当前位置:文档之家› 天体运动中的追击相遇问题练习题-带答案

天体运动中的追击相遇问题练习题-带答案

天体运动中的追击相遇问题练习题-带答案
天体运动中的追击相遇问题练习题-带答案

天体运动中的追击相遇问题练习题

万有引力与航天

一、单选题(本大题共9小题,共36.0分)

1.如图所示,A,B为地球两个同轨道面的人造卫星,运行方

向相同,A为同步卫星,A,B卫星的轨道半径之比为=k,

地球自转周期为T。某时刻A,B两卫星位于地球同侧直

线上,从该时刻起至少经过多长时间A,B间距离最远()

2.天文上曾出现几个行星与太阳在同一直线上的现象,假设地球和火星绕太阳的运动

看作是匀速圆周运动,周期分别是和,它们绕太阳运动的轨道基本上在同一平面上,若某时刻地球和火星都在太阳的一侧,三者在一条直线上,那么再经过多长的时间,将再次出现这种现象已知地球离太阳较近,火星较远)()

A. B. C. D.

-

3.万有引力定律是科学史上最伟大的定律之一,利用它我们可以进行许多分析和预测。

2016年3月8日出现了“木星冲日”。当地球位于太阳和木星之间且三者几乎排成一条直线时,天文学称之为“木星冲日”。木星与地球几乎在同一平面内沿同一方向绕太阳近似做匀速圆周运动,木星到太阳的距离大约是地球到太阳距离的5倍。下列说法正确的是

A. 木星运行的加速度比地球的大

B. 木星运行的周期比地球的小

C. 下一次的“木星冲日”时间肯定在2017年

D. 下一次的“木星冲日”时间肯定在2018年

4.如图,运行轨道在同一平面内的两颗人造卫星A、B,同方向绕地心

做匀速圆周运动,此时刻A、B连线与地心恰在同一直线上且相距最

近,己知A的周期为T,B的周期为.下列说法正确的是()

A. A的线速度大于B的线速度

B. A的加速度大于B的加速度

C. A、B与地心连线在相同时间内扫过的面积相等

D. 从此时刻到下一次A、B相距最近的时间为T

5.两颗行星、均在同一平面内沿相同的环绕方向围绕中心天体

运动,经过观测发现每隔最短时间行星与行星相距最近一

次。两行星的运动均可看作匀速圆周运动,若行星的运行周

期为,则行星的运行周期为()

A. B. C. D.

6.2018年7月27日将发生火星冲日现象,我国整夜可见。火

星冲日是指火星、地球和太阳几乎排列成一线,地球位于太

阳与火星之间。此时火星被太阳照亮的一面完全朝向地球,

所以其明亮而易于观察。地球和火星绕太阳公转的方向相同,

轨道都可近似为圆形,已知火星公转轨道半径为地球的1.5

倍,如图所示。从图示的火星与地球相距最近的时刻开始计

时,则火星再次与地球相距最近时所需时间约为()

A. 年

B. 1年

C. 2年

D. 4年

7.我国发射的北斗系列卫星的轨道位于赤道上方,轨道半径为r,绕行方向与地球自

转方向相同。设地球自转角速度为ω0,地球半径为R,地球表面重力加速度为g,设某一时刻,卫星通过赤道上某建筑物的上方,则当它再一次通过该建筑物上方时,所经历的时间为

B.

C. D.

8.如图所示,质量相同的三颗卫星a、b、c绕地球做匀速圆周运

动,其中b、c在地球的同步轨道上,a距离地球表面的高度为

R,此时a、b恰好相距最近,已知地球质量为M、半径为R、

地球自转的角速度为ω.引力常量为G,则下列说法错误的是

()

A. 发射卫星b的速度要大于第一宇宙速度小于第二宇宙速度

B. 卫星a的速度小于卫星b的速度

C. 卫星a和卫星b下一次相距最近还需经过

D. 若要卫星c与卫星b实现对接,可让卫星c先减速后加速

9.发现未知星体是万有引力定律的重要成就之一,如“笔尖下发现的行星”——海王星。

1843年,英国剑桥大学的学生亚当斯和法国巴黎年轻天文爱好者勒维耶根据天王星的观测资料,发现天王星实际运行的轨道与椭圆轨道总存在一些偏离,且周期性地每隔t时间发生一次最大的偏离,形成这种现象的原因是海王星对它的万有引力。

已知天王星绕太阳运行的轨道半径为R,周期为T,假定两颗行星的运动可以认为是匀速圆周运动,请你利用所学知识确定海王星的轨道半径为()

A. B. C. D.

二、多选题(本大题共4小题,共16.0分)

10.太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动,当地球恰好运行到

某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学家称为“行星冲日”,据报道,2014年各行星冲日时间分别为:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日.已知地球及各地外行星绕太阳运动的轨道半径如下表所示,则下列判断正确的是()

各地外行星每年都会出现冲日现象

B. 在2015年内一定会出现木星冲日

C. 天王星相邻两次冲日的时间间隔为土星的一半

D. 地外行星中,海王星相邻两次冲日的时间间隔最短

11.假设在宇宙中存在这样三个天体A、B、C,它们在一条直线上,天体A离天体B

的高度为某值时,天体A和天体B就会以相同的角速度共同绕天体C运转,且天体A和天体B绕天体C运动的轨道都是圆轨道,如图所示,以下说法正确的是()

A. 天体A做圆周运动的加速度大于天体B做圆周运动的加速度

B. 天体A做圆周运动的速度小于天体B做圆周运动的速度

C. 天体A做圆周运动的向心力大于天体C对它的万有引力

D. 天体A做圆周运动的向心力等于天体C对它的万有引力

12.两颗人造卫星绕地球逆时针运动,卫星1、卫星2分别沿圆轨道、椭圆轨道运动,

圆的半径与椭圆的半长轴相等,两轨道相交于A、B两点,某时刻两卫星与地球在同一直线上,如图所示,下列说法中正确的是( )

A. 两卫星在图示位置的速度

B. 两卫星在A处的加速度大小相等

C. 两颗卫星在A或B点处可能相遇

D. 两卫星永远不可能相遇

13.如图所示,三个质点a、b、c的质量分别为m1、m2、M(M

远大于m1及m2),在万有引力作用下,a、b在同一平面

内绕c沿逆时针方向做匀速圆周运动。已知轨道半径之比

为r a∶r b=1∶4,则下列说法中正确的有( )

A. a、b运动的周期之比为∶∶

B. a、b运动的周期之比为∶∶

C. 从图示位置开始,在b转动一周的过程中,a、b、c共线12次

D. 从图示位置开始,在b转动一周的过程中,a、b、c共线14次

三、计算题(本大题共2小题,共20.0分)

14.如图所示,A是地球的同步卫星。另一卫星B的圆形轨道位于赤道平面内,离地面

高度为h。已知地球半径为R,地球自转角速度为ω,地球表面的重力加速度为g,O为地球中心。求:

(1)卫星B的运行周期。

(2)如卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、

A在同一直线上),则至少经过多长时间,它们再一次相距最近?至少经过多长时间,它们第一次相距最远?

