当前位置:文档之家› 小波分析期末报告分析解析

小波分析期末报告分析解析

小波分析期末报告分析解析
小波分析期末报告分析解析

学习报告——

基于小波分析的去噪应用

专业:计算数学

班级:数学二班

学号:152111033

姓名:刘楠楠

小波分析是传统傅里叶分析发展史上里程碑式的发展,近年来成为众多学科共同关注的热点,本篇报告在小波变换的基础上将其应用于信号去噪中,利用小波方法去噪,是小波分析应用于实际的重要方面。小波去噪的关键是如何选择阈值和如何利用阈值来处理小波系数,通过对几种去噪方法不同阀值的选取比对分析和基于MATLAB 信号去噪的仿真试验,比较各种阀值选取队去噪效果的影响。

小波分析同时具有理论深刻和应用十分广泛的双重意义。它与Fourier 变换、 窗口Fourier 变换(Gabor 变换) 相比, 是一个时间和频率的局域变换,因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis)解决了Fourier 变换不能解决的许多问题, 从而小波变化被誉为 “数学显微镜” , 它是调和分析发展史上里程碑式的进展。

1小波变换理论

1.1小波变换的定义

设)(t ψ为一平方可积函数,即)()(2R L t ∈ψ,若其Fourier 变换)(?ωψ

满足条件: ?∞<=R d C ωωωψψ||)(?2

(1.1) 则称)(t ψ为一个基本小波、母小波或者容许小波,我们称式(1)为小波函数的可容许条件。)(2R L 表示满足?+∞

)(的函数空间。更一般地,)(R L p 表示满足?+∞

dt t f )(的函数空间。 1.2连续小波变换

1.2.1一维连续小波变换

定义:设)()(2R L t ∈ψ,其傅立叶变换为)(?ωψ

,当)(?ωψ满足允许条件(完全重构条件或恒等分辨条件)

?<=R d C ωωωψψ2

)(?∞ (1.2) 时,我们称)(t ψ为一个基本小波或母小波。将母函数)(t ψ经伸缩和平移后得 )(1

)(,a

b t a t b a -=ψψ 0;,≠∈a R b a (1.3) 称其为一个小波序列。其中a 为伸缩因子,b 为平移因子。对于任意的函数)()(2R L t f ∈的连续小波变换为 dt a b t t f a

f b a W R b a f )()(,),(2/1,->==

∞--=dadb a b t b a W a C t f f )(),(11

)(2ψψ (1.5) 由于基小波)(t ψ生成的小波)(,t b a ψ在小波变换中对被分析的信号起着观测窗的作用,所以)(t ψ还应该满足一般函数的约束条件

∞-dt t )(ψ∞ (1.6) 故)(?ωψ

是一个连续函数。这意味着,为了满足完全重构条件式,)(?ωψ在原点必须等于0,即

0)()0(?==?∞

∞-dt t ψψ (1.7) 为了使信号重构的实现在数值上是稳定的,处理完全重构条件外,还要求小波)(t ψ的傅立叶变化满足下面的稳定性条件:

∑∞∞--≤≤B A j 2

)2(?ωψ

(1.8) 式中∞<≤

从稳定性条件可以引出一个重要的概念。

定义(对偶小波) 若小波)(t ψ满足稳定性条件(1.8)式,则定义一个对偶小

波)(~t ψ

,其傅立叶变换)(?~ωψ由下式给出:

∑∞-∞=-=j j 2)

2()

(*)(?~ωψωψωψ (1.9) 注意,稳定性条件(1.8)式实际上是对(1.9)式分母的约束条件,它的作用是保证对偶小波的傅立叶变换存在的稳定性。值得指出的是,一个小波的对偶小波一般不是唯一的,然而,在实际应用中,我们又总是希望它们是唯一对应的。因此,寻找具有唯一对偶小波的合适小波也就成为小波分析中最基本的问题。 连续小波变换具有以下重要性质:

(1)线性性:一个多分量信号的小波变换等于各个分量的小波变换之和

(2)平移不变性:若f (t )的小波变换为),(b a W f ,则)(τ-t f 的小波变换为),(τ-b a W f

(3)伸缩共变性:若f (t )的小波变换为),(b a W f ,则f (ct )的小波变换为0),,(1>c cb ca W c

f , (4)自相似性:对应不同尺度参数a 和不同平移参数b 的连续小波变换之间是自相似的。

(5)冗余性:连续小波变换中存在信息表述的冗余度。

小波变换的冗余性事实上也是自相似性的直接反映,它主要表现在以下两个方面:

①由连续小波变换恢复原信号的重构分式不是唯一的。也就是说,信号f (t )的小波变换与小波重构不存在一一对应关系,而傅立叶变换与傅立叶反变换是一一对应的。

②小波变换的核函数即小波函数)(,t b a ψ存在许多可能的选择(例如,它们可以是非正交小波、正交小波、双正交小波,甚至允许是彼此线性相关的)。

小波变换在不同的(a ,b )之间的相关性增加了分析和解释小波变换结果的困难,因此,小波变换的冗余度应尽可能减小,它是小波分析中的主要问题之一。

1.2.2二维连续小波变换

对)1)(()(2>∈n R L t f n ,公式 ??∞∞-∞

∞--=dadb a b t b a W a C t f f )(),(11

)(2ψψ (1.10) 存在几种扩展的可能性,一种可能性是选择小波)()(2n R L t f ∈使其为球对称,其傅立叶变换也同样球对称, )()(?ωηωψ

= (1.11) 并且其相容性条件变为 ∞<=?∞t

dt t C 022)()2(ηπψ (1.12) 对所有的)(,2n g L g f ∈。

f C db b a W b a W a da

g f n <=?∞

+ψ),(),(01

(1.13) 这里,),(b a W f =〈b a ,ψ〉,)()(2/,a b t a t n b a -=-ψψ,其中0,≠∈+a R a 且n R b ∈,公式(2.6)也可以写为

??∞

+-=0,11),(db b a W a

da C f b a R f n n ψψ (1.14) 如果选择的小波ψ不是球对称的,但可以用旋转进行同样的扩展与平移。例如,在二维时,可定义

))(()(11,,a

b t R a t b a -=--θθψψ (1.15) 这里,2,0R b a ∈>,???? ?

?-=θθθθθcos sin sin cos R ,相容条件变为 ??

∞<=∞πψθθθψπ20202)sin ,cos (?)2(d r r r

dr C (1.16) 该等式对应的重构公式为

???∞-=020,,31),,(2

πθψθψθd b a W db a da C f b a f R (1.17) 对于高于二维的情况,可以给出类似的结论。

1.3离散小波变换

在实际运用中,尤其是在计算机上实现时,连续小波必须加以离散化。因此,有必要讨论连续小波)(,t b a ψ和连续小波变换),(b a W f 的离散化。需要强调指出的是,这一离散化都是针对连续的尺度参数a 和连续平移参数b 的,而不是针对时间变量t 的。这一点与我们以前习惯的时间离散化不同。在连续小波中,考虑函数:

)()(2/1,a

b t a t b a -=-ψψ 这里R b ∈,+∈R a ,且0≠a ,ψ是容许的,为方便起见,在离散化中,总限制a 只取正值,这样相容性条件就变为 ∞<=?∞

ωω

ωψψd C 0)(? (1.18) 通常,把连续小波变换中尺度参数a 和平移参数b 的离散公式分别取作

000,b ka b a a j j ==,这里Z j ∈,扩展步长10≠a 是固定值,为方便起见,总是假定

10>a (由于m 可取正也可取负,所以这个假定无关紧要)

。所以对应的离散小波函数)(,t k j ψ即可写作

)()()(002/00

002

/0,kb t a a a b ka t a t j j j j j k j -=-=---ψψψ (1.19) 而离散化小波变换系数则可表示为

>=<=?∞

∞-k j k j k j f dt t t f C ,*

,,,)()(ψψ (1.20) 其重构公式为

∑∑∞∞-∞

∞-=)()(,,t C C t f k j k j ψ (1.21)

C 是一个与信号无关的常数。然而,怎样选择0a 和0b ,才能够保证重构信号的精度呢?显然,网格点应尽可能密(即0a 和0b 尽可能小),因为如果网格点越稀疏,使用的小波函数)(,t k j ψ和离散小波系数k j C ,就越少,信号重构的精确度也就会越低。

