当前位置:文档之家› SMT-09 Process Flow CD

SMT-09 Process Flow CD

研究生《高等半导体器件物理》试题

2014级研究生《高等半导体器件物理》试题 1.简单说明抛物线性能能带和非抛物线性能带的能带结构以及各自 的特点、应用。 2.试描述载流子的速度过冲过程和弹道输运过程,以及它们在实际 半导体器件中的应用。 3.什么是半导体超晶格?半导体器件中主要的量子结构有哪些? 半导体超晶格:两种或者两种以上不同组分或者不同导电类型超薄层材料,交替堆叠形成多个周期结构,如果每层的厚度足够薄,以致其厚度小于电子在该材料中的德布罗意波的波长, 这种周期变化的超薄多层结构就叫做超晶格. 主要的量子结构:超晶格中, 周期交替变化的超薄层的厚度很薄,相临势阱中的电子波函数能够互相交叠, 势阱中的电子能态虽然是分立的, 但已被展宽. 如果限制势阱的势垒进度足够厚, 大于德布罗意波的波长, 那么不同势阱中的波函数不再交叠, 势阱中电子的能量状态变为分立的能级. 这种结构称之为量子阱( QW).在上述结构中,电子只在x 方向上有势垒的限制, 即一维限制,而在y , z 两个方向上是二维自由的. 如果进一步增加限制的维度,则构成量子线和量子点. 对于量子线而言, 电子在x , y 两个方向上都受到势垒限制; 对于量子点来说, 在x , y , z 三个方向上都有势垒限制. 我们通常将这些量子结构称为低维结构, 即量子阱、量子线和量子点分别为二维、一维和零维量子结构. 4.PHEMT的基本结构、工作原理以及电学特点。 5.隧道谐振二极管的主要工作特点,RITD的改进优势有哪些? 6.突变发射结、缓变基区HBT的工作原理、特点及其应用。 7.举例讨论半导体异质结光电器件的性能。

参考文献: 1.沃纳,半导体器件电子学,电子工业出版社,2005 2.施敏,现代半导体器件物理,科学出版社,2002 3.王良臣等,半导体量子器件物理讲座(第一讲~第七讲),物理(期刊),2001~2002

比较PageRank算法和HITS算法的优缺点

题目:请比较PageRank算法和HITS算法的优缺点,除此之外,请再介绍2种用于搜索引擎检索结果的排序算法,并举例说明。 答: 1998年,Sergey Brin和Lawrence Page[1]提出了PageRank算法。该算法基于“从许多优质的网页链接过来的网页,必定还是优质网页”的回归关系,来判定网页的重要性。该算法认为从网页A导向网页B的链接可以看作是页面A对页面B的支持投票,根据这个投票数来判断页面的重要性。当然,不仅仅只看投票数,还要对投票的页面进行重要性分析,越是重要的页面所投票的评价也就越高。根据这样的分析,得到了高评价的重要页面会被给予较高的PageRank值,在检索结果内的名次也会提高。PageRank是基于对“使用复杂的算法而得到的链接构造”的分析,从而得出的各网页本身的特性。 HITS 算法是由康奈尔大学( Cornell University ) 的JonKleinberg 博士于1998 年首先提出。Kleinberg认为既然搜索是开始于用户的检索提问,那么每个页面的重要性也就依赖于用户的检索提问。他将用户检索提问分为如下三种:特指主题检索提问(specific queries,也称窄主题检索提问)、泛指主题检索提问(Broad-topic queries,也称宽主题检索提问)和相似网页检索提问(Similar-page queries)。HITS 算法专注于改善泛指主题检索的结果。 Kleinberg将网页(或网站)分为两类,即hubs和authorities,而且每个页面也有两个级别,即hubs(中心级别)和authorities(权威级别)。Authorities 是具有较高价值的网页,依赖于指向它的页面;hubs为指向较多authorities的网页,依赖于它指向的页面。HITS算法的目标就是通过迭代计算得到针对某个检索提问的排名最高的authority的网页。 通常HITS算法是作用在一定范围的,例如一个以程序开发为主题的网页,指向另一个以程序开发为主题的网页,则另一个网页的重要性就可能比较高,但是指向另一个购物类的网页则不一定。在限定范围之后根据网页的出度和入度建立一个矩阵,通过矩阵的迭代运算和定义收敛的阈值不断对两个向量authority 和hub值进行更新直至收敛。 从上面的分析可见,PageRank算法和HITS算法都是基于链接分析的搜索引擎排序算法,并且在算法中两者都利用了特征向量作为理论基础和收敛性依据。

