当前位置:文档之家› 用网络分析仪测量天线及馈线..

用网络分析仪测量天线及馈线..

用网络分析仪测量天线及馈线..
用网络分析仪测量天线及馈线..

空气微带天线测试

天线系统一般都有两方面的特性:电路特性(输入阻抗,效率,频带宽度,匹配程度等)和辐射特性(方向图,增益,极化,相位)。天线的测试任务就是用实验的方法测定和检验天线的这些参数特性。公司目前测试天线仪器—3G网络矢量分析仪(见图1),只能够测试电路方面的部分特性,因此测试的结果仅供参考,需要更为详细精确的数据,需要找天线生产厂商做进一步测定。

图1:3G矢量网络分析仪

一:频率设定

根据天线使用频段要求选择合适的频率范围(比如我们通常用到的902~928MHZ,可以设定频率为860~960MHZ,设定的频段需包含实际用到范围)步骤如下:

步骤①:3G矢量网络分析仪器的启动,按下仪器左下角的电源开关;

步骤②:频率范围设定,按“START”键,输入开始频率(如图2)→按“STOP”,输入终止频率(如图3);

图2:设定开始频率

图3:设定终止频率

二:仪器校准

天线测量时,用仪器标配的50欧姆同轴电缆或合格馈线连接仪器PORT1,在标配电缆线的另一端口处按开路→短路→负载,顺序进

行校准。

图4:校准用的转接头(从左到右依次为:开路→短路→负载)

步骤③:进入校准界面,按“FORMAT”键→“SMTIH CHART”→“MKR”→“CAL”→“CALIBRATE MENU”→“REFLECTION 1-PORT”

步骤④:开路校准,按下图所示连接仪器,标配50欧姆同轴电缆,N 母头转N母头及开路转接头,然后按“OPENS”→“OPEN(M)”→“OPEN(F)”→“DONE OPENS”

图5:开路校准

步骤⑤:短路校准,按下图所示连接仪器,标配50欧姆同轴电缆,N 母头转N母头及短路转接头,然后按“SHORTS”→“SHORT(M)”→“SHORT(F)”→“DONE SHORS”

图6:短路校准

步骤⑥:负载校准,按下图所示连接仪器,标配50欧姆同轴电缆,N 母头转N母头及负载50欧姆接头,然后按“LOAD”→“DONE 1-PORT

CAL”

图7:负载校准

图8:完成校准

三:测试及调整

测量天线时,不要将天线对准仪器,金属物品,墙等其他障碍物,以免影响测试效果,应将天线对向开阔空旷的方向。可以通过如下参数对天线的性能进行检查判断:

⑴驻波比(SWR),在图8所以界面中,按“FORMAT”→“SWR”

进入图9所示界面;测量时,要求驻波比在测试范围内MKR

值在1.5以下,如果驻波比的MKR值超过1.5,可以通过以下

方式调整:

图9驻波比界面

①调整辐射片:增加,减少辐射片的宽度,图10的右下

角被裁剪掉一部份,左上角和右上角向上卷曲,来调整驻波比的MKR值;

图10 :8db天线辐射片

②调整馈电针:可以通过调整馈电针与底板的高低,但不

能让馈电针与底板或其他金属接触,以免短路;

③调整相位:通过两个相位柱之间距离远的近来调整MKR

值。

⑵反射系数(LOG MAG)

按“FORMAT”→“LOG MAG”,进入图11所示界面,反射系数为负值,一般在-14db以下为合格,绝对值越大越好,证明反射回来的信号越好,即被吸收的少,返回的多,大于-14db调整方式,同驻波比调整方式一样。

图11:反射系数界面

⑶斯密斯圆图(SMITH CHART)

按“FORMAT”→“SMITH CHART”进入图12所示的斯密斯圆

图界面,观察电容,电感参数,进行初步判断测量天线是否

合格;若不合格,调整方式同驻波比的调整方式一样。

图12:斯密斯圆图

上述三个参数的测试效果是一样的,通常可以根据自己熟悉程度,习惯,喜好等选择任何一个参数,进行测量判断。

四:密封固定天线

经过上述的检测调试合格的天线,需要打防水胶固定馈电柱,螺丝,天线外壳等地方。

五:注意事项

①天线转接头

转接头分公头和母头,公头又分为:SMA公头和N公头;

母头分为:SMA母头和N母头;

测试中最为常用的转接头有:SMA母头转N公头,N公头转SMA 母头,N公头和SMA公头,N母头转N母头等,见下图:

②公司目前8db天线采用圆极化,12db天线采用线极化(水平极化),对于线极化,一般天线极化方向与标签方向一致,读取的效果最佳。

③12db天线4个E型振子之间的距离一般是固定的不能改动,但可以通过调E型振子与地板的高低来调整性能见图:

12db天线E型振子

④8db与12db天线物理结构有差别,12db天线有4个E型振子和馈电网络。

馈线测试

步骤一:馈线测试频段设定

馈线测试的频率设定范围比天线测试的频率范围要大,一般从几百兆到几吉。下面图片是馈线测量的一个事例频段(300MHZ~3GHZ)

馈线开始频率

馈线终止频率

步骤二:馈线校准及测量

测试制作馈线是否合格,可以检测回波损耗驻波比(单通道)和馈线的传输损耗(两通道)

⑴回波损耗驻波比

在3G矢量网络分析仪PORT1端口处进行校准,按开路→短路

→负载顺序进行,具体见下图;然后将带待测馈线一端接仪

器的PORT1端口,另一端接标准负载50欧姆;之后进入到测

试驻波比界面,观察测试馈线在设定频率范围内的MKR值,

一般2G以下频段,回波损耗驻波比的MKR值在1.2以下是合格的。

开路校准

短路校准

负载校准

注意:①馈线的严重弯曲及转接头压接的不好都会影响测试的准确性。做馈线的头为一次性的,没有压接好,测试达不到要求只能重新做。②回波损耗驻波比校准,在仪器的PORT1

端口进行。

⑵馈线传输损耗

测试馈线的传输损耗需要用到3G网络矢量分析仪的两个端口,因此测试时,先用标配50欧姆同轴电缆一端连接仪器PORT1,另一端接校准转头,按开路→短路→负载顺序进行校准,具体步骤如下:

步骤①:3G矢量网络分析仪器的启动,按下仪器左下角的电源开关;

