号做相关分析后得出相关系数如下: 由上表得:IMF1 的相关系数明显最大,所以选用 IMF1 做 Hilbert 包络谱分析。所得 Hilbert 包络谱图如下:

旋转机械故障相关诊断技术(最新版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 旋转机械故障相关诊断技术(最 新版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

旋转机械故障相关诊断技术(最新版) 一、旋转机械故障的灰色诊断技术 灰色诊断技术就是在故障诊断中应用灰色系统理论,利用信息间存在的关系,充分发挥采集到的振动信息的作用,充分挖掘振动信息的内涵,通过灰色方法加工、分析、处理,使少量的振动信息得到充分的增值和利用,使潜在的故障原因显化。 二、旋转机械故障的模糊诊断技术 模糊诊断技术就是在故障诊断中引入模糊数学方法,将各类故障和征兆视为两类不同的模糊集合,同时用一个模糊关系矩阵来描述二者之间的关系,进而在模糊的环境中对设备故障的原因、部位和程度进行正确、有效地推理、判断。 三、旋转机械故障的神经网络诊断技术 所谓的神经网络就是模仿人类大脑中的神经元与连结方式,以

构成能进行算术和逻辑运算的信息处理系统。神经网络模型由许多类似于神经元的非线性计算单元所组成,这些单元以一种类似于生物神经网络的连结方式彼此相连,以完成所要求的算法。在旋转机械故障的诊断中,引入神经网络技术,以类似于人脑加工信息的方法对收集到的故障信息进行处理,从而对故障的原因、部位和程度进行正确的判断。 云博创意设计 MzYunBo Creative Design Co., Ltd.

机械故障诊断技术 习题参考答案

参考答案 教材:设备故障诊断,沈庆根、郑水英,化学工业出版社,2006.3第1版 2010.6.28 于电子科技大学 1第1章概论 1.1 机械设备故障诊断包括哪几个方面的内容? 答:机械设备故障诊断所包含的内容可分为三部分。 第一部分是利用各种传感器和监测仪表获取设备运行状态的信息,即信号采集。采集到的信号还需要用信号分析系统加以处理,去除无用信息,提取能反映设备状态的有用信息(称为特征信息),从这些信息中发现设备各主要部位和零部件的性能是处于良好状态还是故障状态,这部分内容称为状态监测,它包含了信号采集和信号处理。 第二部分是如果发现设备工作状态不正常或存在故障,则需要对能够反映故障状态的特征参数和信息进行识别,利用专家的知识和经验,像医生诊断疾病那样,诊断出设备存在的故障类型、故障部分、故障程度和产生故障的原因,这部分内容称为故障诊断。 第三部分称为诊断决策,根据诊断结论,采取控制、治理和预防措施。 在故障的预防措施中还包括对设备或关键零部件的可靠性分析和剩余寿命估计。有些机械设备由于结构复杂,影响因素众多,或者对故障形成的机理了解不够,也有从治理措施的有效性来证明诊断结论是否正确。 由此可见,设备诊断技术所包含的内容比较广泛,诸如设备状态参数(力、位移、振动、噪声、裂纹、磨损、腐蚀、温度、压力和流量等)的监测,状态特征参数变化的辨识,机器发生振动和机械损伤时的原因分析,故障的控制与防治,机械零部件的可靠性分析和剩余寿命估计等,都属于设备故障诊断的范畴。 1.2 请简述开展机械设备故障诊断的意义。 答:1、可以带来很大的经济效益。 ①采用故障诊断技术,可以减少突发事故的发生,从而避免突发事故造成的损失,带来可观的经济效益。 ②采用故障诊断技术,可以减少维修费用,降低维修成本。 2、研究故障诊断技术可以带动和促进其他相关学科的发展。故障诊断涉及多方面的科学知识,诊断工作的深入开展,必将推动其他边缘学科的相互交叉、渗透和发展。 2第2章故障诊断的信号处理方法 2.1 信号特征的时域提取方法包括哪些? 答:信号特征的时域提取方法包括平均值、均方根值、有效值、峰值、峰值指标、脉冲指标、裕度指标、偏度指标(或歪度指标、偏斜度指标)、峭度指标。这些指标在故障诊断中不能孤立地看,需要相互印证。同时,还要注意和历史数据进行比较,根据趋势曲线作出判别。 2.2 时域信号统计指标和频谱图在机械故障诊断系统中的作用分别是什么?

