当前位置:文档之家› 高分子物理知识点

高分子物理知识点

第1章高分子的链结构

1.写出聚氯丁二烯的各种可能构型。

2.构象与构型有何区别?聚丙烯分子链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么?

答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。

(2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。

3.为什么等规立构聚丙乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象?

答(1)由于等归立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则。

(2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象是能量最低的构象。4.哪些参数可以表征高分子链的柔顺性?如何表征?

答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差;

(2)特征比Cn,Cn值越小,链的柔顺性越好;

(3)连段长度b,b值愈小,链愈柔顺。

5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。该聚合物为什么室温下为塑料而不是橡胶?

答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不是橡胶。

6.从结构出发,简述下列各组聚合物的性能差异:

(1)聚丙烯睛与碳纤维;

(2)无规立构聚丙烯与等规立构聚丙烯;

(3)顺式聚1,4-异戊二烯(天然橡胶)与反式聚1,4-异戊二烯(杜仲橡胶)。(4)高密度聚乙烯、低密度聚乙烯与交联聚乙烯。

7.比较下列四组高分子链的柔顺性并简要加以解释。

第2章聚合物的凝聚态结构

1.名词解释

凝聚态,内聚能密度,晶系,结晶度,取向,高分子合金的相容性。

凝聚态:为物质的物理状态,是根据物质的分子运动在宏观力学性能上的表现来区分的,通常包括固体、液体和气体。内聚能密度:CED定义为单位体积凝聚体汽化时所需要的能量,单位:J/cm3

晶系:根据晶体的特征对称元素所进行的分类。结晶度:试样中的结晶部分所占的质量分数(质量结晶度X c m)或者体积分数(体积结晶度X C V)。

取向:聚合物的取向是指在某种外力作用下,分子链或其他结构单元沿着外力作用方向的择优排列。

高分子合金的相容性:两种或两种以上高分子,通过共混形成微观结构均一程度不等的共混物所具有的亲和性。

2.什么叫内聚能密度?它与分子间作用力的关系如何?如何测定聚合物的内聚能密度?

答:(1)内聚能密度:CED定义为单位体积凝聚体汽化时所需要的能量,单位:J/cm3(2)内聚能密度在300 J/cm3以下的聚合物,分子间作用力主要是色散力;内聚能密度在400 J/cm3以上的聚合物,分子链上有强的极性基团或者分子间能形成氢键;内聚能密度在300-400 J/cm3之间的聚合物,分子间相互作用居中。

3.聚合物在不同条件下结晶时,可能得到哪几种主要的结晶形态?各种结晶形态的特征是什么?

答:(1)可能得到的结晶形态:单晶、树枝晶、球晶、纤维状晶、串晶、柱晶、伸直链晶体;

(2)形态特征:

单晶:分子链垂直于片晶平面排列,晶片厚度一般只有10nm左右;

树枝晶:许多单晶片在特定方向上的择优生长与堆积形成树枝状;

球晶:呈圆球状,在正交偏光显微镜下呈现特有的黑十字消光,有些出现同心环;纤维状晶:晶体呈纤维状,长度大大超过高分子链的长度;

串晶:在电子显微镜下,串晶形如串珠;

柱晶:中心贯穿有伸直链晶体的扁球晶,呈柱状;

伸直链晶体:高分子链伸展排列晶片厚度与分子链长度相当。4.测定聚合物的结晶度的方法有哪几种?简述其基本原理。不同方法测得的结晶度是否相同?为什么?

答:(1)密度法,X射线衍射法,量热法;(2)密度法的依据:分子链在晶区规整堆砌,故晶区密度大于非晶区密度;X射线衍射法的依据:总的相干散射强度等于晶区和非晶区相干散射强度之和;量热法的依据:根据聚合物熔融过程中的热效应来测定结晶度的方法。(3)不同,因为结晶度的概念缺乏明确的物理意义,晶区和非晶区的界限很不明确,无法准确测定结晶部分的量,所以其数值随测定方法不同而不同。

5.高分子液晶的分子结构有何特点?根据分子排列有序性的不同,液晶可以分为哪几种晶型?如何表征?

答:(1)高分子液晶分子结构特点:分子主干部分是棒状(筷形),平面状(碟形)或曲面片状(碗形)的刚性结构,以细长棒状最为常见;b.分子中含有对位苯撑,强极性基团,可高度极化或可形成氢键的基团,因而在液态下具有维持分子作某种有序排列所需要的凝聚力;c.分子上可能含有一定的柔性结构。 2)液晶晶型:a.完全没有平移有序—向列相即N相,用单位矢量n表示;b.一维平移有序(层状液晶)—近晶A(S A)和近晶C(S c);c.手征性液晶,包括胆甾相(Ch)和手征性近晶相;d.盘状液晶相。3)液晶态的表征一般为:a.偏光显微镜下用平行光系统观察;

b.热分析法;

c.X射线衍射;

d.电子衍射;

e.核磁共振;

f.电子自旋共振;

g.流变学;

h.流变光学。

6.简述液晶高分子的研究现状,举例说明其应用价值。

答:液晶高分子被用于制造防弹衣,缆绳及航空航天器大型结构部件,可用于新型的分子及原子复合材料,适用于光导纤维的被覆,微波炉件,显示器件信息传递变电检测

7.取向度的测定方法有哪几种?举例说明聚合物取向的实际意义。

(1)用光学显微镜测定双折射来计算;(2)用声速法测定;(3)广角X射线衍射法;(4)红外二向色性;(5)偏正荧光法。

8.某结晶聚合物的注射制品中,靠近模具的皮层具有双折射现象,而制品内部用偏光显微镜观察发现有Maltese黑十字,并且越靠近制品芯部,Maltese黑十字越大。试解释产生上述现象的原因。如果降低模具的温度,皮层厚度将如何变化?

答:(1)由于形成球晶,球晶具有双折射现象,自然光经过偏振片变为偏振光,通过球晶发生双折射,分成两束振动方向垂直的偏振光,两束偏振光在与检偏镜平行方向上存在分量,分量速度不同,产生相位差而干涉,使呈现黑十字消光图像,制品外部与模具接触,冷却速度快,球晶来不及生长而成多层片晶或小球晶,而制品芯部温度高,结晶时间充分,生长为大球晶,因此消光图像更大。

(2)降低温度会增加过冷度,缩短结晶时间,因而皮层厚度增加。

9.采用“共聚”和“共混”方法进行聚合物改性有何异同点?

解:共聚是指共聚合,是一种化学方法,有几种单体进行共同的聚合反应得到特殊结构和性能的聚合物.共混是指共同混合,是一种物理方法,使几种材料均匀混合,以提高材料性能的方法,工业上橡胶材料和塑料材料进行共混是典型的例子,也可以在聚合物中加入某些特殊性能的成分以改变聚合物的性能如导电性能等.

10.简述提高高分子合金相容性的手段

答:提高高分子合金的相容性一般用加入第三组分增溶剂的方法。

增溶剂可以是与A、B两种高分子化学组成相同的嵌段或接枝共聚物,也可以是与A、B的化学组成不同但能分别与之相容的嵌段或接枝共聚物。

第3章高分子溶液

1.溶度参数的含义是什么?“溶度参数相近原理”判断溶剂对聚合物溶解能力的依据是什么?

答:(1)溶度参数:是指内聚能密度的平方根;

(2)依据是:△G M=△H M-T△S M,因为溶解过程△S M >0, 要使△G M<0,△H M越小越好,又因△HM=?1?2[σ1-σ2]2VM ,所以σ1与σ2越相近就越小,所以可用“溶度参数相近原理”判断溶剂对聚合物的溶解能力。

2.什么叫高分子θ溶液?它与理想溶液有何本质区别?

答:1、高分子θ溶液:是指高分子稀溶液在θ温度下(Flory温度),分子链段间的作用力,分子链段与溶剂分子间的作用力,溶剂分子间的作用力恰好相互抵消,形成无扰状态的溶液。此时高分子—溶剂相互作用参数为1/2,内聚能密度为0.

2、理想溶液三个作用力都为0,而θ溶液三个作用力都不为0,只是合力为0.

3.Flory-Huggins晶格模型理论推导高分子溶液混合熵时作了哪些假定?混合热表达式中Huggins参数的物理意义是什么?答:(1)假定:a.溶液中分子排列也像晶体中一样,为一种晶格排列;b.高分子链是柔性的,所有构象具有相同的能量;c.溶液中高分子“链段”是均匀分布的,即“链段”占有任一格子的几率相同。(2)物理意义:反映高分子与溶剂混合时相互作用能的变化。

4.什么叫排斥体积效应?Flory-Kingbuam稀溶液理论较之晶格模型理论有何进展?答:(1)排斥体积效应:在高分子稀溶液中,“链段”的分布实际上是不均匀的,高分子链以一个被溶剂化了的松懈的链球散布在纯溶剂中,每个链球都占有一定的体积,它不能被其他分子的“链段”占有。

(2)进展:把“链段”间的排斥体积考虑进去,更符合实际。

5.高分子合金相分离机理有哪两种?比较其异同点。

解:固液分离,气液分离绝大多数高分子溶液,即使在浓度小时,性质也不服从理想溶液的规律,混合熵比小分子要大十几倍到数十倍,一个高分子在溶液中可以起到许多个小分子的作用,高分子溶液性质与理想溶液性质偏差的原因在于分子量大,分子链具有柔顺性,但一个高分子中每个链段是相互连接的,起不到x(连段数)个小分子的作用,混合熵比xN个小分子来得小。

第4章聚合物的分子量和分子量分布

1.什么叫分子量微分分布曲线和体积分布曲线?两者如何相互转换?