步骤②:频率范围设定,按“START”键,输入开始频率→按“STOP”,输入终止频率;

步骤③:进入校准界面,按“FORMAT”键→“SMTIH CHART”

→“MKR”→“CAL”→“CALIBRATE MENU”→“REFLECTION 1-PORT”

步骤④:开路校准,按下图所示连接仪器,标配50欧姆同轴电缆,N母头转N母头及开路转接头,然后按“OPENS”→“OPEN(M)”→“OPEN(F)”→“DONE OPENS”

开路

步骤⑤:短路校准,按下图所示连接仪器,标配50欧姆同轴电缆,N母头转N母头及短路转接头,然后按“SHORTS”→

“SHORT(M)”→“SHORT(F)”→“DONE SHORS”

短路

步骤⑥:负载校准,按下图所示连接仪器,标配50欧姆同轴电缆,N母头转N母头及负载50欧姆接头,然后按“LOAD”

→“DONE 1-PORT CAL”

负载50欧姆

完成校准

几款网络分析仪的介绍

ENA射频网络分析仪 Agilent E5071C 9 KHz至8.5 GHz 详细说明: Agilent E5071C ENA系列网络分析仪 频率范围: 频率范围端口选件 E5071C 9KHz-4.5GHz 2/4 240/440 9KHz-8.5GHz 2/4 280/480 100KHz-4.5GHz 2/4 245/445 100KHz-8.5GHz 2/4 285/485 系统动态范围: 频率IF 带宽技术指标 SPD

主要特性: ?宽动态范围:在测试端口上的动态范围> 123 dB(典型值) ?极快的测量速度:39 ms(进行完全双端口校准,扫描1601点时) ?低迹线噪声:0.004 dB rms(70 kHz IFBW时) ?集成的2和4端口,带有平衡测量能力 选件: E5071C—008 频率偏置模式 E5071C—010 时域分析能力 E5071C—790 测量向导助手软件 E5071C—1E5 高稳定度时基 E5071C—240 双端口测试仪9KHz-4.5GHz 不带偏置T型接头 E5071C—245 双端口测试仪100KHz-4.5GHz 带偏置T型接头 E5071C—440 4端口测试仪9KHz-4.5GHz 不带偏置T型接头 E5071C—445 4端口测试仪100KHz-4.5GHz 带偏置T型接头 E5071C—280 双端口测试仪9KHz-8.5GHz 不带偏置T型接头 E5071C—285 双端口测试仪100KHz-8.5GHz 带偏置T型接头 E5071C—480 4端口测试仪9KHz-8.5GHz 不带偏置T型接头 E5071C—485 4端口测试仪100KHz-8.5GHz 带偏置T型接头 附件: 校准件 HP85033D/E (3.5mm) 校准件HP85032B (N型) ?宽动态范围:在测试端口上的动态范围> 123 dB(典型值) ?极快的测量速度:39 ms(进行完全双端口校准,扫描1601点时) ?低迹线噪声:0.004 dB rms(70 kHz IFBW时) ?集成的2和4端口,带有平衡测量能力 ?提供频率选件:从9 kHz/100 kHz(带有偏置T型接头)到4.5 GHz/8.5 GHz E5071C网络分析仪具有广泛的频率范围和众多功能,在同类产品中具有最高的射频性能和最快的测试速度。它是制造工程师和研发工程师测量9 kHz至8.5 GHz射频元器件和电路的最佳工具。

精简系列双端口 USB 矢量网络分析仪( Keysight P937XA),频率范围高达 26.5 GHz

技术资料是德科技精简系列 USB 矢量网络分析仪 P937XA 2 端口,高达 26.5 GHz 外形紧凑,性能优异。

是德科技精简系列:小身材,高性能 利用是德科技精简系列中的 Keysight P937xA,在上市时间、生产效率、预算和工作台空间等方面实现良好平衡。精确且可重复的测量、自动化编码功能以及始终如一的直观用户体验,这些优势让您能够充满自信地完成产品开发生命周期每个阶段的工作。结合全方位的是德科技服务(包括校准、教育和咨询),这些仪器可以增强您的解决方案,帮助您加快技术应用、降低成本。 P937xA 系列是是德科技首款紧凑型矢量网络分析仪(VNA),其价格适中,并采用完整的双端口设计,可以显著减小测试需要的空间。这款紧凑型 VNA 覆盖十分宽广的频率范围,从 300 kHz 到 26.5 GHz 有六种频率范围可选。这款 VNA 安装在紧凑型机箱中,由外部计算机控制,具备非常强大的处理能力和功能。PC 上运行的固化软件拥有与其他是德科技 VNA 相同的直观图形用户界面(GUI),使您可能尽量减少在不同型号之间过渡的成本。 应用软件 –手动测试无源元器件(例如天线、滤波器、连接器、适配器) –无线元器件制造测试 –航空航天/国防制造测试 –在分类环境中的评测/设计验证 关键性能 这款是德科技紧凑型 VNA 在动态范围、测量速度、迹线噪声和稳定度等关键技术指标上均达到业界先进水平。它与历经考验、值得信赖的 Keysight VNA 采用相同的测量技术,确保您可以获得始终一致的测量结果。 –测量速度:24 ms(201 点,全 2 端口校准,100 kHz IFBW) –动态范围:> 114 dB @ 9 GHz;> 110 dB @ 20 GHz(10 Hz IFBW) –迹线噪声:< 0.003 dBrms(1 kHz IFBW) –稳定度:0.005 dB/°C(高达 4.5 GHz) 主要特性 –是德科技最紧凑的 VNA,可以在不同测试位置之间轻松地共享使用 –从 300 kHz 至 26.5 GHz 有多种频率范围可选 –能够扩展测试端口数(最多 4 个端口) –可随时进行频率和软件升级 –采用与值得信赖的 Keysight VNA 相同的 GUI 和测量技术 –支持电子校准件(ECal),使校准变得轻松快捷