半导体器件物理

半导体器件物理 Physics of Semiconductor Devices 教学大纲 课程名称:半导体器件物理 课程编号:M832001 课程学分:2 适用专业:集成电路工程领域 一、课程性质 本课程的授课对象为集成电路工程专业硕士研究生,课程属性为专业基础必修课。要求学生在学习过《电路分析》,《数字电路》,《模拟电路》和《半导体物理》的基础上选修这门课程。 二、课程教学目的 通过本课程教学,使得学生知道微电子学的用途、主要内容,明白学习微电子学应该掌握哪些基础知识;对微电子学的发展历史、现状和未来有一个比较清晰的认识;学会应用《半导体物理》的基础知识来对半导体器件物理进行分析,初步掌握电子器件物理、工作原理等基本概念,对微电子学的整体有一个比较全面的认识。

三、教学基本内容及基本要求 第一章微电子学常识 (一)教学基本内容 第一节晶体管的发明 1.1 晶体管发明的历史过程 1.2 晶体管发明对现代文明的作用 第二节集成电路的发展历史 2.1 集成电路的概念 2.2 集成电路发展的几个主要里程碑 2.3 目前集成电路的现状 2.4 集成电路未来发展的主要趋势 第三节集成电路的分类 3.1 集成电路的分类方法 3.2 MOS集成电路的概念 3.3 双极集成电路的概念 第四节微电子学的特点 4.1 微电子学的主要概念 4.2 微电子学的主要特点 (二)教学基本要求 了解:晶体管发明的过程,晶体管发明对人类社会的作用; 微电子学的概念,微电子学的特点; 掌握:集成电路的概念,集成电路发展的几个主要里程碑;集成电路的分

类方法,MOS集成电路的概念,双极集成电路的概念;第二章p-n结二极管 (一)教学基本内容 第一节p-n结的空间电荷区 1.1 p-n结的结构和制造概述 1.2 p-n结的空间电荷层和内建电场、内建电势 1.3 p-n结的耗尽层(势垒)电容 第二节p-n结的直流特性 2.1 p-n结中载流子的注入和抽取 2.2 理想p-n结的伏-安特性 2.3 实际p-n结的伏-安特性 2.4 大注入时p-n结的伏-安特性 2.5 实际p-n结的电流、正向结电压与温度的关系 第三节p-n结的小信号特性 3.1 p-n结的交流电流密度 3.2 扩散电容C d 第四节p-n结的开关特性 4.1 p-n结中少数载流子存储的电荷 4.2 p-n结的瞬变过程 4.3 p-n结反向恢复时间的计算 第五节p-n结的击穿特性 5.1 隧道击穿(Zener击穿)

