当前位置:文档之家› 数学思想方法之函数与方程思想

数学思想方法之函数与方程思想

数学思想方法之函数与方程思想
数学思想方法之函数与方程思想

第1讲 函数与方程思想

(推荐时间:60分钟)

一、填空题

1. (2012·镇江模拟)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是__________.

2. 设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M 、N ,则当MN 达到最小时t 的值为________.

3. (2012·泉州模拟)设不等式2x -1>m (x -1)对满足|m |≤2的一切实数m 的取值都成立,则x 的取值范围是__________.

4. (2012·泰州模拟)若方程sin 2x +2sin x +a =0有解,则实数a 的取值范围是________.

5. 若点O 和点F (-2,0)分别是双曲线x 2a 2-y 2=1 (a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为____________.

6. 方程m +1-x =x 有解,则m 的最大值为________.

7. (2012·佛山模拟)已知数列{a n }满足a 1=33,a n +1-a n =2n ,则a n n

的最小值为________. 8. (2011·北京)已知函数f (x )=?????

2x , x ≥2,(x -1)3, x <2.

若关于x 的方程f (x )=k 有两个不同的实

根,则实数k 的取值范围是________.

9. 若方程x 2+ax +2=0的两根可以作为一椭圆和一双曲线的离心率,则a 的取值范围是_ _________.

10.在等比数列{a n }中,S 3=72,S 6=632

,则通项a n =____________________. 二、解答题

11.(2012·徐州模拟)已知f (t )=log 2t ,t ∈[2,8],对于f (t )值域内的所有的实数m ,不等式x 2+mx +4>2m +4x 恒成立,求x 的取值范围.

12. 等差数列{a n }的首项a 1>0,前n 项的和为S n ,若S m =S k (m ≠k ),问n 为何值时,S n 最大.

13.(2012·无锡模拟)已知二次函数f (x )=ax 2+bx (a ,b 为常数,且a ≠0)满足条件:f (x -1)=f (3-x ),且方程f (x )=2x 有等根.是否存在实数m ,n (m

答 案

1.(-∞,-3)∪(0,3)

2. 22

3. ???

?34,+∞ 4.[-3,1]

5.[3+23,+∞)

6.1

7. 212

8.(0,1)

9.a <-3

10.2n -

2 11.解 ∵t ∈[2,8],∴f (t )∈????12,3,从而m ∈???

?12,3, 原题可转化为m (x -2)+(x -2)2>0恒成立. 当x =2时,不等式不成立.∴x ≠2,

令g (m )=m (x -2)+(x -2)2为m 的一次函数.

问题转化为g (m )在m ∈????12,3上恒大于0.

?????

g ????12>0,g (3)>0.

解得x >2或x <-1.

故x 的取值范围是

(-∞,-1)∪(2,+∞).

12.解 设数列{a n }的公差为d ,

由于S m =S k ,

所以ma 1+m (m -1)2d =ka 1+k (k -1)2

d , 所以(m -k )a 1=-(m -k )(m +k -1)2

d . 因为m ≠k ,所以a 1=-(m +k -1)d 2

. 因为a 1>0,m 、k 均为正整数,

所以d <0.

又因为S n =na 1+n (n -1)2

d =-(m +k -1)d 2n +n (n -1)2

d =d 2???

?n -m +k 22-(m +k )28d ,d 2<0, 所以以n 为自变量的二次函数的图象开口向下,故S n 有最大值.

若m +k 为偶数,当n =m +k 2时,S n 有最大值-(m +k )28

d ; 若m +k 为奇数,当n =m +k ±12

时, S n 有最大值-(m +k )2-18

d . 13.解 ∵方程ax 2+bx =2x 有等根,

∴Δ=(b -2)2=0,得b =2.

由f (x -1)=f (3-x )知此函数图象的对称轴方程为x =-b 2a =1得a =-1, 故f (x )=-x 2+2x =-(x -1)2+1≤1,

∴4n ≤1,即n ≤14

. 而抛物线y =-x 2+2x 的对称轴为x =1,

∴n ≤14

时,f (x )在[m ,n ]上为增函数. 若满足题设条件的m ,n 存在,

则?

???? f (m )=4m ,f (n )=4n , 即?