滚动轴承故障诊断与分析

滚动轴承故障诊断与分析 Examination and analysis of serious break fault down in rolling bearing

学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿 :摘要,滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一 轴承的工作好坏对机器的工作状态有很旋转机械的许多故障都与滚动轴承有关,对滚动甚至造成设备损坏。因此, 大的影响,其缺陷会产生设备的振动或噪声, 轴承故障的诊断分析, 在生产实际中尤为重要。关键词:振动滚动轴承故 障诊断 Rolling bearing is the most widely used in rotating Abstract:easily machinery of the machine parts, is also one of the most damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, even and of vibration or noise, produce its defect can equipment cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:%30滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约

机电一体化设备的故障诊断技术研究 舒恩运

机电一体化设备的故障诊断技术研究舒恩运 发表时间:2019-07-18T15:06:42.760Z 来源:《城镇建设》2019年第8期作者:舒恩运 [导读] 随着我国社会经济的不断发展,科学技术水平不断提高。机电一体化领域的发展也有着长足进步,机电一体化设备的应用中, 深圳市远兴机电有限公司广东深圳 518000 摘要:随着我国社会经济的不断发展,科学技术水平不断提高。机电一体化领域的发展也有着长足进步,机电一体化设备的应用中,由于各种因素影响比较容易出现故障,对这些故障进行诊断就显得比较关键。本文先就机电一体化设备故障诊断的原理以及诊断技术发展问题加以阐述,然后就机电一体化设备故障诊断发展措施进行探究,希望能从理论层面对机电一体化设备故障诊断操作提供有益发展思路。 关键词:故障诊断技术;机电一体化;技术问题 引言 机电一体化技术在工业生产中的应用,可以有效的提升工业生产效率,减少人工成本,保证产品质量,是现代工业生产的标志性技术。近年来,机电一体化技术在应用中积累了大量经验,技术水平得到了进一步提升,技术结构也越来越完善,可以实现的功能也越来越丰富,但是随着机电一体化设备的复杂化,也给故障诊断及维修工作带来了新的挑战。想要保障机电一体化设备的维修效果,首先就需要做好故障诊断工作,进而通过对故障的准确诊断,为维修工作提供相应的数据支持,最终达到排除技术故障,保证生产工作顺利进行的目的。 1机电一体化设备系统的组成以及工作原理 随着科学技术与信息技术的不断完善,计算机技术被广泛应用到各个行业中,尤其给机电一体化设备的检测和调试带来巨大变革。机电一体化设备系统主要是由控制单位、检测单元、进气系统以及电子控制系统组成,机电一体化设备最重要的组成部分就是机械和电子,而控制单位是机电一体化设备的重要组成部分,它是整体正机联试的前提条件,为了保证机电一体化设备系统的正常、稳定运行,我们必须采用节气门对空气流量进行控制,然后对电气燃油泵进行测定,再使用压力器进行稳压处理,最终被输送到机电一体化设备系统中,向机械本体输送最理想的空燃比混合气。只有每一项工作和环节都符合相应标准之后,才可以保证机电一体化设备正常运行。机电一体化设备并不是单纯的机械和单子的叠加,而是二者的有机结合。简单来说,机电一体化设备就是一个可控制的运动行为,利用电子计算机处理技术和控制功能,实时监督与掌控机电一体化设备的运行状态。 2机电一体化设备故障诊断技术发展问题 2.1缺乏完善诊断理论体系 机电一体化设备的故障诊断的发展需要有完善的理论体系,这是促进故障诊断技术进步的重要基础。我国在机电一体化故障诊断技术的发展时间上比较晚,诊断技术创新理论研究人才比较缺少,所以在机电一体化故障诊断领域的发展相对比较滞后,在实际的发展过程中没有注重总结经验,有实用以及经典方案没有及时总结经验,缺乏形成系统性的理论体系,这就必然会对我国机电一体化诊断技术的良好发展产生不利影响。 2.2机电设备故障诊断技术应用水平较低 一是机电设备维修技术人员对生产设备的特殊性能不能足够的把握,对设备功能和故障诊断系统模块框图不熟悉,设备故障隐患提示信息的分析能力有限。二是诊断方法不科学。不能很好梳理诊断拓扑结构,对故障指示灯、故障代码、报警声等故障信息判断有误,相关检测仪器的读数不精确。三是综合诊断判断能力较低。由于一体化机电设备自动化程度高,员工使用时间短,缺乏故障诊断经验等,造成机电设备故障诊断技术应用水平较低,效率不高。 2.3机电一体化设备系统集成化程度不高 机电一体化设备自动化控制设备应用中,由于我国系统集成化发展还不够完善,相关研究人员缺乏创新思维与创新能力,加上其独特的精密性以及特殊性很容易受到外界因素的影响,比如温度的变化、湿度的跌涨以及气压的大小等,与发达国家的机电一体化设备系统还存在较大差异,并且影响系统正常运行的因素多种多样,也就是说任何一个因素都直接影响着自动化控制设备运行的稳定性与安全性,并且影响着控制设备的使用效能,甚至引起一系列安全事故。低压侧为IT系统时,其光缆线接地与用电设备外露可导电体的接地连接方式出现问题,当光缆线接地电阻难以降低大到相应数值时,以致变大所中各外露可导电体上因为高压侧一相接地而出现高于50V的对地电压。目前,世界各国机电一体化设备系统都朝着集成化方向发展,但是我国自动化系统集成化起步较晚,对于机电一体化设备系统集成化技术研究与实践研究还不够成熟,因此,还需要加强机电一体化设备系统集成化的研究力度。 3机电一体化设备的故障诊断技术方法与维护措施分析 3.1对故障诊断工作加以规范 企业应该对机电一体化设备故障诊断工作加以规范,制定标准的操作流程,科学合理的完善诊断步骤。在对机电一体化设备进行故障诊断时,首先应该结合检测设备提供的设备参数进行准确的技术分析,根据分析数据判断设备是否存在故障,在根据相关数据初步判断故障点位。在进行故障诊断时,技术人员应该结合以往设备运行良好状态下的参数信息进行对照分析,进而保障数据诊断结果的准确性。在完成故障诊断并对故障点位进行修复后,技术人员应该再次对设备进行检测,确保故障点位已经被完全修复,从而确保设备的稳定运行。技术人员还应该定期对设备进行日常检测,根据检测日期建立数据档案,这样就能在设备出现技术故障时,技术人员可以迅速的调取历史数据完成设备参数的对比,进而加快故障诊断速度,减少设备故障带来的经济损失。 3.2引进相关的机电设备故障诊断的高新技术 在现有的机电一体化设备故障诊断装置仪器的基础上,引进互联网计算机软件技术对机电设备的运行、检测、控制等装置进行实时监测,建立机电设备故障隐患排查监测信息数据库,建立不同的数据信息模块;机电设备的故障诊断信息由人工判断分析,变为智能化自动分析,提高机电设备故障诊断的精确性和有效性。 3.3加强质量监督与管理 在机电一体化设备系统中安装报警监测系统,避免机电一体化设备装置遭受非法窃取或者破坏,影响系统的安全稳定运行。就机电一