天线驻波比测试方法

天线xx测试方法 SX-400驻波比功率计是日本第一电波工业株式会社的“钻石天线”系列产品,它是一种无源驻波比功率计,将它连接在电台与天线之间,通过简单的操作可测量电台发射功率、天线馈线与电台不匹配引起的反射功率及驻波比,此外在单边带通信中本功率计还可作为峰值包络功率监视器。本仪表作为电信、军队、铁路(无线检修所)等无线通信部门的常用仪表被广泛使用,由于使用说明书为日文,阅读不便,为便于现场人员正确使用,现将使用方法和注意事项介绍如下。 1仪表表头、开关、端口功能 仪表表头、开关、端口位置见图1 ①表头: 用于指示发射功率、反射功率、驻波比及单边带应用时峰值包络功率的数值。 表头上共有5道刻度。从上往下,第 1、2道刻度为驻波比刻度值,第一道刻度右侧标有“H”,当电台输出功率大于5W时,应从该刻度上读取驻波比值;第二道刻度右侧标有“L”,当电台输出功率小于5W时,应从该刻度上读取驻波比值;第 3、4、5道刻度为功率值刻度,分别对应功率值满量程200W、20W、5W 档位。 ②RANGE(量程开关 选择功率测量量程,共三档,分别为200W、20W、5W。 ③FUNCTION(测量功能选择开关 置于“POWER”时,进行发射功率(FWD)、反射功率(REF)测量。'置于“CAL”时,进行驻波比(SWR)测量前的校准。

置于“SWR”时,进行驻波比(SWR)测量 ④CAL(校准旋钮) 进行驻波比(SWR)测量前(被测电台处于发射状态下),用此旋钮进行校准,应将指针调到表头第一道刻度右侧标有“”处。⑤POWER(功率测量选择开关 置于“FWD”时,进行电台发射功率测量。 置于“REF”时,进行反射波功率测量。 置于“OFF”时,停止对电台各种功率的测量。 ⑥AVG、PEPMONI(平均值或峰值包络功率测量选择开关)测发射功率、反射波功率、驻波比时,该开关应弹起,呈“■”状态,此时表头所指示的是功率的平均值(AVG)。 作为单边带峰值包络功率(PEPMONI)监视器时,该开关应按下,呈“━”状态。 ⑦零点调整螺钉 用于表头指针的机械调零,测量前调整该螺钉可使指针指示到零位。 ⑧TX(与电台发射机相连端口)可同时参见图1及图 用50Ω同轴电缆将该端口与电台天线端(ANT)相连。 ⑨ANT(与电台使用的天馈线连接端口) 将电台实际使用天馈线的馈线(50Ω)端口(或50Ω阻性的标准负债)与该端口相连。 ⑩DC138V(表头照明直流电源输入端口) 表头照明直流电源输入端口,直流电源电压范围为11~15V,红线接电源“+”,黑线接电源“-”,主要是用于夜间的野外场合。测试方法 2.1连接方法(参见图2)

网络分析仪原理及使用

网络分析仪原理及使用 康飞---芬兰贝尔罗斯公司 2007年10月 一般而言,网络分析仪在射频及微波组件方面的量测上,是最基本、应用层次也最广的仪器,它可以提供线性及非线性特性组件的量测参数,因此,举凡所有射频主被动组件的仿真、制程及测试上,几乎都会使用到。在量测参数上,它不但可以提供反射系数,并从反射系数换算出阻抗的大小,且可以量测穿透系数,以及推演出重要的S参数及其它重要的参数,如相位、群速度延迟(Group Delay)、插入损失(Insertion Loss)、增益(Gain)甚至放大器的1dB压缩点(Compression point)等。 基本原理 电子电路组件在高频下工作时,许多特性与低频的行为有所不同,在高频时,其波长与实际电路组件的物理尺度相比会相对变小,举例来说,在真空下的电磁波其速度即为光速,则c=λ×f,其中c为光速3×108m/sec,若操作在2.4GHz的频率下,若不考虑空气的介电系数,则波长λ=12.5cm,亦即在短短的数公分内,电压大小就会因相位的偏移而有极大的变化。因此在高频下,我们会使用能量及阻抗的观念来取代低频的电压及电流的表示法,此时我们就会引入前述文章所提「波」的概念。 光波属于电磁波的一种,当我们用光分析一个组件时,会使用一个已知的入射光源测量未知的待测物,当光波由空气到达另一个介质时,会因折射率的不同产生部分反射及部分穿透的特性,例如化学成分分析上使用的穿透及反射光谱。对于同样是属电磁波的射频来说,道理是相通的,光之于折射率就好比微波之于阻抗的概念,当一个电磁波到达另一个不连续的阻抗接口时,同样也会有穿透及反射的行为,从这些反射及穿透行为的大小及相位变化中,就可以分析出该组件的特性。 用来描述组件的参数有许多种,其中某些只包含振幅的讯息,如回返损耗(R.L. Return Loss)、驻波比(SWR Standing Wave Ratio)或插入损失(I.L. Insertion Loss)等,我们称为纯量,而能得到如反射系数(Γ Reflection coefficient)及穿透系数 (Τ Transmission coefficient)等,我们称之为向量,其中向量可以推导出纯量行为,但纯量却因无相位信息而无法推导出向量特性。 重要的向量系数 反射特性 在此,我们重点介绍几个重要的向量系数︰首先,我们从反射系数来定义,其中Vrefect为反射波、Vinc为入射波,两者皆为向量,亦即包含振幅及相位的信息,而反射系数代表入射与反射能量的比值,经过理论的演算,可以从传输线的特性阻抗 ZO(Characteristic Impedance)得到待测组件的负载阻抗ZL,亦即,在网络分析中,一般使用史密斯图(Smith Chart)来标示不同频率下的阻抗值。另外,反射系数也可以使用极坐标表示:,其中为反射系数的大小,φ则表示入射与反射波的相位差值。 接下来,介绍两个纯量的参数--驻波比及回返损耗,其中驻波的意义是入射波与被待测装置反射回来的反射波造成在传输线上的电压或电流驻波效应,而驻波比(SWR)的定义就是驻波中的最大与最小能量的比值,我们可以从纯量的反射系数中得到。 同样,我们也可以从ρ值定义出回返损耗(R.L.),其意义是反射能量与入射能量的比值,其值愈大,代表反射回来的能量愈小。对于反射系数所衍生的相关纯量参数,我们将其整理成表1,基本上,它们之间是换算的过程,会因为产业及应用的不同而倾向于使用某一参数。 REMARK: 驻波系数又叫做驻波比,如果电缆线路上有反射波,它与行波相互作用就会产生驻波,这时线上某些点的电压振幅为最大值Vmax,某些点的电压振幅为最小值Vmin,最大振幅与最小振幅之比称为驻波系数.驻波系数越大,表示线路上反射波成分愈大, 也表示线路不均匀或线路终端失配较大.为控制电缆的不均匀性,要求一定长度的终端匹配的电缆在使用频段上的输入驻波系数S不超过 某一规定的数值.电缆中不均匀性的大小,也可用反射衰减来表示.反射系数的倒数的绝对值取对数,称为反射衰减.反射衰减愈大, 即反射系数愈小,也就是驻波比愈小,即表示内部不均匀性越小. 穿透特性 对于穿透的特性,一样有分为纯量与向量两种,对于向量系数而言,最重要的就是穿透系数,其中Vtrans为经过待测物后的穿透波、Vinc为入射波,而τ即为穿透系数的纯量大小,θ则表示入射与穿透波的相位差值。 对于纯量的定义上,以被动组件而言,最常使用的就是插入损失(I.L. Insertion Loss),亦即与上述的τ值是相关的参数,定义为。若为主动组件如放大器等,穿透的信号有放大的效应则为增益(Gain),此时定义为。

