当前位置:文档之家› 油脂脱胶原理及工艺

油脂脱胶原理及工艺

油脂脱胶原理及工艺
油脂脱胶原理及工艺

油脂脱胶原理及工艺(总7页) -CAL-FENGHAI.-(YICAI)-Company One1

-CAL-本页仅作为文档封面,使用请直接删除

油脂工业中,以压榨法、浸出法、水剂法或熔炼制取得到的末经精炼的动植物油脂,称为粗脂肪,俗称毛油。

毛油的主要成分是甘油三酯,俗称中性油。一般动植物油脂的甘油三酯由4~10种脂肪酸组成。不同的脂肪酸及其不同的排列,组合成很多种分子,因此,油脂的主要成分是多种甘油三酯的混合物。此外,毛油中存在非甘油三酯的成分,这些成分统称为杂质。

毛油属于胶体体系。其中的磷脂、蛋白质、粘液质和糖基甘油二酯等,因与甘油三酯组成溶胶体系而得名为油脂的胶溶性杂质(胶杂)。油脂胶溶性杂质不仅影响油脂的稳定性,而且影响油脂精炼和深度加工的工艺效果。例如油脂在碱炼过程中,会促使乳化,增加操作困难,增大炼耗和辅助剂的耗用量,并使皂脚的质量降低;在脱色工艺过程中,会增大吸附剂的耗用量,降低脱色效果;末脱胶的油脂无法进行物理精炼和脱臭操作,也无法进行深加工。因此,毛油精制必须首先脱除胶溶性杂质。

磷脂由于所含醇的不同,可分为甘油磷脂类和鞘氨醇磷脂类。植物中磷脂的含量随品种、产地、成熟程度的不同而有差异。一般含蛋白质越丰富的油料,磷脂含量越高。毛油中磷脂的含量还受制油方法的不同而变化。

应用物理、物理化学或化学方法将粗油中的胶溶性杂质脱除的工艺过程称为脱胶。脱胶的具体方法分水化脱胶、酸炼脱胶、吸附脱胶、热凝聚脱胶及化学试剂脱胶等。油脂工业上应用最为普遍的是水化和酸炼脱胶。水化脱胶多用于食用油脂的精制,而强酸则很少用于食用油的脱胶。

水化脱胶是利用磷脂等胶溶性杂质的亲水性,将一定量的热水或稀碱、食盐、磷酸等电解质水溶液,在搅拌下加入热的毛油中,使其中的胶溶性杂质吸水凝聚沉降分离的一种脱胶法。在水化脱胶过程中,能被凝聚沉降的物质以磷脂为主,还有与磷脂结合在一起的蛋白质、糖基甘油二酯、黏液质和微量金属离子等。

水化脱胶的基本原理

磷脂是一种表面活性剂,分子由亲水的极性基团和疏水的非极性基团组成,根据稳定体系的热力学条件,自由能达到最小时体系最稳定。当磷脂溶于水时,它的疏水基团破坏了水分子之间的氢键,也改变了疏水基附近水的构型,从而使体系的熵降低,自由能增加,结果一些磷脂分子从水中排挤出来并吸附在溶液周围的界面上,亲水基朝向水相,疏水基则远离水相。磷脂分子与水作用时表现的特殊排列。

水分子与表面活性剂的疏水基接触面积越小,则体系的自由能越低,体系就越稳定。因此,在表面活性剂达到一定浓度时,有形成胶态集合体的倾向,这种集合体就称为胶束。在胶束中疏水基团彼此聚集在一起,大大减少了水分和疏水基之间的排斥。胶束是两性分子在溶剂中的集合体,可以在水相和非水

相介质中形成。在非水相系中胶束形成是亲油基朝向外部的油或溶剂中,亲水基转向胶束核内部,这种胶束称为逆相胶束,这便是油中磷脂所形成的胶束。

当水量低时,卵磷脂分子的极性基团朝向中央含水的髓心,随着水量的增加,磷脂分子定向地排列成烃链尾尾相接的双分子层。一个磷脂双分子层与另一个磷脂双分子层之间被一不定数量的水分子隔开,以此方式向空间纵深发展,即成为片(层)状带液体的结晶体;当水量增至很大时,磷脂分子就形成单分子层囊泡。水分子在磷脂分子之间并末破坏磷脂分子,而是引起磷脂有膨胀。实验还表明,若将磷脂悬浮分散在水中,它还可以自发膨胀成多层的类似洋葱状的封闭球形结构-----“多层脂质体”。它的每个片层都是磷脂双分子层结构,片层之间和中心是水。多层脂质体经高频声波处理可变成单层脂质体,它是仅由一层磷脂双分子层围成的小球,球心是水相。

磷脂在油脂中的水化作用和无油时磷脂与水的作用不同。磷脂与甘油三酯溶胶(粗油)接触时,由于磷脂的双亲性均强,起乳化和增溶作用,而使水浸入原来难以进入的油相,形成混合脂质双分子层------磷脂分子和甘油三酯分子往复交替排列的双分子层,水分子在两层混合双分子层之间,因此也出现膨胀现象,呈现更显着的胶体性质。

磷脂、甘油三酯和水三者间的相互作用力取决于组成混合脂质双分子层的磷脂和甘油三酯分子数目的比例。据实验分析脱水胶粒的结果得知:混合脂质双分子层中磷脂占70%,甘油三酯占30%时,三者的相互作用力最大,胶粒最稳定;而甘油三酯占70%磷脂占30%的混合脂质双分子层胶粒的稳定性较差。

发生水化作用的磷脂吸附油中其它胶质,颗粒增大,再互相聚集而逐渐析出悬浮于油相中,随着吸水量的增加,膨胀程度增加,胶粒吸引力所波及的贺周范围扩大,从而由小胶粒相互吸引絮凝成大的胶团,为重力沉降或离心分离奠定了基础。越稳定的胶粒越易与油脂分离,且所得油脚含油量低,炼耗低。

影响水化脱胶的因素

毛油中发生水化作用的磷脂团具有混合双分子层的结构,该结构的稳定程度以及水化胶团的絮凝状况决定了分离效果和水化油脚的含油量。因此,掌握水化和絮凝过程的影响因素,对获得水化脱胶的最佳工艺效果至关重要。

1加水量

2操作温度

3混合强度与作用时间

4电解质

油中的胶体分散相,除了亲水的磷脂外,由于油料欠熟、变质、生长土质以及加工等因素的影响,有时尚含有一部分非亲水的磷脂(β-磷脂、钙镁复盐

式磷脂、溶血磷脂、N-酰基脑磷脂等),以及蛋白质降解产物(膘、胨)的复杂结合物,个别油品尚含有由单糖基和糖酸组成的黏液质。这些物质的因其结构的对称性而不亲水,有的则因水合作用,颗粒表面易为水膜所包围(水包分子)而增大电斥性,因此,在水化脱胶中不易被凝聚。对于这类胶体分散相,可根据胶体水合、凝聚的原理,通过添加食盐或明矾、硅酸钠、磷酸、柠檬酸、酸酐、磷酸钠、氢氧化钠等电解质稀溶液改变水合度,促使凝聚。电解质在脱胶过程中的主要作用如下。

1中和胶体分散相质点的表面电荷,消除(或降低)质点的电位或水合度,促使胶体质点凝聚。

2磷酸和柠檬酸等促使钙镁复盐式磷脂、N-酰基脑磷脂和对称式结构β-磷脂转变成亲水性磷脂。

3明矾水解出的氢氧化铝以及生成的脂肪酸铝具有较强的吸附能力,除能包络胶体质点外,还可吸附油中色素等杂质。

4磷酸、柠檬酸螯合、钝化并脱除与胶体分散相结合在一起的微量金属离子,有利于精炼油气味、滋味和氧化稳定性的提高。

5促使胶粒絮凝紧密,降低絮团含油量,加速降速度,提高水化得率与生产率。

水化脱胶时,电解质的选用需要根据毛油品质、脱胶油的质量、水化工艺或水化操作情况来确定。对于一般食用的脱胶油,只有当普通水水化脱不净胶质、胶粒絮凝不好呀操作中发生乳化现象时,才添加电解质。如果选用食盐或磷酸三钠,其量约为油质量的0.2%~0.3%(解除乳化现象不在此例);若选用明矾和食盐,其量则各占油质量的0.05%;当脱胶作为精制油的前道精炼工序时,而需按油质量的0.05%~0.2%添加85%的磷酸调质,以保证脱胶效果和后续工序的处理质量

5其它因素

水化脱胶过程中,油中胶体分散相的均布程度,影响脱胶效果稳定,因此,水化前粗油一定充分搅拌,使胶体分散相布均匀。水化时添加水的温度对脱胶效果也有影响,当水温与油温相差悬殊时,会形成稀松的絮团,甚至产生局部乳化,以致影响水化油得率,因此通常水温应与油温相等或略高于油温。此外,进油流量、沉降分离温度也影响脱胶效果,操作中需要注意。

(一)间歇式水化脱胶工艺

间歇式水化脱胶的方法较多,但其工艺程序基本相似,都包括加水(或加直接蒸气)水化、沉降分离、水化干燥和油脚处理等内容。

例如中温水化法,一般中小型油厂应用较普遍的一种水化方法。水化温度通常为60~65℃,;加水量一般为粗油胶质含量的2~3位。操作条件控制适宜,亦能获得较满意的效果。现以花生油脱胶为例对中温水化工艺的操作作简述如下。

