当前位置:文档之家› 研究生课程固态相变

研究生课程固态相变

研究生课程固态相变
研究生课程固态相变

固态相变部分复习提纲 2

固态相变部分(60分) 试题类型: 一、选择题(20分) 二、名词解释(20分) 1.何谓奥氏体本质晶粒度?(3分) 答:根据标准试验方法,在930±10℃,保温3-8小时后测定的奥氏体晶粒大小。、 2.何谓奥氏体热稳定化?(3分) 答:淬火时因缓慢冷却或在冷却过程中停留引起奥氏体稳定性提高,而使马氏体转变迟滞的现象。 3.何谓二次硬化?(4分) 答:含有Mo、V、W、Nb、Ti等合金元素的钢淬火后回火时,随温度升高,析出特殊碳化物,导致钢的再度硬化的现象。 4.Ms点的定义及其物理意义是什么?(5分) 答:马氏体转变开始温度,即奥氏体和马氏体的两相自由能差达到相变所需的最小驱动力值时的温度。 5.写出马氏体相变的K-S位向关系和西山位向关系。(5分) 答:①K-S关系:{111}γ∥{110}α’;<110>γ∥<111>α’ ②西山关系:{111}γ∥{110}α’;<112>γ∥<110>α’ 6.简述马氏体相变的主要特征。(10分) 答:切变共格和表面浮凸现象; 无扩散性; 具有一定的位向关系和惯习面; 在一个温度范围内完成相变(Ms-Mf),大于某一临界冷速; 可逆性,有As点和Af点; 钢中马氏体转变速度极快; 7.简述淬火碳钢回火时的组织转变概况。(15分) 答:①马氏体中碳的偏聚(回火前期阶段-时效阶段) 80-100℃以下 板条马氏体,C原子向位错线附近偏聚,马氏体弹性畸变能下降。 片状马氏体,大多数C在某些晶面上富集,形成小片状富碳区,这种偏聚称为予沉淀聚集。 ②马氏体分解(回火第一阶段转变)100-250℃ 含碳量较高的片状马氏体发生分解,马氏体中的C%降低,正方度c/a减小。分解机构:<150℃为双相分解,>150℃为连续式分解。分解产物:过饱和度下降的马氏体+弥散分布的亚稳碳化物(ε-FexC)。ε-FexC 的结构为密排六方点阵,惯析面为{100}α’,并与母相保持一定的位向关系,形态为条状薄片。 <0.2%C的低碳马氏体在不析出ε-FexC。C原子仍继续在位错线附近偏聚。 ③残余奥氏体转变(回火第二阶段转变) 200-300℃ C%>0.4%时,淬火碳钢中有较多的残余奥氏体存在,在此温度下发生分解,转变为下贝氏体。如果温度较高,残余奥氏体可能转变为珠光体。 ④碳化物转变(回火第三阶段转变)250-400℃。 碳钢马氏体中过饱和C几乎全部脱溶,并形成比ε-FexC更稳定的碳化物。在碳钢中马氏体分解完成温度为350℃,此时马氏体基体中C%为0.001-0.02%,达到平衡含碳量。 比ε-FexC更稳定的碳化物有两种: 较低温度时为χ-碳化物,Fe5C2,单斜晶系,惯析面{112}α’。 较高温度时为θ-碳化物,Fe3C,正交晶系,惯析面{110}α’和{112}α’。 ⑤碳化物的聚集长大和α相的回复再结晶 >400℃。 超过400℃,渗碳体开始聚集和球化;超过600℃后,渗碳体迅速聚集并粗化,与基体的共格关系被破坏,形成球状(粒状)渗碳体并长大。 超过400℃时,马氏体发生明显的回复。板条马氏体内的位错逐渐消失,位错密度降低,剩余位错重新排

材料科学基础最全名词解释

1.固相烧结:固态粉末在适当的温度,压力,气氛和时间条件下,通过物质与气孔之间的传质,变为坚硬、致密烧结体的过程。 液相烧结:有液相参加的烧结过程。 2.金属键:自由电子与原子核之间静电作用产生的键合力。 3.离子键:金属原子自己最外层的价电子给予非金属原子,使自己成为带正电的正离子,而非金属得到价电子后使自己成为带负电的负离子,这样正负离子靠它们之间的静电引力结合在一起。 共价键:由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。氢键:由氢原子同时与两个电负性相差很大而原子半径较小的原子(O,F,N等)相结合而产生的具有比一般次价键大的键力。 弗兰克缺陷:间隙空位对缺陷 肖脱基缺陷:正负离子空位对的 奥氏体:γ铁内固溶有碳和(或)其他元素的、晶体结构为面心立方的固溶体。 布拉菲点阵:除考虑晶胞外形外,还考虑阵点位置所构成的点阵。 不全位错:柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。 玻璃化转变温度:过冷液体随着温度的继续下降,过冷液体的黏度迅速增大,原子间的相互运动变得更加困难,所以当温度降至某一临界温度以下时,即固化成玻璃。这个临界温度称为玻璃化温度Tg。 表面能:表面原子处于不均匀的力场之中,所以其能量大大升高,高出的能量称为表面自由能(或表面能)。 半共格相界:若两相邻晶体在相界面处的晶面间距相差较大,则在相界面上不可能做到完全的一一对应,于是在界面上将产生一些位错,以降低界面的弹性应变能,这时界面上两相原子部分地保持匹配,这样的界面称为半共格界面或部分共格界面。 柏氏矢量:描述位错特征的一个重要矢量,它集中反映了位错区域内畸变总量的大小和方向,也使位错扫过后晶体相对滑动的量。 柏氏矢量物理意义: ①从位错的存在使得晶体中局部区域产生点阵畸变来说:一个反映位错性质以及由位错引起的晶格畸变大小的物理量。 ②从位错运动引起晶体宏观变形来说:表示该位错运动后能够在晶体中引起的相对位移。 部分位错:柏氏矢量小于点阵矢量的位错 包晶转变:在二元相图中,包晶转变就是已结晶的固相与剩余液相反应形成另一固相的恒温转变。 包析反应:由两个固相反应得到一个固相的过程为包析反应。 包析转变:两个一定成分的固相在恒温(T)下转变为一个新的固相的恒温反应。包析转变与包晶转变的相图特征类似,只是包析转变中没有液相,只有固相。 粗糙界面:界面的平衡结构约有一半的原子被固相原子占据而另一半位置空着,这时界面称为微观粗糙界面。 重合位置点阵:当两个相邻晶粒的位相差为某一值时,若设想两晶粒的点阵彼此通过晶界向对方延伸,则其中一些原子将出现有规律的相互重合。由这些原子重合位置所组成的比原来晶体点阵大的新点阵,称为重合位置点阵。 成分过冷;界面前沿液体中的实际温度低于由溶质分布所决定的凝固温度时产生的过冷。