???? -m 2+2m =4m ,-n 2+2n =4n ??????

m =0或m =-2,n =0或n =-2. 又m

,∴m =-2,n =0, 这时定义域为[-2,0],

值域为[-8,0].

由以上知满足条件的m ,n 存在,

且m =-2,n =0.

2014届高三数学一轮必备“高频题型全掌握”21.数学方法:函数与方程思想

- 1 - 【精选三年经典试题(数学)】2014届高三全程必备《高频题型全掌 握系列》21.数学方法:函数与方程思想 1.(2013.厦门联考)二次函数f (x )=ax 2+bx +c ,a 为正整数,c ≥1,a +b +c ≥1,方程ax 2+bx +c =0有两个小于1的不等正根,则a 的最小值是 ( ). A .3 B .4 C .5 D .6 解析 由题意得f (0)=c ≥1,f (1)=a +b +c ≥1.当a 越大,y =f (x )的开口越小,当a 越小,y =f (x )的开口越大,而y =f (x )的开口最大时,y =f (x )过(0,1),(1,1),则c =1,a +b +c =1.a +b = 0,a =-b ,-b 2a =12 ,又b 2-4ac >0,a (a -4)>0,a >4,由于a 为正整数,即a 的最小值为5. 答案 C 2.(2013·烟台月考)已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( ). A .2x +y +1=0 B .2x -y -5=0 C .2x -y -1=0 D .2x -y +5=0 解析 由题意知,M 为PQ 中点,设Q (x ,y ),则P 为(-2-x ,4-y ),代入2x -y +3=0,得2x -y +5=0. 答案 D 3.(2013·沈阳二模)在平行四边形ABCD 中,∠BAD =60°,AD =2AB ,若P 是平面ABCD 内一 点,且满足:xAB →+yAD →+PA →=0(x ,y ∈R ).则当点P 在以A 为圆心,33 |BD →|为半径的圆上时,实数x ,y 应满足关系式为 ( ). A .4x 2+y 2+2xy =1 B .4x 2+y 2-2xy =1 C .x 2+4y 2-2xy =1 D .x 2+4y 2 +2xy =1 解析 如图,以A 为原点建立平面直角坐标系,设AD =2.据题意,得 AB =1,∠ABD =90°,BD = 3.∴B 、D 的坐标分别为(1,0)、(1,3), ∴AB →=(1,0),AD →=(1,3).设点P 的坐标为(m ,n ),即AP →=(m , n ),则由xAB →+yAD →+PA →=0,得:AP →=xAB →+yAD →,∴??? m =x +y ,n =3y . 据题意,m 2+n 2=1,∴x 2+4y 2+2xy =1. 答案 D

高考数学函数与方程的思想方法

高考数学函数与方程的 思想方法 Last revised by LE LE in 2021

第4讲 函数与方程的思想方法 一、知识整合 函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y =f(x)的图像与x 轴的交点的横坐标,函数y =f(x)也可以看作二元方程f(x)-y =0通过方程进行研究。 就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。 2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程的数学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题。方程思想是动中求静,研究运动中的等量关系. 3.(1) 函数和方程是密切相关的,对于函数y =f(x),当y =0时,就转化为方程f(x)=0,也可以把函数式y =f(x)看做二元方程y -f(x)=0。函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y =f(x)的零点。 (2) 函数与不等式也可以相互转化,对于函数y =f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式。 (3) 数列的通项或前n 项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要。 (4) 函数f(x)=n b ax )( (n ∈N *)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题。 (5) 解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元

函数与方程思想在高中的应用

函数与方程思想在高考中的应用 组长:潘云鹏 12033034 组员:夏炎 12304177 杨岑 12304154 张瑶 12304184 孙雪 12304013 高清华 12304196 谭博闻 12304159 郭志岩 12304143 刘春旭 12304009 函数与方程思想在高考中的应用