矢量网络分析仪基础知识和S参数测量

矢量网络分析仪基础知识及S参数测量 §1 基本知识 1.1 射频网络 这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。 。因为只有一个口,总是接在最后又称 1.单端口网络习惯上又叫负载Z L 终端负载。最常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。 2单端口网络的电参数通常用阻抗或导纳表示,在射频范畴用反射系数Γ(回损、驻波比、S )更方便些。 11 2.两端口网络最常见、最简单的两端口网络就是一根两端装有连接器的射频电缆。 2匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。 2传输系数与插损对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。 插损(IL)= 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移。

2两端口的四个散射参量测量 两端口网络的电参数,一般用上述的插损与回 损已足,但对考究的场合会用到散射参量。两端口网络的散射参量有4个,即 S 11、S 21、S 12、S 22。这里仅简单的(但不严格)带上一笔。 S 11与网络输出端接上匹配负载后的输入反射系数Г相当。注意:它是网络 的失配,不是负载的失配。负载不好测出的Γ,要经过修正才能得到S 11 。 S 21与网络输出端匹配时的电压和输入端电压比值相当,对于无源网络即传 输系数T 或插损,对放大器即增益。 上述两项是最常用的。 S 12即网络输出端对输入端的影响,对不可逆器件常称隔离度。 S 22即由输出端向网络看的网络本身引入的反射系数。 中高档矢网可以交替或同时显示经过全端口校正的四个参数,普及型矢网不具备这种能 力,只有插头重新连接才能测得4个参数,而且没有作全端口校正。 1.2 传输线 传输射频信号的线缆泛称传输线。常用的有两种:双线与同轴线,频率更高则会用到 微带线与波导,虽然结构不同,用途各异,但其基本特性都可由传输线公式所表征。 2特性阻抗Z 0 它是一种由结构尺寸决定的电参数,对于同轴线: 式中εr 为相对介电系数,D 为同轴线外导体内径,d 为内导体外径。 2反射系数、返回损失、驻波比 这三个参数采用了不同术语来描述匹 配特性,人们希望传输线上只有入射电压, 没有反射电压, 这时线上各处电

矢量网络分析仪的误差分析和处理

矢量网络分析仪的误差分析和处理 一、矢量网络分析仪的误差来源 矢量网络分析仪的测量的误差主要有漂移误差、随机误差、系统误差这三大种类。 1、漂移误差 漂移误差是由于进行校准之后仪器或测试系统性能发生变化所引起,主要由测试装置内部互连电缆的热膨胀特性以及微波变频器的变换稳定性引起,且可以通过重新校准来消除。校准维持精确的时间范围取决于在测试环境下测试系统所经受到的漂移速率。通常,提供稳定的环境温度便能将漂移减至最小。 2、随机误差 随机误差是不可预测的且不能通过误差予以消除,然而,有若干可以将其对测量精度的影响减至最小的方法,以下是随机误差的三个主要来源: (1)仪器噪声误差 噪声是分析仪元件中产生的不希望的电扰动。这些扰动包括:接收机的宽带本底噪声引起的低电平噪声;测试装置内部本振源的本底噪声和相位噪声引起的高电平噪声或迹线数据抖动。 可以通过采取以下一种或多种措施来减小噪声误差:提高馈至被测装置的源功率;减小中频带宽;应用多次测量扫描平均。

(2)开关重复性误差 分析仪中使用了用来转换源衰减器设置的机械射频开关。有时,机械射频开关动作时,触点的闭合不同于其上次动作的闭合。在分析仪内部出现这种情况时,便会严重影响测量的精度。 在关键性测量期间,避免转换衰减器设置,可以减小开关重复性误差的影响。 (3)连接器重复性误差 连接器的磨损会改变电性能。可以通过实施良好的连接器维护方法来减小连接器的重复性误差。 3、系统误差 系统误差是由分析仪和测试装置中的不完善性所引起。系统误差是重复误差(因而可预测),且假定不随时间变化,可以在校准过程中加以确定,且可以在测量期间用数学方法减小。系统误差决不能完全消除,由于校准过程的局限性而总是存在某些残余误差,残余(测量校准后的)系统误差来自下列因素:校准标准的不完善性、连接器界面、互连电缆、仪表。 反射测量产生下列三项系统误差:方向性、源匹配、频率响应反射跟踪。 传输测量产生下列三项系统误差:隔离、负载匹配、频率响应传输跟踪。 下面分别介绍这六项系统误差,其中提到的通道A为反射接收机,通道B为传输接收机,通道R为参考接收机。 (1)方向性误差 所有网络分析仪都利用定向耦合器或电桥来进行反射测量。对理想的耦合器,只有来自被测件(DUT)的反射信号出现在通道A上。实际上,有少量入射信号经耦合器的正向路径泄漏并进入通道A(如

实验六天线的方向性与驻波比测量

实验六天线的方向性与驻波比测量 一、实验目的 1.了解八木天线的阻抗特性,知道八木天线驻波比的测量方法。 2.加深对方向图的理解,了解方向图的测试方法。 3.了解两天线法测增益的原理,知道测试方法。 二、实验器材 1、PNA3621及其成套附件 2、偶极子天线两根 3、待测八木天线一个 4、短路器一只 5、半波振子和全波振子各一个。 三、实验步骤 1、仪器进行校准。 2、插损和增益测量。 3、接上待测八木天线,按【菜单】键将光标移到【驻波】处,再按【执行】键,用驻波测量,打出测试曲线。 4、设置参考方位,控制器置手动(MAN),接通电源;按控制器右转(或左)按键,将天线转到底使其限位停下;左右微动使得转台停在指示灯亮的方位上,以