15.宇航员发现一未知天体,需将星球的质量、密度等信息传递回地面,宇航员只有一

块秒表和一个弹簧测力计,他站在星球上随星球转了一圈测得时间为T0,又用弹簧秤测同一质量为m的物体的重力,在“两极”为F,在“赤道”上的读数是其“两极”处的90%,万有引力常量为G,求:

(1)该星球的密度和质量;

(2)当宇航员在该星球“赤道”上时,有一颗绕该星球表面附近匀速转动的行星,其转动周期为T,已知T< T0,若此时刚好在他的正上方,则过多久该行星再次出现在他的正上方?

答案和解析

1.【答案】A

【解析】【分析】

卫星A、B绕地球做匀速圆周运动,由开普勒第三定律得出半径与周期的关系,当卫星B转过的角度与卫星A转过的角度之差等于π时,卫星相距最远,据此分析即可。

本题主要考查了开普勒第三定律的直接应用,注意只有围绕同一个中心天体运动才可以使用开普勒第三定律,难度不大,属于基础题。

【解答】

由开普勒第三定律得:

设两卫星至少经过时间t距离最远,

解得:,故A正确,BCD错误。

故选:A。

2.【答案】D

【解析】【分析】

由于地球比火星轨道低,周期小,故再次出现这种现象时,地球比火星多转一周,由此可以解得需要的时间.

要会分析题目,比如所谓的再次出现某一现象,一般应经过的时间是周期的倍数关系,若涉及两个物体,则一般他们之间就是运动快的多转一周.

【解答】

设需要的时间为t,在此时间内地球比火星多转一周,就会再次出现这种现象,故有:即:

解得:,故D正确

故选:D。

3.【答案】C

【解析】解:A、设太阳质量为M,行星质量为m,轨道半径为r,周期为T,加速度为a.对行星由牛顿第二定律可得:,解得a=,T=,由于木

星到太阳的距离大约是地球到太阳距离的5 倍,因此,土星运行的加速度比地球小,土星运行周期比地球大,故AB错误.

C、地球公转周期T1=1年,土星公转周期11.18年.设经时间t,再次出现土星冲日,则有ω1t-ω2t=2π,其中,,解得t≈1.1年,因此下一次土星冲日发生在2017年,故C正确,D错误.

故选:C.

根据万有引力提供向心力得出加速度、周期与轨道半径的关系,通过轨道半径的大小比较加速度和周期的大小.抓住地球转动的角度比木星转动的角度多2π,求出下一次木星冲日会发生的时间.

解决本题的关键掌握万有引力提供向心力这一重要理论,并能灵活运用,以及知道相邻的两次行星冲日的时间中地球多转动一周.

4.【答案】D

【解析】解:A、根据万有引力提供向心力,得,可知轨道半径越大,速度越小,由图可知A的轨道半径大,故A的线速度小,故A错误.

B、根据万有引力提供向心力,得,可知轨道半径越大,加速度越小,

由图可知A的轨道半径大,故A的加速度小,故B错误.

C、根据开普勒第二定律,同一转动物体与地心连线在相同时间内扫过的面积相等,而如今不同转动物体,因此在相同时间内扫过的面积不可能相等,故C错误.

D、从此时刻到下一次A、B相距最近,转过的角度差为2π,即,所以

t=T,故从此时刻到下一次A、B相距最近的时间为T,故D正确.

故选:D.

根据万有引力提供向心力=ma,得,,可知轨道半径越大,

速度越小,加速度越小,由图可知A的轨道半径大,故A的线速度小,A的加速度也小.根据开普勒第二定律,A、B与地心连线在相同时间内扫过的面积相等.从此时刻到下一次A、B相距最近,转过的角度差为2π,根据角速度与周期的关系和角度的关系列式计算时间.

本题要掌握万有引力提供向心力这个关系,=ma,解出线速度和加速度与轨

道半径的关系,然后再讨论.

5.【答案】A

【解析】【分析】

A、B相距最近时,每隔t时间相距最近,可知在t时间内A卫星比B卫星多运行1圈,结合该关系求出B的周期。

本题考查了万有引力定律的运用,掌握万有引力提供向心力这一理论,并能灵活运用,知道A、B相距最近时,每隔t时间相距最近。

【解答】

半径越小,周期越小,T B>T A,从第一次相距最近到第二次相距最近,A比B多走,

=,解得:,故A正确;BCD错误。

故选A。

6.【答案】C

【解析】【分析】

取地球的周期1年为1个单位,根据万有引力提供向心力,即:,求出

比值即可。

本题中,根据万有引力提供向心力,提供火星周期与地球周期的比较,我们把这个物理

量先表示出来,这样就越来越接近答案。

【解答】

地球与火星都绕太阳运动,即M一样,根据万有引力提供向心力,即:

得:

所以:.

即火星的周期是2年,2年内,地球转2周,火星转1周,可以再次达到最近。故C正确,ABD错误。

故选C。

7.【答案】A

【解析】【分析】

根据人造卫星的万有引力等于向心力,列式求出角速度的表达式,卫星再次经过某建筑物的上空,地球多转动一圈。

本题关键根据万有引力提供向心力求解出角速度;根据地球表面重力等于万有引力得到重力加速度表达式;根据多转动一圈后再次到达某建筑物上空列式。

【解答】

人造卫星绕地球做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为m、轨道

半径为r、地球质量为M,有F=F向,因而,解得①,卫星再次经过某建筑物的上空,卫星多转动一圈,有(ω-ω0)t=2π②;地球表面的重力加速度

为③;联立①②③后解得。故A正确,BCD错误。

故选A。

8.【答案】B

【解析】解:A、第一宇宙速度是最小的发射速度,发射速度达到第二宇宙速度,将挣脱地球引力,不再绕地球飞行,所以发射卫星b的速度要大于第一宇宙速度小于第二宇宙速度,故A正确.

B、根据v=知,b的轨道半径大,则b的线速度较小,可知a的速度大于b的速度,

故B错误.

C、根据得,卫星a的角速度,根据ω′t-ωt=2π得,卫星a和卫星b下一次相距最近还需经过t=,故C正确.

D、若要卫星c与卫星b实现对接,可让卫星c先减速,做近心运动,然后加速做离心运动,从而实现对接,故D正确.

本题选错误的,故选:B.

第一宇宙速度7.9km/s是指在地球上发射的物体绕地球飞行作圆周运动所需的最小初始速度,第二宇宙速度11.2km/s是物体挣脱地球引力束缚的最小发射速度.根据线速度与轨道半径的关系比较a、b的线速度.根据万有引力提供向心力得出卫星a的角速度,抓住两卫星转过的角度相差2π求出下一次相距最近经历的时间.