采用中温水化工艺脱胶时,将过滤花生油泵入水化罐内,以间接蒸汽加热,配合中速搅拌(40r/min)使油温升到60~65℃,然后按粗油胶质会含量的2~3倍,均匀加入同油温的水,保持温度不变,继续搅拌30~40min,待胶粒絮凝呈现明显分离状态时,取样用滤布滤出净油,作280℃加热试验,若无析出物即可停止搅拌,静置沉降时间不得少于6h。经过静置沉降,上层水化净油经干燥或脱溶、过滤即成水化脱胶油。

低温水化法

低温水化法亦称简易水化法。其特点是在较低温度下,只需添加少量水,就可以达到完全水化的止的。低温水化操作温度一般控制在20~30℃,加水量为粗油胶质含量的0.5倍。静置沉降时间不小于10h。该工艺操作周期长,油脚含油量高,处理麻烦,只适用于生产规模小的企业。

采用低温水化工艺脱胶时,将过滤粗油泵入水化罐内,向换热装置通入冷水冷却油脂,并配合中速搅拌,使胶质均匀分布于油中。待油温降到20~25℃时,将搅拌速度调整到60~70r/min,按粗油胶质量的0.5倍左右加入同温的水进行水化,添加水于7~10min内均匀淋入油中后,继续搅拌20~30min,然后停止搅拌,静置沉降12h,分离水化净油和油脚。上层水化净油转入真空脱水罐脱水,下层油脚转入盐析罐回收油。

盐析油脚时,先以蒸汽或直接火将其加热到80~90℃,然后按油脚质量的30%~50%,均匀加入含量5%~10%的食盐水溶液(70~80℃),并配合搅拌继续升温到100℃左右,停止加热搅拌,静置沉降24h撇取上浮油脂直到无油析出为止。

(二)连续式水化脱胶工艺

连续式水化是一先进的脱胶工艺,包括预热、油水混合、油脚分离及油的干燥均为连续操作。含杂质小于0.2%过滤毛油,经计量后由泵送到板式加热器,加热油温到80~85℃后,与一定量的热水(90℃)一起连续进入水化作用,然后泵入碟式离心机进行油胶质的分离。

脱胶后的油中含有0.2%~0.5%的水分,油经加热器升温至95℃左右,进入真空干燥器连续脱水后,由泵送入冷却器冷却到40℃后,转入脱胶油储罐。真空干燥器内操作绝对压力为4Kpa。

连续水化脱胶工艺在处理胶质含量低的原料油脂时,需扩大水化反应器的容量或增设凝聚罐,以确保胶粒的良好凝聚,获得好的脱胶效果。

非水化磷脂的脱除

一、非水化磷脂的性质

末脱胶的植物油含有不同类型的磷脂。通常大体分为水化磷脂(HP)和非水化磷脂(NHP)。它们的不同主要在于和磷脂酸羟基相连的官能团不同,水化磷脂含有极性较强的基团,例如胆碱、乙醇胺、肌醇、丝氨酸,所形成的磷脂分别为磷脂酰胆碱(卵磷脂,PC)、磷脂酰乙醇胺(脑磷脂,PE)、磷脂酰肌醇(肌醇磷脂,PI)和磷脂酰丝氨酸(丝氨酸磷脂,PS),上述这些磷脂的复合物,共同的特点就是与水接触形成水合物,且在水中析出,但它们的水化速率有差别。NHP含有极性较弱的基团,主要形式为磷脂酸(PA)和溶血磷脂酸的钙镁盐。将非水化磷脂的钙镁盐转化为游离酸形式分析,发现大豆油中非水化磷脂的组成为:肌醇-磷酸(2%)、甘油磷酸(15%)、溶血磷脂酸(28%)、磷脂酸(55%).

在植物油中,大部分非水化磷脂是以磷脂酸和溶血磷脂酸的钙镁盐的形式存在的。磷脂酸的PK值为K =3.8

K =8.6。这表明磷脂酸在pH值小于1.8时不能解离;pH值等于6时有50%解离;pH值大于10.6时完全解离。因而磷脂酸在水中是以胶粒形式分散的。完全解离的磷脂酸和钙镁离子几乎是以1:1的比例结合,结合的稳定性取决于溶液的PH值、离子类型和浓度。

没有解离的磷脂酸不溶于水,可溶于极性和非极性有机溶剂;解离的磷脂酸不溶于非极性有机溶剂,而在极性有机溶剂中轻微溶解;磷脂酸的钙镁盐不溶于水接触易形成胶束或液晶囊,它与水结合能国取决于PA的解离度。磷脂酸尤其是溶血磷脂酸比相应的水化磷脂具有更好的表面活性,它们的钙镁盐也有较强的表面活性。

二、非水化磷脂的形成

由于在常规碱炼或水化脱胶过程中,非水化磷脂不能转化为水化形式的磷脂而仍然存在于油中,很难除去。一般的碱炼或水化脱胶过程能够除去80%左右的磷脂,剩余的主要就是非水化磷脂。有资料表明:一般油中大约有135×

10 磷是以非水化磷脂的形式存在的。非水化磷脂即使经过16次水洗也不能脱除。

在植物油中,大部分非水化磷脂是以磷脂酸和溶血磷脂的钙镁盐的形式存在的。非水化磷脂的生产与原料的成熟度、储藏、运输和加工过程中原料水分含量有关。在此期间,由于磷脂酶D的活性使磷脂水解成不易水化的磷脂酸。另外,当磷脂酸与钙、镁金属离子结合时就会形成非水化磷脂钙、镁复盐。

三、非水化磷脂的控制

由于NHP是由一系列磷脂的盐组成,因此,任何有可能导致磷脂中各组分水解的因素都会影响到NHP的形成。包括收获时的天气状况、储藏和运输条件等都会影响NHP的含量。对大豆油中非水化磷脂的形成的研究表明,将水分含量分别为10%、14%的整粒大豆和含同样水分的轧过坯的大豆胚片,经不同的储藏时间后,在不同的条件下进行浸出,浸出前使原料中的磷脂酶D失活或保持活性。结果大豆中非水化磷脂的形成是下列四种因素相互作用的结果:大豆中的水分含量和轧坯后大豆坯中的水分含量;磷脂酶D的活性;在浸出前或浸出过程对大豆的热处理;破碎或轧坯过程中大豆细胞结构的破坏程度。另外,储藏时间过长、水分含量过高和较高温度下浸出都有助于油中非水化磷脂的形成,即使在溶剂浸出前使磷脂酶D失活也不能减少油中非水化磷脂的含量。

非水化磷脂的含量随大豆水分含量的上升、酶活性的增强而升高,其中磷脂酶D的活性是一个关键因素。在一定范围内,酶的活性随着水分的升高而增强,它使得更多的水化磷脂转化为非水化磷脂。在原料水分含量小于9%情况下,油中磷脂中的非水化磷脂含量较低,用直接蒸汽处理后使酶完全失活。大豆破碎或轧坯后,组织细胞结构遭到破坏,使磷脂酶D的活性增强,从而导致磷脂中非水化磷脂的含量增加。

减少水化磷脂转化成非水化磷脂可以采取以下措施:1使水分含量小于9%,可以抑制NHP的形成;2浸出前用直接蒸汽加热或用微波处理使磷脂酶失活;3轧坯的大豆在低温和低水分含量的情况下立即浸出。

四、特殊水化脱胶

随着物理精炼法(蒸馏脱酸法)的发展,在降低损耗、改善油品品质、拓展应用范围的研究和实践中,已确认原料油脂在蒸馏脱酸、脱臭前的预处理质量是影响成品油外观、风味、稳定性和使用价值的关键因素。由于常规水化得

到的脱胶油磷含量约1×10 ~2×10 ,脱胶油的金属离子含量也较高,给脱色

工序增加了难度和负荷,使后续的油脂脱臭/脱酸过程有可能无法进行。因此,一些特殊水化脱胶工艺,能最大限度地对油中非水磷脂脱除。

超级脱胶工艺,含磷量可降至30×10 以下。具体过程是将未脱胶或水化脱胶

油加热至70℃左右,加入油质量的0.05%~0.2%磷酸或柠檬酸进行体系pH值的调节,使非水化磷脂解离,之后将油脂冷却至40℃以下,即所谓磷脂水化“临界温度”以下,加水使磷脂在慢速状态下形成稳定的液态晶囊,这些晶囊会有效地束缚糖及金属离子。

特殊湿法脱胶/联合脱胶工艺,经过水化脱胶的油中还含有非水化磷脂,即磷脂酸和脑磷脂的钙镁复盐。对于这类磷脂酰基结合弱极性基团所复合的磷脂,水化脱除是非常因难的。鉴于这些非水化磷脂在酸性和碱性条件下可以解离,解离的磷脂能形成不溶于油的水合液态晶体,工序如下,过滤粗油(P≤