pagerank算法实验报告

PageRank算法实验报告 一、算法介绍 PageRank是Google专有的算法,用于衡量特定网页相对于搜索引擎索引中的其他网页而言的重要程度。它由Larry Page 和Sergey Brin在20世纪90年代后期发明。PageRank实现了将链接价值概念作为排名因素。 PageRank的核心思想有2点: 1.如果一个网页被很多其他网页链接到的话说明这个网页比较重要,也就是pagerank值会相对较高; 2.如果一个pagerank值很高的网页链接到一个其他的网页,那么被链接到的网页的pagerank值会相应地因此而提高。 若页面表示有向图的顶点,有向边表示链接,w(i,j)=1表示页面i存在指向页面j的超链接,否则w(i,j)=0。如果页面A存在指向其他页面的超链接,就将A 的PageRank的份额平均地分给其所指向的所有页面,一次类推。虽然PageRank 会一直传递,但总的来说PageRank的计算是收敛的。 实际应用中可以采用幂法来计算PageRank,假如总共有m个页面,计算如公式所示: r=A*x 其中A=d*P+(1-d)*(e*e'/m) r表示当前迭代后的PageRank,它是一个m行的列向量,x是所有页面的PageRank初始值。 P由有向图的邻接矩阵变化而来,P'为邻接矩阵的每个元素除以每行元素之和得到。 e是m行的元素都为1的列向量。 二、算法代码实现

三、心得体会 在完成算法的过程中,我有以下几点体会: 1、在动手实现的过程中,先将算法的思想和思路理解清楚,对于后续动手实现 有很大帮助。 2、在实现之前,对于每步要做什么要有概念,然后对于不会实现的部分代码先 查找相应的用法,在进行整体编写。 3、在实现算法后,在寻找数据验证算法的过程中比较困难。作为初学者,对于 数据量大的数据的处理存在难度,但数据量的数据很难寻找,所以难以进行实例分析。

PageRank算法的核心思想

如何理解网页和网页之间的关系,特别是怎么从这些关系中提取网页中除文字以外的其他特性。这部分的一些核心算法曾是提高搜索引擎质量的重要推进力量。另外,我们这周要分享的算法也适用于其他能够把信息用结点与结点关系来表达的信息网络。 今天,我们先看一看用图来表达网页与网页之间的关系,并且计算网页重要性的经典算法:PageRank。 PageRank 的简要历史 时至今日,谢尔盖·布林(Sergey Brin)和拉里·佩奇(Larry Page)作为Google 这一雄厚科技帝国的创始人,已经耳熟能详。但在1995 年,他们两人还都是在斯坦福大学计算机系苦读的博士生。那个年代,互联网方兴未艾。雅虎作为信息时代的第一代巨人诞生了,布林和佩奇都希望能够创立属于自己的搜索引擎。1998 年夏天,两个人都暂时离开斯坦福大学的博士生项目,转而全职投入到Google 的研发工作中。他们把整个项目的一个总结发表在了1998 年的万维网国际会议上(WWW7,the seventh international conference on World Wide Web)(见参考文献[1])。这是PageRank 算法的第一次完整表述。 PageRank 一经提出就在学术界引起了很大反响,各类变形以及对PageRank 的各种解释和分析层出不穷。在这之后很长的一段时间里,PageRank 几乎成了网页链接分析的代名词。给你推荐一篇参考文献[2],作为进一步深入了解的阅读资料。

PageRank 的基本原理 我在这里先介绍一下PageRank 的最基本形式,这也是布林和佩奇最早发表PageRank 时的思路。 首先,我们来看一下每一个网页的周边结构。每一个网页都有一个“输出链接”(Outlink)的集合。这里,输出链接指的是从当前网页出发所指向的其他页面。比如,从页面A 有一个链接到页面B。那么B 就是A 的输出链接。根据这个定义,可以同样定义“输入链接”(Inlink),指的就是指向当前页面的其他页面。比如,页面C 指向页面A,那么C 就是A 的输入链接。 有了输入链接和输出链接的概念后,下面我们来定义一个页面的PageRank。我们假定每一个页面都有一个值,叫作PageRank,来衡量这个页面的重要程度。这个值是这么定义的,当前页面I 的PageRank 值,是I 的所有输入链接PageRank 值的加权和。 那么,权重是多少呢?对于I 的某一个输入链接J,假设其有N 个输出链接,那么这个权重就是N 分之一。也就是说,J 把自己的PageRank 的N 分之一分给I。从这个意义上来看,I 的PageRank,就是其所有输入链接把他们自身的PageRank 按照他们各自输出链接的比例分配给I。谁的输出链接多,谁分配的就少一些;反之,谁的输出链接少,谁分配的就多一些。这是一个非常形象直观的定义。