理解三种宇宙速度,特别注意第一宇宙速度的几种说法.能抓住万有引力提供向心力列

出等式解决问题的思路,再进行讨论求解

9.【答案】A

【解析】【分析】

天王星、海王星相距最近时,海王星对天王星的影响最大,且每隔时间t发生一次最大的偏离,先根据多转动一圈时间为t,求出海王星的周期;然后再根据开普勒第三定律解得轨道半径。

本题关键抓住两行星发生最大偏离的条件是转动角度相差2π,进行列式,并要掌握开普勒第三定律研究周期和轨道半径的关系。

【解答】

由题意可知:海王星与天王星相距最近时,对天王星的影响最大,且每隔时间t发生一次最大的偏离。

设海王星行星的周期为T0,圆轨道半径为R0,则有:

解得:

据开普勒第三定律:得:,故A正确,BCD错误。

10.【答案】BD

【解析】解:根据开普勒第三定律,有:地

解得:T=

地地;

故T火=年=1.84年;

T木=年=11.86年;

T土=年=29.28年;

T天=年=82.82年;

T海=年=164.32年;

A、如果两次行星冲日时间间隔为1年,则地球多转动一周,有:

2π=(

)t

代入数据,有:

2π=(-)×1

解得:T0为无穷大;

即行星不动,才可能在每一年内发生行星冲日,显然不可能,故A错误;

B、2014年1月6日木星冲日,木星的公转周期为11.86年,在2年内地球转动2圈,木星转动不到一圈,故在2015年内一定会出现木星冲日,故B正确;

C、如果两次行星冲日时间间隔为t年,则地球多转动一周,有:

2π=(

)t

解得:

t=地

故天王星相邻两次冲日的时间间隔为:t天=≈1.01年;

土星相邻两次冲日的时间间隔为:t土=≈1.04年;

故C错误;

D、如果两次行星冲日时间间隔为t年,则地球多转动一周,有:2π=(

)t

解得:

t=地

地=地

,故地外行星中,海王星相邻两次冲日的时间间隔最短;故D正确;

故选:BD.

行星围绕太阳做匀速圆周运动,根据开普勒第三定律,其轨道半径的三次方与周期T的平方的比值都相等;从一次行星冲日到下一次行星冲日,为地球多转动一周的时间.

本题关键是结合开普勒第三定律分析(也可以运用万有引力等于向心力列式推导出),知道相邻的两次行星冲日的时间中地球多转动一周.

11.【答案】AC

【解析】【分析】

根据公式a=ω2r,分析加速度的关系;由公式v=ωr,分析速度的关系;天体A做圆周运动的向心力是由B、C的万有引力共同提供的.

本题考查学生运用万有引力定律解决天体运动的能力,关键要抓住A、B的角速度相同,灵活选择圆周运动的公式分析.

【解答】

A.由于天体A和天体B绕天体C运动的轨道都是同轨道,角速度相同,由a=ω2r,可知天体A做圆周运动的加速度大于天体B做圆周运动的加速度,故A正确.

B.由公式v=ωr,可知天体A做圆周运动的速度大于天体B做圆周运动的速度,故B错误.

CD.天体A做圆周运动的向心力是由B、C的万有引力的合力提供的,大于天体C对它的万有引力.故C正确,D错误。

故选AC。

12.【答案】BD

【解析】解:A、v2为椭圆轨道的远地点,速度比较小,v1表示做匀速圆周运动的速度,v1>v2.故A错误

B、两个轨道上的卫星运动到A点时,所受的万有引力产生加速度a=,加速度相同.故

B正确;

C、D、椭圆的半长轴与圆轨道的半径相同,根据开普勒第三定律知,两颗卫星的运动周期相等,则不会相遇,故D正确,C错误

故选:BD

根据开普勒定律比较两卫星的运动周期,根据万有引力的大小,通过牛顿第二定律比较加速度,结合速度的大小比较向心加速度的大小.

本题考查万有引力定律、开普勒第三定律、牛顿第二定律等知识,知道卫星变轨的原理是解决本题的关键.

13.【答案】AD

【解析】【分析】

本题根据向心力来源列式,即可求出周期之比;第二问中,可以以质点b、c系统为参考系,则a质点转动7圈,共线14次。

质点a、b均在c点的万有引力的作用下绕c做圆周运动,由F引=F向,可求出周期比,每多转半圈,三质点共线一次,可先求出多转半圈的时间,与总时间相比,得出三点共线次数。

【解答】

AB.万有引力提供向心力,则有:,;

所以T a:T b=1:8;故A正确,B错误;

CD.设每隔时间t,a、b共线一次,则(ωa-ωb)t=π,所以;

故:=14,故C错误,D正确。

故选AD。

14.【答案】解:(1)由万有引力定律和向心力公式得

G=m2(R+h),又G=mg,

联立解得TB=2π。

(2)再一次相距最近时,由题意得(ωB-ω0)t=2π,又ωB==,所以t=。第一次相距最远时,由题意得(ωB-ω0)t′=π,所以

t′=。

【解析】研究卫星绕地球做匀速圆周运动,根据万有引力提供向心力,列出等式表示出周期和速度.

卫星A、B绕地球做匀速圆周运动,当卫星B转过的角度与卫星A转过的角度之差等于2π时,卫星再一次相距最近.当卫星B转过的角度与卫星A转过的角度之差等于π时,第一次相距最远时,

本题考查万有引力定律和圆周运动知识的综合应用能力.向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用.

15.【答案】解:(1)在星球表面万有引力的两个作用效果,提供向心力和重力

在两极万有引力等于重力

在星球表面

联立解得:

星球质量:星球密度:

(2)设经过时间t两者再次相遇

解得:

【解析】本题考查在星球表面万有引力的两个效果,在两极万有引力等于重力,再赤道万有引力有两个作用效果,提供向心力和重力;当两物体再次相遇时两者转动角度相差2π。

(1)在两极万有引力等于重力,再赤道万有引力有两个作用效果,提供向心力和重力,分别对两种情况列式求解;

(2)当两物体再次相遇时两者转动角度相差2π。

追击和相遇问题典型例题

【学习目标】 1、掌握追及及相遇问题的特点 2、能熟练解决追及及相遇问题 追及问题 1、追及问题中两者速度大小与两者距离变化的关系。 甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离。若甲的速度小于乙的速度,则两者之间的距离。若一段时间内两者速度相等,则两者之间的距离。 2、追及问题的特征及处理方法: “追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种: 初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追上前有最大距离的条件:两物体速度相等,即v甲=v乙。 ⑵匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。 判断方法是:假定速度相等,从位置关系判断。 ①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。 ②若甲乙速度相等时,甲的位置在乙的前方,则追上,并会有两次相遇 ③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。 解决问题时要注意二者是否同时出发,是否从同一地点出发。 ⑶匀减速运动的物体甲追赶同向的匀速运动的物体已时,情形跟⑵类似。 判断方法是:假定速度相等,从位置关系判断。

①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。 ②若甲乙速度相等时,甲的位置在乙的前方,则追上,并会有两次相遇 ③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。 解决问题时要注意二者是否同时出发,是否从同一地点出发。 3、分析追及问题的注意点: ⑴要抓住一个条件,两个关系: ①一个条件是两物体的速度满足的临界条件,如 两物体距离最大、最小,恰好追上或恰好追不上等。 ②两个关系是时间关系和位移关系, 通过画草图找两物体的位移关系是解题的突破口。 ⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。 ⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v-t图象的应用。 二、相遇 ⑴同向运动的两物体的相遇问题即追及问题,分析同上。 ⑵相向运动的物体,当各自发生的位移绝对值的和等于开始时两物体间的距离时即相遇。 【典型例题】 1.在十字路口,汽车以的加速度从停车线启动做匀加速运动,恰好有一辆自行车以的速度匀速驶过停车线与汽车同方向行驶,求: 什么时候它们相距最远?最远距离是多少?