摘要本文阐述了函数思想与方程思想的概念、二者之间的相互转换及在转换时需要注意的一些问题.用典型的例题阐明用函数与方程思想方法能够轻易解决数学学科中不等式、数列、二项式定理、三角函数、平面向量、解析几何、立体几何、概率与统计、导数、实际问题等难以突破的部分,并且它也应用在其他学科领域中.并结合中学数学教学,提出教师应该在教学中有意培养学生的函数与方程思想,并且给出了具体可行性的建议. 一.函数与方程思想的概念 1.函数思想 函数思想是一种通过构造函数从而应用函数图象、性质解题的思想方法,即用运动变化的思想观点,分析和研究具体问题中的数量关系,通过函数的形式把这种数量关系表示出来,并加以研究其内在的联系,使问题获解.应用函数思想解题的基础是:常见函数的单调性、奇偶性、周期性、最值和图象变换等;熟练掌握一次函数、二次函数、指对数函数等具体特征;应用函数思想解题的关键是:善于观察题目的结构特征,揭示内在联系,挖掘隐含条件,从而恰当地构造函数和利用函数性质去解题.. 2.方程思想 方程思想是若干变量关系是通过解析式表示的,则可以把解析式看成一个等式,然后通过方程的讨论从而使问题获解.许多问题中含有常量、变量和参量,可以通过适当方式,运用方程的观点去观察、

深入分析问题的结构特点,抓住某一个关键变量,构造出这种等式来处理.两种思想方法是相辅相成的,有关方程、不等式、最值等问题,利用函数、方程观点加以分析,常可以使问题“明朗化”,从而易于找到适当解题途径. 3.函数与方程思想的相互转化 很明显,只有在对问题的观察、分析、判断等一系列的思维过程中,具备有标新立异、独树一帜的深刻性、独创性思维,才能构造出函数原型,化归为方程的问题,实现函数与方程的互相转化接轨,达到解决问题的目的. 方程与函数是中学数学的重点内容,占了相当多的份量,其中某些内容既是重点又是难点.例如,列方程(组)解应用题,函数的定义和性质,反函数的概念,平面解几里曲线的方程,方程的曲线的概念等等.方程的思想和函数的思想是处理常量数学与变量数学的重要思想,在解决一般数学问题中具有重大的方法论意义.在中学数学里,对各类代数方程和初等超越方程都作了较为系统的研究.对一个较为复杂的问题,常常先通过分析等量关系,列出一个或几个方程或函数关系式,再解方程(组)或研究这函数的性质,就能很好地解决问题.函数知识涉及到的知识点多,面广,在概念性、应用性、理解性上能达到一定的要求,有利于检测学生的深刻性、独创性思维. 二.函数思想在解题中的应用分析 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的

高一数学函数与方程知识点整理

高一数学函数与方程知识点整理在中国古代把数学叫算术,又称算学,最后才改为数学。数学分为两部分,一部分是几何,另一部分是代数。精品小编准备了高一语文函数与方程知识点,希望你喜欢。 1.设f(x)=x3+bx+c是[-1,1]上的增函数,且f(-12)f(12)0,则方程f(x)=0在[-1,1]内() A.可能有3个实数根 B.可能有2个实数根 C.有唯一的实数根 D.没有实数根 解析:由f -12f 120得f(x)在-12,12内有零点,又f(x)在[-1,1]上为增函数, f(x)在[-1,1]上只有一个零点,即方程f(x)=0在[-1,1]上有唯一的实根. 答案:C 2.(2019长沙模拟)已知函数f(x)的图象是连续不断的,x、f(x)的对应关系如下表: x123456 f(x)136.1315.552-3.9210.88-52.488-232.064 则函数f(x)存在零点的区间有 A.区间[1,2]和[2,3] B.区间[2,3]和[3,4] C.区间[2,3]、[3,4]和[4,5] D.区间[3,4]、[4,5]和[5,6]

解析:∵f(2)与f(3),f(3)与f(4),f(4)与f(5)异号, f(x)在区间[2,3],[3,4],[4,5]上都存在零点. 答案:C 3.若a1,设函数f(x)=ax+x-4的零点为m,g(x)=logax+x-4的零点为n,则1m+1n的取值范围是 A.(3.5,+) B.(1,+) C.(4,+) D.(4.5,+) 解析:令ax+x-4=0得ax=-x+4,令logax+x-4=0得logax=-x+4,在同一坐标系中画出函数y=ax,y=logax,y=-x+4的图象,结合图形可知,n+m为直线y=x与y=-x+4的交点的横坐标的2倍,由y=xy=-x+4,解得x=2,所以n+m=4,因为 (n+m)1n+1m=1+1+mn+nm4,又nm,故(n+m)1n+1m4,则 1n+1m1. 答案:B 4.(2019昌平模拟)已知函数f(x)=ln x,则函数g(x)=f(x)-f(x) 的零点所在的区间是 A.(0,1) B.(1,2) C.(2,3) D.(3,4) 解析:函数f(x)的导数为f(x)=1x,所以g(x)=f(x)-f(x)=ln x-1x.因为g(1)=ln 1-1=-10,g(2)=ln 2-120,所以函数g(x)=f(x)-f(x)的零点所在的区间为(1,2).故选B. 答案:B