1×10)或水化脱胶油由输油泵泵入换热器,预热到65~70℃后进入酸混

合反应器,加入油质量的0.05%~0.2%的磷酸或柠檬酸进行调理,之后将油冷却至40℃以下,加入油质量的1%~3%、含量为2%~3%的絮凝剂,反应后的体系

加热至70℃左右进行离心分离。此工艺可以使脱胶油中的含磷量降至8×10

以下。

特殊湿法脱胶法,酸的添加量按未脱胶油磷脂含量确定:含磷脂0~0.5%,柠檬酸0.1%;含磷脂0.5%~1%,柠檬酸0.15%;磷脂含量>1%,柠檬酸0.2%。絮凝剂的添加量基于中和酸调质反应后的剩余酸,一般按总酸的30%计算,常用的絮凝剂为浓度的2~3°Be的氢氧化钠水溶液,通过絮凝剂的加入,控制脱胶油的pH值5~6.5。

全脱胶工艺,磷脂的复合物共同的特征就是与水接触时形成水合物,且在水中析出,但它们水化速率有差别。具体过程是毛油加热至70℃左右,加入油质量的0.05%~0.2%的磷酸或柠檬酸进行充分混合与调理,然后将含有水化磷脂(卵磷脂)的重相水与油混合,再将油脂冷却至40℃以下,进行混合滞留反应后,

加热70℃左右进行离心分离。此工艺可以使脱胶油中的含磷量降至15×10

以下。

--------精心分享,希望可以帮到你

百度文库-典型油脂精炼工艺流程

典型油脂精炼与加工工艺学 油脂精炼工艺流程--豆油、花生油、芝麻油 豆油、花生油、芝麻油是我国大宗油脂,其脂肪酸组成均以油酸、亚油酸为主,是人类主要食用油脂,如果油料品质好,制取工艺科学,则其毛油的品质是较好的。一般游离脂肪酸含量低于1%,经过粗炼即能达到普通食用油的品质,其精制油的精炼工艺也较简单。两种品级食用油的精炼工艺如下: 1.一级食用油精炼工艺流程(间歇式) 操作条件:过滤后的毛油含杂不大于0.2%,水化温度60-65℃,加水量为毛油胶质含量的3~3.5倍,水化搅拌时间30~40分钟,沉降分离时间不少于6小时,干燥温度不低于95℃,操作时极限真空6.6kPa(50mmHg).若有残留溶剂时,根据卓品科技工程师现场经验,脱溶温度160~170℃左右,极限真空为4.0kPa,脱溶时间需要3小时。 2.精制食用油精炼工艺流程(间歇式脱色脱臭) 操作条件:过滤毛油含杂不大于0.2%,碱液浓度16~18Be’,超量碱添加量为理论

碱量的10%~25%,有时还先添加油量0.05%~0.20%的磷酸(浓度为85%),脱皂温度 70~82℃,洗涤温度95℃左右,软水添加量为油量的10~20%,吸附脱色温度95~98℃,极限真空为4.0~4.7kPa。脱色温度下的操作时间为20分钟左右,活性白土添加量为油量的2.5~5%,分离白土时的过滤温度不大于70℃。脱臭温度180℃左右,极限真空为 0.67kPa(5mmHg),气提蒸汽通量30~50千克/吨油·小时,脱臭时间’6~7小时,柠檬酸添加量为油量的0.02%(配制成乙醇溶液)在90℃油温时加入,根据卓品科技工程师现场经验,安全过滤温度不高于70℃。 油脂精炼工艺流程--菜籽油 菜籽油是世界性的大宗油脂之一,是含芥酸的半干性油类,除低芥酸菜籽油外,其余品种菜籽制得的菜籽油均含有较高的芥酸,含量约占脂肪酸组成的26.3%~57%,高芥酸菜油营养结构不及低芥酸菜油,但特别适合于制造船舶润滑油和轮胎等工业用油。 由于制油过程中芥子甙在芥子酶作用下发生水解,菜籽毛油中均含有一定量的含硫化合物,从而影响食用。一般的粗炼工艺对硫化物的脱除率甚低,因此,从卫生观点出发,食用菜籽油应该进行精制。目前市售菜籽油的品级有粗炼油、精制油和冷餐油,其精炼工艺流程分列如下: 1.一级菜籽油精炼工艺流程 操作条件:过滤毛油含杂不大于0.2%,碱液浓度20-28Be’,超量碱为理论碱的

玉米油精炼设备的工艺流程

玉米油精炼设备的工艺流程 郑州宏日机械设备有限公司专业从事各种植物油、动物油制油设备,精油和色素提取设备的生产制造,对各类油脂设备加工具有丰富的经验,今天宏日机械为大家详细介绍玉米油精炼设备的工艺流程! 首先第一步就是提胚,提胚是玉米榨油设备的关键环节之一,根据玉米胚和胚乳抗粉碎能力不同,先用压轧设备轧碎胚乳,再用筛理设备筛出玉米胚。一般玉米可提取玉米胚4%~8%,要求提出的胚芽含水少,纯度高,无杂质,无霉变。 接下来是除杂,榨前要彻底清理,除去杂质,可用振动筛提纯,以除尽胚芽中的渣,粉等杂质,提高胚芽纯度。若胚芽中含杂质多,不仅浪费粮食,还会降低出油率。 刚提取的玉米胚芽,含水量在13%左右,与人榨水分要求相去甚远,因此,在压榨前要进行适当烘炒干燥,将胚芽水分降到9%以

下,以增加压榨效果。 榨时要保证料饼温度在100度左右,以便于出油,玉米胚芽含油量高,可采用两次压榨法,即在一次压榨后,将玉米胚芽粉碎,再次蒸炒,包饼,压榨,压榨中要经常注意清油路。玉米胚芽出油率一般为16%-20%。 玉米榨油设备榨出的毛油自然沉淀24小时后即可作为工业用油,如作为食用油,需进行精炼。 玉米油加工设备生产玉米油精炼的工艺,不论是采用榨油机压榨还是直接浸出和预榨浸出,其精炼玉米油工艺所用的设备基本相同。粗油—一般精炼工艺—过滤—水化—脱臭—精炼玉米油或者,粗油—特殊精炼工艺(碱炼—脱色—脱蜡—去杂)—精炼玉米油。 由于玉米油中含有游离脂肪酸、磷脂结合的蛋白质、黏液质等非甘油醋杂质,以胶体形态存在于玉米油中。这些胶状物质在加热过程

会产生泡沫,在碱炼过程会使油脂和碱液乳化,影响玉米油的精炼。所以玉米深加工设备在碱炼以前,首先进行水化脱胶处理。水化是在玉米油加热到75-80℃的情况下,加入对油5%-10%的水,加水的同时,必须进行搅拌,并加入适量的食盐,在水化过程,胶体膨胀并溶入水中,然后将含有胶体的水和油分离,达到水化脱胶的目的。 玉米油毛油往往含有大量的游离脂肪酸,酸价一般在6左右,有的高达10。碱炼过程使游离脂肪酸和碱生成絮状肥皂,并吸附油脂中的杂质,使油脂进一步净化,这对于玉米油下一步的脱色或进行氢化有重要的影响。一般碱炼时采用烧碱,用烧碱脱酸效果好,同时还能提高油脂的色泽。 但缺点是会产生少量的皂化。如采用碳酸钠碱炼,能防止中性油脂的皂化,但所得油脂色泽较差。碱炼过程产生皂脚,沉降于碱炼罐的底部,很容易分离。

《油脂精炼与加工工艺学》复习思考题

《油脂精炼及加工工艺学》复习思考题 一、绪论 1. 当今世界四大油脂脱酸技术是什么? 2. 原油中的杂质分为哪几类? 3. 油脂精炼和加工的意义是什么? 4. 油脂精炼的一般过程是怎样的? 二、油脂脱胶 1. 原油中的胶溶性杂质对精炼各工序有何影响? 2. 油脂脱胶的主要方法有哪些? 3. 影响油脂脱胶的因素是什么? 4. 水化脱胶各工艺中加水量应如何确定? 5. 磷酸脱胶的目的是什么?磷酸在脱胶过程中有何作用? 6. 精炼车间中如何检测脱胶油脂的质量? 三、油脂脱酸 1. 油脂脱酸的目的和方法是什么?工业生产中常采用哪些方法? 2. 试用化学动力学因素分析,间歇式碱炼为什么多采用低温浓碱法工艺? 3. 影响碱炼的主要因素是什么? 4. 碱炼时加碱量及碱液浓度应怎样确定? 5. 什么是“威逊损失”?碱炼损耗由哪几部分组成? 6. 什么是“酸价炼耗比”、“精炼指数”、“精炼效率”? 7. 高速离心机达到平衡工作的关键是什么? 8. 碟式离心机的油-皂分离效果可以用什么方法进行调节? 9. 间歇式碱炼工艺方法和连续式碱炼工艺方法有哪几种? 10.泽尼斯碱炼的特点是什么?影响泽尼斯碱炼的因素是什么? 11.混合油碱炼的特点是什么?影响混合油碱炼的因素是什么? 12.物理精炼的特点是什么?其局限性有哪些? 四、油脂脱色 1. 油脂中含有哪几类色素?油脂脱色的方法主要有哪几种? 2. 脱色工段除脱色外,还有哪些辅助作用? 3. 理想吸附剂应具备什么样的条件?生产中常用的吸附剂有哪些? 4. 影响吸附脱色效果的因素是什么? 5. 吸附剂的初始脱色能力与持久脱色能力的选择应如何权衡? 6. 吸附脱色工艺有哪几种? 7. 工业生产中为什么均采用真空吸附脱色? 8. 脱色油过滤分离时的初滤液应如何处理? 五、油脂脱臭 1. 油脂脱臭的目的和作用是什么? 2. 脱臭损耗包括哪几个方面?如何降低脱臭时中性油的损耗? 3. 影响油脂脱臭效果的因素是什么? 4. 脱臭中直接(汽提)蒸汽起何作用?对其质量有何要求? 5. 脱臭中直接(汽提)蒸汽的用量大小应如何权衡? 6. 脱臭工段加入柠檬酸的作用是什么? 7. 脱臭工段常采用哪些间接加热热媒? 8. 脱臭工段对真空度有何要求?应选用哪种真空设备? 六、油脂脱蜡