四年级+相遇问题与追及问题

简单的相遇与追及问题 一、学习目标 1. 理解相遇与追及的运动模型,掌握相遇与追及这两种情况下路程、时间、速度这三个基本量之间的关系.会利用这个关系来解决一些简单的行程问题. 2. 体会数形结合的数学思想方法. 二、主要内容 1. 行程问题的基本数量关系式: 路程=时间×速度;速度=路程÷时间;时间=路程÷速度. 2.相遇问题的数量关系式: 相遇路程=相遇时间×速度和; 速度和=相遇路程÷相遇时间; 相遇时间=相遇路程÷速度和. 3.追及问题的数量关系式: 追及距离=追及时间×速度差; 速度差=追及距离÷追及时间; 追及时间=追及距离÷速度差. 4. 能熟练运用路程、时间、速度这三个基本量的关系,结合图形分析,解决一些简单的行程问题. 三、例题选讲 例1两辆汽车同时分别从相距500千米的A,B两地出发,相向而行,速度分别为每小时40千米和每小时60千米.求几小时后两车相遇.

例2甲车在乙车前200千米,同时出发,速度分别为每小时40千米与60千米.问多少小时后,乙车追上甲车. 例3一辆公共汽车和一辆小轿车同时从相距598千米的两地相向而行.公共汽车每小时行40千米,小轿车每小时行52千米,问几小时后两车相距138千米? 例4 甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求东、西两地相距多少千米? 例5甲、乙两人同时从相距18千米的两地相向而行,甲每小时行4千米,乙每小时行5千米.甲带着一只狗,每小时走20千米,狗走得比人快,同甲一起出发,碰到乙后,它往甲方向奔走;碰到甲后,它又往乙方向奔走,直到甲、乙两人相遇为止,这只狗一共奔走了多少千米?

(完整word版)天体运动中的追及相遇问题

天体运动中的追及相遇问题 信阳高中陈庆威2013.09.17 在天体运动的问题中,我们常遇到一些这样的问题。比如,A、B两物体都绕同一中心天体做圆周运动,某时刻A、B相距最近,问A、B下一次相距最近或最远需要多少时间,或“至少”需要多少时间等问题。 而对于此类问题的解决和我们在直线运动中同一轨道上的追及相遇问题在思维有上一些相似的地方,即必须找出各相关物理量间的关系,但它也有其自身特点。 根据万有引力提供向心力,即当天体速度增加或减少时,对应的圆周轨道就会发生相应的变化,所以天体不可能在同一轨道上实现真正意义上的追及或相遇。天体运动的追及相遇问题中往往还因伴随着多解问题而变得更加复杂,成为同学们学习中的难点。而解决此类问题的关键是就要找好角度、角速度和时间等物理量的关系。 一、追及问题 【例1】如图1所示,有A、B两颗行星绕同一颗恒星M做圆周运动,旋转方向相同,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则 ①经过多长时间,两行星再次相距最近? ②经过多长时间,两行星第一次相距最远? 解析:A、B两颗行星做匀速圆周运动,由万有引力提供向心力 ,因此T1

果A 、B 在异侧,则它们相距最远,从角度上看,在相同时间内,A 比B 多转了 π。所以再次相距最近的时间t 1,由;第一次相 距最远的时间t 2,由。如果在问题中把“再次” 或“第一次”这样的词去掉,那么就变成了多解性问题。 【例2】如图2,地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动。地球的轨道半径为R ,运转周期为T 。地球和太阳中心的连线与地球和行星的连线的夹角叫地球对行星的观察视角(简称视角)。已知该行星的最大视角为θ,当行星处于最大视角处时,是地球上天文爱好者观察该行星的最佳时期。若某时刻该行星正好处于最佳观察期,问该行星下一次处于最佳观察期至少需经历多长时间? 解析:由题意可得行星的轨道半径θsin R r = 设行星绕太阳的运行周期为T /,由开普勒大三定律有: 23 23T r T R ' =,得:θ3sin T T =' 绕向相同,行星的角速度比地球大,行星相对地球 θ θπππω33sin )sin 1(222T T T -=-'=? 某时刻该行星正好处于最佳观察期,有两种情况:一是 刚看到;二是马上看不到,如图3所示。到下一次处于最佳观察期至少需经历时间分别为 两者都顺时针运转:T t ?--=?-= ) sin 1(2sin )2(2331θπθ θπωθπ 两者都逆时针运转: T t ?-+=?+= )sin 1(2sin )2(2332θπθ θπωθπ 二、相遇问题 【例3】设地球质量为M ,绕太阳做匀速圆周运动,有一质量为m 的飞船由静止 开始从P 点沿PD 方向做加速度为a 的匀加速直线运动,1年后在D 点飞船掠过地球上空,再过3个月又在Q 处掠过地球上空,如图4所示(图中“S ”表示太阳)。根据以上条件,求地球与太阳之间的万有引力大小。 视角 太阳 行星 图2 太阳 行星 地球 图3 θ θ

追击相遇问题专题总结

追及相遇问题专题总结 一、 解相遇和追及问题的关键 (1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =± (3)速度关系:两者速度相等。它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。 二、追及问题中常用的临界条件: 1、速度小者追速度大者,追上前两个物体速度相等时,有最大距离; 2、速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上: (1)当两者速度相等时,若追者仍没有追上被追者,则永远追不上,此时两者之间有最小距离。 (2)若两者速度相等时恰能追上,这是两者避免碰撞的临界条件。 (3)若追者追上被追者时,追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,即会相遇两次。 二、图像法:画出v t -图象。 1、速度小者追速度大者(一定追上)

追击与相遇问题专项典型例题分析 (一).匀加速运动追匀速运动的情况(开始时v1 v2):v1> v2时,两者距离变小;v1=v2时,①若满足x1<x +Δx,则永远追不上,此时两者距离最近;②若满足x1=x2+Δx,则恰能追上,全程只相遇一次;③若满足2 x1>x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。 【例2】一辆汽车在十字路口等绿灯,当绿灯亮时汽车以3m/s2的加速度开使行驶,恰在这时一辆自行车在汽车后方相距20m的地方以6m/s的速度匀速行驶,则自行车能否追上汽车?若追不上,两车间的最小间距是多少? 例2中若汽车在自行车前方4m的地方,则自行车能否追上汽车?若能,两车经多长时间相遇?

高中物理必修一追及与相遇问题专题练习及答案

追击和相遇问题 一、追击问题的分析方法: A. 根据追逐的两个物体的运动性质,选择同一参照物,列出两个物体的位移方程; ? ?? ;.;.的数量关系找出两个物体在位移上间上的关系找出两个物体在运动时C B 相关量的确定 D.联立议程求解. 说明:追击问题中常用的临界条件: ⑴速度小者追速度大者,追上前两个物体速度相等时,有最大距离; ⑵速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上. 1.一车处于静止状态,车后距车S0=25处有一个人,当车以1的加速度开始起动时,人以6的速度匀速追车,能否追上?若追不上,人车之间最小距离是多少? 答案.S 人-S 车=S 0 ∴ v 人t-at 2 /2=S0 即t 2 -12t+50=0 Δ=b 2 -4ac=122-4×50=-56<0 方程无解.人追不上车 当v 人=v 车at 时,人车距离最小 t=6/1=6s ΔS min =S 0+S 车-S 人 =25+1×62 /2-6×6=7m 2.质点乙由B 点向东以10的速度做匀速运动,同时质点甲从距乙12远处西侧A 点以4的加速度做初速度为零的匀加速直线运动.求: ⑴当甲、乙速度相等时,甲离乙多远? ⑵甲追上乙需要多长时间?此时甲通过的位移是多大? 答案.⑴v 甲=v 乙=at 时, t=2.5s ΔS=S 乙-S 甲+S AB =10×2.5-4×2.52 /2+12=24.5m ⑵S 甲=S 乙+S AB at 2/2=v 2t+S AB t 2 -5t-6=0 t=6s S 甲=at 2/2=4×62 /2=72m 3.在平直公路上,一辆摩托车从静止出发,追赶在正前方100m 处正以v 0=10m/s 的速度匀速前进的卡车.若摩托车的最大速度为v m =20m/s,现要求摩托车在120s 内追上卡车,求摩托车的加速度应满足什么 答案.摩托车 S 1=at 12 /2+v m t 2 v m =at 1=20 卡车 S 2=v o t=10t S 1=S 2+100 T=t 1+t 2 t ≤120s a ≥0.18m/s 2