2小波变换在去噪中的应用

2.1小波去噪的特点

传统的去噪方法常使用Fourier 变换去噪,将含噪信号变换到频域,然后采用低通滤波器进行滤波,但是基于Fourier 变换的去噪方法存在着保护信号局部性和抑制噪声之间的矛盾。Fourier 变换去噪不能有效的将噪声与有用信号的高频部分和有噪声引起的高频干扰加以有效的区分开来。这就使得我们在研究信号去噪上注意到小波的好处,小波去噪可以很好的保护有用信号的尖峰和突变部分的信号。小波分析提供了一种自适应的时域和频域同时局部化的多分辨率分析方法,可以很好的刻画信号的非平稳特性。根据噪声和信号的小波系数在小波分解尺度上具有不同的特性,构造相应的规则,在小波域采用适当的方法对含噪信号的小波系数进行处理。具有以下优点:

(1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述);

(2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性;

(3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口)

(4)小波变换实现上有快速算法(Mallat 小波分解算法)。

2.2小波去噪的相关算法

一、建立模型:

如果一个信号)(n f 被噪声污染后为)(n s ,那么基本的噪声模型就可以表示为 )()()(n e n f n s σ+=,式中:)(n e 为噪声;σ为噪声强度。最简单的情况下)(n e 为高斯白噪声,且1=σ。小波变换就是要抑制)(n e 以恢复)(n f ,从而达到去除噪声的目的。从统计学的观点看,这个模型是一个随时间推移的回归模型,也可以看作是在正交基上对函数)(n f 无参估计。小波去噪通常通过以下3个步骤予以实现:

a)小波分解;

b)设定各层细节的阈值,对得到的小波系数进行阈值处理;

c)小波逆变换重构信号。

小波去噪的结果取决于以下2点:

a)去噪后的信号应该和原信号有同等的光滑性;

b)信号经处理后与原信号的均方根误差越小,信噪比越大,效果越好。

如何选择阈值和如何利用阈值来量化小波系数,将直接影响到小波去噪结果。

二、小波系数的阈值处理:

1.由原始信号确定阈值

小波变换中,对各层系数降噪所需的阈值一般是根据原信号的信噪比来决定的。在模型里用σ这个量来表示,可以使用MATLAB 中的wnoisest 函数计算得到σ值,得到信号的噪声强度后,根据下式来确定各层的阈值。

)log(2n thr =

式中n 为信号的长度。

2. 基于样本估计的阈值选取

(1)无偏似然估计(rigrsure):是一种基于Stein 无偏似然估计原理的自适应阈值选择。对于给定的阈值T ,得到它的似然估计,再将似然T 最小化,就得到了所选的阈值,这是一种软件阈值估计。

(2)阈值原则(sqtwlolg):固定阈值T 的计算公式为)log(2n 。

(3)启发式阈值原则(heursure):是无偏似然估计和固定阈值估计原则的折中。如果信噪比很小,按无偏似然估计原则处理的信号噪声较大,在这种情况下,就采用固定阈值形式。

(4)极值阈值原则(minimax):采用极大极小值原理选择阈值,它产生一个最小均方误差的极值,而不是没有误差。统计学上,这种极值原理用来设计估计器。因为被消噪的信号可以看作与未知回归函数的估计器相似,这种极值估计器可在给定的函数中实现最大均方误差最小化。

3. 软阈值和硬阈值

在确定阈值后,可以采用硬阈值或软阈值的处理方法对小波系数做阈值处理。硬阈值法只保留大于阈值的小波系数并将其他的小波系数置零,其表达式如下:

?????≤>=T

x T x x s ,,0

软阈值法将小于阈值的小波系数置零,并把大于阈值的小波系数向零做收缩,其表达式如下: ()?????≤>-=T x T x T x x sign s ,

,0)(

2.3小波去噪的具体实例

例1给定函数)10cos(x e f x -=作为原始信号,然后加一组随机噪声,然后分别选取不同阀值对信号用小波以为信号的自动消噪进行去噪处理。采用的小波为sym8,分解层数为5,小波函数为wden 。这里只分析不同阀值系数硬阀值去噪,程序如下:

x=0:0.01:3;

f=exp(-x).*cos(10*x);%原始信号函数

subplot(3,2,1);

plot(f);title('原始信号图形');%画出原始信号图形

noise=0.2*randn(size(f));

f1=f+noise; %噪声信号

subplot(322)

plot(f1); title('加噪后语音图像')

lev=5;