油脂内在成分与其结冻之间关系

油脂内在成分与其抗冻性之间关系 植物油是我国主要食用油之一,其消费量大,对我国居民生产生活有重大的影响。不过在每年进入冬季持续气温较低情况下,油品会出现析出浑浊甚至上冻现象,从而造成消费者和经销商投诉逐年增多。一般而言油脂结冻通常是在油脂中慢慢出现浑浊,随着低温时间的延长,析出物越来越多,慢慢冻成胶状甚至硬化,导致油品流动性差。对于消费者而言,由于对国内油脂知识缺乏,一旦油脂结冻,会担心所购买的食用油的质量,并怀疑生产商的诚信,对生产厂家造成严重的不良影响。而对于生产厂家,国家标准针对抗冻性能只有“冷冻试验”且只要求一级精炼油,其他等级无此要求,国外也只有冷冻试验和浊点来描述食用油的抗冻性能,冬季产品质量难以把控。为了消除生产厂家和消费者之间的误解,普及油脂结冻的知识,本文选取了食用油内在成分中对结冻有影响的几个重要因素,分析结冻原因,为食用油冬季抗冻性能提供参考依据。 1. 脂肪酸的组成对油脂抗冻性的影响 油脂的的抗冻性主要与其化学组成尤其与脂肪酸组成的分布情况有关,一定程度上,饱和脂肪酸含量与其凝固时间有很好的相关性,通过饱和脂肪酸含量可以预测一般食用油的低温表现情况。有研究表明,饱和脂肪酸含量较高的,其抗冻性能越差。表1-1为不同种类油脂的平均饱和脂肪酸组成情况。 表1-1 食用油中平均饱和脂肪酸含量 油种 菜籽油 茶籽油 玉米油 葵花籽油 大豆油 花生油 橄榄油 饱和脂肪酸含量% 7 9 13

14 20 11-20 油种 棉籽油 棕榈原油 椰子油 猪脂 羊脂 牛脂 奶油 饱和脂肪酸含量% 26 49 86 40 47 50 62 一般来说,植物油饱和脂肪酸含量较低,动物油的饱和脂肪酸含量较高。我们熟悉的猪油,

油脂加工工艺学习题及答案

一.分水箱的分水原理:(1)溶剂和水互不溶解(2)溶剂与水的相对密度不同 二.成品粕的评价指标(低温粕评价指标):1.粕残溶要求合格:粕残溶700ppm,引爆试验合格;2.蒸脱中尽可能使粕熟化:脱毒、钝化或破坏抗营养物,降低毒性。3.成品粕物理性质好:成品粕的粒度、流动性、含蛋白的等级性好4.用作食品蛋白质尽量少变性:要求蛋白的水溶解性高(NSI值要小)。 三.尿酶含量有什么意义?答:太低,过度变性, 四.溶剂损耗的分类:(定义以及一般的量)溶剂损耗的来源:1.不可避免损耗:(1)尾气:10g/m3折合20g/T (2)毛油:50ppm折合50g/T(3)粕:700ppm折合700g/T(4)废水:0.0007~0.0015% 折合0.15g/T合计:0.785Kg/T,实际生产中应为1Kg/T 2.可避免损耗:(1)跑、冒、滴、漏;(2)检修损失;(3)贮藏损失:自然挥发的量。 五:脱胶原理,加磷酸作用,脱蜡原理。脱胶:(一)水化脱胶的基本原理:1.水化开始前:水分少,磷脂呈内盐结构,完全溶解在油中,不到临界温度,不会凝聚析出;2.在油中加热水后:磷脂分子结构转变为水化式,具有很强的吸水能力(1)单分子层:含水量少时,磷脂分子的极性基团朝向水相定向排列; (2)多分子层:随着水量增加,磷脂分子定向排列成烃链尾尾相接的双分子层,一个磷脂双分子层与另一个磷脂双分子层之间被一定数量的水分子隔开,成为片(层)状结晶体;(3)分子囊泡层:当水量增至很大时,磷脂分子就形成单分子层囊泡。(4)多层脂质体:最终膨胀成多层的类似洋葱状的封闭球形结构?a?a?°多层脂质体?±它的每个片层都是磷脂双分子层结构,片层之间和中心水。(5)絮凝胶团:磷脂在形成多层脂质体过程中还吸附油中其他胶质,颗粒增大,再由小胶粒相互吸引絮凝成大的胶团。形成的胶粒越稳定含油量越低,越易与油脂分离。 毛油中的胶体杂质主要是磷脂,当油中水分很少时,其中的磷脂成内盐状态,极性很弱,溶于油脂,当油中加入适量的水后,磷脂吸水浸润,磷脂的成盐原子团便和水结合,磷脂分子结构由内盐式转变为水化式,带有较强的亲水集团,磷脂更易吸水水化。随着吸水量的增加,絮凝的临界温度提高,磷脂体积膨胀,比重增加,从而从油中析出,通过适当的分离手段,便能从油中分离出来。加磷酸促使非水化磷脂转变成水化磷脂。脱蜡机理:1.蜡质的化学组份:油脂中的蜡是高级一元羧酸与高级一元醇形成的酯。是带有弱亲水基的亲脂性化合物。温度高于40℃时,蜡的极性微弱,溶解于油脂中;2.蜡质有比较高的熔点:随着温度下降,蜡分子中的酯键极性增强,低于30℃时蜡形成结晶析出,形成较为稳定的胶体系统;3.蜡质的结晶稳定性:持续低温,蜡晶凝聚成的晶粒,形成悬浊液。(与分提一样,冷冻结晶分类) 六.碱炼脱酸及其优缺点:1.中和反应原理:(1)烧碱中和游离脂肪酸: RCOOH + NaOH === RCOONa + H2O (2)钠皂为表面活性物质:吸附其他杂质形成皂脚与油脂分离。(3)磷脂、棉酚与烧碱中和皂化反应形成皂脚。(4)少量中性油皂化:引起油脂精炼损耗增加。2.碱炼脱酸的特点(1)脱杂范围广:具有脱酸、脱胶、脱固杂、脱色等综合作用。(2)适应性强:适宜于各种油脂的精炼。(3)精炼损耗大:中性油皂化及皂脚中夹带油造成精炼损耗较高,耗碱,碱炼后水洗产生废水污染环境。耗用辅助剂,从副产品皂脚回收脂肪酸时,需要经过复杂的加工环节,特别用于高酸值毛油精炼时,油脂练耗大,经济效果欠佳。 七:物理脱酸的优缺点:蒸馏脱酸法:1.蒸馏脱酸机理:游离脂肪酸蒸汽压远大于甘三酯蒸汽压,在高真空下水蒸汽蒸馏脱除,与脱臭同时进行。2.特点:(1)工艺流程简短;(2)节省辅助材料;产量高,经济效益好(3)避免中性油皂化和夹带损失;(4)避免废水的产生;没有废水污染。(5)精炼得率高:产品稳定性好;(6)直接获得精制粗脂肪酸;(7)但要求脱胶彻底。3.对原料油品质要求:经预处理达到:P≤5 ppm、Fe≤0.l ppm、Cu ≤0.01 ppm。简单说就是(1)得率高,产品为脂肪酸(2)但要求脱胶彻底。物理精炼的预处理包括脱胶和脱色。八:物理精炼化学精炼的优缺点:(和物理脱酸化学脱酸的优缺点一样) 九:压榨和浸出的优缺点以及对比:浸出方法的特点(一)出油率高,粕残油低,浸出粕残油1%以下浸出对低含油料尤为明显(二)粕的质量高: 1.便于直接使用作食品或添加剂2.便于提高饲料的营养和实用价值3.便于提高肥料的效率(三)加工成本低:并且浸出法生产随生产量的增加,加工成本趋向降低。(四)自动化程度高:1.劳动强度低 2.容易实现自动化生产(五)环境条件好 1.封闭生产,无泄露2.无粉尘 3.生产温度较低(六)油脂质量好1.浸出毛油颜色浅2.浸出毛油脂溶性物质少,溶剂的选择性好3.浸出毛油的悬浮杂质和胶体杂质少(七)生产具有一定危险性1.易燃烧易爆炸2.液体或气体对操作人员身体的损害。压榨后饼中残油:3%一5%。压榨法取油具有工艺简单、配套设备少、对油料品种适应性强、生产灵活、油品质量好、色泽浅、风味纯正等优点,但是压榨后饼残油高,压榨过程动力消耗大,榨条等零部件易磨损。 十.油料清理种类及优缺点:(1)筛选:利用油料与杂志在颗粒大小上的差别。借助含杂油料和筛面的相对运动,通过筛孔将大于或小于油料的杂志清除掉(2)风选:根据油籽与杂质在比重和气体动力学性质上的差别,利用风力分离油料中杂志的方法称为风选、可以用于去除油料中的轻杂质和灰尘,也可用于去除金属、石块等重杂,还