这点为参考方位。此点习惯上为-90°(或270°);将待测天线的-90°(或270°,即天线讯号的最小值处)方向,对准发射天线并固定之。 5、校最大值,控制器置手动(MAN),左右转动以便找到最大值。找到最大值后,按下仪器执行键。即完成了校最大值步骤,此时屏幕右下角显示测试频率值。 6、测试,按控制器右转(或左)键将天线转到底使其限位停下,然后再按一次仪器执行键,仪器进入测试状态,画面转为直角坐标;再按入控制器自动(AUTO)键使天线按270°→ 0°→90°→180°方向旋转;过270°后仪器即进入记录状态,这样记的目的是为了得到完整的主瓣与尾瓣。 四、实验记录 1、偶极子天线的插损及增益: 2、全波振子方向图:

3、半波振子方向图: 4、八木天线方向图:

5、八木天线驻波比图: 五、实验分析 对于天线增益:天线增益是指:在输入功率相等的条件下,实际天线与理想

矢量网络分析仪的使用——实验报告

矢量网络分析仪实验报告 一、实验容 单端口:测量Open,Short,Load校准件的三组参数,分别进行单端口的校准。 a.设置测量参数 1)预设:preset OK 2)选择测试参数S11:Meas->S11; 3)设置数据显示格式为对数幅度格式:Format->LogMag; 4)设置频率围:Start->1.5GHz,Stop->2.5GHz(面板键盘上“G”代表 GHz,“M”代表MHz,“k”代表kHz; 5)设置扫描点数:Sweep Setup->Points->101->x1(或”Enter”键或按 下大按钮); 6)设置信号源扫描功率:Sweep Setup->Power->Foc->-10->x1->Entry Off (隐藏设置窗)。 b.单端口校准与测量 1)设置校准件型号:Cal->Cal Kit->85032F(或自定义/user)(F指femal 母头校准件,M指male公头校准件); 2)Modify Cal Kit->Specify CLSs->Open->Set All->Open(m/f),返回到 Specify CLSs->Short->Set ALL->Short(m/f); 3)选择单端口校准并选择校准端口:Cal-Calibrate->1-Port Cal->Select Port->1(端口1 的校准,端口2也可如此操作); 4)把Open校准件连接到端口(或与校准端口相连的同轴电缆另一连 接端),点击Open,校准提示(嘀的响声)后完成Open校准件的 测量;得到的结果如Fig 1:单口Open校准件测量 5)把Short校准件连接到端口(或与校准端口相连的同轴电缆另一连 接端),点击Short,校准提示(嘀的响声)后完成Short校准件的 测量;得到的结果如Fig 2:单口Short校准件测量 6)把Load校准件连接到端口(或与校准端口相连的同轴电缆另一连

矢量网络分析仪

矢量网络分析仪 科电贸易ZNBT是首款多端口矢量网络分析仪,能够提供最多24个集成式测试端口。该仪器可以同步测试多台被测设备,或测量一台最多带24个端口的被测设备。 即便在带有多个端口的情况下,科电贸易ZNBT也只需要很短的测量时间。其他亮点包括宽动态范围、高输出功率电平以及具有高功率处理容量的输入。 仪器提供两个不同的频率范围:ZNBT8可在9kHz至8.5GHz的频率范围内操作,ZNBT20、ZNBT26和ZNBT40可分别在100kHz至20GHz、26.5GHz和40GHz的频率范围内操作。这些特性使得科电贸易ZNBT非常适用于移动无线电、无线通信以及电子产品行业中的广泛应用。 该仪器主要用于有源及无源多端口组件的开发和生产阶段,此类组件包括多频段移动电话的GPS、WLAN、Bluetooth?以及前端模块。卓越性能便于有效分析基站滤波器以及其他高选择性组件。 R&S?ZNBT在基于开关矩阵的多端口系统方面出类拔萃。高集成度使其成为一款极为紧凑的解决方案,可用于分析最多带24个端口的组件,而且所需机架空间少于R&S?ZNB。 借助便捷的用户界面,即便在非常复杂的多端口测量中,也能轻松处理。R&S?ZNBT 支持多种远程控制选件,并且能够轻松集成到自动化测试系统中,比如用于执行相控阵天线测量。 科电贸易ZNBT的主要特点 ●四端口R&S?ZNBT8基本单元,可升级到8、12、16、20或24个端口 ●八端口R&S?ZNBT20、R&S?ZNBT26、R&S?ZNBT40基本单元,可升级到12、 16、20或24个端口 ●频率范围介于9kHz至8.5GHz(R&S?ZNBT8),或100kHz至26.5GHz 或40GHz(R&S?ZNBT20) ●至多24个完全相位相参接收机 ●最高140dB的宽动态范围 ●快速扫描时间,201个扫描点的扫描时间为2.1ms(R&S?ZNBT8)和2.5 ms(R&S?ZNBT20) ●100dB的宽功率扫描范围 ●高功率处理容量 ●中频带宽范围介于1Hz至10MHz ●温度稳定性高达0.01dB/°K ●超过100个迹线和通道 ●轻松配置多端口测量

S参数定义,矢量网络分析仪基本知识和S参数测量

S参数定义、矢量网络分析仪基础知识及S参数测量 §1 基本知识 1.1 射频网络 这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。 1.单端口网络习惯上又叫负载Z L。因为只有一个口,总是接在最后又称终端负载。最常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。 ?单端口网络的电参数通常用阻抗或导纳表示,在射频范畴用反射系数Γ(回损、驻波比、S11)更方便些。 2.两端口网络最常见、最简单的两端口网络就是一根两端装有连接器的射频电缆。?匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。 ?传输系数与插损对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。 插损(IL)= 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移。