高中数学--函数与方程

函数与方程 一、函数的零点概念 教材中具体的定义:对于函数)(x f y =,我们把使 0)(=x f 的实数x 叫做函数0)(=x f 的零点。 可以这样理解:① 函数)(x f y =的零点就是 方程0)(=x f 的实数根 ② 函数)(x f y =的零点就是 函数)(x f y =的图象与X 轴交点的横坐标 二、用二分法求方程的近似解 二分法 对于在区间[a ,b ]上连续不断且f (a )·f (b )<0的函数y =f (x ),通过不断地把函数f (x )的零点所在的区间一分为二使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法. 举例理解: 二次函数f (x )=x 2-2x -3的图象(如下图),函数f (x )=x 2-2x -3在区间[-2,1]上有零点. 计算f (-2)×f (1) (> 还是 < ) 0 在区间[2,4]的端点上,即f (2)·f (4)<0,函数f (x )=x 2-2x -3在(2,4)内有零点。

例1 下列函数中,不能用二分法求零点的是( ) 例2 下列函数图象与x 轴均有公共点,其中能用二分法求零点的是( ) 三、零点分类:不变号零点和变号零点 不变号零点 )(x f y ==函数2)(x x f =在下列区间是否存在零点?( ) (A )(-3,-1) (B )(-1,2) (C )(2,3) (D )(3,4) 变号零点 函数零点的存在性定理(仅适合变号零点):

应用:仅能判断零点的存在性,或者判断零点所在的区间命题方法判断零点的个数及所在的区间 典例(1)已知函数f(x)=6 x-log2 x,在下列区 间中,包含f(x)零点的区间是( ) A.(0,1) B.(1,2) C.(2,4) D.(4,+∞)(2)函数f(x)=2x- 2 x- a的一个零点在区间(1,2)内,则实数a的取值范围是( ) A.(1,3) B.(1,2) C.(0,3) D.(0,2) 【解题法总结】函数零点问题的解题方法 (1)判断函数在某个区间上是否存在零点的方法 ①解方程:当函数对应的方程易求解时,可通过解方程判断方程是否有根落在给定区间上. ②利用零点存在性定理进行判断. ③画出函数图象,通过观察图象与x轴在给定区间上是否有交点来判断. (2)判断函数零点个数的方法

高考数学重点难点3函数与方程思想大全

重点难点36 函数方程思想 函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决. ●重点难点磁场 1.(★★★★★)关于x的不等式2?32x–3x+a2–a–3>0,当0≤x≤1时恒成立,则实数a的取值范围为. 2.(★★★★★)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0) (1)若a=1,b=–2时,求f(x)的不动点; (2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围; (3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B关于直线y=kx+ 对称,求b的最小值. ●案例探究 [例1]已知函数f(x)=logm (1)若f(x)的定义域为[α,β],(β>α>0),判断f(x)在定义域上的增减性,并加以说明; (2)当0<m<1时,使f(x)的值域为[logm[m(β–1)],logm[m(α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由. 命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目. 知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组. 错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根. 技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题. 解:(1)x<–3或x>3. ∵f(x)定义域为[α,β],∴α>3 设β≥x1>x2≥α,有 当0<m<1时,f(x)为减函数,当m>1时,f(x)为增函数. (2)若f(x)在[α,β]上的值域为[logmm(β–1),logmm(α–1)] ∵0<m<1, f(x)为减函数. ∴ 即 即α,β为方程mx2+(2m–1)x–3(m–1)=0的大于3的两个根 ∴∴0<m< 故当0<m<时,满足题意条件的m存在. [例2]已知函数f(x)=x2–(m+1)x+m(m∈R) (1)若tanA,tanB是方程f(x)+4=0的两个实根,A、B是锐角三角形ABC的两个内角.求证:m≥5; (2)对任意实数α,恒有f(2+cosα)≤0,证明m≥3; (3)在(2)的条件下,若函数f(sinα)的最大值是8,求m. 命题意图:本题考查函数、方程与三角函数的相互应用;不等式法求参数的范围.属