材料热力学

2012 年春季学期研究生课程考核 (读书报告、研究报告) 考核科目:材料热力学 学生所在院(系):理学院应用化学系 学生所在学科: 学生姓名 学号: 学生类别: 考核结果阅卷人 第 1 页(共 5 页)

材料热力学在材料研究方面的应用 摘要:材料热力学对于材料的预测和使用具有理论指导作用,本文总结了近年来材料热力学在功能材料设计分析方面的应用,并对材料热力学这门学科在材料方面的应用进行了总结。 关键词:材料热力学;材料;应用 1.材料热力学概述 材料热力学就是把热力学原理和材料联系起来,用热力学的理论解决材料在设计、制造、应用时的相应问题。材料热力学课程以热力学定律为基础,着重介绍了统计热力学在材料中的应用,如溶液的统计热力学、相图热力学、相变热力学和化学平衡热力学等。 2.计算材料科学与热力学 随着科学技术的不断进步,已有的材料越来越不能满足当前甚至可预见的未来的科技发展对于生产、生活中各种器械材料的需要,已有的材料不断被淘汰,人们对材料提出越来越多的要求和希望。材料逐渐向功能的多样化和性能的优异化发展。大量的材料量和质的需求使人们不得不摈弃传统材料开发的逐一试探的方法。带预测性的材料设计理念就这样应运而生了。随着现当代材料分析与检测仪器精度和灵敏性的提高,人们可以积累大量的材料性能的数据,这为发展新的材料模型或新材料的预测和模拟研究提供了有利条件。由此产生了以材料热力学理论为基础,计算机技术辅助支撑的计算材料科学。 耿太在他的硕士论文[1]中提到,计算材料科学发展中最活跃的是包含相图热力学和相变动力学计算在内的CALPHAD领域。在此领域中,热力学模拟优化的过程和实验技术紧密结合,并与材料的成分、足迹和制备过程联系密切。而目前,材料设计领域的新课题就是连接不同层次材料的成分设计、微观结构、制备工艺来达到从微观结构到宏观性能的整体预测和设计。在这篇文章中,应用了热力学计算软件,计算了平衡态相图对耐腐蚀合金的耐腐蚀性能,计算了铁铝、铁硼合金的平衡态相图,并与标准的二元相图做了比较分析。他认为这种计算分析对于合金成分设计制备具有指导意义。 3.材料热力学用于金属材料 实际生产生活中应用最广泛的材料是金属材料。而金属材料中用到最多的又是金属基的复合材料。通过复合化设计后金属材料可以形成金属基的复合材料。金属基的复合材料具有更好的机械性能和功能性能,是当前高新技术、环境、能源、通信、汽车、国防及航空航天设备中不可替代的重要材料,并在国民经济和国防建设中有着不可替代的重要作用。 范同祥等人认为,金属熔体的热力学性质历来是材料科学、冶金化学和流体物理学等领域的工作者关注的冶金热力学的核心课题之一[2]。他们认为,热力学和动力学在研究复合材料界面反应控制、反应自生增强相种类选择、反应自生增强相尺寸控制、金属基复合材料体系设计及复合制备工艺优化等方面有很大的应用价值。并且,基于组元元素的悟性参数能为金属基复合材料的研究提供理论指导。但是,金属熔体的结构比较复杂,其热力学和动力学性质带有复杂性,且不同的体系有其特殊性,在这种情况下的热力学和动力学的模型应用就有其局限性和针对性,这样的模型需要发展和完善。另外,可以把热力学和动力学与第一性原理相结合,从原子尺度进行计算,这样就能在复合材料的研究中扩大热力学和动力学的应