(1)微分分布曲线:表示聚合物中分子量(M)不同的各个级分所占的质量分数[ω(W)]或摩尔分数[x(M)];

积分分布曲线:表示聚合物中分子量小于和等于某一值的所有级分所占的质量分数[I(M)]或摩尔分数。转换:[I(M)]=∫0Mω(M)dM

2.测定聚合物数均和重均分子量的方法有哪几种?每种方法适用的分子量范围如何?答:(1)测定数均分子量的方法:端基分析法、沸点升高、冰点下降、气相渗透压(范围<3×104)(2)测量重均分子量的方法:光散射法(1×104 -1×107)

2、渗透压法测得分子量为数均分子量。

第5章聚合物的转变与松弛

1.以分子运动观点和分子间物理缠结概念说明非晶态聚合物随着温度升高粘弹行为的4个区域,并讨论分子量对应力松弛模量-温度曲线的影响规律。

答:(1)a.玻璃态区,玻璃化温度以下,分子运动主要限于振动和短程的旋转运动;

b.玻璃-橡胶转变区,可解析为远程、协同分子运动的开始;

c.橡胶-弹性平台区,由于分子间存在几个链段平行排列的物理缠结,聚合物呈现远程橡胶弹性;

d.末端流动区,物理缠结来不及松弛,材料仍然表现为橡胶行为,温度升高,发生解缠作用,导致整个分子产生滑移运动,即产生流动,这种流动是作为链段运动结果的整

链运动。(2)聚合物分子量越高,橡胶-弹性平台就越长。

2.讨论结晶、交联聚合物的模量-温度曲线和结晶度、交联度对曲线的影响规律。解:

3.写出四种测定聚合物玻璃化温度的方法,简述其基本原理。不同实验方法所得结果是否相同?

答:(1)a.膨胀计法,热膨胀的主要机理是克服原子间的主价力和次价力,膨胀系数较小;b.量热法,聚合物在玻璃化时的热学性质的变化;c.温度-形变法,利用聚合物玻璃化转变时形变量的变化来测定其玻璃化温度;d.核磁共振法,利用电磁性质的变化研究聚合物玻璃化转变的方法。(2)不同,因为玻璃化温度不像熔点、沸点一样是一固定的物理态,随着环境的改变,条件的改变其值有波动的。

4.聚合物的玻璃化转变是否是热力学相变?为什么?

聚合物的玻璃化转变并不是一个真正的热力学相变。因为非晶态聚合物发生玻璃化转变时,其体积,焓或熵是连续变化的,而K,α和C F出现不连续的变化,要使体系达到热力学平衡,需要无限缓慢的变温速率和无限长的测试时间,实验上不可能做到,因此,玻璃化温度的测定过程体系不能满足热力学平衡条件,转变过程是一个松弛过程,所测得的玻璃化温度不是一个真正的热力学相变。

5.试用玻璃化转变的自由体积理论解释:(1)非晶态聚合物冷却时体积收缩速率发生变化;(2)冷却速度愈快,测得的T g值愈高。

答:(1)在T g以上,非晶态聚合物体积收缩时,包括聚合物分子占有体积的收缩以及自由体积的收缩,而在T g以下,自由体积处于冻结状态,所以,聚合物体积收缩只有聚合物占有体积的收缩,因此,体积收缩速率会有变化。(2)当冷却速度愈快,测得的T g偏大,这是因为:一方面,温度降低,体系的自由体积减小,同时,粘度增大,链段运动的松弛时间增加,另一方面,冷却速率决定了实验的观察时间,而玻璃化温度是链段运动的松弛时间与实验的观察时间相当时的温度,故冷却愈快,观察时间愈短,测得的T g值愈高。

6.玻璃化转变的热力学理论基本观点是什么?

答:热力学研究表明,相转变过程中自由能是连续的,而与自由能的导数有关的性质发生不连续的变化。非晶态聚合物发生玻璃化转变时,其体积、焓或熵是连续变化的,但K、C P、α出现不连续的变化。实际上,玻璃化温度的测定过程体系不能满足热力学的平衡条件,转变过程是一个松弛过程,所得Tg值依赖于变温速率及测试方法(外力作用速率)

7.聚合物晶体结构和结晶过程与小分子晶体结构和结晶过程有何差别?造成这些差别的原因是什么?

答:(1)小分子有分子晶体、原子晶体和离子晶体,而高分子晶体仅有分子晶体,且仅是分子链的一部分形成的晶体。这是由于高分子的分子链很长,可穿越多个晶胞。(2)小分子的熔点是一个确定值,而高分子的熔点是一个范围值。(3)高分子有结晶度的概念,而小分子没有。这是由于高分子结构的复杂性,使得聚合物结晶要比小分子结晶有更多的缺陷,所以结晶总是很不完善,有晶区和非晶区,用结晶读表示。(4)高聚物的结晶过程分一次结晶(主结晶)和二次结晶(次级结晶)。这是由于高分子的相对分子质量大,体系黏度大,分子运动迟缓所引起的。

8.测定聚合物结晶速度有哪些方法?简述其原理和主要步骤。

答:(1)膨胀计法、光学解偏振法和示差扫描量热法(DSC)。原理:聚合物结晶过程中,从无序的非晶态排列成高度有序的晶态,由于密度变大,会发生体积收缩即可研究结晶过程。主要步骤:方法是将试样与跟踪液(通常是水银)装入一膨胀计中,加热到聚合物熔点以上,使其全部熔融。然后将膨胀计移入恒温槽内,观察毛细管内液柱的高度随时间的变化。(2)偏光显微镜法和小角激光光散射法。原理:用单位时间里球晶半径增加的长度作为观察温度下球晶的径向生长速度。主要步骤:将试样熔融后立即进行等温结晶,观察球晶的半径随时间的增长变化,以球晶半径对时间作图,可得一直线。

9.比较下列各组聚合物的Tg高低并说明理由:

(1)聚二甲基硅氧烷〈顺式聚1,4-丁二烯(2)聚己二酸乙二醇酯〈聚对苯二甲酸乙二醇酯(3)聚丙烯〈聚4-甲基-1-戊烯(4)聚氯乙烯〉聚偏二氯乙烯10.以结构观点讨论下列聚合物的结晶能力:聚乙烯、尼龙66、聚异丁烯。

聚乙烯,结构简单,对称又规整,所以非常容易结晶。

尼龙66,化学结构及几何结构均较规整,没有键接方式问题,也较容易结晶。

聚异丁烯,分子链具有较高的对称性,可以结晶,但由于取代基的空间位阻以及化学结构的不规整性,使其较难结晶。

第6章橡胶弹性

1.高弹性有哪些特征?为什么聚合物具有高弹性?在什么情况下要求聚合物充分体现高弹性?什么情况下应设法避免高弹性?

答:(1)高弹性特征:a.弹性模量很小;b.形变量很大;c.弹性模量随绝对温度的升高正比的增加;d.形变时有明显的热效应。(2)因为聚合物单体之间呈链状,还有的呈网状,这样,收到拉伸时,连接处的共价键要恢复自然状态产生弹力,而且有更多的共价键会被牵涉进来,于是弹力就越来越大。(3)什么情况下要求高弹性,什么情况下要求避免高弹性,则要在实际生活中找例子。比如摩擦现象,有时我们需要充分体现高弹性(比如皮球的落地和弹起),有时则需要设法避免高弹性(汽

车轮胎在刹车时)。

2.试述交联橡胶平衡态髙弾形变热力学分析的依据和所得结果的物理意义。 答:依据:热力学第一定律和第二定律,

物理意义:橡胶变形后的张应力可以看成是由熵的变化和内能的变化两部分组成。只有熵才能贡献的弹性叫熵弹性,橡胶拉伸时内能变化很小,主要是熵的变化。内能的变化是橡胶拉伸时放热的原因。

4.什么叫热塑性弹性体?举例说明其结构与性能关系。

答:(1)热塑性弹性体是一种兼有塑料和橡胶特性、在常温下显示橡胶高弹性、高温下又能塑化成型的高分子材料,又称为第三代橡胶。

(2)苯乙烯-丁二烯-苯乙烯三嵌段共聚物(SBS ),PB 分散相Tg 高于室温,构成物理交联区域;故SBS 室温下为弹性体,高温下发生粘性流动,可以塑化成型。

第7章 聚合物的粘弹性

3.指出Maxwell 模型、Kelvin 模型和四元件模型分别适宜于模拟哪一类型聚合物的那一种力学松弛过程?

答:Maxwell 模型适宜于模拟线形聚合物的应力松弛过程,Kelvin 模型适宜于模拟交联聚合物的蠕变过程,四元件模型适宜于模拟线形聚合物的蠕变过程。

4.什么是时温等效原理?该原理在预测聚合物材料的长期使用性能方面和在聚合物加工过程中各有哪些指导意义?