%对f1用sym8小波分解到第五层,并对高频系数用heusure 硬阀值

xd=wden(f1,'heursure','h','one',lev,'sym8');

subplot(323)

plot(xd); title('用heusure 硬阀值去噪后图像')

D=f-xd;

MSE=sqrt(sum(D(:).*D(:))/prod(size(f))) %均方根误差

PSNR=10*log10(sum(f(:).*f(:))/sum(D(:).*D(:))) %信噪比

%用rigrsure 阀值对信号的标准差单车估计,并降噪

xd1=wden(f1,'rigrsure','h','one',lev,'sym8');

subplot(324)

plot(xd1); title('用rigrsure硬阀值去噪后图像')

D1=f-xd1;

MSE1=sqrt(sum(D1(:).*D1(:))/prod(size(f))) %均方根PSNR1=10*log10(sum(f(:).*f(:))/sum(D1(:).*D1(:)))%信噪比

%用sqtwolog阀值对信号的标准差单车估计,并降噪

xd2=wden(f1,'sqtwolog','h','sln',lev,'sym8');

subplot(325)

plot(xd2); title('用sqtwolog硬阀值去噪后图像')

D2=f-xd2;

MSE2=sqrt(sum(D2(:).*D2(:))/prod(size(f))) %均方根PSNR2=10*log10(sum(f(:).*f(:))/sum(D2(:).*D2(:)))%信噪比

%用minimaxi阀值对信号的标准差单车估计,并降噪

xd3=wden(f1,'minimaxi','h','sln',lev,'sym8');

subplot(326)

plot(xd3); title('用minimaxi硬阀值去噪后图像')

D3=f-xd3;

MSE3=sqrt(sum(D3(:).*D3(:))/prod(size(f))) %均方根PSNR3=10*log10(sum(f(:).*f(:))/sum(D3(:).*D3(:)))%信噪比

从图中可看出,对硬阀值去噪minimaxi阀值的效果最差,为了更精确的表示去噪效果,可以通过信噪比和均方差来分析,信号的信噪比越高,原始信号和去噪信号的均方根误差越小,去噪信号就越接近原信号,去噪的效果也就越好。

例2本案例是对RGB图像进行多尺度分解然后重构。内容涉及数字图像的程序载入、图像显示、格式转换、wavedec2函数以及wrcoef2函数等用法。小波分析程序实现的核心在于将原始数据或图片以及视频文件进行分解,对分解后的分量进行复杂的预处理,然后反变换合成。本例采用了像素大小不同的两幅图,程序如下:

%从D盘读入原始RGB图像

X0=imread('d:\butterfly.jpg');

X=rgb2gray(X0);%将真彩色图像转换成灰度图像因为真彩色图像是三维数据[c,s]=wavedec2(X,4,'sym5');

%重构尺度1~4的低频部分

a1=wrcoef2('a',c,s,'sym5',1);a2=wrcoef2('a',c,s,'sym5',2);

a3=wrcoef2('a',c,s,'sym5',3);a4=wrcoef2('a',c,s,'sym5',4);

%绘制尺度1~4的图形,并隐藏边框和坐标轴

subplot(4,2,1); image(a1); title('1尺度低频'); box off;axis off; subplot(4,2,2); image(a2); title('2尺度低频'); box off;axis off; subplot(4,2,3); image(a3); title('3尺度低频'); box off;axis off; subplot(4,2,4); image(a4); title('4尺度低频'); box off;axis off;

%重构尺度为1时的高频各分量

hd1=wrcoef2('h',c,s,'sym5',1);%重构尺度为1时的水平方向上的高频分量vd1=wrcoef2('v',c,s,'sym5',1);%重构尺度为1时的垂直方向上的高频分量dd1=wrcoef2('d',c,s,'sym5',1);%重构尺度为1时的对角方向上的高频分量%重构尺度为2时的高频各分量

hd2=wrcoef2('h',c,s,'sym5',2);%重构尺度为2时的水平方向上的高频分量vd2=wrcoef2('v',c,s,'sym5',2);%重构尺度为2时的垂直方向上的高频分量dd2=wrcoef2('d',c,s,'sym5',2);%重构尺度为2时的对角方向上的高频分量%重构尺度为3时的高频各分量