《合金固态相变》教学大纲

《合金固态相变》教学大纲 课程编号:2080113 学时:40 (实验学时另计,8学时) 学分:2.5 一、课程基本情况 1.课程名称:合金固态相变 2.课程性质:必修课程 3.适用年级专业:四年制材料科学与工程、材料成型与控制工程专业,三年级本科生 4.先修课程:材料科学基础、金属学、物理化学 5.教材:“合金固态相变”,赵乃勤主编,中南大学出版社,2008 6.开课单位:材料科学与工程学院 二、课程性质目的、任务和基本要求 1.性质目的和任务 固态相变是材料科学与工程专业的主要专业课之一,它是以物理、数学、物理化学和金属学原理等课程为基础,着重讲授与合金固态相变有关的基本理论,主要包括金属(特别是钢)在加热、冷却过程中相变的基本原理和规律以及组织结构与性能之间的关系,为提高产品质量、充分发挥现有材料的潜力、合理制定热处理工艺、发展新材料和新工艺打下坚实的基础。本课程的内容应适当反映现代固态相变理论的发展和成就。 2. 课程的基本要求 学生通过学习本课程,应达到:1.掌握金属材料中相变的基本理论,重点是钢中组织转变的基本规律;2.有运用金属材料中相变基本规律,分析和研究金属热处理工艺问题的能力; 3.初步掌握成分组织与性能之间的关系,从而对金属材料具有一定的分析和研究能力。 三、课程教学环节、内容及学时分配 (一)课程内容 第一章绪论 合金固态相变的定义。金属固态相变在工业中的地位和作用。本课程的研究对象、内容以及与其它课程的关系。 教学重点:固态相变的一般特征,包括驱动力和阻力,相变的形核、长大、扩散、相界面等。 第二章合金固态相变的常用研究方法 具体介绍研究物相类型、分布和相变过程的各种手段。 教学重点:材料的物相种类、相分布和相变过程所采用的不同研究手段,并对各研究手段在相变研究中的用途和基本原理有所了解。

热处理各章习题.

第一章金属固态相变概论 1、名词解释 固态相变平衡转变惯习面取向关系 2、填空题 1) 理论是施行金属热处理的理论依据和实践基础。 2)固态金属发生的平衡转变主要有。 3)固态金属发生的非平衡转变主要有。 4)金属固态相变的类型很多,但就相变的实质来说,其变化不外乎以下三个方面:①; ②;③。 5)相变时,(举一种)只有结构上变化;只有成分上的变化;只有有序化程度的变化;(举一种)兼有结构和成分的变化。 6)根据界面上两相原子在晶体学上匹配程度的不同,可分为等三类。 7)一般说来,当新相与母相间为界面时,两相之间必然存在一定的晶体学取向关系;若两相间无一定的取向关系,则其界面必定为界面。 3、金属固态相变有哪些主要特征?哪些因素构成相变阻力?哪些因素构成相变驱动 力? 第二章钢的加热转变 1、名词解释 奥氏体相变临界点(Ac1,Ac3,Accm, Ar1,Ar3,Arcm)晶粒度起始晶粒度本质晶粒度实际晶粒度 2、填空题 1)、奥氏体的形成遵循相变的一般规律,即包括和两个基本过程。 2)、晶粒长大是一个自发进行的过程,因为 3)、晶粒长大的驱动力是。 4)、影响奥氏体晶粒长大的因素主要有。 5).大多数热处理工艺都需要将钢件加热到以上。 6).奥氏体是碳溶于所形成的固溶体。 8).奥氏体晶粒度有三种:晶粒度、晶粒度、晶粒度。 9). 在相同加热条件下,珠光体的片层间距越小,则奥氏体化的速度。 3、选择题 (1) 奥氏体是碳溶解在__________中的间隙固溶体. (a)γ-Fe (b)α-Fe (c)Fe (d)立方晶系 (2) 奥氏体形成的热力学条件为奥氏体的自由能______珠光体的自由能. (a)小于(b)等于(c)大于(d)小于等于 (3) 奥氏体核的长大是依靠____的扩散, 奥氏体(A)两侧界面向铁素体(F)及渗碳体(C)推移 来进行的. (a)铁原子(b)碳原子(c)铁碳原子(d)溶质原子 (4) 渗碳体转变结束后, 奥氏体中碳浓度不均匀, 要继续保温通过碳扩散可以使奥氏体 ____. (a) 长大 (b) 转变 (c) 均匀化 (d) 溶解 (5) 奥氏体的长大速度随温度升高而____. (a) 减小 (b) 不变 (c) 增大 (d) 无规律 (6) 连续加热的奥氏体转变温度与加热速度有关.加热速度逾大, 转变温度____, 转变温度

天津大学2008~2009学年第二学期期末考试试卷《合金固态相变》B卷 答案

天津大学2008~2009学年第二学期期末考试试卷《合金固态相变》B卷答案 一、名称解释(10分,每题2分) 1. 回火马氏体:淬火钢在低温回火时得到的组织。 2. 回火脆性:随回火温度升高,一般是钢的强度、硬度降低,塑性升高,但冲击韧性不一定总是随回火温度升高而升高,有些钢在某些温度回火时,韧性反而显著下降的现象。 3. 二次硬化现象:当M中K形成元素含量足够多时,500°C以上回火会析出合金碳化物,细小的弥散分布的合金K将使已经因回火温度升高而下降的硬度重新升高,故称二次硬化。 4. 晶粒度:设n为放大100倍时每645mm2(lin2)面积内的晶粒数,则下式中的N被用来表示晶粒大小的级别,被称为晶粒度。N=2N-1 5. 形状记忆效应:将某些金属材料进行变形后加热到某一特定温度以上时,能自动恢复原来形状的效应。 二、填空:(20分,每空0.5分) 1. M转变的切变模型有Bain模型,K-S模型,G-T模型。 2.奥氏体转变的四个阶段是A形核,A长大,渗碳体溶解,A均匀化。 3.固相界面根据其共格性有共格界面,半共格界面,非共格界面,其中非共格界面的弹性应变能最小。 4.A转变时,转变温度与临界点A1之差称为过热度,它随加热速度的增大而增大。5.奥氏体是碳溶于γ-铁固溶体,碳原子位于八面体中心位置,钢中马氏体是 碳在α铁中的过饱和固溶体,具有体心立方点阵 6.影响钢的Ms点的最主要因素是碳含量,Ms随碳含量升高而降低。 7.一般退火采取的冷却方式为炉冷,正火的冷却方式为空冷,正火后强度略高于于退火后的强度,组织更细小。 8.M回火加热时,回火转变过程依次为M中碳原子的偏聚和聚集,M的分解,残余A分解,碳化物类型变化,a相回复与再结晶。 9.时效硬化机制有内应变强化,切过颗粒强化,绕过析出相(Orowan机制)。 10.高碳钢为了改善其切削加工性能,淬火后进行高温回火,工业中也称为派登处理。11.马氏体转变时K-S关系是指{110}α’|| {111}γ(晶面关系),﹤111﹥α’|| ﹤110﹥γ(晶向关系)。 12.常用的淬火介质中,淬火时伴随有物态变化的介质有:水,水溶液(油)等;没有物态变化的介质有熔盐,碱(熔融金属)等。 三、选择(20分,每题1分) 1.亚共析钢在AC3下加热后的转变产物为__c_。 (a) F (b) A (c) F+A (d) P+F 2. 由于形成F与Fe3C的二相平衡时,体系自由能最低,所以A只要在A1下保持足够长时间,就会得到__c__的二相混合物P。 (a)A+P (b)A+Fe3C (c)F+Fe3C (d)A+F 3.合金时效时随时间的延长硬度发生下降是发生了_b__。 (a) 冷时效(b) 过时效(c) 温时效(d) 自然时效 4.选出过冷奥氏体向贝氏体转变时的相变阻力__b,c_ (a)新相和母相的自由能差(b)两相间的表面能(c)弹性应变能(d)塑性应变能 5.亚共析钢的先共析铁素体是在__d__以上向奥氏体转变的。 (a) AC1 (b) T0 (c) A1 (d) AC3