V2 ?两端口的四个散射参量测量两端口网络的电参数,一般用上述的插损与回损已足,但对考究的场合会用到散射参量。两端口网络的散射参量有4个,即S11、S21、S12、S22。 S参数的基本定义: S11:端口2匹配时,端口1的反射系数Г及输入驻波,描述器件输入端的匹配情况,S11=a2/a1;也可用输入回波损耗RL=-2Olg(ρ)(能量方面的反应)表示。 S22:端口1匹配时,端口2输出驻波,描述器件输出端的匹配情况,S22=b2/b1。 S21:增益或插损,描述信号经过器件后被放大的倍数或者衰减量。S21=b1/a1. 对于无源网络即传输系数T或插损,对放大器即增益。 S12:反向隔离度,描述器件输出端的信号对输入端的影响,S12=a2/b2。 特点: 1、对于互易网络有S12=S21 2、对于对称网络有S11=S22 3、对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上 4、在高速电路设计中用到的微带线或带状线,都有参考平面,为不对称结构(但平行双导线就是对称结构),所以S11不等于S22,但满足互易条件,总是有S12=S21。

网络分析仪工作原理及使用要点

网络分析仪工作原理及使用要点 本文简要介绍41所生产的AV362O矢量网络分析的测量基本工作原理以及正确使用矢量网络分析测量电缆传输及反射性能的注意事项。 1.DUT对射频信号的响应 矢量网络分析仪信号源产生一测试信号,当测试信号通过待测件时,一部分信号被反射,另一部分则被传输。图1说明了测试信号通过被测器件(DUT)后的响应。 图1 DUT 对信号的响应 2.整机原理: 矢量网络分析仪用于测量器件和网络的反射特性和传输特性,主要包括合成信号源、S参数测试装置、幅相接收机和显示部分。合成信号源产生30k~6GHz的信号,此信号与幅相接收机中心频率实现同步扫描;S参数测试装置用于分离被测件的入射信号R、反射信号A和传输信号B;幅相接收机将射频信号转换成频率固定的中频信号,为了真实测量出被测网络的幅度特性、相位特性,要求在频率变换过程中,被测信号幅度信息和相位信息都不能丢失,因此必须采用系统锁相技术;显示部分将测量结果以各种形式显示出来。其原理框图如图2所示: 图2矢量网络分析仪整机原理框图 矢量网络分析内置合成信号源产生30k~6GHz的信号,经过S参数测试装置分成两路,一路作为参考信号R,另一路作为激励信号,激励信号经过被测件后产生反射信号A和传输信号B,由S参数测试装置进行分离,R、A、B三路射频信号在幅相接收机中进行下变频,产生4kHz的中频信号,由于采用系统锁相技术,合成扫频信号源和幅相接收机同在一个锁相环路中,共用同一时基,因此被测网络的幅度信息和相位信息包含在4kHz的中频信号中,此中频信号经过A/D模拟数字变换器转换为数字信号,嵌入式计算机和数字信号处理器(DSP)从数字信号中提取被测网络的幅度信息和相位信息,通过比值运算求出被测网络的S参数,最后把测试结果以图形或数据的形式显示在液晶屏幕上。 ◆合成信号源:由3~6GHz YIG振荡器、3.8GHz介质振荡器、源模块组件、时钟参考和小数环组成。

ilentEC网络分析仪测试方法

i l e n t E C网络分析仪测 试方法 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

Agilent E5071C网络分析仪测试方法-李S 买卖仪器没找到联系方式请搜索《欧诺谊-李海凤》进入查看联系方式,谢谢! E5071C网络分析仪测试方法 一.面板上常使用按键功能大概介绍如下: Meas 打开后显示有:S11 S21 S12 S22 (S11 S22为反射,S21 S12 为传输)注意:驻波比和回波损耗在反射功能测试,也就是说在S11或者S22里面测试。 Format 打开后显示有:Log Mag———SWR———-里面有很多测试功能,如上这两种是我们常用到的,Log Mag为回波损耗测试,SWR 为驻波比测试。 Display打开后显示有:Num of Traces (此功能可以打开多条测试线进行同时测试多项指标,每一条测试线可以跟据自己的需求选择相对应的指标,也就是说一个产品我们可以同时测试驻波比和插入损耗或者更多的指标) Allocate Traces (打开此功能里面有窗口显示选择,我们可以跟据自己的需求选择两个窗口以上的显示方式) Cal 此功能为仪器校准功能:我们常用到的是打开后在显示选择:Calibrate (校准端口选择,我们可以选择单端口校准,也可以选择双端口校准) Trace Prev 此功能为测试线的更换设置 Scale 此功能为测试放大的功能,打开后常用到的有:Scale/Div 10DB/Div 为每格测试10DB,我们可以跟据自己的产品更改每格测量的大小,方便我们看测试结果 Reference Value 这项功能可以改变测试线的高低,也是方便我们测试时能清楚的看到产品测试出来的波型。 Save/Recall 此功能为保存功能,我们可以把产品设置好的测试结果保存在这个里面进去以后按下此菜单Save State 我们可以保存到自己想保存的地方,如:保存在仪器里面请按 Recall State 里面会有相对应的01到08,我们也可以按SaveTrace Data 保存在外接的U盘里面,方便的把我们产品的测试结果给客户看。 二.仪器测试的设置方法 1.频率设置:在仪器面板按键打开 Start 为开始频率,Stop 为终止频率。如我们要测量到,我们先按 Start 设置为,再按 Stop 设置为 2.传输与反射测试功能设置:在仪器面板按键打开Meas 打开后显示菜单里面会有 S11 S21 S12 S22 (S11 S22为反射,S21 S12 为传输)注意:驻波比和回波损耗在反射功能测试,也就是说在S11或者S22 里面测试,S11和S21为第一个测试端口测试,S22和S12为第二个端口测试。

网络分析仪测量

是德科技 网络分析仪测量:滤波器和放大器示例

引言 对于通信系统而言,元器件的幅度和相位特性是影响性能的重要因素。矢量网络分析仪可提供此类器件的相关信息,包括放大器和晶体管等有源器件,以及电容器和滤波器等无源器件。而且,由于增加了时域功能,网络分析仪还能在测量过程中去除不需要的响应,只留下需要的信息。本应用指南说明了对射频滤波器进行的扫频测量,以及对通信频段放大器进行的扫描功率测量。 测量滤波器 对滤波器的特性进行全面的表征通常可以借助扫频测量来实现。图 1 显示了滤波器的频率响应。在左侧和底部,我们可以看到以对数幅度格式表示的传输响应;在右侧,我们可以看到反射响应(回波损耗)。最常测量的滤波器特性是插入损耗和带宽,如下图所示,其垂直标度经过扩展。另一个经常测量的参数是带外抑制。这项测量用于了解滤波器在其带宽内传输信号,同时在其带宽外抑制信号的能力如何。测试系统的动态范围通常决定了其评测这一特性的能力。 以下回波损耗图显示了典型的无源反射滤波器特征,从图中可见其在阻带中显示为高反射(接近 0 dB),而在通带中表现出良好的阻抗匹配。吸收式滤波器则是一种不同的滤波器,其在阻带和通带 中都能很好地匹配,可在广泛的频率范围中提供良好的匹配。 参考 0 dB 图 1. 通过频率扫描测试滤波器

目录 误差来源和类型 04误差校正类型05单端口校准05适配器效应06双端口校正07电子校准08评定测量不确定度09执行传输响应校准11增强型传输响应校准12测量12全双端口校准13 TRL 校准13校准不可插入式器件14未知直通校准14移除适配器的校准15建议读数15

矢量网络分析

矢量网络分析 CKBOOD was revised in the early morning of December 17, 2020.