答:(1)升高温度与延长时间对分子运动是等效的,对聚合物的粘弹行为也是等效的,这就是时温等效原理。

(2)需要在室温条件下几年甚至上百年完成的应力松弛实验实际上是不能实现的,但可以在高温条件下短期内完成;或者需要在室温条件下几十万分之一秒或几百万分之一秒中完成的应力松弛实验,可以在低温条件下几个小时甚至几天内完成。 5.定量说明松弛时间的含意。为什么说作用力的时间相当时,松弛现象才能被明显地观察到?

答:(1)松弛时间Γ=η/E 是粘性系数和弹性系数的比值;

(2)如果外加应力作用时间极短,材料中的粘性部分还来不及响应,观察到的是弹性应变。反之,若应力作用的时间极长,弹性应变已经回复,观察到的仅是粘性流体贡献的应变,材料可考虑为一个简单的牛顿流体。只有在适中的应力作用时间,材料的粘弹性才会呈现,应力随时间逐渐衰减到零,这个适中的时间正是松弛现象的内部时间尺度松弛时间τ。

9.分别写出纯粘性液体(粘滞系数η)、理想弹性体(弹性模量E )、Maxwell 单元(EM 、ηM)和Kelvin 单元(E K , Ηk)在t=0时加上一恒定应变速度K 后应力(δ)

随时间(t )的变化关系,并以图形表示之。

(1)δ=KEt, 图形为一过原点直线。

(2)δ=Kη, 图形为一水平直线。

(3)δ=Kη-ηexp(-Et/η), 图形为一条斜率逐渐减小的曲线。 (4)δ=KEt+ηK 图形为一直线,与纵轴交点在横轴上方。

第8章 聚合物的屈服和断裂

1.名词解释: 脆-韧转变点:在一定应变速率下,作断裂应力和屈服应力分别与温度T 的关系曲线,两条曲线的交点就是脆韧屈服转变点。

细颈:高分子材料试样条在拉伸实验中,试条某点的横截面突然快速下降的现象。 剪切带:只发生在局部带状区域内的剪切变形。

银纹:聚合物在张应力作用下,于材料某些薄弱地方出现应力集中而产生局部的塑性形变和取向,以至在材料表面或内部垂直于应力方向上出现长度为100μm、宽度为10μm 左右、厚度约为1μm 的微细凹槽。

应力集中:受力材料在形状、尺寸急剧变化的局部或内部缺陷(孔、裂缝等)的附近出现应力显著增大的现象。

疲劳:材料或构件在周期应力作用下断裂或失效的现象,是材料在实际使用中常见的破裂形式。

4.简述几种组合应力作用下材料的屈服判据,比较不同判据之间的差异。

答:(1)单参数屈服判据(Tresca 判据和最大形变能理论),只受正应力和切应力;(2)双参数屈服判据(Coulomb 判据或MC 判据),受正应力、切应力和正压力。此外考虑流体静压力的改进的Tresca 和Von Mises 判据也适用。 6.简述聚合物增强、增韧的途径和机理。

答:聚合物增强途径:通过添加增强剂来形成复合材料;

机理:形成复合材料,可以传递应力,避免基体应力集中,提高力学强度。 聚合物的增韧途径:添加增塑剂。

机理:银纹机理、银纹-剪切带机理、三轴应力空化机理、刚性粒子增韧机理。 7.下列几种聚合物的抗冲击性能如何?为什么?(T

(1)聚苯乙烯;(2)聚苯醚;(3)聚碳酸酯;(4)ABS;(5)聚乙烯

答:(1)聚苯乙烯,因主链挂上体积庞大的侧基苯环,使之称为难以改变构象的刚性链,使得冲击性能不好,为典型的脆性聚合物。

(2)聚苯醚,因主链含有刚性的苯环,故为难以改变构象的刚性链,冲击性能不好。(3)聚碳酸酯,由于主链中含酯基,在-120摄氏度可产生局部模式运动,称之为β转变。在T

(4)ABS,因ABS具有多相结构,支化的聚丁二烯相当于橡胶微粒分散在连续的塑料相中,相当于大量的应力集中物,当材料受到冲击时,它们可以引发大量的裂纹,从而能吸收大量的冲击能,所以冲击性能好。

(5)聚乙烯,由于聚乙烯链节结构极为规整和对称,体积又小,所以聚乙烯非常容易结晶,而且结晶度比较高。由于结晶限制了链段的运动,使之柔性不能表现出来,所以冲击性能不好。高压聚乙烯由于支化多,破坏了链的规整性,结晶度低些,冲击性能稍好些。

1.什么是假塑性流体?绝大多数聚合物熔体和浓溶液在通常条件下为什么均呈现假塑性流体的性质?试用缠结理论加以解释。

答:(1)流动指数n<1的流体称为假塑性流体;

3.为什么聚合物的粘流活化能与分子量无关?

答:根据自由体积理论,高分子的流动不是简单的整个分子的迁移,而是通过链段的相继跃迁来实现的。形象的说,这种流动的类似于蚯蚓的蠕动。因而其流动活化能与分子的长短无关。η=A e(Ea/RT),由实验结果可知当碳链不长时,Ea随碳数的增加而增加,但当碳数大于30时,不再增大,因此聚合物超过一定数值后,Ea与相对分子质量无关。

4.讨论聚合物的分子量和分子量分布对熔体粘度和流变性的影响。

答:低切变速率下,当M WM C,与聚合物化学结构,分子量分布及温度无关;增大切变速率,链缠结结构破坏程度增加,分子量对体系粘度影响减小。

聚合物熔体非牛顿流动时的切变速率随分子量加大向低切变速率移动,剪切引起的粘度下降,分子量低的试样也比分子量高的试样小一些。分子量相同时分子量分布宽的聚合物熔体出现非牛顿流动的切变速率比分布窄的要低的多。

5.从结构观点分析温度、切变速率对聚合物熔体粘度的影响规律,举例说明这一规律在成型加工中的应用。

答:a.温度升高,粘度下降,在较高温度的情况下,聚合物熔体内自由体积相当大,流动粘度的大小主要取决于高分子链本身的结构,即链段跃迁运动的能力,一般分子链越刚硬,或分子间作用力越大,则流动活化能越高,这类聚合物是温敏性的;当温度处于一定范围即Tg

b.柔性链高分子表观粘度随切变速率增加而明显下降,刚性链高分子表观粘度也随且变速率增加而下降,但降幅较小,因为切变速率增加,柔性链易改变构象,即通过链段运动破坏原有缠结,降低流动阻力,刚性链链段较长,构象改变较困难,随切变阻力增加,阻力变化不大。

6.解释下列名词、概念:

牛顿流体:流动行为符合牛顿流动定律的流体;

非牛顿流体:流动行为不符合牛顿流动定律的流体。

切粘度:等于单位速度梯度时单位面积上所受到的切应力,其值放映了液体分子间由于相互作用而产生的流动阻力即内摩擦力的大小,单位为帕秒(Pa s)。

拉伸粘度:等于单位速度梯度时单位面积上所受到的拉伸应力。

真实粘度:单位速度梯度时单位面积上所受到的切应力。

表观粘度:在粘性流动中,流体具有剪切速率依赖性时的剪切应力与剪切速率之比值。

非牛顿指数:对切变速率非牛顿的校正。

稠度系数:描述非牛顿流体流动行为可用下述幂律方程:,其中K为稠度系数。

不稳定流动与熔体破裂:聚合物熔体在挤出时,如果切应力超过一极限值时,熔体往往会出现不稳定流动,挤出物外表不再是光滑的,最后导致不规则的挤出物断裂,称为熔体破裂。

7.为什么涤纶采用熔融纺丝方法,而腈纶却用湿法纺丝?

答:由于聚丙烯腈的熔点很高(318℃),分解温度(220℃)低于熔点,所以不能用熔融纺丝。由于聚对苯二甲酸乙二酯的熔点为260~270℃,低于分解温度(约为350℃),可用熔融纺丝。

高分子物理和化学-名词解释

高分子物理和化学名词解释(各种转)作者:刘方超CooDee 1. 应力松弛:在恒定温度和形变保持不变的情况下,聚合物内部的应力随时间的增加而逐渐衰减的现象。 2. 氢键:是极性很强的X-H键上的氢原子,与另外一个键上电负性很大的原子Y的孤对电子相互吸引而形成的一种键。 3. 等规聚合物:指全同立构和间同的高聚物。 4. 等规度:高聚物中含有全同立构和间同立构总的百分数。 5. 聚合物的粘弹性:聚合物的形变和发展具有时间依赖性,这种性质介于理想弹性体和理想粘性体之间,称为粘弹性。 1999年 1.玻璃化温度:玻璃态与高弹态之间的转变即玻璃化转变,所对应的转变温度。 2.脆点(化)温度:当温度低于某个温度Tb时,玻璃态高聚物不能发展强迫高弹形变,而必定发生脆性断裂,这个温度称为脆化温度。 3.溶解度参数:通常将内聚能密度的平方根定义为溶解度参数d,溶质和溶剂的溶解度参数愈接近,两者愈能相互溶解。 4.柔顺性:高分子链能够不断改变其构象的性质或高分子能够卷曲成无规线团的能力。 5.泊松比:材料横向单位宽度的减少与纵向单位长度的增加之比值。 6.表观粘度:与牛顿粘度定义相类比,将非牛顿流体的粘度定义为剪切应力与剪切速率之比,其值称为表观粘度,即。 2000年 1. 链段:把由若干个键组成的一段链作为一个独立运动的单元,称为链段。 2. 构型:构型是对分子中的最近邻原子间的相对位置的表征,也就是指分子汇总由化学键所固定的原子在空间的几何排列。 3. 构象:由于单键内旋转而产生的分子在空间的不同形态。 4. 熔限:结晶高聚物有一个较宽的熔融温度范围,这个温度范围就叫熔限。 5. 熔点:高聚物结晶部分完全熔化的温度。 6. 剪切粘度:液体内部反抗在切应力作用系发生薄层流动的内摩擦力,称为剪切粘度。 7. 高聚物的屈服:聚合物在外力作用下产生的塑性变形。 2001年 1.时温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT将某一温度下测定的力学数据变成另一温度下的力学数据。