机械故障诊断作业

机械故障诊断 绪论:机械设备状态监测与故障诊断:是识别机械设备(机器或机组)运行状态的一门综合性应用科学和技术,它主要研究机械设备运行状态的变化在诊断信息中的反映;通过测取设备状态信号,并结合其历史状况对所测信号进行处理分析,特征提取,从而定量诊断(识别)机械设备及其零部件的运行状态(正常、异常、故障),进一步预测将来状态,最终确定需要采取的必要对策的一门技术。主要内容包括监测、诊断(识别)和预测三个方面。机械设备是现代化工业生产的物质技术基础,设备管理则是企业管理中的重要领域,也就是说,企业管理的现代化必然要以设备管理的现代化作为其重要组成部分,机械设备状态监测与故障诊断技术在设备管理与维修现代化中占有重要的地位。 机械设备状态监测与故障诊断技术在满足可靠性、可用性、维修性、经济性、安全性要求中,扮演着越来越重要的角色。机械故障的诊断的意义当然是不可忽略的。第一,有利于提高设备管理水平,“ 管好、用好、修好”设备,不仅是保证简单再生产的必要条件,而且能提高企业经济效益,推动国民经济持续、稳定、协调地发展。机械设备状态监测与故障诊断是提高设备管理水平的一个重要组成部分;第二,避免重大事故发生,减少事故危害性,现代设备的结构越来越复杂,功能越来越完善,自动化程度越来越高。但是,当设备出现故障时所带来的影响程度也明显增大,有时不仅仅是造成巨大的经济损失,往往还会带来灾难性的事故,发展机械设备状态监测与故障诊断技术,并进行有效、合理的实施,可以掌握设备的状态变化规律及发展趋势,

防止事故于未然,将事故消灭在萌芽;第三,宏观上实施故障诊断能带来经济效益。 机械设备的发展也是从最初最原始的方法到至今的高端迈进。第一阶段:19世纪工业革命到20世纪初,低的生产力水平,事后维修方式;第二阶段:20世纪初到20世纪50年代,规模化生产方式—定期维修—设备诊断技术孕育,由听、摸、闻、看到初步的设备诊断仪器;第三阶段:20世纪60—70年代,大规模生产方式—状态维修—设备诊断技术形成;第四阶段:20世纪80—目前,柔性生产方式—风险管理—智能化设备诊断技术,设备诊断相关信息的集成化、智能化、网络化利用。①第二次世界大战中,认识到这种技术的重要性; ②第二次世界大战后,因对应技术未发展而发展不快;③60年代后,电子技术、计算机技术发展、1965年FFT方法和对应的数字信号处理和分析技术的发展为设备诊断技术奠定了技术基础。 机械设备状态监测与故障诊断是一门正在不断完善和发展的交叉型学科,是一项与现代化工业大生产紧密相关的技术,是机械学科领域的研究热点之一。故障诊断学科需解决的重要问题,故障特征信息提取和故障分类、识别的新理论及新方法研究,复杂故障产生机理及模型的深入研究,故障诊断智能系统研究,包括诊断专家系统和网络化远程诊断系统,而机械故障诊断学的学科范畴也是将多数学科融合一起的一个综合学科。他包括了机械工程,建模技术(CAD、CAE、坐标反求、图像处理),分析技术,测量技术,结构强度,参数辨识,信号处理分析,故障诊断应用力学等等学科。

相关主题
文本预览
相关文档 最新文档