追及与相遇问题(详解)

追及与相遇问题刘玉平 课时安排:3课时 三维目标: 1、掌握匀变速直线运动的速度、位移公式以及速度-位移公式; 2、能灵活选用合适的公式解决实际问题; 3、通过解决实际问题,培养学生运用物理规律对实际生活中进行合理分析、解决问题的能力; 4、通过教学活动使学生获得成功的愉悦,培养学生参与物理学习活动的兴趣,提高学习自信心。教学重点:灵活选用合适的公式解决实际问题; 教学难点:灵活选用合适的公式解决实际问题。 教学方法:启发式、讨论式。 教学过程 两物体在同一直线上追及、相遇或避免碰撞问题中的条件是:两物体能否同时到达空间某位置。因此应分别对两物体进行研究,列出位移方程,然后利用时间关系、速度关系、位移关系求解。 一、追及问题 1、追及问题的特征及处理方法: “追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种: ⑴初速度比较小(包括为零)的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定 能追上。 a、追上前,当两者速度相等时有最大距离; b、当两者位移相等时,即后者追上前者。 ⑵匀减速运动的物体追赶同向的匀速运动的物体时,存在一个能否追上的问题。 判断方法是:假定速度相等,从位置关系判断。 解决问题时要注意二者是否同时出发,是否从同一地点出发。 a、当两者速度相等时,若追者位移仍小于被追者,则永远追不上,此时两者间有最 小距离; b、若两者速度相等时,两者的位移也相等,则恰能追上,也是两者避免碰撞的临界 条件; c、若两者速度相等时,追者位移大于被追者,说明在两者速度相等前就已经追上; 在计算追上的时间时,设其位移相等来计算,计算的结果为两个值,这两个 值都有意义。即两者位移相等时,追者速度仍大于被追者的速度,被追者还 有一次追上追者的机会,其间速度相等时两者间距离有一个较大值。 ⑶匀速运动的物体甲追赶同向匀加速运动的物体乙,情形跟⑵类似。 匀速运动的物体甲追赶同向匀减速运动的物体乙,情形跟⑴类似;被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。 2、分析追及问题的注意点: ⑴要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、 最小,恰好追上或恰好追不上等。两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。 ⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。 ⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v t 图象的应用。

物理必修二天体运动各类问题

天体运动中的几个“另类”问题 江苏省靖江市季市中学范晓波 天体运动部分的绝大多数问题,解决的原理及方法比较单一,处理的基本思路是:将天体的运动近似看成匀速圆周运动,根据万有引力提供向心力列方程,向心加速度按涉及的运动学量选择相应的展开形式。 如有必要,可结合黄金代换式简化运算过程。不过,还有几类问题仅依靠 基本思路和方法,会让人感觉力不从心,甚至就算找出了结果但仍心存疑惑,不得要领。这就要求我们必须从根本上理解它们的本质,把握解决的关键,不仅要知其然,更要知其所以然。 一、变轨问题 例:某人造卫星因受高空稀薄空气的阻力作用,绕地球运转的轨道会慢慢改变。每次测 量中卫星的运动可近似看作圆周运动,某次测量卫星的轨道半径为,后来变为,以、 表示卫星在这两个轨道上的线速度大小,、表示卫星在这两个轨道上绕地球运动的周期,则() A.,, B.,, C.,, D.,, 分析:空气阻力作用下,卫星的运行速度首先减小,速度减小后的卫星不能继续沿原轨 道运动,由于而要作近(向)心运动,直到向心力再次供需平衡,即,卫星又做稳定的圆周运动。

如图,近(向)心运动过程中万有引力方向与卫星运动方向不垂直,会让卫星加速,速度增大(从能量角度看,万有引力对卫星做正功,卫星动能增加,速度增大),且增加的数 值超过原先减少的数值。所以、,又由可知。 解:应选C选项。 说明:本题如果只注意到空气阻力使卫星速度减小的过程,很容易错选B选项,因此,分析问题一定要全面,切忌盲目下结论。 卫星从椭圆轨道变到圆轨道或从圆轨道变到椭圆轨道是卫星技术的一个重要方面,卫星定轨和返回都要用到这个技术。 以卫星从椭圆远点变到圆轨道为例加以分析:如图,在轨道远点,万有引力, 要使卫星改做圆周运动,必须满足和,而在远点明显成立,所以 只需增大速度,让速度增大到成立即可,这个任务由卫星自带的推进器完成。“神舟”飞船就是通过这种技术变轨的,地球同步卫星也是通过这种技术定点于同步轨道上的。 二、双星问题 例:在天体运动中,将两颗彼此相距较近的行星称为双星。它们在相互的万有引力作用下间距保持不变,并沿半径不同的同心圆轨道做匀速圆周运动。如果双星间距为,质量分别为和,试计算:(1)双星的轨道半径;(2)双星的运行周期;(3)双星的线 速度。 分析:双星系统中,两颗星球绕同一点做匀速圆周运动,且两者始终与圆心共线,相同时间内转过相同的角度,即角速度相等,则周期也相等。但两者做匀速圆周运动的半径不相等。

高中专题一追击相遇问题-学生版

追击与相遇专题讲解 1.速度小者追速度大者: 类型 图象 说明 匀加速追匀速 ①t=t 0以前,后面物体与前面物体间距离增大 ②t=t 0时,两物体相距最远为x 0+Δx ③t=t 0以后,后面物体与前面物体间距离减小 ④能追及且只能相遇一次 匀速追匀减速 匀加速追匀减速 2.速度大者追速度小者: 学员姓名 辅导科目 物理 就读年级 高一 辅导教师 唐老师 课 型 新授课 教 学 目 标 1.相遇和追击问题的实质 研究的两物体能否在相同的时刻到达相同的空间位置的问题。 2. 解相遇和追击问题的关键 画出物体运动的情景图,理清三大关系 (1)时间关系 :0 t t t B A ±= (2)位移关系:0A B x x x =± (3)速度关系: 两者速度相等。它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。 重 点 难 点 考 点 重点:对题上的时间进行分析 难点:位移的相差是多少 课时 1课时 教学过程