材料科学基础名词解释

1、晶体:原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点,各向异性。 2、中间相:两组元A与B组成合金时,除了形成以A为基或以B为基的固溶体外,还可能形成晶体结构与A、B两组员均不相同的新相。由于它们在二元相图上的位置总就是位于中间,故通常把这些相称为中间相。 3、亚稳相:亚稳相指的就是热力学上不能稳定存在,但在快速冷却或加热过程中,由于热力学能垒或动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。 4、配位数:晶体结构中任一原子周围最近邻且等距离的原子数。 5、再结晶:冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程)。 6、伪共晶:在非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为共晶组织。 7、交滑移:当某一螺型位错在原滑移面上滑移受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。 8、过时效:铝合金经固溶处理后,在加热保温过程中将先后析出GP区,θ'',θ'与θ,在开始保温阶段,随保温时间延长,硬度强度上升,当保温时间延长,将析出θ',这时材料的硬度强度将下降,这种现象称为过时效。 9、形变强化:金属经冷塑性变形后,其强度硬度上升,塑性与韧性下降,这种现象称为形变强化。 10、固溶强化:由于合金元素(杂质)的加入,导致的以金属为基体的强度得到加强的现象。 11、弥散强化:许多材料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在材料内,这种材料的强度往往会增加,称为弥散强化。 12、不全位错:柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。 13、扩展位错:通常指一个全位错分解为两个不全位错,中间夹杂着一个堆垛层错的整个位错形态。 14、螺型位错:位错附近的原子按螺旋形排列的位错称为螺型位错。 15、包晶转变:包晶转变就就是以结晶的固相与剩余液相反应形成另一固相的恒温转变。 16、共晶转变:由一个液相转变为两个不同固相的转变。 17、共析转变:由一种固相转变为其她两个不同固相的转变。 18、上坡扩散:溶质原子从低浓度向高浓度处扩散的过程称为上坡扩散,表明扩散的驱动力就是化学位梯度,而非浓度梯度。 19、间隙扩散:这就是原子扩散的一种机制,对于间隙原子来说,由于其原子尺寸小,处于晶格间隙中,在扩散时,间隙原子从一个间隙位置跳到相邻的另一个位置,形成原子的移动。 20、成分过冷:界面前沿液体中的实际温度,低于由溶质分布所决定的凝固温度时产生的过冷。 21、一级相变:凡新旧两相化学位相等,化学位的一次偏导不相等的相变。 22、二级相变:从相变热力学上讲,相变前后两相的自由能(焓)相等,自由能(焓)的一阶偏导数相等,但二阶偏导数不等的相变称为二级相变,如磁性转变,有序-无序转变,常导-超导转变。

材料热力学与固态相变研究生试题-20131115

西南交通大学研究生2013 -2014 学年第(II)学期考试试卷 课程代码 0805021202a 课程名称 材料热力学与固态相变 考试时间 90 分钟 阅卷教师签字: 材料热力学部分 一、 基本概念题(请按照热力学与材料科学的基本理论正确叙述下列概念(对))(30分,每题10分) 1、 拉乌尔定律 2、 热焓与熵 3、 化学位与物相平衡 院 系 学 号 姓 名 密封装订线 密封装订线 密封装订线

二、简答题(30分,每题10分) 1、假设有一孤立体系:10摩尔处于-10℃的过冷水,在一个大气压下,将自发转变 为固态冰,同时放出结晶潜热使体系升温(没有热量损失),欲计算转变结束时,该体系的最终温度,若为两相共存,则如何计算水和冰的比例(摩尔比),请设计计算框图。(假定已知水的结晶潜热、液态水和固态冰的恒压比热容,不用计算。) 2、若A、B两组元可以形成稳定的中间相(即合金化合物AnBm),请根据热力学 理论,解释端际固溶体(A固溶B或B固溶A)的最大溶解度与合金化合物AnBm 的稳定性之间的定性关系。

3、根据体系与环境的关系,简单说明何为开放体系、何为封闭体系,何为孤立体 系? 三、综合分析题(40分,每题20分)