高分子物理知识点总结

高分子物理知识点总结 导读:我根据大家的需要整理了一份关于《高分子物理知识点总结》的内容,具体内容:高分子物理是研究高分子物质物理性质的科学。下面我给你分享,欢迎阅读。高分子链的构型有旋光异构和几何异构两种类型。旋光异构是由于主链中的不对称碳原子形成的,有全同... 高分子物理是研究高分子物质物理性质的科学。下面我给你分享,欢迎阅读。 高分子链的构型有旋光异构和几何异构两种类型。 旋光异构是由于主链中的不对称碳原子形成的,有全同、间同和无规三种不同的异构体(其中,高聚物中全同立构和间同立构的总的百分数称为等规度。)。 全同(或等规)立构:取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成间同立构:取代基相间地分布于主链平面的两侧或者说两种旋光异构单元交替键接 无规立构:取代基在平面两侧作不规则分布或者说两种旋光异构单元完全无规键接 几何异构是由于主链中存在双键而形成的,有顺式和反式两种异构体。构象:原子或原子基团围绕单键内旋转而产生的空间分布。 链段:把若干个键组成的一段链作为一个独立运动的单元 链节(又称为重复单元):聚合物中组成和结构相同的最小单位

高分子可以分为线性、支化和交联三种类型。其中支化高分子的性质与线性高分子相似,可以溶解,加热可以熔化。但由于支化破坏了高分子链的规整性,其结晶能力大大降低,因此支化高分子的结晶度、密度、熔点、硬度和拉伸强度等,都较相应的线性高分子的低。 交联高分子是指高分子链之间通过化学键形成的三维空间网络结构,交联高分子不能溶解,只能溶胀,加热也不能熔融。 高分子链的构象就是由单键内旋转而形成的分子在空间的不同形态。 单键的内旋转是导致高分子链呈卷曲构象的根本原因,内旋转越自由,卷曲的趋势就越大。这种不规则的卷曲的高分子构象称为无规线团。 高分子链的内旋转并不是完全自由的,有键角和空间位阻的限制。 自由结合链的内旋转没有键角和位垒限制;自由旋转链有键角限制,但没有空间位阻的限制。自由结合链和自由旋转链都是假想的理想链,实际中是不存在的。 实际的高分子链既不是自由结合链,也不是自由旋转链,但可以看作是一个等效的自由结合链。 柔顺性:高分子链能够改变其构象的性质 末端距:线性高分子的一端到另一端的距离 内聚能:克服分子间的作用力,把1mol液体或者固体移到其分子间的引力范围之外所需要的能量(单位体积内的内聚能则称为内聚能密度) 聚合物在不同的条件下结晶,可以形成不同的形态。 聚合物的单晶一般只能在极稀溶液中(浓度小于0.1%)缓慢结晶才能形成。

《高分子物理》试题

《高分子物理》试题 开课学院:材料学院类别:共( 3 )页 课程号:考试性质:考试 一、解释概念(15分,每题3分) 1、全同立构 2、球晶 3、高分子合金 4、熵弹性 5、应力松弛 二、选择答案(20分,每题1分) 1、高分子科学诺贝尔奖获得者中,()首先把“高分子”这个概念引进科学领域。 A、H. Staudinger, B、K.Ziegler, G.Natta, C、P. J. Flory, D、H. Shirakawa 2、链段是高分子物理学中的一个重要概念,下列有关链段的描述,错误的是()。 A、高分子链段可以自由旋转无规取向,是高分子链中能够独立运动的最小单位。 B、玻璃化转变温度是高分子链段开始运动的温度。 C、在θ条件时,高分子“链段”间的相互作用等于溶剂分子间的相互作用。 D、聚合物熔体的流动不是高分子链之间的简单滑移,而是链段依次跃迁的结果。 3、聚苯乙烯在张应力作用下,可产生大量银纹,下列说法错误的是()。 A、银纹是高度取向的高分子微纤构成。 B、银纹处密度为0,与本体密度不同。 C、银纹具有应力发白现象。 D、银纹具有强度,与裂纹不同。 4、提高高分子材料的拉伸强度有效途径为()。 A、提高拉伸速度, B、取向, C、增塑, D、加入碳酸钙 5、下列四种聚合物在各自的良溶剂中,常温下不能溶解的为()。 A、聚乙烯, B、聚甲基丙烯酸甲酯, C、无规立构聚丙烯, D、聚氯乙烯 6、高分子热运动是一个松弛过程,松弛时间的大小取决于()。 A、材料固有性质 B、温度 C、外力大小 D、以上三者都有关系。 7、示差扫描量热仪(DSC)是高分子材料研究中常用的方法,常用来研究()。 ⑴T g,⑵T m和平衡熔点,⑶分解温度T d,⑷结晶温度T c,⑸维卡软化温度,⑹ 结晶度,⑺结晶速度,⑻结晶动力学 A、⑴⑵⑶⑷⑸⑹⑺⑻ B、⑴⑵⑶⑷⑹⑺⑻ C、⑴⑵⑶⑷⑸ D、⑴⑵⑷⑹ 8、你会选()聚合物用作液氮罐的软密封。(液氮沸点为77K) A、硅橡胶, B、顺丁橡胶, C、天然橡胶, D、丁苯橡胶

高分子物理习题及答案

一、单项选择题 1.高分子的基本运动是( B )。 A.整链运动 B.链段运动 C.链节运动 2.下列一组高聚物分子中,柔性最大的是( A )。 A.聚氯丁二烯 B.聚氯乙烯 C.聚苯乙烯 3. 下列一组高聚物中,最容易结晶的是( A ). A.聚对苯二甲酸乙二酯 B. 聚邻苯二甲酸乙二酯 C. 聚间苯二甲酸乙二酯 4.模拟线性聚合物的蠕变全过程可采用( C )模型。 A.Maxwell B. Kelvin C. 四元件 5.在半晶态聚合物中,发生下列转变时,判别熵值变大的是( A )。 (1)熔融(2)拉伸取向(3)结晶(4)高弹态转变为玻璃态 6.下列一组高聚物分子中,按分子刚性的大小从小到大的顺序是( ADBFC )。 A.聚甲醛; B.聚氯乙烯; C.聚苯乙烯; D. 聚乙烯;F. 聚苯醚 7..假塑性流体的特征是( B )。 A.剪切增稠 B.剪切变稀 C.粘度仅与分子结构和温度有关 8.热力学上最稳定的高分子晶体是( B )。 A.球晶 B.伸直链晶体 C.枝晶 9.下列高聚物中,只发生溶胀而不能溶解的是( B )。 A. 高交联酚醛树脂; B. 低交联酚醛树脂; C.聚甲基丙稀酸甲脂 10.高分子-溶剂相互作用参数χ 1 ( A )聚合物能溶解在所给定的溶剂中 A. χ 1<1/2 B. χ 1 >1/2 C. χ 1 =1/2 11.判断下列叙述中不正确的是( C )。 A.结晶温度越低,体系中晶核的密度越大,所得球晶越小; B.所有热固性塑料都是非晶态高聚物; C.在注射成型中,高聚物受到一定的应力场的作用,结果常常得到伸直链晶体。 12. 判断下列叙述中不正确的是( C )。 A.高聚物的取向状态是热力学上一种非平衡态;

高分子物理及化学综合实验讲义.