服装制作工艺流程图25614

服装制作工艺流程 1,原材料检查工艺 2,裁剪工艺 3,缝纫制作工艺 4,锁钉工艺 5,后整理工艺 以文字表达方式阐述制作过程可能会遇到的难点,疑点进行解剖,指出重点制作要领,以前后顺序逐一进行编写,归纳。 原材料检查工艺: (1)验色差——检查原辅料色泽级差归类。 (2)查疵点,查污渍——检查辅料的疵点,污渍等。 (3)分幅宽——原辅料门幅按宽窄归类。 (4)查纬斜——检查原料纬纱斜度。 (5)复米——复查每匹原辅料的长度。 (6)理化实验——测定原辅材料的伸缩率,耐热度,色牢度等。 裁剪工艺: (1)首先检查是否要熨烫原辅料褶皱印,因为褶皱容易放大缩小裁片。 (2)自然回缩,俗称醒料,把原辅料打开放松,自然通风收缩24小时。 (3)排料时必须按丝道线排版,排出用料定额。 (4)铺料——至关重要的是铺料人手法一致,松紧度适中,注意纱向,不要一次铺得太厚,容易出现上下层不准等现象,需挂针定位铺料的挂针尖要锋利,挂针 不宜过粗,对格对条的务必挂针,针定位时要在裁片线外0.2cm,针织面料铺 料时更应注重松紧度,最容易使裁片出现大小片,裁片变形等。

(5)划样,复查划样,在没推刀之前,检查是否正确,做最后确认。 (6)裁剪推刀,要勤磨刀片,手法要稳,刀口要准,上下层误差不允许超0.2cm,立式推刀更应勤换刀片,发现刀口有凹凸现象及时更换,会导致跑刀,刀口不准等。 (7)钻眼定位和打线钉定位,撒粉定位三种方法,首先要测试钻眼是否有断纱,走纱等,通常 用打线钉解决这一块,打线钉时也要注意针不能太粗,针尖要锋利,另外就是撒粉定位虽 费时不容易造成残次。 (8)打号——打号要清晰,不要漏号,错号,丢号等。 (9)验片——裁片规格准确,上下皮大小一致,瑕疵片,有无错号,漏打刀口,可提前把残此片更换,注意按原匹料进行更换,注意整洁,无色差,然后分包打捆待发生产线。 缝纫制作工艺 A.上衣类按前后序制作 所有缝分1cm,机针用DB75/11# 针距3cm12针用顺色细棉线明线按样衣规格做0.6cm,特殊要求另示 1.修边—修剪毛坯裁片,去除画粉等毛边,参照样板的大小修边,注意净板和毛版的区分。 2.打线丁—用白棉纱线在裁片上做出缝制标记.用撞色线为宜。 3.剪省缝—把省缝剪开,线丁里0.5cm为止,也不能过长和偏短。 4.环缝—剪开的省缝用环形针法绕缝,用纤边机嵌缝也可以,不透针透线为宜。 5.缉省缝—根据省的大小,将衣片的正面相对,按照省中缝线对折,省根部位上下层眼刀对准,由省根缉至省尖,在省尖处留线头4cm左右,打结后剪短,或空踏机一段,使上下线自然交织成线圈,收省后省量的大小不变,缉线要顺,直,尖。另还应注意省根处出现亏欠变形6.烫省缝——省缝坐倒熨烫或分开熨烫,烫省时要把缝合片放在布馒头上,烫出立体感,在衣片的正面不可出现皱褶,酒窝的现象。 7.推门——将平面前衣片推烫成立体衣片,最好用版划样推烫。 8 烫衬——熨烫缉好的胸衬。,袖口,下摆衬。 9.压衬——用粘合机将衣片和粘合衬进行热压粘合,一般按照衬布和面料的耐热度粘合度去操作。 10.纳驳头——手工或机扎驳头,驳头按照净样版去做。 11 敷止口牵条——牵条布敷上驳口部位。 12.敷驳口牵条——牵条布敷上驳口部位。 13.拼袋盖里——袋盖里拼接,一般通用1cm做缝。 14.做袋盖——袋盖面和里机缉缝合。 15.翻袋盖——袋盖正面翻出。 16.滚袋口——毛边袋口用滚条包光。

油脂精炼技术的发展及其与国外的差距

摘要:叙述了国内油脂精炼技术的发展、现状、主要工艺技术指标及其与国外水平的差距。 我国的油脂精炼技术可以追溯到很久以前。不过,早期的油脂精炼仅停留在脱胶、过滤等简单的初级水平。1949年新中国成立以来,国家为了发展油脂工业,曾于1962年、1974年和1978年分别对油脂加工设备及工艺进行了标准化工作。 自1958年西安油脂化工厂第一次引进了国外的炼油成套设备以来,在此后的20多年间,我国的炼油工业几乎失去了与国外的交流。据不完全统计,自1981年至1986年的5年间,国内引进的油脂精炼生产线已超过了37套,其中包括物理精炼、化学精炼、脱色、脱臭、氢化、冬化、人造奶油、起酥油及代可可脂的生产与加工设备。 为了加速我国油脂工业的发展,缩小与世界先进水平的差距,原商业部曾组织了“消化吸收”工作,并于1987年由商业部西安油脂科学研究所等单位率先在北京南苑油厂建成了我国第一条50 t/d 全连续油脂精炼生产线。 随着市场经济的逐步深化,油脂行业由粮食部门一统天下的局面已经成为过去。另外,“三资企业”在油脂行业所占的比重也越来越大,油脂行业所面临的竞争也是空前的。 1 生产规模

随着我国经济体制改革的不断深入及加入世界贸易组织日期的日益临近,油脂工业将面临更加激烈的市场竞争。这样就会使许多技术装备和管理落后的企业受到冲击。其积极的一面是促使国内的工业企业进行技术革新和技术改造,发挥国内的优势,迅速达到国际先进水平。 从规模效益来说,规模越大,加工成本越低,效益越高。但它也受技术、交通、市场等因素的制约。但无论如何仅停留在80年代初我们所确定的50 t/d全连续油脂精炼及其以下规模的水平已经无法满足市场竞争的需要。 从目前国内的状况看,自行设计并全部选用国产设备的炼油生产线已可达到200 t/d的规模。若与国外主机配套可以达到更大的规模,基本可以满足市场的需要。 2 生产工艺 2.1 脱胶及中和 有效的脱胶操作将有利于保证成品油的质量。脱胶的方法有很多种,传统的方法有水化脱胶和酸炼脱胶。按国标二级油的标准,水化脱胶已完全可以达到要求。对于棕榈油等胶质含量较少的特殊油种仅用酸炼脱胶就可达到要求,这种方法又称干法脱胶。 随着科学技术的发展,人们的目标并不仅仅停留在如何最大限度

油茶籽油精炼设备工艺流程

油茶籽油精炼设备工艺流程 郑州宏日机械设备有限公司专业从事各种植物油、动物油制油设备,精油和色素提取设备的生产制造,对各类油脂设备加工具有丰富的经验,今天宏日机械为大家详细介绍油茶籽油精炼设备工艺流程! 油茶籽油是高档食用油,能否将油菜籽脱皮冷榨生产工艺移植到油茶籽生产上来,还有较多的不确定因素。其中核心的问题是油菜籽仁和油茶籽仁化学组成不一样,油菜籽仁含粗蛋白较高,为 30%左右,含碳水化合物较少,约为17%,这与大多数油料籽仁的化学组成特点是一致的,即油和蛋白质含量较高,而碳水化合物含量较低。但油茶籽不同,其粗蛋白含量较低,在仁的水分平均为8.7%时粗蛋白含量平均约为 9 4%,而碳水化合物含量平均为35.5%。采用脱壳、加水调质、冷榨工艺生产纯天然油茶籽油是否可行有待实践检验。 宏日机械油茶籽油加工成套设备工艺:

主要工序设备和工艺参数: 清理采用两层振动筛,去除油茶籽中的大小杂质。大杂主要是未裂开的油茶蒲(或称茶包 )。 低温干燥采用平板烘干机,控制夹层加热蒸汽压力0.2M Pa左右,对含水分8%左右的油茶籽干燥至水分含量4%左右。尽量减少仁中的游离水分,以利于加水调质。仁中水分高,使榨料塑性增大,当榨料压力增大时,将使流油通道变窄,影响出油。 分级由于单粒油茶籽体积从 0.3 ~2.5 cm 不等,重量从0.461 ~1.4 6 3 g 不等,相差较大,决定采用分级将大小差不多的油茶籽汇集起来,为脱壳创造条件,分级采用振动筛。 脱壳采用撞击式粉碎机将油茶籽打碎,油茶籽壳较薄,且经干燥后水分较低,易于破碎。 仁壳分离仁壳分离主要有两个主要指标,即壳中含仁和仁中含壳。显然,壳中含仁越低越好,有利于原料的充分利用,提高出油率和出饼率。我们将壳中含仁率定为0.3%,由于前道采用了分级工序,要达到这一指标并不困难。生产稳定后,壳中含仁几乎检测不出。仁中含壳希望越低越好,但有两点需要考虑,其一是含壳率低了,榨油机榨膛容易被入榨料抱死,造成滑膛,压榨难于进行,即使是双螺杆榨油机也如此,实践已证明了这一点。其二是应考虑饼的溶剂法浸出取油,当饼中含壳量少了,没有骨架,料层易被压实,溶剂渗透困难,导致粕中残油高,湿粕含溶高,影响浸出效率和溶剂消耗。