2、单相体系热力学计算(误差在±50K以内15分,±5K以内 18分,±0.5K以内19分,±,0.05K以内20分)(要求列出详细计算过程) 某液态金属的蒸气压随温度变化的关系式为: lgp(atm)=(-6600/T)-1.0 lgT + 9 其固体的蒸气压随温度的变化关系为: lgp(atm)=(-6700/T)-0.9 lgT + 9 求:(1)在一个大气压下该液态金属的沸点(大于1000K); (2)三相点温度(小于1000K)。

钛合金及其热处理工艺简述样本

钛合金及其热解决工艺简述 宝鸡钛业股份有限公司:杨新林 摘要:本文对钛及其合金基本信息进行了简要简介,对钛几类固溶体划分进行了简述,对钛合金固态相变也进行了概述。重点概述了钛合金热解决类型及工艺,为之后生产实习中对钛合金热解决工艺结识提供指引。 核心词:钛合金,热解决 1 引言 钛在地壳中蕴藏量位于构造金属第四位,但其应用远比铜、铁、锡等金属滞后。钛合金中溶解少量氧、氮、碳、氢等杂质元素,使其产生脆性,从而妨碍了初期人们对钛合金开发和运用。直至二十世纪四五十年代,随着英、美及苏联等国钛合金熔炼技术改进和提高,钛合金应用才逐渐开展[5]。 纯钛熔点为1668℃,高于铁熔点。钛在固态下具备同素异构转变,在882.5℃以上为体心立方晶格β相,在882.5℃如下为密排六方晶格α相。钛 合金依照其退火后室温组织类型进行分类,退火组织为α相钛合金记为TAX,也 称为α型钛合金;退火组织为β相钛合金记为TBX,也称为β型钛合金;退火组织为α+β两相钛合金记为TCX,也称为α+β型钛合金,其中“X”为顺序号。国内当前钛合金牌号已超过50个,其中TA型26个,TB型8个以上,TC型15个以上[5]。 钛合金具备如下特点:

(1)与其她合金相比,钛合金屈强比很高,屈服强度与抗拉强度极为接近; (2)钛合金密度为4g/cm3,大概为钢一半,因而,它具备较高比强度; (3)钛合金耐腐蚀性能优良,在海水中其耐蚀性甚至比不锈钢还要好; (4)钛合金导热系数小,摩擦系数大,因而机械加工性不好; (5)在焊接时,钛合金焊缝金属和高热影响区容易被氧、氢、碳、氮等元素污染,使接头性能变坏。 在熔炼和各种加工过程完毕之后,为了消除材料中加工应力,达到使用规定性能水平,稳定零件尺寸以及去除热加工或化学解决过程中增长有害元素(例如氢)等,往往要通过热解决工艺来实现。钛合金热解决工艺大体可分为退火、固溶解决和时效解决三个类型。由于钛合金高化学活性,钛合金最后热解决普通在真空条件下进行。热解决是调节钛合金强度重要手段之一。 2 钛合金合金化特点 钛合金性能由Ti同合金元素间物理化学反映特点来决定,即由形成固溶体和化合物特性以及对α?β转变影响等来决定。而这些影响又与合金元素原子尺寸、电化学性质(在周期表中相对位置)、晶格类型和电子浓度等关于。但作为Ti合金与其他有色金属如Al、Cu、Ni 等比较,尚有其独有特点,如:(1)运用Tiα?β转变,通过合金化和热解决可以随意得到α、α+β和β相组织; (2)Ti是过渡族元素,有未填满d电子层,能同原子直径差位于±20%以内置换式元素形成高浓度固溶体;

固态相变理论部分答案

《固态相变理论》作业3 1.试述贝氏体转变的基本特征。 答:1)孕育期的预相变:在贝氏体孕育期内,母相发生成分的预分配和结构的预转变。预相变期发生了原子的偏聚,形成贫碳区即为贝氏体相变的 形核位置。相变机制存在扩散和切变学派的争论。 2)贝氏体相变形核:贝氏体相变是非均匀形核,上贝氏体一般在奥氏体晶界处形核,而下贝氏体一般在奥氏体的晶内形核。 3)贝氏体的长大机制:存在三种观点1.马氏体型的贝氏体切变长大机制,这种学派认为,贝氏体长大与马氏体相似,以切变方式进行,但贝氏体 长大的速度比马氏体慢的多。判断依据是贝氏体的表面浮凸效应现象。 切变包括滑移切变和孪生切变。2.扩散台阶长大机制,台阶机制可以为 扩散长大所利用,也可以为切变长大利用。3.扩散-切变复合长大模型, 这种模型首要条件是界面位错必须是刃型位错或刃型分量为主导的。因 为只有刃型位错才能攀移,而螺位错是不能攀移的。 2.试述影响贝氏体性能的基本因素。 C。形态为答:1)上贝氏体的形成中温转变,在350~550℃,组织为BF+Fe 3 羽毛状上贝氏体的转变速度受碳在奥氏体中的扩散所控制。 2)下贝氏体的形成低温转变,小于350℃。BF大多在奥氏体晶粒内通过共格切变方式形成,形态为透镜片状。由于温度低,BF中的碳的过饱和 度很大。同时,碳原子已不能越过BF/A相界扩散到奥氏体中去,所以就 在BF内部析出细小的碳化物。同样,下贝氏体的转变速度受碳在铁素体 中的扩散所控制。 3)碳含量及合金元素的影响奥氏体中的碳含量的增加,转变时需要扩散的原子数量增加,转变速度下降。除了铝和钴外,合金元素都或多或少 地降低贝氏体转变速度,同时也使贝氏体转变温度范围下降,从而使珠 光体与贝氏体转变的C曲线分开。 4)奥氏体晶粒度大小的影响奥氏体晶粒度越大,晶界面积越少,形核部位越少,孕育越长,贝氏体转变速度下降。 5) 应力和塑性变形的影响拉应力加快贝氏体转变。在较高温度的形变使 贝氏体转变速度减慢;而在较低温度的形变使得转变速度加快。 6)冷却时在不同温度下停留的影响