匀减速追匀速 开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t 0时刻: ①若Δx=x 0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件 ②若Δxx0,则相遇两次,设t 1时刻Δx 1=x 0,两物体第一次相遇,则t 2时刻两物体第二次相遇 匀速追匀加速 匀减速追匀加速 说明: ①表中的Δx 是开始追及以后,后面物体因速度大而比前面物体多运动的位移; ②x 0是开始追及以前两物体之间的距离; ③t 2-t 0=t 0-t 1; ④v 1是前面物体的速度,v 2是后面物体的速度。 【学习目标】 1、掌握追及及相遇问题的特点 2、能熟练解决追及及相遇问题 【自主学习】 1. 相遇和追击问题的实质 研究的两物体能否在相同的时刻到达相同的空间位置的问题。 2. 解相遇和追击问题的关键 画出物体运动的情景图,理清三大关系 (1)时间关系 :0 t t t B A ±= (2)位移关系:0A B x x x =± (3)速度关系: 两者速度相等。它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

(完整版)天体运动中的追及相遇问题

天体运动中的追及相遇问题 信阳高中 陈庆威 2013.09.17 在天体运动的问题中,我们常遇到一些这样的问题。比如, A 、B 两物体都 绕同一中心天体做圆周运动,某时刻 A 、B 相距最近,问 A 、B 下一次相距最近或 最远需要多少时间,或“至少”需要多少时间等问题。 而对于此类问题的解决和我们在直线运动中同一轨道上的追及相遇问题在 思维有上一些相似的地方, 即必须找出各相关物理量间的关系, 但它也有其自身 特点。 根据万有引力提供向心力, 即当天体速度增加或减少时, 对应的圆周轨道就 会发生相应的变化,所以天体不可能在同一轨道上实现真正意义上的追及或相 遇。天体运动的追及相遇问题中往往还因伴随着多解问题而变得更加复杂, 成为 同学们学习中的难点。 而解决此类问题的关键是就要找好角度、 角速度和时间等 物理量的关系。 、追及问题 【例 1】如图 1所示,有 A 、B 两颗行星绕同一颗恒星 M 做圆周运动,旋转方向相 同, A 行星的周期为 T 1,B 行星的周期为 T 2,在某一时刻两行星相距最近,则 ①经过多长时间,两行星再次相距最近? ②经过多长时间,两行星第一次相距最远? 有达到一周,但是要它们的相距最近,只有 A 、B 行星和恒星 M 的连线再次在一 条直线上,且 A 、B 在同侧,从角度上看,在相同时间内, A 比 B 多转了2π; 如 解析:A 、B 两颗行星做匀速圆周运动 ,由 万有引力提供向心力 B 还没

果 A 、B 在异侧,则它们相距最远,从角度上看,在相同时间内, A 比 B 多转了 距最远的时间 t 2,由 。如果在问题中把“再次” 或“第一次”这样的词去掉,那么就变成了多解性问题。 【例 2】 如图 2,地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动。 地球的轨道半径为 R ,运转周期为 T 。地球和太阳中心的连线与地球和行星的连 线的夹角叫地球对行星的观察视角(简称视角)。已知该行星的最大视角为θ, 当行星处于最大视角处时, 是地球上天文爱好者观察该行星的最佳时期。 若某时 刻该行星正好处于最佳观察期, 问该行星下一次处于最佳观察期至少需经历多长 时间? 解析: 由题意可得行星的轨道半径 r Rsin 设行星绕太阳的运行周期为 T / ,由开普勒大三定律有: 二、相遇问题 【例 3】设地球质量为 M ,绕太阳做匀速圆周运动,有一质量为 m 的飞船由静止 开始从 P 点沿PD 方向做加速度为 a 的匀加速直线运动, 1年后在 D 点飞船掠过地 球上空,再过 3个月又在 Q 处掠过地球上空,如图 4所示(图中“ S ”表示太阳) 根据以上条件, 求地球与太阳之间的万有引力大小。 π。所以再次相距最近的时间 太阳 R 3 T 2 3 T r 2 ,得:T T sin 3 绕向相同, 行星的角速度比地球大,行星相对地球 2 2 (1 sin 3 ) 行星 视角 地球 图2 T T sin 3 某时刻该行星正好处于 最佳观察期, 刚看到;二是马上看不到 , 如图 3 所示。 观察期至少需经历时间分别为 有两种情况: 到下一次处于最佳 两者都顺时针运转: t 1 2 ) sin 3 ?T 3 2 (1 sin 3 ) 两者都逆时针运转: t 2 ( 2 ) sin 3 ?T 2 (1 sin 3 ) 太阳 行星 θθ 地球 图3 t 1, ;第一次相

天体运动相关问题处理

天体运动 开普勒行星运动三定律 引力势能 机械能守恒定律 动量守恒 1.根据行星绕日做椭圆运动(开普勒第一定律)的面积速度为恒量(开普勒第二定律),试证明各行星绕日 运行的周期T 与椭圆轨道的半长轴a 之间的关系为C T a =23 (开普勒第三定律),并求出常量C 的表达式。 2.要发射一颗人造地球卫星,使它在半径为2r 的预定轨道上绕地球做匀速圆 周运动,为此先将卫星发射到半径为1r 的近地暂行轨道上绕地球做匀速圆周运动,如图所示,在A 点,实际上使卫星速度增加,从而使卫星进入一个椭圆的转移轨道上,当卫星到达转移轨道的远地点B 时,再次改变卫星速度,使它进入预定轨道运行,试求卫星从A 点到达B 点所需的 时间,设万有引力恒量为G ,地球质量为M 。 3.质量为m 的飞船在半径为R 的某行星表面上空高R 处绕行星作圆周运动,飞船在A 点短时间向前喷气,使飞船与行星表面相切地到达B 点,如图所示。设喷气相对飞船的速度大小 为Rg u =,其中g 为该行星表面处的重力加速度。(1)试求飞船在A 点短时 间喷气后的速度;(2)求所喷燃料(即气体)的质量。

4.天文学家在16世纪就观测到了哈雷彗星,天文资料显示:哈雷彗星的近日距为0.59天文单位,远日距为3 5.31天文单位(1天文单位 = 地日距离R ,),地球公转速率为km/s 30。试根据以上资料求: (1)哈雷彗星的回归周期为多少年; (2)哈雷彗星的最大速率v 是多少。 5.卫星沿圆周轨道绕地球运行,轨道半径R r 3=,其中地球半径km 6400=R 。由于制动装置短时间作用,卫星的速度减慢,使它开始沿着与地球表面相切的椭圆轨道运动,如图所示。问:制动后经过多少时间卫星落回到地球上? 6.宇宙飞船在距火星表面H 高度处作匀速圆周运动,火星半径为R ,今设飞船在极短时间内向外侧点喷气,使飞船获得一径向速度,其大小为原速度的a 倍,因a 量很小,所以飞船新轨道不会与火星表面交会,如图所示,飞船喷气质量可忽略不计。 (1)试求飞船新轨道的近火星点的高度近h 和远火星点高度远h ; (2)设飞船原来的运动速度为0v ,试计算新轨道的运行周期T 。 7.地球m 绕太阳M (固定)做椭圆运动,已知轨道半长轴为a ,半短轴 为b ,如图所示,试求地球在椭圆各顶点1,2,3的运动速度的大小及其曲 率半径。