油脂精炼技术与工艺

油脂精炼技术与工艺 一、油脂精炼意义 1.增强油脂储藏稳定性 2.改善油脂风味 3.改善油脂色泽 为油脂深加工制品提供原料 二、毛油组成成分 毛油中绝大部分为混酸甘油脂的混合物,即油脂,只含有极少量的杂质。这些杂质虽然量小,但在影响油脂品质和稳定性上却“功不可没”。 悬浮杂质:泥沙、料胚粉末、饼渣 水分 胶溶性杂质:磷脂、蛋白质、糖以及它们的低级分解物 脂溶性杂质:游离脂肪酸(FFA)、甾醇、生育酚、色素,脂肪醇,蜡 其它杂质:毒素、农药 三、脱胶 油脂胶溶性杂质不仅影响油脂的稳定性,而且影响油脂精炼和深度加工的工艺效果。油脂在碱炼过程中,会促使乳化,增加操作困难,增大炼耗和辅助剂的耗用量,并使皂脚质量降低;在脱色过程中,增大吸附剂耗用量,降低脱色效果。

脱除毛油中胶溶性杂质的过程称为脱胶。 我们在实际生产中使用的方法是特殊湿法脱胶,是水化脱胶方法的一种。 油脂水化脱胶的基本原理是利用磷脂等胶溶性杂质的亲水性,将一定量电解质溶液加入油中,使胶体杂质吸水、凝聚后与油脂分离。其中胶质中以磷脂为主。在水分很少的情况下,油中的磷脂以内盐结构形式溶解并分散于油中,当水分增多时,它便吸收水分,体积增大,胶体粒子相互吸引,形成较大的胶团,由于比重的差异,从油中可分离出来。 影响水化脱胶的因素 水量 操作温度 混合强度与作用时间 电解质 电解质在脱胶过程中的主要作用 中和胶体分散相质点的表面电荷,促使胶体质点凝聚。 磷酸和柠檬酸可促使非水化磷脂转化为水化磷脂。 磷酸、柠檬酸螯合、钝化并脱除与胶体分散相结合在一起的微量金属离子,有利于精炼油气、滋味和氧化稳定性的提高。 使胶粒絮凝紧密,降低絮团含油,加速沉降。 四、脱酸 植物油脂中总是有一定数量的游离脂肪酸,其量取决于油料的质

油脂精炼工艺流程:

精炼车间工艺描述: 600T/D精炼(适用于大豆油、兼顾菜子油、棕榈油) 从仓储灌区毛油输送泵输送至精炼车间的毛油经过毛油过滤器R202a除去粗杂后进入质量流量计,然后与脱臭油换热R304a进入板式蒸汽加热器R203加热到75-80℃±,与定量泵R204定量加入的80%的磷酸进入刀式混和器R206混和后进入酸反应罐R206a停留15-30min,通过输送泵R207输送至板式水冷却器R208 冷却至60-75℃±,与定量泵R210定量加入的稀碱液(物理精炼一般用1~3oBe′,化学精炼一般用10~24oBe′)进入变频调速刀式混和器R211混和后进入中和反应罐R211a停留30-45min,由输送泵R212输送至R213加热到90℃±,然后进入离心机分离。分离出来的皂脚进入皂脚罐输送至车间外,分离出来的油则进入板式加热器R216加热到92℃±,然后与热水R219(热水温度保持比油温度高5-10℃±)、8~10oBe′的柠檬酸进入离心混合器R221混合后进入离心分离机R222,废水进入油水分离箱R265由泵R265a到污水处理车间,油进入(三级真空系统)真空干燥器R217脱水,然后进入脱色工段。 碱炼油通过输送泵送至板式加热器R252加热至115~130℃±,进入(三级真空系统)白土混合罐R253,白土采用气力输送至白土罐R254、定量筒自动调节计时加入,混合15-30min后的油溢流进入(三级真空系统)脱色塔R255停留30-45min,通过输送泵R257输送进入立式过滤机R258中将油和白土分离(三台倒换使用),分离出的白土经过蒸汽吹干后含油一般能够达到25%±,油进入暂存罐R260中(三级真空系统),由输送泵R261输送到袋式过滤器R262再进入棒式过滤器R269中,然后进入脱臭工段。 经过精过滤后的脱色油进入析气器R302(三级真空系统),由泵R303输送

葡萄籽油精炼成套设备工艺流程

葡萄籽油精炼成套设备的工艺流程是:毛油—过滤—水化—静置分离—脱水—碱炼—脱皂—洗涤—干燥—脱色—过滤—脱臭—加抗氧化剂—精炼油。 详细的技术要点是: 过滤:用油泵过滤机过滤葡萄籽毛油,以去除油中的固体物质。 软化:将油温升至50℃,加入浓度为0.5~0.7的煮沸食盐水,用量为油量的l5~2O%,边加边搅拌,终温约80℃,直至出现胶粒均匀分散为止,时间约15分钟左右。 分离:保温静置6~8小时,油水分离层明显时进行分离。 脱水:分离后的葡萄籽油转入水潜锅中,加热,使油温达l05~110℃,直至无水泡为止。 碱炼:首先将油温保持在30~35℃之间,按总用碱量的2O~50%加入30°Be的纯碱,防止溢锅,转速为6O转/分进行搅拌,待泡沫落下再按总用碱量的75~80%加入20~22°Be 的烧碱,搅拌,终温80℃。

脱皂:碱炼完毕后保温静置,待油皂分离层清晰,皂脚沉实时分离。 洗涤:用80~85℃软水雾状喷洒到温度为80℃左右的油面,水量为油重的l0%~l5%,并不断搅拌,直至洗净为止。 干燥:间接加温至95~105℃,时间约10~15分钟,水分蒸发完毕即可。 脱色:用活性白土和活性炭等混合脱色剂在常压及80~95℃的条件下进行处理。操作时要充分搅拌,时间可持续30分钟。 过滤:在70’C温度下过滤,或自然沉降后再过滤。 脱臭:以蒸汽间接加热脱臭罐中的油至100℃喷入直接蒸汽。真空度为800~1000Pa,时间4~6小时,蒸汽量为40公斤/吨油。 加适量抗氧化剂:经过精炼的葡萄籽油外观色泽淡黄,晶莹透亮。经食用卫生检测及其它理化指标分析,其中含水分0.11% 、酸价0.22毫克KOH/克、

营养师--各类食物成分简表

营养师--各类食物成分简表食物的营养是人类生存的基本条件。那么,食物中有哪些营养素呢? 本节通过列表来说明食物的营养成分有哪些?该如何选择食物? 通过各类食物成份表来安排膳食,合理安排每天该吃些什么食物,才能满足学生和孩子身体的需要,而且能对身体健康有益。 各类食物成份表提供400余种食物中所含的多种营养素。食物中含有的营养素的种类很多,本书只列出对人体健康非常重要的一些营养素,如蛋白质、脂肪、 、碳水化物以及由它们所产生的能量;此外还有维生素,如维生素A、维生素B 1 维生素B 、维生素C以及矿物质,如铁、锌和钙等对人体有益的营养素。为了 2 让学生和家长需要特殊补充营养时或要避免吃某些不利于健康的食物成分(如胆固醇)时,可参考另外一些成分表;这些表中列出了一些食物中脂肪酸的成分和胆固醇的含量、碘的含量、叶酸的含量以及食物中总膳食纤维及其各种组成的成分。 一、食物成分表的简介和使用 食物成分简编表所列食物品种是我国人的主要食品,包括主食和副食。每种食物的营养素含量是具有全国代表性的数值,它不是含量最高的也不是含量最低的数值,而是一个适中的数值,也就是说全国各地的人都可以采用此数值,而不致于过高或过低的估计。 1.食部 食部就是可以吃的部分,不包括应该丢掉的和不可以吃的部分。例如带骨头的肉,只能吃肉而要将骨头丢掉;桔子不能吃皮和核等等。在表中标明“食部”为80%的,就说明这种食物只有80%可食用,其余部分不可吃。本表中所列的“食部”只是按大多数人的食用习惯计算,例如有的人连皮吃苹果,只是不吃核,那么“食部”就可能是90%;如果不吃皮也不吃核,那么“食部”就可能只有80%。因此,“食部”的多少,也可以按每个人的食用习惯去改变它的比例。 2.各种营养素的计算方法和说明 (1)能量:“能量”不是直接测定的,而是由蛋白质、碳水化合物和脂肪的含量计算出来的,每1克蛋白质或1克碳水化合物在身体内可产生4千卡(kcal)能量,而每1克脂肪可产生9千卡能量。每1千卡相当于4.184千焦耳(kJ)。过去习惯地以kcal表示“能量”的计量单位,而现在国际通用的计量单位为kJ,故本表中“能量”一栏列出两种计量单位,即kcal和kJ。