高分子科学实验讲义 (内部教材) 高分子教研室

目录 实验一常见塑料和纤维的简易鉴别 (1) 实验二甲基丙烯酸甲酯的本体聚合 (4) 实验三丙烯酰胺的溶液聚合 (6) 实验四苯乙烯的悬浮聚合 (9) 实验五熔融缩聚反应制备尼龙-66 (12) 实验六聚氨酯泡沫塑料的制备 (16) 实验七热固性脲醛树脂的制备 (19) 实验八膨胀计法测定高聚物的玻璃化转变温度 (22) 实验九用偏光显微镜研究聚合物结晶形态 (25) 实验十粘度法测定聚合物的分子量 (28) 实验十一差示扫描量热法(DSC)测定聚合物热性能 (33) 实验十二、热失重法(TGA)测定聚合物的热稳定性 (41) 实验十三DMA测定高聚物的动态力学性能 (44) 实验十四用扫描电子显微镜观察聚合物形态 (48) 实验十五高聚物熔融指数的测定 (51) 实验十六高聚物熔体流变特性的测定 (54)

综合性、设计性实验 (61) 实验十七改性苯丙乳液的合成与性能分析 (63) 实验十八丙烯酸脂类压敏胶的制备与性能测试 (68)

实验一常见塑料和纤维的简易鉴别 一、实验目的 1.了解聚合物燃烧试验和气味试验的特殊现象,借以初步辨认各种聚合物。 2.利用聚合物溶解的规律及溶剂选择的原则,了解并掌握溶解法对常见聚合物的定性分析。 二、基本原理 聚合物的鉴别,特别对未知聚合物试样的鉴别颇为复杂,即使经纯化处理的聚合物也很难用单一的方法进行鉴别。常见聚合物通常可用红外、质谱、X 光衍射、气相色谱等仪器进行不同程度的定性和定量分析。而基于聚合物的特性简单地通过外观、在水中的浮沉、燃烧、溶解性和元素分析的方法进行实验室的鉴别则方便易行。 1.根据试样的表观鉴别 HDPE、PP、PA 66、PA 6、PA1010质硬,表面光滑。LDPE、PVF、PA11质较软,表面光滑,有蜡状感觉。硬PVC、PMMA表面光滑,无蜡状感觉。PS质硬,敲打会发出清脆的“打铃声”。 2.根据试样的透明程度鉴别 透明的聚合物:聚丙烯酸酯类,聚甲基丙烯酸酯类,再生纤维素,纤维素酯类和醚类,聚甲基戊烯类,PC、PS,PVC及其共聚物。半透明的聚合物:尼龙类,PE,PP,缩醛树脂类。透明性往往与样品的厚薄,结晶性,共聚物某些成分的含量等有关。如:EV A中VC的含量大于15%可以从半透明变为透明。半透明的聚合物在薄时变为透明。加入填料共混后,透明聚合物变为不透明。结晶可使透明聚合物变为半透明。 3.根据聚合物燃烧试验的火焰及气味鉴别

高分子物理知识点总结与习题

聚合物的结构(计算题:均方末端距与结晶度) 1.简述聚合物的层次结构。 答:聚合物的结构包括高分子的链结构和聚合物的凝聚态结构,高分子的链结构包括近程结构(一级结构)和远程结构(二级结构)。一级结构包括化学组成、结构单元链接方式、构型、支化与交联。二级结构包括高分子链大小(相对分子质量、均方末端距、均方半径)和分子链形态(构象、柔顺性)。三级结构属于凝聚态结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构和织态结构。 构型:是指分子中由化学键所固定的原子在空间的几何排列。 (要改变构型,必须经过化学键的断裂和重组。) 高分子链的构型有旋光异构和几何异构两种类型。 旋光异构是由于主链中的不对称碳原子形成的,有全同、间同和无规三种不同的异构体(其中,高聚物中全同立构和间同立构的总的百分数称为等规度。)。 全同(或等规)立构:取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成 间同立构:取代基相间地分布于主链平面的两侧或者说两种旋光异构单元交替键接 无规立构:取代基在平面两侧作不规则分布或者说两种旋光异构单元完全无规键接 几何异构是由于主链中存在双键而形成的,有顺式和反式两种异构体。 构象:原子或原子基团围绕单键内旋转而产生的空间分布。 链段:把若干个键组成的一段链作为一个独立运动的单元 链节(又称为重复单元):聚合物中组成和结构相同的最小单位 高分子可以分为线性、支化和交联三种类型。其中支化高分子的性质与线性高分子相似,

可以溶解,加热可以熔化。但由于支化破坏了高分子链的规整性,其结晶能力大大降低,因此支化高分子的结晶度、密度、熔点、硬度和拉伸强度等,都较相应的线性高分子的低。 交联高分子是指高分子链之间通过化学键形成的三维空间网络结构,交联高分子不能溶解,只能溶胀,加热也不能熔融。 高分子链的构象就是由单键内旋转而形成的分子在空间的不同形态。 单键的内旋转是导致高分子链呈卷曲构象的根本原因,内旋转越自由,卷曲的趋势就越大。 这种不规则的卷曲的高分子构象称为无规线团。 高分子链的内旋转并不是完全自由的,有键角和空间位阻的限制。 自由结合链的内旋转没有键角和位垒限制;自由旋转链有键角限制,但没有空间位阻的限制。 自由结合链和自由旋转链都是假想的理想链,实际中是不存在的。 实际的高分子链既不是自由结合链,也不是自由旋转链,但可以看作是一个等效的自由结合链。 柔顺性:高分子链能够改变其构象的性质 末端距:线性高分子的一端到另一端的距离 内聚能:克服分子间的作用力,把1mol液体或者固体移到其分子间的引力范围之外所需要的能量(单位体积内的内聚能则称为内聚能密度)

高分子物理简答题完整版

高分子物理简答题 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高分子物理简答题 1.同样是都是高分子材料,在具体用途分类中为什么有的是县委,有的是塑料,有的是橡胶同样是纯的塑料薄膜,,为什么有的是全透明的,有的是半透明的 答:高分子材料的用途分类取决于材料的使用温度和弹性大小,当材料的使用温度在玻璃化温度Tg以下,是塑料,Tg以上则为橡胶,否则会软化。而透明度的问题在于该材料是否结晶,结晶的塑料薄膜是透明的,非结晶的则不透明或半透明。 2.假若聚丙烯的等规度不高,能不能用改变构想的办法提高等规度?说明理由。 答:构象:由于单键内旋转而产生的分子在空间的不同形态,称为构象。聚丙烯的等规度是由构型不同的异构体所产生的旋光异构所引起的,由于头-头键接的聚丙烯,其有全同立构、间同立构和无规立构等异构体。而且构型是由分子中由化学键所固定的原子在空间的几何排列,构象仅仅是由于单键内旋转而产生的分子在空间的不同形态。所以当聚丙烯的等规度不高时,用改变构象的方法是无法提高其等规度的,需要破坏化学键,改变构型,才能提高等规度。 3.理想的柔性高分子链可以用自由连接或高斯链模型来描述,但真实高分子链在通常情况下并不符合这一模型,原因是什么这一矛盾是如何解决的 答:在采用自由连接链或高斯链模型描述理想的柔性高分子链时,我们假设单键在结合时无键角的限制,内旋转时也无空间位阻,但真实高分子链不但有键角的限制,在内旋转时也存在空间位阻,因此使真实高分子链在通常情况下并不符合这一模型。对于真实高分子链我们用等效自由结合链来描述,把由若干个相关的键组成的一段链,算作一个独

高分子物理选择题

选择题 1、聚苯乙烯分子中可能呈现的构象是(A )。 A、无规线团 B、折叠链 C、螺旋链 2、比较一下聚合物的流动性,哪个最好(C )。 A、MI=0.1 B、MI=1 C、MI=10 3、当Mark公式中α为以下何值时,高分子溶液处于θ状态(A )。 A、α=0.5 B、α=0.8 C、α=2 4、以下哪个溶剂是θ溶剂(B )。 A、χ1=0.1 B、χ1=0.5 C、χ1=0.9 5、以下哪种材料的密度最大(B )。 A、高压聚乙烯 B、低压聚乙烯 C、聚丙烯 6、以下哪种方法可以测定绝对相对分子质量(B )。 A、VPO B、膜渗透法 C、GPC 7、结晶度增加,以下哪种性能增加(B )。 A、透明性 B、抗张强度 C、冲击强度 8、WLF方程不能用于(B )。 A、测粘度 B、测结晶度 C、测松弛时间 9、球晶的制备应从(B )。 A、稀溶液 B、熔体 C、高温高压下 10、四元件模型用于模拟(B )。 A、应力松弛 B、蠕变 C、内耗 11、所有聚合物在在玻璃化转变时,自由体积分数均等于(C )。 A、0.5% B、1% C、2.5% 12、高聚物的应力-应变曲线中哪个阶段表现出强迫高弹性(A )。 A、大形变 B、应变硬化 C、断裂 13、一般地说,哪种材料需要较高程度的取向(C )。 A、橡胶 B、塑料 C、纤维 14、对极性高分子,选择溶剂应采用哪一原则更为准确(B )。 A、极性相似原理 B、溶剂化原则 C、δ相近原则 15、结晶度不能用以下哪种方法测定(B )。 A、膨胀计法 B、双折射法 C、热分析法