追击相遇问题题型汇总

直线运动——追击相遇问题 例1.一辆巡逻车最快能在10 s内由静止加速到最大速度50 m/s,并能保持这个速度匀速行驶,问该巡逻车在平直的高速公路上由静止追上前方2000 m处正以35 m/s的速度匀速行驶的汽车,至少需要多少时间? 例2.由于某种错误致使两列车相向行驶在同一轨道上,两车司机同时发现了对方,同时刹车,设两车的行驶速度分别为54 km/h和36 km/h,刹车加速度分别为1.5 m/s2和0.5 m/s2,司机需在多远处同时发现对方才不会相碰? 例3.一辆轿车违章超车,以108km/h的速度驶人左侧逆行时,猛然发现正前方80m处一辆卡车正以72km/h 的速度迎面驶来,两司机同时刹车,刹车的加速度大小均为10m/s2,两司机的反应时间(即司机发现险情到实施刹车所经历的时间)都是△t,试问△t为何值时才能保证两车不相撞? 例4.经检测汽车A的制动性能:以标准速度20m/s在平直公路上行驶时,制动后40s停下来。现A在平直公路上以20m/s的速度行驶发现前方180m处有一货车B以6m/s的速度同向匀速行驶,司机立即制动,能否发生撞车事故? 例5.公共汽车A由停车站从静止出发以2 m/s2的加速度做匀加速运动,这时一辆载重汽车B从后面超过公共汽车,载重汽车以10 m/s的速度匀速前进.问:经过多长时间公共汽车能追上载重汽车?在追上前经过多长时间两车相距最远,相距最远时两车之间的距离是多少?

B 总结:讨论追及、相遇的问题,其实质就是分析讨论两物体在相同时间内能否到达相同的空间位置问题. (1)两个关系:即时间关系和位移关系,这两个关系可通过画草图得到. (2)一个条件:即两者速度相等,它往往是物体间能否追上、追不上或(两者)距离最大、最小的临界条件,也是分析判断的切入点. 课后作业〈一〉 1.一辆客车在平直公路上以30 m/s 的速度行驶,突然发现正前方40 m 处有一货车正以20 m/s 的速度沿同一方向匀速行驶,于是客车立即刹车,以2 m/s 2的加速度做匀减速直线运动,问此后的过程中客车能否会撞到货车上? 2.为了安全,在公路上行驶的汽车之间应保持必要的距离.已知某高速公路的最高限速为120 km/h,假设前方车辆突然停止,后车司机从发现这一情况经操纵刹车到汽车开始减速所经历的时间(即反应时间)t =0.5 s,刹车时汽车加速度为4 m/s 2.则该段高速公路上汽车间应保持的最小距离是多少? 3.一辆值勤的警车停在公路边,当警员发现从他旁边以10m/s 的速度匀速行驶的货车严重超载时,决定前去追赶,经过5.5s 后警车发动起来,并以2.5m/s 2的加速度做匀加速运动,但警车的行驶速度必须控制在90km/h 以内.问: (1)警车在追赶货车的过程中,两车间的最大距离是多少? (2)警车发动后要多长时间才能追上货车? 4.A 、B 两辆汽车在笔直的公路上同向行驶,当B 车在A 车前84 m 处时,B 车速度为4 m/s,且正以2 m/s 2 的加速度做匀加速运动;经过一段时间后,B 车加速度突然变为零.A 车一直以20 m/s 的速度做匀速运动,经过12 s 后两车相遇.问B 车加速行驶的时间是多少? 5.如图所示,A 、B 两物体相距s =7m ,物体A 以v A =4m/s 的速度向右匀速运动。而物体B 此时的速度v B =10m/s ,向右做匀减速运动,加速度a =-2m/s 2。那么物体A 追上物体B 所用的时间。

高中物理追击和相遇问题专题带答案

专题:直线运动中的追击和相遇问题 一、相遇和追击问题的实质 研究的两物体能否在相同的时刻到达相同的空间位置的问题。 二、 解相遇和追击问题的关键 画出物体运动的情景图,理清三大关系 (1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =± (3)速度关系: 两者速度相等。它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。 三、追击、相遇问题的分析方法: A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程; B. 找出两个物体在运动时间上的关系 C. 找出两个物体在运动位移上的数量关系 D. 联立方程求解. 说明:追击问题中常用的临界条件: ⑴速度小者追速度大者,追上前两个物体速度相等时,有最大距离; ⑵速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上, 否则就不能追上. 四、典型例题分析: (一).匀加速运动追匀速运动的情况(开始时v 1< v 2):v 1< v 2时,两者距离变大;v 1= v 2时, 两者距离最大;v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。 【例1】一小汽车从静止开始以3m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求: (1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少? 答案:(1) 2s 6m (2)12m/s (二).匀速运动追匀加速运动的情况(开始时v 1> v 2):v 1> v 2时,两者距离变小;v 1= v 2时,①若满足x 1< x 2+Δx ,则永远追不上,此时两者距离最近;②若满足x 1=x 2+Δx ,则恰能追上,全程只相遇一次;③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。 【例2】一个步行者以6m/s 的最大速率跑步去追赶被红灯阻停的公共汽车,当他距离公共汽车25m 时,绿灯亮了,汽车以1m/s 2的加速度匀加速启动前进,问:人能否追上汽车?若能追上,则追车过程中人共跑了多少距离?若不能追上,人和车最近距离为多少? 答案:不能追上 7m (三).匀减速运动追匀速运动的情况(开始时v 1> v 2):v 1> v 2时,两者距离变小;v 1= v 2时,①若满足x 1 x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。 【例3】汽车正以10m/s 的速度在平直公路上前进,突然发现正前方有一辆自行车以4m/s 的速度做同方向的匀速直线运动,汽车立即关闭油门做加速度大小为 6 m/s 2的匀减速运动,汽车恰好不碰上自

天体运动变轨问题.doc

变轨问题——金榜教育 1.(安徽省皖南八校2011 届)我国“嫦娥二号" 探月卫星于2010 年 10 月成功发射。在“嫦娥 二号”卫星奔月过程中,在月球上空有一次变轨过程,是由椭圆轨道 A 变为近月圆形轨道 B ,A 、 B .两轨道相切于P 点,如图所示.探月卫星先后沿 A 、 B 轨道运动经过P 点时,下列说法正确的是 A .卫星运行的速度v A= v B B .卫星受月球的引力F A =F B C.卫星的加速度a A >a B D .卫星的动能 E kA

追击相遇问题专题讲解

追击与相遇专题讲解 1、追及问题中两者速度大小与两者距离变化的关系。 甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离 。若甲的速度小于乙的速度,则两者之间的距离 。若开始甲的速度小于乙的速度过一段时间后两者速度相等,则两者之间的距离 (填最大或最小)。 2、追及问题的特征及处理方法: “追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种: ⑴ 初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追 上前有最大距离的条件:两物体速度 ,即v v 乙甲。 ⑵ 匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。 物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开 始做匀加速直线运动,求 A 、 B 再次相遇前两物体间的最大距离.