油脂加工工艺学

第一章毛油的组成、性质及预处理 毛油是一种以中性油脂为主要成分,且混有非甘油三酸酯 组分阶段的混合物。 第二章水化脱胶 一、水化脱胶的概念、作用 水化脱胶是利用磷脂等胶溶性杂质的亲水性,将一定量的热水或稀碱、食盐水溶液、磷酸等电解质水溶液,在搅拌下加入到一定温度的毛油中,使其中的胶溶性杂质凝聚沉降分离的一种脱胶方式。 在水化脱胶过程中,被分离出不溶的物质以磷脂为主,还有与磷脂结合在一起的蛋白质、糖基甘油二酯、粘液质和微金属离子等。 二、水化脱胶的原理及影响因素 (一)水化脱胶的原理 在水化过程中能被凝聚沉降的物质以磷脂为主,磷脂中又以卵 磷脂为代表。这种磷脂属于“双亲媒性分子”,即在其分子结 构中,既有疏水的非极性基团,又有亲水的极性基团。当毛油 中含水量很少时,磷脂呈内盐式结构,此时极性很弱,溶于油 中,不到临界温度,不会凝聚沉降析出。水化时,在毛油当中 加入热水之后,磷脂的亲水基团则投入水相之中,水分子与成 盐的原子团结合,致使分子结构由内盐式转化为水化式。在水

化式结构中,磷脂分子中的亲水基团(游离态羟基),具有更强的吸水能力,随吸水量的增加,磷脂由最初极性基团倾入水中呈含水胶束,然后转变成有规则的定向排列。分子中疏水基团在油相尾尾相接,亲水基团伸向水相形成脂质双分子层(又称液晶形式)。在脂质分子层中,水分子进入磷脂双分子层间,并未破坏磷脂的分子结构,却引起磷脂的体积膨胀,发生水合作用。有时脂质体双分子层还能自发膨胀成多层的类似洋葱状的封闭球型结构————“多层脂质体”。多层脂质体的每个片层都是脂质双分子层结构,片层之间和中心部分充满水相和油相(O/W),若经高频声波处理,可变成磷脂双分子层围成的球状的单层脂质体。 水化后的磷脂和其它胶体物质,极性基团周围吸引了许多水分子之后,在油脂之中的溶液解度减小。吸水量逐渐增大,膨胀之后,双分子层或多分子层的片状和球状胶体彼此影响,有的甚至开成胶束。小颗粒的胶体在极性力的作用下,相碰后形成絮凝状胶团。同时水化后的磷脂能吸附油中的其它胶质,而使其颗粒增大,比重增大,为沉降和离心分离创造条件。 在磷脂中除上述水化磷脂之外,还存在少量的“非水化磷脂”。“非水化磷脂”即?——磷脂以及钙镁磷脂盐,具有疏水性,用常规的水化方法较难除去,这种“非水化磷脂”必须转化成“水化磷脂”才能产生水合作用。生产实践中往往事先添加少量磷酸或棕檬酸到油中,使?——磷脂等在酸的作用下,分子

设备生产制造工艺流程图

设备生产制造工艺流程图 主要部件制造要求和生产工艺见生产流程图: 1)箱形主梁工艺流程图 原材料预处理划线下料清理 材质单与喷涂划划数半剪清割坡 钢材上炉丸富出出控自除渣口 号批号一除锌拱外自动焊等打 一对应油底度形动气切区打磨 锈线线气割 割 校正对接拼焊无损探伤装配焊接清理 达度埋超X 确垂内工清焊到要弧声光保直部电除渣平求自波拍隔度先焊内杂直动片板用接腔物 焊手 检验装配点焊四条主缝焊接清理校正 内焊装成用Φ清磨修修振腔缝配箱埋HJ431 除光正正动检质下形弧直焊焊拱旁消验量盖主自流渣疤度弯除板梁动反应 焊接力自检打钢印专检待装配 操专质 作检量 者,控 代填制 号写表

2)小车架工艺流和 原材料预处理划线下料清理 材质单与喷涂划划数半剪清割坡 钢材上炉丸富出出控自除渣口 号批号一除锌拱外自动焊等打 一对应油底度形动气切区磨 锈线线气割 校正对接拼焊无损探伤装配焊接清理 达度埋超X 确垂内工清焊 到要弧声光保直部电除渣 平求自波拍隔度先焊内杂 直动片板用接腔物 焊手 检验装配点焊主缝焊接清理校正 内焊清磨修修振应腔缝除光正正动力检质焊焊拱旁消验量渣疤度弯除 自检划线整体加工清理 A表A表 行车行车 适用适用 自检打钢印专检待装配 操专质

作检量 者,控 代填制 号写表 3)车轮组装配工艺流程图 清洗检测润滑装配 煤清轮确尺轴部 油洗孔认寸承位 或轴等各及等加 洗承部种公工润 涤,位规差作滑 剂轴格剂 自检打钢印专检待装配 操 作 者 代 号 4)小车装配工艺流程图 准备清洗检测润滑 场按领煤清轴确尺轴加最注 地技取于油洗及认寸承油后油 清术各或轴孔各及内减 理文件洗承等件公、速件涤齿部规差齿箱 剂轮位格面内 装配自检空载运行检测标识入库 螺手起行噪 钉工升走音 松盘机机震 紧动构构动

牡丹籽油精炼设备工艺流程

牡丹籽油精炼设备工艺流程 郑州宏日机械设备有限公司专业从事各种植物油、动物油制油设备,精油和色素提取设备的生产制造,对各类油脂设备加工具有丰富的经验,今天宏日机械为大家详细介绍牡丹籽油精炼设备工艺流程! (1)精炼工艺流程 1、粗炼牡丹籽油精炼工艺流程 操作要点:过滤除杂操作要求同前述工艺。碱化操作温度为9℃左右,碱液浓度为15°Bé,添加量占油量的1.36%左右,Al2(SO4)3(水溶液浓度为14%~24%),添加量占油量的0.25%~0.5%,碱化反应时间为70min左右,脱蜡分离温度为16~18℃,其余操作参阅前述工艺。

2、精制牡丹籽油工艺流程 操作要点:操作条件:过滤毛油含杂不大于0.2%,碱液浓度18~22°Bé,超量碱添加量为理论碱量的10%~25%,有时还先添加油量的0.05%~0.20%的磷酸(浓度为85%),脱皂温度70~82℃,洗涤温度95℃左右,软水添加量为油量的10%~20%。连续真空干燥脱水,温度90~95℃,操作绝对压力为 2.5~ 4.0 kPa。吸附脱色温度为105~100℃,操作绝对压力为 2.5~ 4.0 kPa,脱色温度下的操作时间为30 min左右,活性白土添加量为油量的 1%~4%。利用立式叶片过滤机分离白土时的过滤温度不低于100℃。脱色油中P≤5 ppm、Fe≤0.1ppm、Cu≤0.01ppm。脱臭温度240~260℃左右,操作绝对压力260~650Pa,汽提蒸汽通入量油量的0.5%~2%,脱臭时间 40~120min,柠檬酸(浓度 5%)添加量为油量的0.02%~

0.04%,安全过滤温度不高于70℃。 (2)精炼脱酸工艺 碱炼法碱炼,是用碱中和游离脂肪酸,并同时除去部分其他杂质的一种精炼方法。所用的碱有多种,例如石灰、有机碱、纯碱和烧碱等。国内应用最广泛的是烧碱。 碱炼的基本原理碱炼的原理是碱溶液与毛油中的游离脂肪酸发生中和反应。反应式如下: RCOOH+NaOH→RCOONa+H2O 除了中和反应外,还有某些物理化学作用。 ①烧碱能中和毛油中游离脂肪酸,使之生成钠皂(通称为皂脚),它在油中成为不易溶解的胶状物而沉淀。 ②皂脚具有很强的吸附能力。因此,相当数量的其他杂质(如蛋

油脂加工工艺考试题(整理)