hd3=wrcoef2('h',c,s,'sym5',3);%重构尺度为3时的水平方向上的高频分量vd3=wrcoef2('v',c,s,'sym5',3);%重构尺度为3时的垂直方向上的高频分量dd3=wrcoef2('d',c,s,'sym5',3);%重构尺度为3时的对角方向上的高频分量%重构尺度为4时的高频各分量

hd4=wrcoef2('h',c,s,'sym5',4);%重构尺度为4时的水平方向上的高频分量vd4=wrcoef2('v',c,s,'sym5',4);%重构尺度为4时的垂直方向上的高频分量dd4=wrcoef2('d',c,s,'sym5',4);%重构尺度为4时的对角方向上的高频分量%画出尺度为4时高频各分量的图像

subplot(4,2,5);imshow(X0); title('原始RGB图像');box off;axis off; subplot(4,2,6);imshow(hd4);title('4尺度水平高频');box off;axis off; subplot(4,2,7);imshow(vd4);title('4尺度垂直高频');box off;axis off; subplot(4,2,8);imshow(dd4);title('4尺度对角高频');box off;axis off;

由此可得出以下结论:

(1)图像被分解的尺度越高,清晰度越差。

(2)低频反映的是图像的基本轮廓,而高频只是细节。

(3)图像的像素越大,对多尺度分解具有相当大的阻抗作用。高分辨率图像的清晰度随着分解尺度的加大,图像失真效果不明显。

(4)高频与低频是相对的。在第二个图像中高频部分基本看不出轮廓,但在第一个图像中高频部分却可以依稀看见轮廓分割线。

小波分析考试题(附答案)

《小波分析》试题 适用范围:硕士研究生 时 间:2013年6月 一、名词解释(30分) 1、线性空间与线性子空间 解释:线性空间是一个在标量域(实或复)F 上的非空矢量集合V ;设V1是数域K 上的线性空间V 的一个非空子集合,且对V 已有的线性运算满足以下条件 (1) 如果x 、y V1,则x +y V1; (2) 如果x V1,k K ,则kx V1, 则称V1是V 的一个线∈∈∈∈∈性子空间或子空间。2、基与坐标 解释:在 n 维线性空间 V 中,n 个线性无关的向量,称为 V 的一组n 21...εεε,,,基;设是中任一向量,于是 线性相关,因此可以被基αn 21...εεε,,,线性表出:,其中系数 αεεε,,,,n 21...n 21...εεε,,,n 2111an ...a a εεεα+++=是被向量和基唯一确定的,这组数就称为在基下的坐标,an ...a a 11,,,αn 21...εεε,,,记为 () 。an ...a a 11,,,3、内积 解释:内积也称为点积、点乘、数量积、标量积。,()T n x x x x ,...,,21= ,令,称为x 与y 的内积。 ()T n y y y y ,...,,21=[]n n y x y x y x y x +++=...,2211[]y x ,4、希尔伯特空间 解释:线性 完备的内积空间称为Hilbert 空间。线性(linearity ):对任意 f , g ∈H ,a ,b ∈R ,a*f+b*g 仍然∈H 。完备(completeness ):空间中的任何柯西序列都收敛在该空间之内。内积(inner product ):,它满足:,()T n f f f f ,...,,21=时。 ()T n g g g g ,...,,21=[]n n y x y x y x y x +++=...,22115、双尺度方程 解释:所以都可以用空间的一个1010,V W t V V t ?∈?∈)()(ψ?) ()和(t t ψ?1V

Erdas实验报告

E RDAS实验报告 图像融合实验 数据来源 采用Erdas中examples文件内的2000年Atlanta多光谱TM数据和高清全色Pan数据。两图为同一地区不同坐标影像,故使用前需预处理从而得到实验区域。 目的 多光谱TM数据分辨率较低但包含多波段色彩,而全色Pan数据只包含一层高清影像,为了得到研究区域的高清彩色影像,我们将TM和Pan数据在Erdas2014中进行融合以达到实验目的。 方法 在遥感领域运用较多的融合方法有主成分变换法、比值变换法、小波变换法和HIS变换法。本实验则运用HIS变换法。IHS属于色度空间变换,从多光谱彩色合成影像上分离出代表信息的明度(I)和代表光谱信息的色调(H)、饱和度(S)等3个分量,并采用相同区域的高分辨率全色波段数据代替明度(I)进行空间信息融合。 步骤 1.几何校正 因原始图像空间坐标不同,需选取控制点进行几何校正。本实验校正方法为多项式法,选取6个控制点进行校正,其校正叠加截图如下:

2.叠加剪切 由校正结果可知两图像只有部分区域重合,所以建立AOI对重合区域进行剪切,以得到研究区域,截图如下: 3.重采样 因多光谱图像分辨率较低,像元点较大,若要与全色图融合出高清影像需进行重采样来调整像元大小,以达到与高清图一致。 4.二次剪切 因图为栅格,统一像元后,边缘区必然会有一定的扩展(如下图),虽说扩展的范围较小,但在科研应用方面不符合要求,故须二次剪切。 5.RGB转HIS

TM图像选取前三层再分别赋予蓝、绿、红三色,转化为HIS格式,如下图: 6.直方图匹配 将高清图像直方图以标准图像的直方图为标准作变换,使全色光图和HIS图中I层两图像的直方图相同和近似,从而使两幅图像具有类似的色调和反差,以便作进一步的运算。 7.图像叠加 运用Layer stack功能将全色光高清图和H、S图层进行叠加即所谓的图像融合。它将多波段图层组合到了一起,从而得到新的包含多个有助于研究者使用的多波段影像。 8.IHS转RGB

近代数学 小波 简答题+答案

1什么是小波函数?(或小波函数满足什么条件?) 答:设)()(2R L t ∈?,且其Fourier 变换)(ω? 满足可允许性(admissibility )条件 +∞

小波分析考试题及答案

一、叙述小波分析理论发展的历史和研究现状 答:傅立叶变换能够将信号的时域和特征和频域特征联系起来,能分别从信号的时域和频域观察,但不能把二者有机的结合起来。这是因为信号的时域波形中不包含任何频域信息,而其傅立叶谱是信号的统计特性,从其表达式中也可以看出,它是整个时间域内的积分,没有局部化分析信号的功能,完全不具备时域信息,也就是说,对于傅立叶谱中的某一频率,不能够知道这个频率是在什么时候产生的。这样在信号分析中就面临一对最基本的矛盾——时域和频域的局部化矛盾。 在实际的信号处理过程中,尤其是对非常平稳信号的处理中,信号在任一时刻附近的频域特征很重要。如柴油机缸盖表明的振动信号就是由撞击或冲击产生的,是一瞬变信号,单从时域或频域上来分析是不够的。这就促使人们去寻找一种新方法,能将时域和频域结合起来描述观察信号的时频联合特征,构成信号的时频谱,这就是所谓的时频分析,亦称为时频局部化方法。 为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并开发了一系列新的信号分析理论:短时傅立叶变换、时频分析、Gabor 变换、小波变换Randon-Wigner变换、分数阶傅立叶变换、线形调频小波变换、循环统计量理论和调幅—调频信号分析等。其中,短时傅立叶变换和小波变换也是因传统的傅立叶变换不能够满足信号处理的要求而产生的。 短时傅立叶变换分析的基本思想是:假定非平稳信号在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数,因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。 小波变换是一种信号的时间—尺度(时间—频率)分析方法,具有多分辨

基于小波信号的噪声消除matlab实验报告

南京师范大学物理科学与技术学院 医用电子学论文 论文名称:基于小波变换的心电信号噪声消除 院系:物科院 专业:电路与系统 姓名:聂梦雅 学号: 121002043 指导教师:徐寅林

摘要 以小波变换的多分辨率分析为基础, 通过对体表心电信号(ECG) 及其噪声的分析, 对ECG信号中存在的基线漂移、工频干扰及肌电干扰等几种噪声, 设计了不同的小波消噪算法; 并利用MIT/BIH 国际标准数据库中的ECG 信号和程序模拟所产生的ECG 信号, 分别对算法进行了仿真与实验验证。结果表明, 算法能有效地滤除ECG 信号检测中串入的几类主要噪声, 失真度很小, 可满足临床分析与诊断对ECG 波形的要求。 关键词: ECG 信号, 小波变换, 基线漂移, 工频干扰, 肌电干扰