材料热力学计算及其在合金制备中的应用

材料热力学计算 及其在纳米材料中的应用 一导论 材料热力学对于材料科学的研究和发展有着重要的意义。相图在材料工程中有重要的应用价值,它和合金体系中各相的热力学参数是材料设计和制备的重要依据之一。从理论上来说,热力学和相图之间的联系不存在任何障碍。但从历史上看,两者却是沿着各自的方向独立发展。传统上,相图主要是用热分析、金相分析和X射线结构分析等实验方法测定,并没有用到热力学知识,也没有完全将热力学用来解决生产实际问题。而热力学则主要是对相平衡进行理论分析,提出不同状态下平衡过程的方向和限度,其实验数据主要是热化学性质的测定。直至近年来,由于在溶液模型、数值方法和计算机软件等方面取得较大的进展,这才使得人门能够将热力学应用到相图中来。热力学和相图的计算机耦合形成了CALPHAD(computer CALculations of Phase Diagram)技术。CALPHAD技术主要是依据热力学原理和基本关系计算物质体系的平衡性质。一个物质体系的热力学特征函数确定,这个物质体系的全部热力学性质都可计算出来,其中包括相图。这就是CALPHAD技术中的相平衡计算部分。 二CALPHAD技术的发展 现今CALPHAD方法的内涵已由相图和热化学的计算机耦合拓展至宏观热力学计算与量子化学第一性原理计算相结合、宏观热力学计算与动力学模拟相结合、建立新一代计算软件和多功能数据库(multi-function database),其科学内容十分丰富,已成为材料科学比较成熟的重要分支., CALPHAD可以按照常规方法进行复杂的相平衡计算,而且还是建立在合理的物理基础之上。已经有大量可以在PC上运行的软件来进行复杂计算,例如FACT[5]、MTDATA[6]、Lukas Program[7]、Ther-mo-Calc[8]、ChemSage等[9]已在全球通用;建立了许多相图热力学数据库,如SGTE纯物质数据库、溶液数据库等。这些软件运行时不需要大量的专门技术,并且在不断地升级以采用更精确的热力学模型和算法更新现有的数据库,在很多情况下可以预测多元合金的相平衡,并与实验结果接近。目前,新一代的软件也在不断地开发完善之中,例如WinPhad[10]和PANDAT等[11]。因此,CALPHAD成为了一个成熟的科学分支,事实上,已经进入了其发展的另一个阶段,强调的是扩展其应用范围的集中要求。

固态相变名词解释

平衡转变:在缓慢加热或冷却时所发生的符合状态图平衡组织的相变为平衡转变。 同素异构转变:纯金属的晶体结构转变。 多形性转变:固溶体的同素异构转变。 平衡脱溶转变:缓慢冷却,过饱和固溶体沿平衡相图确定的固溶度线析出第二相的过程。 共析转变:即两种以上的固相新相,从同一固相母相中一起析出,而发生的相变,称为共析转变,有时也称共析反应。 不平衡转变:加热或冷却速度增大,平衡转变受到抑制,发生某些状态图上不能反映的转变,形成不平衡或亚稳组织。 伪共析转变:当A从高温以较快的速度冷却到GS与ES的延长线以下时,将从A中同时析出F和Fe3C。类似共析转变,但F和Fe3C的比值不是定值,而是随着A中的碳量而变,这种转变称为伪共析转变。转变产物称为P。 马氏体转变:通过无扩散的共格切变转变为成分相同但晶体结构不同的相。 贝氏体转变:在高温珠光体和低温马氏体转变之间还存在着贝氏体转变,也称为中温转变。 块状转变:冷却速度不够快时γ相的原子通过非共格界面的短程快速扩散转变为成分相同的相,转变产物呈块状,表面无浮凸。 不平衡脱溶沉淀:在室温或低于固溶度曲线的某一温度等温时自相中析出成分与结构均与平衡脱溶不同的新相,称为不平衡脱溶沉淀。 共格界面:若新母相的晶体结构和取向都相同,点阵常数也非常接近,或新母相晶体结构不同,点阵常数也不相同,但两相中某些晶面的点阵相似,则相界面上的原子为两相共有,界面原子位于两相结点上。 半共格界面:界面上两相原子变为部分地保持匹配。 非共格界面:当两相界面处原子排列差异很大,导致错配度增大,其原子间的匹配关系不再维持,形成非共格界面。 取向关系:位向关系是新母相某些低指数晶面晶向的对应平行关系。 惯习面:马氏体是在母相的一定晶面上开始形成的,这个晶面称为惯习面,通常以母相的晶面指数表示。 弹性畸变能:原子偏离正常点阵位置引起的,包括共格应变能和比容差应变能。 界面能:在母相中形成新相的界面时,由同类键、异类键的强度和数量变化引起的化学能。 台阶界面:界面位错分布于各个台阶界面上,位错的滑移运动使台阶发生侧向迁移,界面沿其法向推进,形成台阶式长大。 奥氏体起始晶粒度:加热转变终了时所得奥氏体晶粒。 奥氏体实际晶粒度: A晶粒形成后在高温停留期间将继续长大,长大到冷却开始时的A晶粒。 本质晶粒度:在930℃保温3~8小时所得的A实际晶粒。