(1) 一、选择题(每题1分,共20分) 2、我国油脂业用大豆国家标准(GB8611-88)以(a.纯粮率b.粗脂肪含量c.粗蛋白含量)进行质量等级分级。 3、大豆、花生、油菜籽都属于(a.无胚乳双子叶种子b.有胚乳双子叶种子c.有胚乳单子叶种子)。 4、油籽在不良条件下储藏后,其静止角(a.增大 b.减小 c.不变)。 5、油料入立筒仓时形成的轻型杂质区位于(a.立筒仓内壁 b.立筒仓中心c.立筒仓顶部)。 6、油料筛选除杂的原理是利用油籽与杂质的(a.颗粒大小差别 b.比重差别c.机械强度差别)。 7、比重去石机的关键工作条件是(a.控制适当的风速 b.选择合适的筛孔直径 c.配置合理的筛面尺寸)。 8、为提高大豆脱皮效果,破碎豆的皮仁分离最好采用(a.先风选后筛选 b.先筛选后风选 c.a和b效果一样)。 9、利用剪切作用对油籽剥壳的设备是(a.圆盘剥壳机 b.刀板剥壳机 c.锤击式剥壳机)。 10、轧胚机正常工作的条件是轧辊对油料的啮入角要(a.大于 b.小于 c.等于)轧辊对油料的摩擦角。 11、为降低米糠油酸价,米糠膨化最好选择(a.干法膨化 b.湿法膨化 c.两者效果一样)。 12、小磨香油和可可脂生产中常采用的蒸炒方法是(a.湿润蒸炒 b.高水分蒸炒c.干蒸炒)。 13、油料冷榨取油的目的是(a. 提高出油率 b. 减少蛋白质变性 c.简化榨油工艺)。 14、当榨机结构一定时,榨料在榨膛中的压榨时间主要取决于(a.螺旋轴转速 b.榨条间缝隙c.出饼圈缝隙)。 15、油脂在溶剂中的溶解度主要取决于(a.溶剂的极性 b.溶解温度 c.溶剂的纯度)。 16、在混合油蒸发过程中,混合油沸点随蒸发压力的增加而(a.降低 b.升高 c.不变)。 17、湿粕层式蒸脱机中料封效果最好的料门机构是(a.喇叭口料门机构b.锥形封闭阀料门机构 c.本层控制本层料门机构)。 18、脱除油脂中再生色素效果比较好的吸附剂是(a.硅藻土 b.活性白土 c.活性炭)。 19、油脂水化脱胶时添加稀NaOH水溶液的主要目的是(a.中和油脂中的游离脂肪酸酸 b.促使胶粒絮凝 c.减少水化脱胶加水量)。 20、油脂冷冻脱蜡时,蜡晶的形成随油脂降温速度的加快呈现出(a.晶粒大而少 b.晶粒多而小c.无法形成结晶)。 二、填空题(每题2分,共40分) 1.油种籽中的脂肪是由糖类分解成的脂肪酸与甘油在脂肪酶的作用下酯化而形成。

粮油加工工艺学考题

粮油加工工艺学思考题 1、植物油料的种类有哪些 植物油料是指:油脂含量达10%以上,具有制油价值的植物种子和果肉;其分类方式为:(1)按照植物油料的植物学属性,分为:①草本油料:大豆、油菜子、棉子、花生、芝麻、 葵花子等;②木本油料:棕榈、椰子、油茶子等;③农产品加工副产品油料:米糠、玉米胚、小麦胚芽;④野生油料:野茶子、松子等; (2)按照植物油料的生长周期,可分为:①一年生植物油料:油菜籽、花生、芝麻、棉籽、 大豆等;②多年生植物油料:棕榈、椰子、油茶子、松子、核桃等; (3)根据植物油料的含油量高低,可分为:①高含油率油料:菜子、棉子、花生、芝麻等含 油率大于30 %的油料;②低含油率油料:大豆、米糠等含油率在20%左右的油料;2、植物油料的预处理方法及其原理 (1)预处理方法:清理除杂、剥壳、破碎、软化、轧坯、蒸炒、膨化等; (2)原理 ①清理除杂:根据油料与杂质在物理性质上的明显差异,可以选择稻谷、小麦加工中 常用筛选、风选、磁选等方法除去各种杂质。选择清理设备应视原料含杂质情况,力求设备简单,流程简短,除杂效率高; ②破碎:在机械外力下将油料粒度变小的工序; ③软化:调节油料的水分和温度,使油料可塑性增加的工序。也是直接浸出制油时调 节油料入浸水分的主要工序; ④轧坯:利用机械的挤压力,将颗粒状油料轧成片状料坯的过程; ⑤蒸炒:生坯经过湿润、加热、蒸坯、炒坯等处理,成为熟坯的过程; ⑥挤压膨化:油料生坯由喂料机送入挤压膨化机,在挤压膨化机内,料坯被螺旋轴向 前推进的同时受到强烈的挤压作用,使物料密度不断增大,并由于物料与螺旋轴和 机膛内壁的摩擦发热以及直接蒸汽的注入,使物料受到剪切、混合、高温、高压联 合作用,油料细胞组织被较彻底地破坏,蛋白质变性,酶类钝化,容重增大,游离 的油脂聚集在膨化料粒的内外表面。物料被挤出膨化机时,压力骤然降低,造成水 分在物料组织结构中迅速汽化,物料受到强烈的膨胀作用,形成内部多孔、组织疏 松的膨化料。物料从膨化机末端的模孔中挤出,并立即切割成颗粒物料; 3、植物油料的挤压膨化的效果 (1)使膨化物料浸出时,溶剂对料层的渗透性和排泄性都大为改善;(2)浸出溶剂比减小,浸出速率提高;(3)混合油浓度增大,湿粕含溶降低,浸出设备和湿粕脱溶设备的产量增加;(4)浸出毛油的品质提高,并能明显降低浸出生产的溶剂损耗以及蒸汽消耗; 4、机械压榨法制油的特点、机理及工艺 (1)特点:①工艺简单,配套设备少;②对油料品种适应性强,生产灵活;③油品质量好,色泽浅,风味纯正;④但压榨后的饼残油量高,出油效率较低;⑤动力消耗大,零件易损耗; (2)机理:压榨过程中,压力、黏度和油饼成型是压榨法制油的三要素。压力和黏度是决定榨料排油的主要动力和可能条件,油饼成型是决定榨料排油的必要条件;(3)工艺:在压榨制油过程中,榨料坯的粒子受到强大的压力作用。致使其中油脂的液体部分和非脂物质的胶凝部分分别发生两种不同的变化,即油脂从榨料空隙中被挤压出来和榨料粒子经弹性变形形成坚硬的油饼;具体来说: ①油脂从榨料中被分离出来的过程:Ⅰ原始物料在压榨的开始阶段:粒子发生变形并 在个别接触处结合,粒子间隙缩小,油脂开始被压出;Ⅱ压榨的主要阶段,粒子进

油脂脱胶原理及工艺

油脂脱胶原理及工艺 油脂工业中,以压榨法、浸出法、水剂法或熔炼制取得到的末经精炼的动植物油脂,称为粗脂肪,俗称毛油。 毛油的主要成分是甘油三酯,俗称中性油。一般动植物油脂的甘油三酯由 4~10种脂肪酸组成。不同的脂肪酸及其不同的排列,组合成很多种分子,因此,油脂的主要成分是多种甘油三酯的混合物。此外,毛油中存在非甘油三酯的成分,这些成分统称为杂质。 毛油属于胶体体系。其中的磷脂、蛋白质、粘液质和糖基甘油二酯等,因与甘油三酯组成溶胶体系而得名为油脂的胶溶性杂质(胶杂)。油脂胶溶性杂质不仅影响油脂的稳定性,而且影响油脂精炼和深度加工的工艺效果。例如油脂在碱炼过程中,会促使乳化,增加操作困难,增大炼耗和辅助剂的耗用量,并使皂脚的质量降低;在脱色工艺过程中,会增大吸附剂的耗用量,降低脱色效果;末脱胶的油脂无法进行物理精炼和脱臭操作,也无法进行深加工。因此,毛油精制必须首先脱除胶溶性杂质。 磷脂由于所含醇的不同,可分为甘油磷脂类和鞘氨醇磷脂类。植物中磷脂的含量随品种、产地、成熟程度的不同而有差异。一般含蛋白质越丰富的油料,磷脂含量越高。毛油中磷脂的含量还受制油方法的不同而变化。 应用物理、物理化学或化学方法将粗油中的胶溶性杂质脱除的工艺过程称为脱胶。脱胶的具体方法分水化脱胶、酸炼脱胶、吸附脱胶、热凝聚脱胶及化学试剂脱胶等。油脂工业上应用最为普遍的是水化和酸炼脱胶。水化脱胶多用于食用油脂的精制,而强酸则很少用于食用油的脱胶。 水化脱胶是利用磷脂等胶溶性杂质的亲水性,将一定量的热水或稀碱、食盐、磷酸等电解质水溶液,在搅拌下加入热的毛油中,使其中的胶溶性杂质吸水凝聚沉降分离的一种脱胶法。在水化脱胶过程中,能被凝聚沉降的物质以磷脂为主,还有与磷脂结合在一起的蛋白质、糖基甘油二酯、黏液质和微量金属离子等。 水化脱胶的基本原理 磷脂是一种表面活性剂,分子由亲水的极性基团和疏水的非极性基团组成,根据稳定体系的热力学条件,自由能达到最小时体系最稳定。当磷脂溶于水时,它的疏水基团破坏了水分子之间的氢键,也改变了疏水基附近水的构型,从而使体系的熵降低,自由能增加,结果一些磷脂分子从水中排挤出来并吸附在溶液周围的界面上,亲水基朝向水相,疏水基则远离水相。磷脂分子与水作用时表现的特殊排列。 水分子与表面活性剂的疏水基接触面积越小,则体系的自由能越低,体系就越稳定。因此,在表面活性剂达到一定浓度时,有形成胶态集合体的倾向,这种集合体就称为胶束。在胶束中疏水基团彼此聚集在一起,大大减少了水分和疏水基之间的排斥。胶束是两性分子在溶剂中的集合体,可以在水相和非水相介质中

相关主题
文本预览
相关文档 最新文档