Abstract We apply the multi-resolution analysis (MRA ) of wavelet transform ( WT ) , which was proposed by Mallat [ 5 ] , to suppress the three main types of noises existing in electrocardiogram ( ECG ) signals : baseline wander, power line interference and electro my ographical interference. We apply Mallat algorithm [ 4 ] to suppress the baseline wander in ECG signals. We apply the sof t-thresholding algorithm, proposed by donohoetal on the basis of MRA of WT , to suppress power line interference in ECG signals. We apply Mallat algorithm and then the algorithm proposed by Donohoetal to suppress the electro my ographical interference in ECG signals ,who sefrequency range varies f rom 5Hz to 2kHz. We performed simulations ,using both ECG signals from MIT/BIH database, and ECG signals generated via computer simulation .The results show that the algorithm can suppress the main no isesexisting in ECG signals efficiently with very little distortion, and can satisfy the requirement s of clinical analysis and diagnosis on ECG waveforms. Key words: ECG (electro cardio gram ) signal, wavelet transform , baseline wander, power line interference , electro my ographical interference

小波变换

《医学图像处理》实验报告 实验十:小波变换 日期: 2014年05月06日 摘要 本次实验的实验目的及主要内容是: 一维小波变换和反变换 二维小波变换和反变换 二维小波细节置零、去噪

一、技术讨论 1.1实验原理 小波变换的原理:是指一组衰减震动的波形,其振幅正负相间变化为零,是具有一定的带宽和中心频率波组。小波变换是用伸缩和平移小波形成的小波基来分解(变换)或重构(反变换)时变信号的过程。不同的小波具有不同带宽和中心频率,同一小波集中的带宽与中心频率的比是不变的,小波变换是一系列的带通滤波响应。它的数学过程与傅立叶分析是相似的,只是在傅立叶分析中的基函数是单频的调和函数,而小波分析中的基函数是小波,是一可变带宽内调和函数的组合。 小波去噪的原理:利用小波变换把含噪信号分解到多尺度中,小波变换多采用二进型,然后在每一尺度下把属于噪声的小波系数去除,保留并增强属于信号的小波系数,最后重构出小波消噪后的信号。其中关键是用什么准则来去除属于噪声的小波系数,增强属于信号的部分。 1.2实验方法 1)dwt函数(实现1-D离散小波变换) [cA,cD]=dwt(X,’wname’)使用指定的小波基函数‘wname’对信号X进行分解,cA和cD分别是近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D)用指定的滤波器组Lo_D,Hi_D对信号进行分解 2)idwt函数(实现1-D离散小波反变换) X=idwt(cA,cD,’wname’) X=idwt(cA,cD,Lo_R,Hi_R) X=idwt(cA,cD,’wname’,L) X=idwt(cA,cD,Lo_R,Hi_R,L) 由近似分量cA和细节分量cD经过小波反变换,选择某小波函数或滤波器组,L为信号X中心附近的几个点 3)dwt2函数(实现2-D离散小波变换) [cA,cH,cV,cD]=dwt2(X,’wname’) [cA,cH,cV,cD]=dwt2(X,’wname’) cA近似分量,cH水平细节分量,cV垂直细节分量,cD对角细节分量 4)idwt2函数(实现2-D离散反小波变换) X=idwt2(cA,cH,cV,cD,’wname’) X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R) X=idwt2(cA,cH,cV,cD,’wname’,S) X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)

浙江大学小波变换及工程应用复习题

小波分析复习题 1、简述傅里叶变换、短时傅里叶变换和以及小波变换之间的异同。 答:三者之间的异同见表 2、小波变换堪称“数学显微镜”,为什么? 答:这主要因为小波变换具有以下特点: 1)具有多分辨率,也叫多尺度的特点,可以由粗及精地逐步观察信号; 2)也可以看成用基本频率特性为)(ωψ的带通滤波器在不同尺度a 下对信号作滤波; 如果)(t ?的傅里叶变换是)(ωψ,则)(a t ?的傅里叶变换为)(||a a ω ψ,因此这组滤波 器具有品质因数恒定,即相对带宽(带宽与中心频率之比)恒定的特点。a 越大相当于频率越低。 3)适当的选择基本小波,使)(t ?在时域上位有限支撑,)(ωψ在频域上也比较集中,便可以使WT 在时、频两域都具有表征信号局部特征能力,因此有利于检测信号的瞬态或奇异点。 4)如)(t x 的CWT 是),(τa WT x ,则)(λt x 的CWT 是),( λ τ λλa WT x ;0>λ 此定理表明:当信号)(t x 作某一倍数伸缩时,其小波变换将在τ,a 两轴上作同一比例的 伸缩,但是不发生失真变形。 基于上述特性,小波变换被誉为分析信号的数学显微镜。 3、在小波变换的应用过程中,小波函数的选取是其应用成功与否的关键所在,请列举一些选择原则。 答:选择原则列举如下:(也即需满足的一些条件和特性) 1)容许条件