矢量网络分析(Vector Network Analyzer ,VNA)是通过测量元件对频率扫描和功率扫描测试信号的幅度和相位的影响来精确表征元件特征的一种方法。网络分析是指对较复杂系统中所用元件和电路的电器性能进行测量的过程。这些系统传送具有信息内容的信号时,我们最关心的是如何以最高效率和最小失真使信号从一处传到另一处。矢量网络分析仪是微波毫米波测试仪器领域中最为重要、应用最为广泛的一种高精度智能化测试仪器,在业界享有“微波/毫米波测试仪器之王”的美誉,主要用于被测网络散射参量双向S参数的幅频、相频及群时延等特性信息的测量,广泛应用于以相控阵雷达为代表的新一代军用电子装备研制、生产、维修和计量等领域,还可以应用于精确制导、隐身及反隐身、航空航天、卫星通信、雷达侦测和监视、教学实验以及天线与RCS测试、元器件测试、材料测试等诸多领域。国内生产矢量网络分析仪的厂家主要有:中国电子科技集团41所、天津德力、成都天大仪器等单位。国产矢量网络分析仪中,仅41所有与国外同类先进产品相对应的频率上限覆盖至170GHz的系列化产品。在世界范围内矢量网络分析仪生产厂商主要有美国安捷伦、日本安立和德国罗德施瓦茨等,其中以美国安捷伦代表着最高水平,其推出产品最高频率上限已达500GHz。 矢量网络分析仪可测量的器件: 无源器件(滤波器) 有源器件(放大器) 单端口器件(天线)

双端口器件(衰减器) 多端口器件(混频器,耦合器,功分器) 平衡器件(平衡滤波器等) 网络分析仪有标量网络分析仪和矢量网络分析仪之分。 标量网络分析仪:只测量幅度信息,不支持相位的测量。接收机采用二极管检波,没有选频特性,动态范围小。 矢量网络分析仪:可同时测量被测网络的幅度信息和相位信息。接收机采用调谐接收,具有选频特性,能够有效抑制干扰和杂散,动态范围大。通过测量被测网络(被测件)对频率扫描和功率扫描测试信号的幅度与相位的影响,来表征被测网络的特性。 网络分析的基本原理 网络有很多种定义,就网络分析而言,网络指一组内部相互关联的电子元器件。网络分析仪的功能之一就是量化两个射频元件间的阻抗不匹配,最大限度地提高功率效率和信号的完整性。每当射频信号由一个元件进入另一个时,总会有一部分信号被反射,而另一部分被传输,这就好比光源发出的光射向某种光学器件,例如透

矢量网络分析仪的使用——实验报告

矢量网络分析仪的使用——实验报告

矢量网络分析仪实验报告 一、实验内容 单端口:测量Open,Short,Load校准件的三组参数,分别进行单端口的校准。 a.设置测量参数 1)预设:preset OK 2)选择测试参数S11:Meas->S11; 3)设置数据显示格式为对数幅度格式:Format->LogMag; 4)设置频率范围:Start->1.5GHz,Stop->2.5GHz(面板键盘上“ G”代表GHz, “ M”代表MHz,“ k”代表kHz; 5)设置扫描点数:Sweep Setup->Points->101->x1(或”Enter”键或按下大 按钮); 6)设置信号源扫描功率:Sweep Setup->Power->Foc->-10->x1->Entry Off(隐 藏设置窗)。 b.单端口校准与测量 1)设置校准件型号:Cal->Cal Kit->85032F(或自定义/user)(F指femal母 头校准件,M指male公头校准件); 2)Modify Cal Kit->Specify CLSs->Open->Set All->Open(m/f),返回到 Specify CLSs->Short->Set ALL->Short(m/f); 3)选择单端口校准并选择校准端口:Cal-Calibrate->1-Port Cal->Select Port->1(端口1 的校准,端口2也可如此操作); 4)把Open校准件连接到端口(或与校准端口相连的同轴电缆另一连接端),点 击Open,校准提示(嘀的响声)后完成Open校准件的测量;得到的结果如Fig 1:单口Open校准件测量 5)把Short校准件连接到端口(或与校准端口相连的同轴电缆另一连接端), 点击Short,校准提示(嘀的响声)后完成Short校准件的测量;得到的结果如Fig 2:单口Short校准件测量 6)把Load校准件连接到端口(或与校准端口相连的同轴电缆另一连接端),点

用网络分析仪测量天线及馈线

空气微带天线测试 天线系统一般都有两方面的特性:电路特性(输入阻抗,效率,频带宽度,匹配程度等)和辐射特性(方向图,增益,极化,相位)。天线的测试任务就是用实验的方法测定和检验天线的这些参数特性。公司目前测试天线仪器—3G网络矢量分析仪(见图1),只能够测试电路方面的部分特性,因此测试的结果仅供参考,需要更为详细精确的数据,需要找天线生产厂商做进一步测定。 图1:3G矢量网络分析仪

一:频率设定 根据天线使用频段要求选择合适的频率范围(比如我们通常用到的902~928MHZ,可以设定频率为860~960MHZ,设定的频段需包含实际用到范围)步骤如下: 步骤①:3G矢量网络分析仪器的启动,按下仪器左下角的电源开关; 步骤②:频率范围设定,按“START”键,输入开始频率(如图2)→按“STOP”,输入终止频率(如图3); 图2:设定开始频率