【解析一】物理分析法 A做υA=10 m/s的匀速直线运动,B做初速度为零、加速度a=2 m/s2的匀加速直线运动.根据题意,开始一小段时间,A的速度大于B的速度,它们间的距离逐渐变大,当B的速度加速到大于A的速度后,它们间的距离又逐渐变小;A、B间距离有最大值的临界条件是υA=υB.①设两物体经历时间t相距最远,则υA=at② 把已知数据代入①②两式联立得t=5 s 在时间t,A、B两物体前进的距离分别为 s A=υA t=10×5 m=50 m s B=1 2 at2= 1 2 ×2×52 m=25 m A、B再次相遇前两物体间的最大距离为Δs m=s A-s B=50 m-25 m=25 m

物理必修二天体运动各类问题

天体运动中的几个“另类”问题 天体运动部分的绝大多数问题,解决的原理及方法比较单一,处理的基本思路是:将天体的运动近似看成匀速圆周运动,根据万有引力提供向心力列方程,向心加速度按涉及的运动学量选择相应的展开形式。 如有必要,可结合黄金代换式简化运算过程。不过,还有几类问题仅依靠基本思路和方法,会让人感觉力不从心,甚至就算找出了结果但仍心存疑惑,不得要领。这就要求我们必须从根本上理解它们的本质,把握解决的关键,不仅要知其然,更要知其所以然。 一、变轨问题 例:某人造卫星因受高空稀薄空气的阻力作用,绕地球运转的轨道会慢慢改变。每次测量中卫星的运动可近似看作圆周运动,某次测量卫星的轨道半径为,后来变为,以、表示卫星在这两个轨道上的线速度大小,、表示卫星在这两个轨道上绕地球运动的周期,则() A.,, B.,, C.,, D.,, 分析:空气阻力作用下,卫星的运行速度首先减小,速度减小后的卫星不能继续沿原轨道运动,由于而要作近(向)心运动,直到向心力再次供需平衡,即,卫星又做稳定的圆周运动。

如图,近(向)心运动过程中万有引力方向与卫星运动方向不垂直,会让卫星加速,速度增大(从能量角度看,万有引力对卫星做正功,卫星动能增加,速度增大),且增加 的数值超过原先减少的数值。所以、,又由可知。 解:应选C选项。 说明:本题如果只注意到空气阻力使卫星速度减小的过程,很容易错选B选项,因此,分析问题一定要全面,切忌盲目下结论。 卫星从椭圆轨道变到圆轨道或从圆轨道变到椭圆轨道是卫星技术的一个重要方面,卫星定轨和返回都要用到这个技术。 以卫星从椭圆远点变到圆轨道为例加以分析:如图,在轨道远点,万有引力 ,要使卫星改做圆周运动,必须满足和,而在远点明 显成立,所以只需增大速度,让速度增大到成立即可,这个任务由卫星自带的推进器完成。“神舟”飞船就是通过这种技术变轨的,地球同步卫星也是通过这种技术定点于同步轨道上的。 二、双星问题 例:在天体运动中,将两颗彼此相距较近的行星称为双星。它们在相互的万有引力作用下间距保持不变,并沿半径不同的同心圆轨道做匀速圆周运动。如果双星间距为,质量分别为和,试计算:(1)双星的轨道半径;(2)双星的运行周期;(3)双星 的线速度。 分析:双星系统中,两颗星球绕同一点做匀速圆周运动,且两者始终与圆心共线,相同时间内转过相同的角度,即角速度相等,则周期也相等。但两者做匀速圆周运动的半径不相等。

追击相遇问题专题总结(完整资料).doc

此文档下载后即可编辑 追及相遇问题专题总结 一、 解相遇和追及问题的关键 (1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =± (3)速度关系:两者速度相等。它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。 二、追及问题中常用的临界条件: 1、速度小者追速度大者,追上前两个物体速度相等时,有最大距离; 2、速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上: (1)当两者速度相等时,若追者仍没有追上被追者,则永远追不上,此时两者之间有最小距离。 (2)若两者速度相等时恰能追上,这是两者避免碰撞的临界条件。 (3)若追者追上被追者时,追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,即会相遇两次。 二、图像法:画出v t -图象。

1、速度小者追速度大者(一定追 上) 追击与相遇问题专项典型例题分析 (一).匀加速运动追匀速运动的情况(开始时v1< v2):v1< v2时,两者距离变大;v 时, 2 两者距离最大;v1>v2时,两者距离变小,相遇时满足x1= x2+Δx,全程只相 遇(即追上)一次。 【例1】一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长

时间两者相距最远?此时距离是多少?(2)小汽车什么时候追上自行车,此时小汽车的速度是多少? 【针对练习】一辆执勤的警车停在公路边,当警员发现从他旁边驶过的货车(以8m/s的速度匀速行驶)有违章行为时,决定前去追赶,经2.5s将警车发动起来,以2m/s2的加速度匀加速追赶。求:①发现后经多长时间能追上违章货车?②追上前,两车最大间距是多少? (二).匀速运动追匀加速运动的情况(开始时v1> v2):v1> v2时,两者距离变小;v1= v2时,①若满足x1< x2+Δx,则永远追不上,此时两者距离最近;②若满足x1=x2+Δx,则恰能追上,全程只相遇一次;③若满足x1> x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。 【例2】一辆汽车在十字路口等绿灯,当绿灯亮时汽车以3m/s2的加速度开使行驶,恰在这时一辆自行车在汽车后方相距20m的地方以6m/s的速度匀速行驶,则自行车能否追上汽车?若追不上,两车间的最小间距是多少?

常见的相遇问题及追及问题等计算公式

小学常用公式 和差问题 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数+1)=小数 差倍问题 差÷(倍数-1)=小数 植树问题 1 单条线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 棵数=全长÷间隔长+1=间隔数+1 全长=间隔长×(棵数-1) 间隔长=全长÷(棵数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 棵数=间隔数=全长÷间隔长 全长=间隔长×棵数 间隔长=全长÷棵数 ⑶如果在非封闭线路的两端都不要植树,那么: 棵数=全长÷间隔长-1=间隔数-1 全长=间隔长×(棵数+1) 间隔长=全长÷(棵数+1) 2 双边线路上的植树问题主要也有三种情形: 参考单条线路上的植树问题,注意要除以2。 3 环形或叫封闭线路上的植树问题的数量关系如下 棵数=间隔数=全长÷间隔长 全长=间隔长×棵数 间隔长=全长÷棵数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题

追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%) 【题目】一游泳池道长100米,甲乙两个运动员从泳道的两端同时下水做往返训练15分钟,甲每分钟游81米,乙每分钟游89米。甲运动员一共从乙运动员身边经过了多少次? 【解答】从身边经过,包括迎面和追上两种情况。 能迎面相遇【(81+89)×15+100】÷200,取整是13次。 第一次追上用100÷(89-81)=分钟, 以后每次追上需要×2=25分钟,显然15分钟只能追上一次。 因此经过13+1=14次。 如果甲乙从A,B两点出发,甲乙第n次迎面相遇时,路程和为全长的2n-1倍,而此时甲走的路程也是第一次相遇时甲走的路程的2n-1倍(乙也是如此)。 总结:若两人走的一个全程中甲走1份M米, 两人走3个全程中甲就走3份M米。 (含义是说,第一次相遇时,甲乙实际就是走了一个全程,第二次相遇时,根据上面的公式,甲乙走了 2x2-1=3个全程,如果在第一次相遇时甲走了m米,那么第二次相遇时甲就走了3个m米) 下面我们用这个方法看一道例题。 湖中有A,B两岛,甲、乙二人都要在两岛间游一个来回。两人分别从A,B两岛同时出发,他们第一次相遇时距A岛700米,第二次相遇时距B岛400米。问:

相关主题
文本预览
相关文档 最新文档