铝合金的固态相变分析

目录 1.1前言 (1) 1.1.1铝合金研究概况 (1) 1.1.2喷射成型技术基本原理及特点 (1) 2.1铝铜合金强化机制 (2) 3.1 AI-Cu-Mg合金中的相变机理 (3) 3.1.1AI-Cu合金的脱溶沉淀 (3) 3.2 AI-Cu-Mg合金中的其他相变机理 (4) 3.2.1引入位错在合金中的相变机理 (4) 3.2.2AI-Cu-Mg合金中的相变热力学机理 (5) 3.2.3空位在AI-Cu-Mg合金中的相变机理 (6) 参考文献

摘要 喷射成形制备超高强铝合金具有密度低,比强度高等特点,在航空航天工业中被广泛用作结构材料。铝合金中的固态相变对合金的强化有很大影响。本文简单介绍了喷射成型制备超高强铝合金的发展概况和铝铜合金的强化机制,并介绍了铝合金中常见的固态相变类型。 关键词:铝铜合金形,喷射成形,固态相变,脱溶沉淀,位错

喷射成形制备超高强铝合金的强化机理 1.1前言 1.1.1铝合金研究概况 铝合金具有密度低、比强度高、韧性好耐腐蚀等优点, 在航空航天工业中被广泛用作结构材料。但是传统的铸锭冶金技术已经无法满足航空、航天工业对铝合金在使用性能方面日益增长的要求, 于是各种新型材料制备技术应运而生。高强铝合金(2000系, 7000系) 以其优异的综合性能在商用飞机的使用量已经达到其结构重量的80% 以上因此得到国内外航空工业界的普遍重视。但是传统的材料制备工艺已经无法满足现代航空航天技术对高强铝合金性能的使用要求。研究发现, 采用喷射形成技术可以避免普遍铸造合金中粗大晶粒的出现, 同时对冶金质量(Fe, Si 含量) 的要求大幅度放宽。与粉末冶金工艺相比, 喷射成形技术解决了材料氧化严重及难于成形的问题, 因此可以进一步降低成本并提高材料性能。喷射成形其主要原理在于: 熔融金属或合金液在保护性气氛中被雾化成弥散分布的液态微滴(雾化方法可以是高压气体雾化或机械离心雾化) , 雾化后的液滴在高压气体或离心力的作用下,喷射到具有不同运动方式的金属基底表面, 形成半固态薄层。经过雾化喷射过程中雾滴与气体的对流换热及沉积坯与基底的热传导, 金属或合金液迅速冷却, 从而凝固成具有不同形状和较高致密度的喷射成形金属实体。该工艺将金属的雾化过程及雾化后液滴的沉积和成形过程两个阶段结合在一起, 只经一道工序即可制备出结构致密、无宏观偏析、含氧量低的铝合金材料[1] [2]。 1.1.2喷射成型技术基本原理及特点 喷射成形是以快速凝固技术的代表技术—粉末冶金技术的发展,同时也是一种新的液态成形技术。其原理是将熔融金属雾化、并直接喷射到较冷的衬底表面上,熔滴在沉积器表面附着、堆积、铺展、融合、固结而形成具有快速凝固组织特征的沉积坯件。对于每个微小的金属单元而言,在短暂的时间内发生并完成这样一个复杂的过程,而整个金属熔液则分批、连续的经历这个过程,最后得到大尺寸的快速凝固坯锭。整个喷射沉积过程,可以直观地分为金属液释放、雾化、

《金属固态相变原理》考试试卷(B卷)

贵州大学2014—2015学年第一学期 《金属固态相变原理》考试试卷(B卷)班级姓名学号 题号一二三四五总得分评卷人审核人 得分 一、名词解释(每题3分,共15分) 1、同素异构转变: 2、回火抗力: 3、本质晶粒度: 4、奥氏体稳定化: 5、化学热处理: 二、填空题(每空1分,共15分) 1、奥氏体是溶于中所形成的固溶体。 2、共析钢淬火后在回火过程中,由于组织发生了变化,钢的也随之发生改变。其基本趋势是随回火温度升高,钢的和下降,和提高。 3、正火的冷却速度比退火,故正火的组织比较,它的强、硬度比退火。 4、淬火钢的回火,本质上是分解以及析出、聚集长大的过程。广义的回火概念应当是指将淬火后合金固溶体加热到低于相变临界点温度,保温一段时间后再冷却到室温的工艺方法。回火转变是典型的型转变。 三、判断题(每题3分,共12分) 1、珠光体形成时一般在奥氏体晶内形核。 2、钢中的合金元素和碳一样,在贝氏体转变时会发生重新分布。

3、共析钢和过共析钢的连续冷却转变中无贝氏体转变区。 4、等温淬火后的组织不需要再进行回火。 四、论述题(共34分) 1、若按所有的八面体间隙位置均填满碳原子计算,单位晶胞中应含20%的碳原子,但实际上碳在 -Fe中的最大溶解度仅为2.11%,为什么?(6分) ●试分析马氏体转变与贝氏体转变有哪些主要异同点?(8分) ●简述片状珠光体的形成机理。(10分) ●淬火的目的是什么?亚共析钢和过共析钢的淬火加热温度应如何选择?试从

获得的组织及性能等方面加以说明。(10分) 五、分析题(每题12分,共24分) 1、高速钢(高碳高合金工具钢)有时采用分级淬火法,即工件从分级浴槽中取出后常常置于于空气中冷却,但如果当工件尚处于100~200℃时使用水清洗,将会发生什么问题?为什么? 2、试分析φ10mm的45钢(退火状态),经下列温度加热并水冷后所获得的组织: ①700℃ ②760℃ ③840℃