现代半导体器件物理复习题

半导体器件物理复习题 1.简述Schrodinger 波动方程的物理意义及求解边界条件。 2.简述隧道效应的基本原理。 3.什么是半导体的直接带隙和间接带隙。 4.什么是Fermi-Dirac 概率函数和Fermi 能级,写出n(E) 、p(E) 与态密度和Fermi 概率函数的关系。 5.什么是本征Ferm 能级?在什么条件下,本征Ferm 能级处于中间能带上。 6.简述硅半导体中电子漂移速度与外加电场的关系。 7.简述Hall 效应基本原理。解释为什么Hall 电压极性跟半导体类型( N 型或P 型) 有关。 8.定性解释低注入下的剩余载流子寿命。 9.一个剩余电子和空穴脉冲在外加电场下会如何运动,为什么? 10.当半导体中一种类型的剩余载流子浓度突然产生时,半导体内的净电荷密度如何变化?为什么? 11.什么是内建电势?它是如何保持热平衡的? 12.解释p-n 结内空间电荷区的形成机理及空间电荷区宽度与外施电压的关系。 13.什么是突变结和线性剃度结。 14.分别写出p-n 结内剩余少子在正偏和反偏下的边界条件。 15.简述扩散电容的物理机理。 16.叙述产生电流和复合电流产生的物理机制。 17.什么理想肖特基势垒?用能带图说明肖特基势垒降低效应。 18.画出隧道结的能带图。说明为什么是欧姆接触。 19.描述npn三极管在前向有源模式偏置下的载流子输运过程。 20.描述双极晶体管在饱和与截止之间开关时的响应情况。 21.画出一个n-型衬底的MOS 电容在积聚、耗尽和反型模式下的能带图。 22.什么是平带电压和阈值电压 23.简要说明p-沟道器件的增强和耗尽型模式。 24.概述MESFET 的工作原理。 25.结合隧道二极管的I-V 特性,简述其负微分电阻区的产生机理。 26.什么是短沟道效应?阐述短沟道效应产生的原因及减少短沟道效应的方法。 短沟道效应( shortchanneleffect ):当金属- 氧化物- 半导体场效应晶体管( MOSFE)T 的沟道长度L 缩短到可与源和漏耗尽层宽度之和(WS WD)相比拟时,器件将发生偏离长沟道 (也即L 远大于WSW D)的行为,这种因沟道长度缩短而发生的对器件特性的影响,通常称为短沟道效应。由于短沟道效应使MOSFET的性能变坏且工作复杂化,所以人们希望消除或 减小这个效应,力图实现在物理上是短沟道的器件,而在电学上仍有长沟道器件的特性。 当器件尺寸缩减时,必须将短沟道效应降至最低程度,以确保正常的器件特性及电路工作在器件按比例缩小设计时需要一些准则,一个简要维持长沟道特性的方法为将所有的尺寸及电压,除上一按比例缩小因素К (> 1),如此内部电场将保持如同长沟道MOSFET 一般,此方法称为定电场按比例缩小(constant-field scaling) [ 随器件尺寸的缩减,其电路性能(速度以及导通时的功率损耗)得到加强§.然而,在实际的IC 制作中,较小器件的内部电场往往被迫增加而很难保持固定.这主要是因为一些电压因子( 如电源供 电、阈值电压等)无法任意缩减.由于亚阈值摆幅是无法按比例缩小的,所以,假若阈值电压过低,则关闭态( off state )(V G=0 )的漏电流将会显著增加, 因此,待机功率(standby power)损耗亦将随之上升[12].通过按比例缩小规范,

相关主题
文本预览
相关文档 最新文档