16、玻璃化转变温度不能用以下哪种仪器测定(C )。 A、膨胀计 B、扭辫仪 C、熔融指数仪 17、3.4次方幂律适用于( C )。 A、缩聚物 B、低相对分子质量加聚物 C、高相对分子质量加聚物 18、已知[η]=KM,判断以下哪一条正确(C )。 A、Mη=M n B、Mη=M w C、Mη=M n= M Z=M w 19、同一高分子样品测定相对分子质量,以下结果哪个正确(C )。 A、粘度法大于光散射法 B、VPO大于粘度法 C、粘度法大于端基分析法 20、高聚物为假塑性流体,其粘度随剪切速率的增加而(B )。 A、增加 B、减少 C、不变 21、以下哪种聚合物不存在旋光异构体(B )。 A、聚丙烯 B、聚异丁烯 C、聚异戊二烯 22、非结晶性高聚物的应力-应变曲线不存在以下哪个阶段(B )。 A、屈服 B、细颈化 C、应变软化 23、PS中苯基的摇摆不属于(C )。 A、次级松弛 B、Tβ转变 C、Tα转变 24、对交联高聚物,以下的力学松弛行为哪一条正确(A )。 A、蠕变能回复到零 B、应力松弛时应力能衰减到零 C、可用四元件模型模拟 25、PET淬火样品处于(A )。 A、非晶玻璃态 B、半结晶态 C、皮革态 26、交联橡胶以下哪一条不正确(C )。 A、形变很小时符合胡克定律 B、具有熵弹性 C、拉伸时吸热 27、以下使T g增加的因素哪个不正确( B )。 A、压力增加 B、主链杂原子密度增加 C、主链芳环增加 28、以下材料哪个内耗最小(C )。 A、天然橡胶 B、丁基橡胶 C、顺丁橡胶 29、以下哪种聚合物不存在T g( C )。 A、齐聚物 B、低结晶度且高相对分子质量 C、低相对分子质量且高交联度 30、纤维与塑料、橡胶相比(A )。 A、强度较大 B、相对分子质量较大 C、内聚能密度较小 31、刚性增加时,以下哪条不正确(A )。

最新高分子物理重要知识点复习课程

高分子物理重要知识点 第一章高分子链的结构 1.1高分子结构的特点和内容 高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。 英文中“高分子”或“高分子化合物”主要有两个词,即polymers和Macromolecules。前者又可译作聚合物或高聚物;后者又可译作大分子。这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指相对分子质量很大的一类化合物,它包括天然和合成高分子,也包括无一定重复单元的复杂大分子。 与低分子相比,高分子化合物的主要结构特点是: (1)相对分子质量大,由很大数目的结构单元组成,相对分子质量往往存在着分布; (2)主链有一定的内旋自由度使分子链弯曲而具有柔顺性; (3)高分子结构不均一,分子间相互作用力大; (4)晶态有序性较差,但非晶态却具有一定的有序性。 (5)要使高聚物加工成为有用的材料,需加入填料、各种助剂、色料等。 高分子的结构是非常复杂的,整个高分子结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1): 表1-1高分子的结构层次及其研究内容 由于高分子结构的如上特点,使高分子具有如下基本性质:比重小,比强度高,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。 此外,高分子不能气化,常难溶,粘度大等特性也与结构特点密切相关。 1.2高分子链的近程结构 高分子链的化学结构可分为四类: (1)碳链高分子,主链全是碳以共价键相连:不易水解 (2)杂链高分子,主链除了碳还有氧、氮、硫等杂原子:由缩聚或开环得到,因主链由极性而易水解、醇解或酸解(3)元素有机高分子,主链上全没有碳:具有无机物的热稳定性及有机物的弹性和塑性 (4)梯形和螺旋形高分子:具有高热稳定性 由单体通过聚合反应连接而成的链状分子,称为高分子链。聚合度:高分子链中重复单元的数目; 除结构单元的组成外,端基对聚合物的性能影响很大:提高热稳定性 链接结构是指结构单元在高分子链的联接方式(主要对加聚产物而言,缩聚产物的链接方式一般是明确的)。

高分子物理和化学

高分子化学 高分子化学高分子化学是研究高分子化合物的合成、化学反应、物理化学、物理、加工成型、应用等方面的一门新兴的综合性学科。(https://www.doczj.com/doc/e75989583.html,|NO.6315)合成高分子的历史不过八十年,所以高分子化学真正成为一门科学还不足六十年,但它的发展非常迅速。目前它的内容已超出化学范围,因此,现在常用高分子科学这一名词来更合逻辑地称呼这门学科。狭义的高分子化学,则是指高分子合成和高分子化学反应。后来,经过研究知道,人工合成的高分子和那些天然存在的高分子,在结构、性能等方面都具有共同性,因此,就都叫做高分子化合物。 高分子的分子内含有非常多的原子,以化学键相连接,因而分子量都很大。但这还不是充足的条件,高分子的分子结构,还必须是以接合式样相同的原子集团作为基本链节(或称为重复单元)。许多基本链节重复地以化学键连接成为线型结构的巨大分子,称为线型高分子。有时线型结构还可通过分枝、交联、镶嵌、环化,形成多种类型的高分子。其中以若干线型高分子,用若干链段连接在一起,成为巨大的交联分子的称为体型高分子。(https://www.doczj.com/doc/e75989583.html,|NO.6315) 从高分子的合成方法可以知道,合成高分子的化学反应,可以随机地开始和停止。因此,合成高分子是长短、大小不同的高分子的混合物。与分子形状、大小完全一样的一般小分子化合物不同,高分子的分子量只是平均值,称为平均分子量。 决定高分子性能的,不仅是平均分子量,还有分子量分布,即各种分子量的分子的分布情况。从其分布中可以看出,在这些长长短短的高分子的混合物中,是较长的多还是较短的多,或者中等长短的多。 高分子具有重复链节结构这一概念,是施陶丁格在20世纪20年代初提出的,但没有得到当时化学界一些人的赞同。直到30年代初,通过了多次实践,这一概念才被广泛承认。正确概念一经成立,就使高分子有飞跃的发展。当时链式反应理论已经成熟,有机自由基化学也取得很大的成就。三者的结合,使高分子合成有了比较方便可行的方法实践证明,许多烯类化合物,经过有机自由基的引发,就能进行链式反应,迅速地

东华大学《高分子物理》简答题题库

高分子物理 二、高聚物粘性流动有哪些特点?影响粘流温度T f的主要因素是什么?(8分) 答:粘性流动的特点: 1.高分子流动是通过链段的位移运动来完成的; 2.高分子流动不符合牛顿流体的流动规律; 3.高分子流动时伴有高弹形变。 影响T f的主要因素: 1.分子链越柔顺,粘流温度越低;而分子链越刚性,粘流温度越高。 2. 分子间作用力大,则粘流温度高。 3. 分子量愈大,愈不易进行位移运动,Tf越高。 4. 粘流温度与外力大小和外力作用的时间增大,Tf下降。 三、画出牛顿流体、切力变稀流体、切力变稠流体、宾汉流体的流动曲线,写出相应的流动方程。(8分) 答: 牛顿流体η为常数 切力变稀流体n< 1 切力变稠流体n >1 宾汉流体σy为屈服应力 四、结晶聚合物为何会出现熔限?熔限与结晶形成温度的关系如何? 答:1.结晶聚合物出现熔限,即熔融时出现的边熔融边升温的现象是由于结晶聚合物中含有完善程度不同的晶体之故。聚合物的结晶过程中,随着温度降低,熔体粘度迅速增加,分子链的活动性减小,在砌入晶格时来不及作充分的位置调整,而使形成的晶体停留在不同的阶段上。在熔融过程中,则比较不完善的晶体将在较低的温度下熔融,较完善的晶体需在较高的温度下才能熔融,从而在通常的升温速度下,呈现一个较宽的熔融温度范围。 2. 低温下结晶的聚合物其熔限范围较宽,在较高温度下结晶的聚合物熔限范围较窄。 五、测定聚合物分子量有哪些主要的方法?分别测定的是什么分子量?除了分子量外还能得 到哪些物理量?聚合物分子量的大小对材料的加工性能和力学性能有何影响?(10分) 答:端基分析法和渗透压测定的是数均分子量,光散射测定的是重均分子量,粘度法测定的是粘均分子量。分子量太低,材料的机械强度和韧性都很差,没有应用价值;分子量太高,熔体粘度增加,给加工成型造成困难。 七、解释下列现象(6分): 1. 尼龙6(PA6)室温下可溶于浓硫酸,而等规聚丙烯却要在130℃左右才能溶于十氢萘。 答:尼龙6为极性结晶聚合物,,当它们与极性溶剂相接触时会发生强烈的相互作用,非晶成分放出大量能量使结晶区的部分晶格破坏,成为非结晶区,在适宜的强极性溶剂中往往在室温下即可溶解。而等规聚丙烯为非极性结晶聚合物,溶解往往需要将体系加热到熔点附近时才能发生,外界供给能量使体系温度升高。 2.纤维经拉伸取向后,其断裂强度明显提高。 答:纤维单轴取向后,高分子链沿着外力方向平行排列,故沿取向方向断裂时破坏主价链的比例大大增加,而主价链的强度比范德华力的强度高50倍。(3分)

高分子物理及化学

北京印刷学院2013 年硕士研究生招生 《材料物理与化学》专业考试大纲 高分子物理及化学 第一部分《高分子化学》大纲 高分子化学是研究高分子化合物合成和反应的一门科学,是高分子科学与工程专业学生必修的一门专业基础课。它以无机化学、有机化学、物理化学和分析化学等四大化学为基础,同时也为后继的专业课程打下必要的理论基础。 第一章绪论 【掌握内容】 1. 基本概念:单体、高分子、聚合物、低聚物、结构单元、重复单元、单体单元、链 节、主链、侧链、端基、侧基、聚合度、相对分子质量等 2. 聚合反应;加成聚合与缩合聚合;连锁聚合与逐步聚合 3. 从不同角度对聚合物进行分类 4. 常用聚合物的命名、来源、结构特征 5. 聚合物相对分子质量及其分布 【熟悉内容】 1. 系统命名法