函数与方程思想简单应用

数学思想方法的简单应用(1) 一、函数与方程思想 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还需要函数与方程的互相转化、接轨,达到解决问题的目的。 函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:y=f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解决问题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题、集合问题、数列问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。 1.证明:若 则为整数. 解析:若x+y+z+t=0,则由题设条件可得 ,于是此时(1)式的值等于-4. 若x+y+z+t≠0,则 由此可得x=y=z=t.于是(1)式的值等于4. 2.已知:函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=. (1)求a、b的值及函数f(x)的解析式; (2)若不等式f(2x)﹣k?2x≥0在x∈[﹣1,1]时恒成立,求实数k的取值范围;

高中数学竞赛专题一 函数与方程思想

高中数学竞赛专题一函数与方程思想 函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,它主要包括函数的概念、图象和性质以及几类典型的函数,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。函数思想贯穿于高中代数的全部内容,它是在学习指数函数、对数函数以及三角函数的过程中逐渐形成,并为研究这些函数服务的,如研究方程、不等式、数列、解析几何等其他内容,一直是高考的热点、重点内容。函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决.这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路. 和函数有必然联系的是方程,方程是初中代数的主要内容,初中阶段主要学习了几类方程和方程组的解法,方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略。 一、考点回顾 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。比如,对于满足0≤p≤4的一切实数,不等式x2+px>4x+p-3恒成立,试求x的取值范围一例,我们习惯上把x当作自变量,构造函数y=x2+(p-4)x+3-p,于是问题转化为:当p∈[0,4]时,y>0恒成立,求x的取值范围.解决这个等价的问题需要应用二次函数以及二次方程的区间根原理,可想而知,这是相当复杂的. 如果把p看作自变量,x视为参数,构造函数y=(x-1)p+(x2-4x+3),则y是p的一次函数,就非常简单.即令 f(p)=(x-1)p+(x2-4x+3).函数f(p)的图象是一条线段,要使f(p)>0恒成立,当且仅当f(0)>0,且f(4)>0,解这个不等式组即可求得x的取值范围是(-∞,-1)∪(3,+∞).本题看上去是一个不等式问题,但是经过等价转化,我们把它化归为一个非常简单的一次函数,并借助于函数的图象建立了一个关于x的不等式组来达到求解的目的 在函数的学习和复习中,要做到熟练掌握基础知识,充分理解各知识点间的内在联系,如数列中的an、Sn都可以看作是n的函数而应用函数思想以获得新的解法。要总结、归纳运用

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

函数与方程思想总结(很好很全面)

函数与方程思想 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。 2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系; 3.函数方程思想的几种重要形式 (1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。 (2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式; (3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要; (4)函数f(x)=(1+x)^n (n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题; (5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论; (6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。 【例1】. 关于x的方程(x2-1)2-|x2-1|+k=0,给出下列四个命题: ①存在实数k,使得方程恰有2个不同的实根; ②存在实数k,使得方程恰有4个不同的实根; ③存在实数k,使得方程恰有5个不同的实根; ④存在实数k,使得方程恰有8个不同的实根. 其中真命题是_____________ 解答:根据题意可令|x2-1|=t(t≥0),则方程化为t2-t+k=0,(*) 作出函数t=|x2-1|的图象,结合函数的图象可知①当t=0或t>1时,原方程有两上不

高中数学函数与方程知识点总结 经典例题及解析 高考真题及答案

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有 1个零点?0)(=x f 有两个相等实根; 0?