图3:设定终止频率 二:仪器校准 天线测量时,用仪器标配的50欧姆同轴电缆或合格馈线连接仪器PORT1,在标配电缆线的另一端口处按开路→短路→负载,顺序进行校准。 图4:校准用的转接头(从左到右依次为:开路→短路→负载)

步骤③:进入校准界面,按“FORMAT”键→“SMTIH CHART”→“MKR”→“CAL”→“CALIBRATE MENU”→“REFLECTION 1-PORT” 步骤④:开路校准,按下图所示连接仪器,标配50欧姆同轴电缆,N 母头转N母头及开路转接头,然后按“OPENS”→“OPEN(M)”→“OPEN(F)”→“DONE OPENS” 图5:开路校准 步骤⑤:短路校准,按下图所示连接仪器,标配50欧姆同轴电缆,N 母头转N母头及短路转接头,然后按“SHORTS”→“SHORT(M)”→“SHORT(F)”→“DONE SHORS”

网络分析仪使用说明书

矢量网络分析仪 使用说明书 版 次 V1.0 页 次 1/16 1 目的 本使用说明书为规矢量网络分析仪的操作,避免操作不当引起的仪器损坏;作为培训文件使公司技术人员了解本仪器的使用。 2 适用围 本使用说明书适用于公司围的所有Anglent E50系列矢量网络分析仪的使用(其他型号具有一定的实用价值,但最大区别在于按键位置以及功能方面有细小区别)。 3 主要职责 3.1 各部门设备使用者负责实施设备一级保养工作。 3.2 各部门安排专人负责实施设备的定期保养管理,监督日常保养工作之实施。 3.3 对新进员工有必要学习此文件时进行培训学习。 4 仪器操作注意事项 4.1 测试产品时,不能直接加电测试。 4.2 测试功放前,必须在频谱仪上检测过没有自激,才能用网络仪测其它指标。 4.3 防止有大的直流电加入,网络仪最大能承受10V 的直流电。 4.4 防止过信号的输入。 4.4.1 网络分析仪的最大允许输入信号为20dBm 。 4.4.2 输入信号大于10dBm 时,应加相应的衰减器。 4.5 仪器使用前确保已接地。 5 仪器面板介绍 5.1 按键区域 1·ACTIVE CH/TRACE :活动通道区; 2·软驱; 3·RESPONSE :响应区; 4·NAVIGATION :导航区; 5·ENTRY :输入区; 6·STIMULVS :激励区; 7·MKR/ANALYIS :标定点/分析; 8·INSTRSTATE :设备状态区。 注:见“11 按键翻译”。 1 2 3 6 4 5 7 8 软菜单 USB 接口

矢量网络分析仪使用说明书版次V1.0 页次2/16 5.2 1 2 3 4 5 Tr1 S11 SWR 1.000/Ref 1.0000 Tr2 S21 Logmag 10dB/Ref 0.00dB Tr3 S22 SWR 1.000/Ref 1.0000 1.表示通道编号; 2.表示通道类型; 3.表示通道的格式; 4.表示通道在显示屏上每格所表示的数值; 5.表示通道在显示屏上参考线所在的格子数值。 6 仪器的基本常用功能介绍 6.1 测量回波损耗(电压驻波比) 通道选择S11或S22,S11时,用电缆PORT1;S22时,用电缆PORT2。 测量单通道时,所测器件终端应加负载;测双通道时,器件输出与输入均应接电缆。器件为有源器件时,详见“4 仪器操作注意事项”。 6.2 测量插入损耗 通道选择S12(Port2接收Port1发射)或S21(Port1接收Port2发射)测量时,所测器件输出、输入应接电缆;测量有源器件时,S12、S21不能选错,其余详见“4 仪器操作注意事项”。 6.3 测量时延 所测器件端口接上仪器,通道选择视具体情况,仪器按键Format→GroupDelay,详见“4 仪器操作注意事项”。 6.4 测量史密斯圆图 通道选择S11或S22时,终端应加负载,所测端接电缆。双通道时,输出、输入应同时接电缆,仪器按键Format→Smith,详见“4 仪器操作注意事项”。 7 仪器校准按键介绍 7.1 手动校准(以下介绍了双通道的校准方法) 按Cal*键,选择Cal kit ,选择ⅹⅹⅹ(具体见校准件型号,一般仪器厂商有配置),再选择Calibrate,选择2-Port Cal(双通道校准),选择Reflection,再对应相应的通道及校准件进行校准(电缆接什么标准件并在仪器上具体按何键见按件翻译,这里用到的标准键有3种分别是,开路Open、短路Short和负载Load),结束后,选择Return返回

矢量网络分析仪介绍

矢量网络分析仪
产品简介
1

产品概述 1、T5113A
2、T5230A/T5215A
3、T5280A
2

产品概述 T5113A
T5113A矢量网络分析仪是一款频 率范围覆盖300kHz到1.3GHz、双 端口单通路经济型网分仪,端口 阻抗有50Ω和75Ω两种。
z应用领域
特别适用于广播电视、汽车电子、医疗、科研教育等领域射频器件和组 件的研发、生产测试。
3

产品概述 T5113A 主要指标
频率范围 频率精度 信号源输出功率 信号源功率精度 动态范围 测量带宽(IFBW) 迹线噪声 温度稳定性 测量点数 端口 扫描类型 通道数/迹线数/标记点数 校准能力 迹线功能 标记功能 数据分析功能 系统供电 功耗 机箱尺寸 重量 300kHz ~ 1.3GHz 分辨率:1Hz;精度:±5 ppm -55dBm ~ +3dBm 分辨率:0.05dB;精度:±1.5dB 125dB,典型值 130dB(IFBW=10Hz) 1Hz ~ 30kHz(步进值 1/3) 0.002dB rms (IFBW=3kHz) 0.02dB /oC 2~10001 双端口单通路;50Ω或75Ω 线性频率扫描,对数频率扫描,分段频率扫描,线性功率扫描 4/8/16 响应校准、全1端口校准、单通路2端口校准;支持机械校准件、电子校准件。 迹线显示、迹线运算、自动刻度、电延迟、相位偏置。 数据标记、参考标记、标记搜索、统计、带宽搜索 端口阻抗转换、去嵌入功能、嵌入功能、S参数转换、时域转换、时域门控、极限测试、纹波测试 220 ± 22 V (AC), 50 Hz 20W 440mm(W)x231mm(H)x360mm(D) 10kg 4

相关主题
文本预览
相关文档 最新文档