2. 典型聚合物的名称、符号及重复单元 1. 高分子化学发展历史 2. 聚合物相对分子质量及其分布对聚合物性能的影响 第二章自由基聚合(radical polymerization) 【掌握内容】 1. 自由基聚合的基本概念: 聚合熵,聚合焓,聚合上限温度,引发剂半衰期,残留分率,引发效率,诱导效应,笼蔽效应,自动加速现象,凝胶效应,沉淀效应,动力学链长,链转移现象,阻聚现象,缓聚现象 2. 单体聚合能力:热力学(△E, △S,T,P) ;动力学(空间效应-聚合能力,电子效应-聚合类型) 3. 自由基基元反应每步反应特征,自由基聚合反应特征 4. 常用引发剂的种类和符号,引发剂分解反应式,表征方法(四个参数),引发剂效率,诱导效应,笼蔽 效应,引发剂选择原则 5. 聚合动力学:聚合初期:三个假设,四个条件,反应级数的变化,影响速率的四因素 (M,I,T,P) ;聚合中后期的反应速率的研究:自动加速现象,凝胶效应,沉淀效应;聚合反应类型 6. 相对分子质量:动力学链长,聚合度及影响其的四因素(M,I,T,P) 7. 链转移:类型,聚合度,动力学分析,阻聚与缓聚 1. 热、光、辐射聚合 2. 聚合动力学研究方法

广东石油化工学院高分子物理期末考试试题4卷

高分子物理期末考试试题4卷 一名词解释(每题2分,共10分): 1. 玻璃化转变 2. 泊松比 3. 力学松弛 4.熔融指数 5. 应变 二、简答题(每题5分,共40分): 1.为什么聚合物的溶解很慢,多数需经过相当长的溶胀过程方能溶解 2.聚丙烯腈只能用溶液纺丝,不能用熔融纺丝,而涤纶树脂可用熔融纺丝。为什么 3.聚合物有哪些层次的结构 4.根据对材料的使用要求,有哪些途径可改变聚合物的T g。 5. 高聚物粘性流动的特点。 6.写出三个判别溶剂优劣的参数;并讨论它们分别取何值时,该溶剂分别为聚合物的良溶剂、不良溶剂、θ溶剂 7.聚合物分子量分布的测定方法 8. 高聚物的高弹形变有何特征 三、选择题(在下列各小题的备选答案中,请把你认为正确答案的题号填入题干的括号内。少选、多选不给分。每题分,共15分) 1.结晶聚合物在结晶过程中。 A.体积增大; B.体积缩小; C.体积不变 2.下列哪种结晶形态是具有黑十字消光图像的()。 A、纤维状晶 B、球晶 C、单晶 D、球枝晶 3.下列哪种方法是不能提高相容性的()。 A、反应性共混 B、“就地“增容法 C、加入增溶剂 D、加入稀释剂 4.T g温度标志着塑料使用的和橡胶使用的。前者常表征塑料的,后者表征橡胶的。 A.最低温度; B . 最高温度; C.耐热性; D. 耐寒性. 5.在聚合物的力学松弛现象中,和属于静态粘弹性,和属于动态粘弹性。 A.蠕变; B.力学损耗; C.滞后; D.应力松弛. 是链段开始“解冻“的温度,因此凡是使链段的柔性_____,使分子间作用力的结构因素均使Tg下降。 A:增加降低 B:增加上升 C: 减少上升 D:减少降低 7.链的柔性是决定Tg最主要的因素, _ __,Tg越低,主链越 _ __,Tg越高. A:柔顺,僵硬。 B) 僵硬柔顺 C:长僵硬 D)短柔顺 8. 人们常常制取高分子量的聚乙稀的目的是为了提高它的,在制取结晶性高聚物的过程中常常加入成核剂是为了提高它的。 A.拉伸强度 B.冲击强度 C.抗张强度 D.硬度 9.玻璃态高聚物只有处在之间的温度范围,才能在外力作用下实现强迫高弹形变。 A . Tb

高分子物理选择题题库

1、聚苯乙烯分子中可能呈现的构象是()。 A、无规线团 B、折叠链 C、螺旋链 2、比较一下聚合物的流动性,哪个最好()。 A、MI=0.1 B、MI=1 C、MI=10 3、当Mark公式中α为以下何值时,高分子溶液处于θ状态()。 A、α=0.5 B、α=0.8 C、α=2 4、以下哪个溶剂是θ溶剂()。 A、χ1=0.1 B、χ1=0.5 C、χ1=0.9 5、以下哪种材料的密度最大()。 A、高压聚乙烯 B、低压聚乙烯 C、聚丙烯 6、以下哪种方法可以测定绝对相对分子质量()。 A、VPO B、膜渗透法 C、GPC 7、结晶度增加,以下哪种性能增加()。 A、透明性 B、抗张强度 C、冲击强度 8、WLF方程不能用于()。 A、测粘度 B、测结晶度 C、测松弛时间 9、球晶的制备应从()。 A、稀溶液 B、熔体 C、高温高压下 10、四元件模型用于模拟()。 A、应力松弛 B、蠕变 C、内耗 11、所有聚合物在在玻璃化转变时,自由体积分数均等于()。 A、0.5% B、1% C、2.5% 12、高聚物的应力-应变曲线中哪个阶段表现出强迫高弹性()。 A、大形变 B、应变硬化 C、断裂 13、一般地说,哪种材料需要较高程度的取向()。 A、橡胶 B、塑料 C、纤维 14、对极性高分子,选择溶剂应采用哪一原则更为准确()。 A、极性相似原理 B、溶剂化原则 C、δ相近原则 15、结晶度不能用以下哪种方法测定()。 A、膨胀计法 B、双折射法 C、热分析法 16、玻璃化转变温度不能用以下哪种仪器测定()。

A、膨胀计 B、扭辫仪 C、熔融指数仪 17、3.4次方幂律适用于( )。 A、缩聚物 B、低相对分子质量加聚物 C、高相对分子质量加聚物 18、已知[η]=KM,判断以下哪一条正确()。 A、Mη=M n B、Mη=M w C、Mη=M n= M Z=M w 19、同一高分子样品测定相对分子质量,以下结果哪个正确()。 A、粘度法大于光散射法 B、VPO大于粘度法 C、粘度法大于端基分析法 20、高聚物为假塑性流体,其粘度随剪切速率的增加而()。 A、增加 B、减少 C、不变 21、以下哪种聚合物不存在旋光异构体()。 A、聚丙烯 B、聚异丁烯 C、聚异戊二烯 22、非结晶性高聚物的应-应变曲线不存在以下哪个阶段()。 A、屈服 B、细颈化 C、应变软化 23、PS中苯基的摇摆不属于()。 A、次级松弛 B、Tβ转变 C、Tα转变 24、对交联高聚物,以下的力学松弛行为哪一条正确()。 A、蠕变能回复到零 B、应力松弛时应力能衰减到零 C、可用四元件模型模拟 25、PET淬火样品处于()。 A、非晶玻璃态 B、半结晶态 C、皮革态 26、交联橡胶以下哪一条不正确()。 A、形变很小时符合胡克定律 B、具有熵弹性 C、拉伸时吸热 27、以下使T g增加的因素哪个不正确()。 A、压力增加 B、主链杂原子密度增加 C、主链芳环增加 28、以下材料哪个内耗最小()。 A、天然橡胶 B、丁基橡胶 C、顺丁橡胶 29、以下哪种聚合物不存在T g()。 A、齐聚物 B、低结晶度且高相对分子质量 C、低相对分子质量且高交联度 30、纤维与塑料、橡胶相比()。 A、强度较大 B、相对分子质量较大 C、内聚能密度较小 31、刚性增加时,以下哪条不正确()。 A、T b增加 B、T f增加 C、T g~T b增加

高分子物理重要知识点

高分子物理重要知识点 (1人评价)|95人阅读|8次下载|举报文档 高分子物理重要知识点 (1人评价)|96人阅读|8次下载|举报文档 1 高分子物理重要知识点第一章高分子链的结构 1.1高分子结构的特点和内容高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。英文中“高分子”或“高分子化合物”主要有两个词,即polymers和Macromolecules。前者又可译作聚合物或高聚物;后者又可译作大分子。这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指相对分子质量很大的一类化合物,它包括天然和合成高分子,也包括无一定重复单元的复杂大分子。与低分子相比,高分子化合物的主要结构特点是:(1)相对分子质量大,由很大数目的结构单元组成,相对