高中数学必修-函数与方程

高中数学必修 函数与方程 1.函数零点的概念 对于函数y=f(x),x∈D,我们把使f(x)=0的实数x叫作函数y=f(x),x∈D的零点. 注意:函数的零点是实数,而不是点;并不是所有的函数都有零点,若函数有零点,则零点一定在函数的定义域内. 2.函数的零点与方程根的联系 由函数零点的概念可知,函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴的交点的横坐标.所以方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点. 3.二次函数的零点 对于二次函数y=ax2+bx+c(a≠0),其零点个数可根据一元二次方程ax2+bx+c=0(a≠0)根的判别式来确定,具体情形如下表: Δ>0Δ=0Δ<0 方程ax2+bx+c=0(a≠0)的根的个数有两个不相等的实数 根 有两个相等的实数根无实数根 函数y=ax2+bx+c(a≠0)的零点个数有两个零点有一个零点无零点 函数y=ax2+bx+c(a≠0)的图象 a>0 a<0 函数y=ax2+bx+c(a≠0)的图象与轴的 交点个数 有两个交点有一个交点无交点 4.零点存在性定理 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根. 注意:在上述定理的条件下,只能判断出零点存在,不能确定零点的个数.

【辨析比较】f (a )·f (b )<0与函数f (x )存在零点的关系 ①.若函数y =f (x )在闭区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,则函数y =f (x )一定有零点. 图1 ②.由函数y =f (x )在闭区间[a ,b ]上有零点不一定能推出f (a )·f (b )<0,如图1.所以f (a )·f (b )<0是y =f (x )在闭区间[a ,b ]上有零点的充分不必要条件.事实上,只有当函数图象通过零点(不是偶次零点)时,函数值才变号,即相邻两个零点之间的函数值同号. 注意:若函数f (x )在[a ,b ]上单调,且f (x )的图象是连续不断的一条曲线,则f (a )·f (b )<0?函数f (x )在[a ,b ]上只有一个零点. 5.二分法的概念 对于在区间[a ,b ]上连续不断且f (a )·f (b )<0的函数y =f (x ),通过不断地把函数f (x )的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫作二分法. 6.用二分法求函数零点近似值的步骤 给定精确度ε,用二分法求函数f (x )零点近似值的步骤如下: 第一步:确定区间[a ,b ],验证f (a )·f (b )<0,给定精确度ε. 第二步:求区间(a ,b )的中点x 1. 第三步:计算f (x 1). (1)若f (x 1)=0,则x 1就是函数的零点; (2)若f (a )·f (x 1)<0,则令b =x 1(此时零点x 0∈(a ,x 1)); (3)若f (x 1)·f (b )<0,则令a =x 1(此时零点x 0∈(x 1,b )). 第四步:判断是否达到精确度ε,即若|a -b |<ε,则得到零点近似值a (或b ),否则重复第二、三、四步. 7.常见的几种函数模型 (1)一次函数模型:y =kx +b (k ≠0). (2)反比例函数模型:y =k x +b (k ,b 为常数且k ≠0). (3)二次函数模型:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).

高中数学必修一 函数与方程的思想方法

函数与方程的思想方法 函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 函数的思想,是用运动和变化的观点、集合与对应的思想,去分析和研究数学问题中的数量关系,建立函数关系或构造函数,再利用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想的精髓就是构造函数。 方程的思想,是分析数学问题中变量间的等量关系,从而建立方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。 方程的思想与函数的思想密切相关,函数与方程的思想方法,几乎渗透到中学数学的各个 领域,在解题中有着广泛的运用。对于函数 ) (x f y=,当0 = y时,就转化为方程0 ) (= x f, 也可以把函数式 ) (x f y=看做二元方程0 ) (= -x f y,函数与方程这种相互转化的关系十 分重要。 函数与表达式也可以相互转化,对于函数 ) (x f y=,当0 > y时,就转化为不等式 ) (> x f,借助与函数的图像与性质可以解决不等式的有关问题,而研究函数的性质,也离不开解不等式。 数列的通项或前n项和时自变量为自然数的函数,用函数观点去处理数列问题也是十分重要。 函数 ) ( ) ( ) (* N n bx a x f n∈ + =与二项式定理密切相关,利用这个函数,用赋值法和比 较系数法可以解决很多有关二项式定理的问题。 解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决,这都涉及二次方程与二次函数的有关理论。 立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决。建立空间向量后,立体几何与函数的关系就更加密切。 函数思想在解题中的应用主要表现在两个方面:一是借助初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关问题,达到化难为易、化繁为简的目的。 高考中的方程和不等式问题包括方程、不等式的求解及方程、不等式观点的应用,可以分成逐渐提高的四个层次。 第一层次:解方程或不等式,主要是指解代数(一次、二次等)方程或不等式,指数、对数方程或不等式,三角方程或不等式,复数方程等; 第二层次:对带参数的方程或不等式的讨论,常涉及二次方程的判别式、韦达定理、区间根、区间上恒成立的不等式等问题; 第三层次:转化为方程的讨论,如曲线的位置关系(包括点与曲线及直线与曲线的位置关系)、函数的性质、集合的关系等; 第四层次:构造方程或不等式求解问题。 其中第三、四层次(特别是第四层次)已经进入到方程、不等式观点应用的境界,即把方程、不等式作为基本数学工具去解决各个学科中的问题。 纵观中学数学,可谓是以函数为中心,以函数为纲,“纲举目张”,抓住了函数这个“纲”