材料热力学与相变复习总结

热力学定律定义表达式:一、能量从一种形式转化为其他形式时,其总量不变。▽u=q —W 二、一切自发过程都是不可逆的。或热不可能从低温物体传到高温物体而不引起其他变化。 盖.吕萨克(Gay-Lussac )定律:恒压下,任何气体温度升高或降低1℃所引起的体积膨胀都等于它们零度时体积的1/273.16。)16.2731(16.273000t V t V V V t +=+= 敞开体系或开放体系: 与环境之间既有物质交换,也有能量交换的体系 封闭体系或关闭体系:与环境之间只有能量交换,而无物质交换的体系 隔离体系或孤立体系:与环境之间既无物质交换,也无能量交换的体系 体系的性质是状态的函数。我们把这些性质,包括体系的温度、压力、体积、能量或其他,都叫做体系的状态函数 强度性质:与体系的总量无关的性质,例如温度、压强、比表面能、磁场强度等 广度性质:与体系的总量成比例的性质,例如体积、面积、质量等。 盖斯定律:同一化学反应,不论其经过的历程如何(一步或几步完成),只要体系的初态和终态一定,则反应的热效应总是一定的(相同的)。 对于可逆过程而言,qR/T 最大,所以对于同样的△u ,qR 是一定的,且仅取决于体系的状态。这样,qR /T 就具备了状态函数的特点。以S 表示之,称为熵。T q S R ?=?,T dq dS R =熵虽然可以作为此问题判断的依据,但是只适用于隔离体系。 G 称为吉布斯(Gibbs )自由能,也是个状态函数,可以判断恒温恒压下过程可逆与否。若令 G =H -TS 则dW' ≤-dG 如果过程只作膨胀功,即dW' =0,则有 dG ≤0,或 △G ≤0 判断恒温恒压、无非膨功的条件下过程自发进行的可能性。自由能减小不可逆、自发。不变则可逆平衡。 能斯特定理0)()( lim lim 00=?=???→→T T P T S T G 后来人们提出了另外两种热力学第三 定律的表达式: 0)(lim 0=?→S T 00 l i m S S T =→ 将偏摩尔量的定义式中的广度性质G 以自由能F 代之,则得到偏摩尔自由能1 21......,,,)/(-??=i n n n P T i i n F μ 化学位的物理意义是:恒温恒压下,加入微量i 所引起的体系自由能的变化。显然,化学位与自由能之间存在以下关系∑=i i dn dF μ 化学位反映了某一组元从某一相中逸出的能力。某一组元在一相内的化学位越高,它从这相迁移到另一相中的倾向越大。所以可以用化学位来判断过程的方向和平衡: 0≤∑i i dn μ“<”表示反应的方向;“=”表示平衡条件 拉乌尔定律:如果溶质是不挥发性的,即它的蒸气压极小,与溶剂相比可以忽略不计,则一定的温度下,稀溶液的蒸气压等于纯溶剂的蒸气压与其摩尔分数的乘积。 亨利定律:在一定的温度下,气体在液体中的溶解度和该气体的平衡分压成正比 大多数实际溶液都对拉乌尔定律有偏差,即蒸气压大于或小于拉乌尔定律的计算值。如果蒸气压大于拉乌尔定律的计算值,称为正偏差;如果蒸气压小于拉乌尔定律的计算值,叫做负

材料热力学知识点

第一章单组元材料热力学 名词解释: 1 可逆过程 2 Gibbs自由能最小判据 3 空位激活能 4 自发磁化: 5 熵: 6 热力学第一定律热力学第二定律 7 Richard定律 填空题 1 热力学第二定律指出:一个孤立系统总是由熵低的状态向熵高的状态变化,平衡状态则是具有最大熵的状态。 2 按Boltzmann方程,熵S与微观状态数W的关系式为S=klnW 3 热容的定义是系统升高1K时所吸收的热量,它的条件是物质被加热时不发生相变和化学反应 4 α-Fe的定压热容包括:振动热容、电子热容和磁性热容。 5 纯Fe的A3的加热相变会导致体积缩小 6 Gibbs-Helmholtz方程表达式是 7 铁磁性物质的原子磁矩因交换作用而排列成平行状态以降低能量的行为被称为自发磁化 论述题 1 根据材料热力学原理解释为什么大多数纯金属加热产生固态相变时会产生体积膨胀的效应? 2 试根据单元材料的两相平衡原理推导克拉伯龙(Clapeyron)方程。 3 试用G-T图的图解法说明纯铁中的A3点相变是异常相变。 4 试画出磁有序度、磁性转变热容及磁性转变(指铁磁-顺磁转变)自由能与温度的关系曲线。 计算题 1已知纯钛α/β的平衡相变温度为882O C,相变焓为4142J?mol-1,试求将β-Ti过冷到800O C 时,β→α的相变驱动力 2若某金属形成空位的激活能为58.2KJ?mol-1,试求在700O C下,该金属的空位浓度。 3纯Bi在0.1MPa压力下的熔点为544K。增加压力时,其熔点以3.55/10000K?MPa-1的速率下降。另外已知融化潜热为52.7J?g-1,试求熔点下液、固两相的摩尔体积差。(Bi的原子量为209g?mol-1.

固态相变

固态相变试卷 一、选择题(单项选择) 每题2分,共30分 1、在A,B 两组元组成的置换固溶体中,若r a >r b ,两组元的热力学因子F A 1+? ????? d d X A A ln ln γ和 F B 1+? ????? d d X B B ln ln γ之间的关系是: A) F A >F B B) F A 5%

相关主题
文本预览
相关文档 最新文档