分子质量往往存在着分布;(2)主链有一定的内旋自由度使分子链弯曲而具有柔顺性;(3)高分子结构不均一,分子间相互作用力大;(4)晶态有序性较差,但非晶态却具有一定的有序性。(5)要使高聚物加工成为有用的材料,需加入填料、各种助剂、色料等。高分子的结构是非常复杂的,整个高分子结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1):表1-1高分子的结构层次及其研究内容 名称内容备注链结构一级结构(近程结构)结构单元的化学组成键接方式构型(旋光异构,几何异构)几何形状(线形,支化,网状等)共聚物的结构指单个大分子与基本结构单元有关的结构二级结构(远程结构)构象(高分子链的形状)相对分子质量及其分布指由若干重复单元组成的链段的排列形状三级结构(聚集态结构、聚态结构、超分子结构)晶态非晶态取向态液晶态织态指在单个大分子二级结构的基础上,许多这样的大分子聚集在一起而成的聚合物材料的结构由于高分子结构的如上特点,使高分子具有如下基本性质:比重小,比强度高,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。此外,高分子不能气化,常难溶,粘度大等特性也与结构特点密切相关。 1.2高分子链的近程结构高分子链的化学结构可分为四类:(1)碳链高分子,主链全是碳以共价

高分子物理试题库

高分子物理试题库 一、名词解释 取向:取向是指非晶高聚物的分子链段或整个高分子链,结晶高聚物的晶带、晶片、晶粒等,在外力作用下,沿外力作用的方向进行有序排列的现象。 特性粘度 柔顺性:高分子链能够改变其构象的性质称为柔顺性。 链段:由于分子内旋受阻而在高分子链中能够自由旋转的单元长度。是描述柔性的尺度。 内聚能密度:把1mol 的液体或固体分子移到其分子引力范围之外所需要的能量为内聚能。单位体积的内聚能称为内聚能密度,一般用CED 表示。 溶解度参数:内聚能密度的平方根称为溶解度参数,一般用δ表示。 等规度:等规度是高聚物中含有全同立构和间同立构总的百分数。 结晶度结晶度即高聚物试样中结晶部分所占的质量分数(质量结晶度)或者体积分数(体积结晶度)。 液晶:在熔融状态下或溶液状态下,仍然部分保持着晶态物质分子的有序排列,且物理性质呈现各向异性,成为一种具有和晶体性质相似的液体,这种固液之间的中间态称为液态晶体,简称为液晶。 聚电解质溶液 脆性断裂 时温等效原理 零切黏度 应力松弛 银纹 粘弹性 表观粘度 应力 应变 弹性模量 柔量 泊松比 冲击强度 强迫高弹形变 增塑作用 内增塑作用 外增塑作用 蠕变 动态粘弹性 静态粘弹性 滞后 内耗 牛顿流体 假塑性流体 膨胀性流体 宾汉流体 二.选择题 1. 测量重均分子量可以选择以下哪种方法: D A .粘度法 B .端基滴定法 C .渗透压法 D .光散射法 2. 下列那种方法可以降低熔点: B D 。 A. 主链上引入芳环; B. 降低结晶度; C. 提高分子量; D. 加入增塑剂。 3. 多分散高聚物下列平均分子量中最小的是 A A 、n M B 、w M C 、z M D 、M 4. 聚合物在溶液中通常呈 C 构象。 A .锯齿形 B .螺旋形 C .无规线团 D .梯形

高分子物理知识点

构象:具有一定组成和构型的高分子链通过单键的内旋转而形成的分子中的原子在空间的排列 柔性: 高分子链中单键内旋的能力; 高分子链改变构象的能力; 高分子链中链段的运动能力; 高分子链自由状态下的卷曲程度。 链段:两个可旋转单键之间的一段链,称为链段 影响柔性因素: 1支链长,柔性降低;交联度增加,柔顺性减低。 2一般分子链越长,构象数越多,链的柔顺性越好。 3分子间作用力越大,聚合物分子链所表现出的柔顺性越小。分子链的规整性好,结晶,从而分子链表现不出柔性。 控制球晶大小的方法: 1控制形成速度; 2采用共聚方法,破坏链的均一性和规整性,生成较小的球晶; 3外加成核剂,可获得小甚至微小的球晶。 聚合物的结晶形态: 1单晶:稀溶液,慢降温,螺旋生长 2球晶:浓溶液或熔体冷却 3树枝状晶:溶液中析出,低温或浓度大,分子量大时析出; 4纤维状晶:存在流动场,分子量伸展,并沿流动方向平行排列; 5串晶:溶液低温,边结晶边搅拌; 6柱晶:熔体在应力作用下冷却结晶; 7伸直链晶:高压下融融结晶,或熔体结晶加压热处理。 结晶的必要条件: 1内因: 化学结构及几何结构的规整性; 2外因:一定的温度、时间。 结晶速度的影响因素: 1温度——最大结晶温度:低温有利于晶核形成和稳定,高温有利于晶体生长; 2压力、溶剂、杂质:压力、应力加速结晶,小分子溶剂诱导结晶; 3分子量:M 小结晶速度块,M 大结晶速度慢; 熔融热焓?H m :与分子间作用力强弱有关。作用力强,?H m 高 熔融熵?S m :与分子间链柔顺性有关。分子链越刚,?S m 小 聚合物的熔点和熔限和结晶形成的温度T c 有一定的关系: 结晶温度Tc 低(< Tm ),分子链活动能力低,结晶所得晶体不完善,从而熔限宽,熔点低; 结晶温度Tc 高(~ Tm ),分子链活动力强,结晶所得晶体更加完善,从而熔限窄,熔点高。 取向:在外力作用下,分子链沿外力方向平行排列。聚合物的取向现象包括分子链、链段的取向以及结晶聚合物的晶片等沿特定方向的择优排列。 取向机理: 1高弹态:单键的内旋转。外力作用下,链段取向;外力解除,链段解取向 2粘流态:高分子各链段的协同运动。外力作用下,分子链取向;外力解除,分子链解取向 3结晶高聚物:非晶区取向,可以解取向;晶粒取向,不易解取向 取向度: 高分子合金又称多组分聚合物, 在该体系中存在两种或两种以上不同的聚合物, θ θθ22sin 2 3 1)1cos 3(2 1-=-=f

广东石油化工学院高分子物理期末考试复习资料三.简答题

三、简答题 1、高分子结构的特点? 2、表1-4数据说明了什么?试从结构上予以分析。 3、评价主链带有间隔单键和双键的聚磷腈的柔顺性。其结构示意如下: 4、.比较以下三个聚合物的柔顺性,从结构上简要说明原因。 5、试分析纤维素的分子链为什么是刚性的?(提示:从纤维素链节结构分析阻碍内旋转的因素) 6、比较以下两种聚合物的柔顺性,并说明为什么。 7、试从下列高聚物的链节结构,定性判断分子链的柔性或刚性,并分析原因。 8、以下化合物,哪些是天然高分子化合物?哪些是合成高分子化合物? (1)、蛋白质,(2)PVC,(3)酚醛树脂,(4)淀粉,(5)纤维素,(6)石墨,(7)尼龙-66,(8)PV Ac,(9)丝,(10)PS,(11)维尼纶,(12)天然橡胶,(13)聚氯丁二烯(14)纸浆,(15)环氧树脂。 9、试述下列烯类高聚物的构型特点及其名称。式中d表示链节结构是d构型,l则表

示是l构型。(1)—d—d—d—d—d—d—d—;(2)—l—l—l—l—l—l—l—l—l—;(3)—d —l—d—l—d—l—d—l—;(4)—d—d—l—d—l—l—l—。 10、已知高分子主链中键角大于90°,定性地讨论自由旋转链的均方末端距与键角的关系。 11、(1)由丙烯得到的全同立构聚丙烯有无旋光性?(2)假若聚丙烯的等规度不高,能不能用改变构象的办法提高等规度? 12、近程相互作用和远程相互作用的含义及它们对高分子链的构象有何影响? 13、根据高聚物的分子结构和分子间作用能,定性地讨论表2-3中所列各高聚物的性能。 14、将下列三组聚合物的结晶难易程度排列成序:(1)PE,PVC,PS,PAN;(2)聚对苯二甲酸乙二酯,聚间苯二甲酸乙二酯,聚己二酸乙二酯;(3)尼龙-66,尼龙-1010。 15、有两种乙烯和丙烯的共聚物,其组成相同(均为65%乙烯和35%丙烯),但其中一种室温时是橡胶状的,一直到稳定降至约-70℃时才变硬,另一种室温时却是硬而韧又不透明的材料。试解释它们内在结构上的差别。 16、判断正误:“分子在晶体中是规整排列的,所以只有全同立构或间同立构的高分子才能结晶,无规立构的高分子不能结晶。” 17、(1)为什么聚对苯二甲酸乙二醇酯从熔体淬火时得到透明体?(2)为什么IPMMA 是不透明的? 18、试分析聚三氟氯乙烯是否结晶性聚合物?要制成透明薄板制品,问成型过程中要注意什么条件的控制? 19、透明的聚酯薄膜在室温二氧六环中浸泡数分钟就变为不透明,这是为什么? 20、(1)将熔融态的聚乙烯(PE)、聚对苯二甲酸乙二醇酯(PET)和聚苯乙烯(PS)淬冷到室温,PE是半透明的,而PET和PS是透明的。为什么?(2)将上述的PET透明试样,在接近玻璃化温度下进行拉伸,发生试样外观由透明变为浑浊,试从热力学观点来解释这一现象。 21、三类n值相同的线形脂肪族聚合物(对于给定的n值)的熔点顺序如下所示,解释原因。

相关主题
文本预览
相关文档 最新文档