专题01 函数与方程思想(解析版)

专题01 函数与方程思想 思想方法诠释 1.函数的思想:是通过建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题得到解决的思想. 2.方程的思想:是建立方程或方程组或者构造方程或方程组,通过解方程或方程组或者运用方程的性质去分析问题、转化问题,从而使问题获得解决的思想. 【典例讲解】 要点一 函数与方程思想在函数、方程、不等式中的应用 [解析] (1)当y =a 时,2(x +1)=a ,所以x =a 2 -1. 设方程x +ln x =a 的根为t ,则t +ln t =a ,则|AB |=????t -a 2+1=????t -t +ln t 2+1=????t 2-ln t 2 +1.设g (t )=t 2-ln t 2+1(t >0),则g ′(t )=12-12t =t -12t ,令g ′(t )=0,得t =1,当t ∈(0,1)时,g ′(t )<0;当t ∈(1,+∞)时,g ′(t )>0,所以g (t )min =g (1)=32,所以|AB |≥32,所以|AB |的最小值为3 2,故选D. (2)因为函数f (x )=log 3(9x +t 2)是定义域R 上的增函数,且为“优美函数”,则f (x )=x 至少有两个不等 实根,由log 3(9x +t 2)=x ,得9x +t 2=3x ,所以(3x )2-3x +t 2=0有两个不等实根.令λ=3x (λ>0),则λ2-λ+t 2 =0有两个不等正实根,所以????? Δ=1-4t 2>0,t 2>0, 解得-12

高中数学函数与方程练习

函数与方程 一、选择题 1、设2 3)(x x f x -=,则在下列区间中,使函数f (x )有零点的区间是( ) A. [0,1] B.[1,2] C. [-2,-1] D. [-1,0] 2、已知函数2)1()(22-+-+=a x a x x f 的一个零点比1小,另一个零点比1大,则( ) A .-11或a<-2 C .-22或a<-1 3、已知0lg lg =+b a ,函数x a x f =)(与函数x x g a log )(-=的图象可能是( ) 4、函数1 1ln )(--=x x x f 的零点的个数是( ) A .0 B .1 C .2 D .3 5、设)(x f 是连续的偶函数,且当0>x 时)(x f 是单调函数,则满足??? ??++=43)(x x f x f 的所有x 之和为( ) A .-3 B .3 C .-8 D .8 6、已知函数7(13)10()x a x f x a --+?=??66x x ≤>若数列{}n a 满足*()()n a f n n N =∈, 且{}n a 是递减数列,则实数a 的取值范围是( ) A .1(,1)3 B . 11(,)32 C .15(,)38 D . 5(,1)8 7、设函数f(x)=13 4)(,42+= +--x x g a x x , 当x ∈[-4, 0]时, 恒有f(x)≤g(x), 则a 可能取的一个值是( ) A . -5 B . 5 C . - 35 D . 35 二、填空题 8、不等式2()0f x ax x c =-->的解集为{|21}x x -<<,则函数0)(<-x f 的解集为 _________ 9、直线y=kx 与曲线2--=x x y 有3个公共点,则实数k 的取值范围为_________ 10、偶函数f (x )满足f (x -1)=f (x +1),且在x ∈[0,1]时,f (x )=x 2,则关于x 的方程f (x )=x ?? ? ??101

高三数学教案 函数与方程思想

第十一专题 函数与方程思想 考情动态分析: 本专题的内容主要是函数思想、方程思想及其应用.函数的思想方法是用联系变化的观点,将给定的数学问题转化为函数关系,通过研究函数的性质,得出所需的结论.高考中有关函数思想的试题主要涉及四个方面:(1)具体的原始意义上的函数问题;(2)方程、不等式与函数的综合问题;(3)数列这一特殊的函数;④利用辅助函数解题. 方程的思想方法,就是设出未知数.根据题中各量间的关系,列出等式,沟通未知与已知的关系,从而使问题得以解决.高考中有关方程的试题单独命题较少,主要有以下几个方面:(1)方程、函数、不等式的综合题;(2)求曲线的方程;(3)数列中方程思想的应用. 对函数与方程思想的考查,集中体现在应用题、探索性问题,主要考查学生的阅读能力、应用能力、理解能力、表达能力及信息加工处理能力,命题集中体现在在知识交汇点处命制综合性问题. 第一课时 函数思想与方程思想 一、考点核心整合 函数思想就是要用运动变化的观点,分析和研究具体问题中的数量关系,通过函数的形式把这数量关系表示出来,并加以研究,从而使问题获得解决.函数思想的实质是剔除问题的非数学特征,用联系的观点提出数学抽象,抽象其数学特征,建立函数关系. 方程的思想就是如果变量间的关系是通过解析式表示出来的,则可以把解析式看作一个方程,通过对方程的讨论使问题得到解决. 函数思想、方程思想体现了一种解决数学问题的理念——建“模”意识.所谓“模”就是一个问题的载体,是联系已知、未知的桥梁,建“模”后的第二个步骤是解析“模”,从而真正将实际问题化为数学问题,数学因此也成为探索大自然奥秘的工具. 二、典例精讲: 例1 已知函数)(x f 的定义域为}3,2,1{=A ,值域为}2,1{--=B ,则这样的函数共有 ________个. 例2 设平面内两向量与互相垂直,且1||,2||==,又k 与t 是两个不同时为0的实数. (Ⅰ)若t )3(2 -+=与b t a k y +-=垂直,求k 关于t 的函数关系式)(t f k =; (Ⅱ)试确定)(t f k =的单调区间. 例3 已知函数)(log )1(log 1 1 log )(222 x p x x x x f -+-+-+=. (Ⅰ)求)(x f 的定义域; (Ⅱ)求)(x f 的值域. 例4 二次函数r qx px x f ++=2 )(中实数、r 、q p 满足 012=++++m r m q m p ,其中0>m ,求证:(Ⅰ)0)1 ( <+m m pf ; (Ⅱ)方程0)(=x f 在)1,0(内恒有解. 三、提高训练: (一)选择题:

函数方程思想

难点36 函数方程思想 函数与方程思想是最重要的一种数学思想,数学中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决. ●难点磁场 1.(★★★★★)关于x 的不等式2·32x –3x +a 2–a –3>0,当0≤x ≤1时恒成立,则实数a 的取值范围为 . 2.(★★★★★)对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0成立,则称x 0为f (x )的不动点.已知函数f (x )=ax 2+(b +1)x +(b –1)(a ≠0) (1)若a =1,b =–2时,求f (x )的不动点; (2)若对任意实数b ,函数f (x )恒有两个相异的不动点,求a 的取值范围; (3)在(2)的条件下,若y =f (x )图象上A 、B 两点的横坐标是函数f (x )的不动点,且A 、B 关于直线y =kx + 1 212 +a 对称,求b 的最小值. ●案例探究 [例1]已知函数f (x )=log m 3 3 +-x x (1)若f (x )的定义域为[α,β],(β>α>0),判断f (x )在定义域上的增减性,并加以说明; (2)当0<m <1时,使f (x )的值域为[log m [m (β–1)],log m [m (α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由. 命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目. 知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组. 错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根. 技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题. 解:(1) ?>+-03 3 x x x <–3或x >3. ∵f (x )定义域为[α,β],∴α>3 设β≥x 1>x 2≥α,有 0) 3)(3() (6333321212211>++-=+--+-x x x x x x x x 当0<m <1时,f (x )为减函数,当m >1时,f (x )为增函数. (2)若f (x )在[α,β]上的值域为[log m m (β–1),log m m (α–1)] ∵0<m <1, f (x )为减函数. ∴??? ???? -=+-=-=+-=) 1(log 33log )()1(log 33log )(ααααββββm f m f m m m m

相关主题
文本预览
相关文档 最新文档