当?∞ +∞-∞<=ωω ωψ?d c 2 ) (时才能由小波变换),(τa WT x 反演原函数)(t x ,?c 便是对 )(t ?提出的容许条件,若∞→?c ,)(t x 不存在,由容许条件可以推论出:能用作基本小 波)(t ?的函数至少必须满足0)(0==ωωψ,也就是说)(ωψ必须具有带通性质,且基本小波 )(t ?必须是正负交替的振荡波形,使得其平均值为零。 2)能量的比例性 小波变换幅度平方的积分和信号的能量成正比。 3)正规性条件 为了在频域上有较好局域性,要求),(τa WT x 随a 的减小而迅速减小。这就要求)(t ?的 前n 阶原点矩为0,且n 值越大越好。也就是要求? =0)(dt t t p ?,n p ~1:,且n 值越大越好, 此要求的相应频域表示是:)(ωψ在0=ω处有高阶零点,且阶次越高越好(一阶零点就是容许条件),即)()(01 ωψω ωψ+=n ,0)(00≠=ωωψ,n 越大越好。 4)重建核和重建核方程 重建核方程说明小波变换的冗余性,即在τ-a 半平面上各点小波变换的值是相关的。 重建核方程:τττττ?? ?∞ +∞ ∞-=0 00200),,,(),(),(a a K a WT a da a WT x x ; 重建核:><== ?)(),(1)()(1),,,(0000* 00t t c dt t t c a a K a a a a ττ? ττ??????ττ 4、连续小波变换的计算机快速算法较常用的有基于调频Z 变换和基于梅林变换两种,请用 框图分别简述之,并说明分别适合于什么情况下应用。 答: 1)基于调频Z 变换 ),(2a j a n j e A e W ππ--== 运算说明: a .原始数据及初始化:原始数据是)(k ?(1~0-=N k )和a 值,初始化计算包括 a j e A π-=和a n j e W π2-=。 --- 1)(2N k r )2(am N π 12~2--N N 对应于:1~0-=N r

哈工大小波分析上机实验报告

小波分析上机实验报告 院系:电气工程及自动化学院 学科:仪器科学与技术

实验一小波分析在信号压缩中的应用 一、试验目的 (1)进一步加深对小波分析进行信号压缩的理解; (2)学习Matlab中有关信号压缩的相关函数的用法。 二、相关知识复习 用一个给定的小波基对信号进行压缩后它意味着信号在小波阈的表示相对缺少了一些信息。之所以能对信号进行压缩是因为对于规则的信号可以用很少的低频系数在一个合适的小波层上和一部分高频系数来近似表示。 利用小波变换对信号进行压缩分为以下几个步骤来完成: (1)进行信号的小波分解; (2)将高频系数进行阈值量化处理。对从1 到N 的每一层高频系数都可以选择不同的阈值并且用硬阈值进行系数的量化; (3)对量化后的系数进行小波重构。 三、实验要求 (1)对于某一给定的信号(信号的文件名为leleccum.mat),利用小波分析对信号进行压缩处理。 (2)给出一个图像,即一个二维信号(文件名为wbarb.mat),利用二维小波分析对图像进行压缩。 四、实验结果及程序 (1)load leleccum %将信号装入Matlab工作环境 %设置变量名s和ls,在原始信号中,只取2600-3100个点 s = leleccum(2600:3100); ls = length(s); %用db3对信号进行3级小波分解 [c,l] = wavedec(s, 3, 'db3'); %选用全局阈值进行信号压缩 thr = 35; [xd,cxd,lxd,perf0,perfl2] = wdencmp('gbl',c,l,'db3',3,thr,'h',1); subplot(2,1,1);plot(s); title('原是信号s'); subplot(2,1,2);plot(xd); title('压缩后的信号xd');

小波分析基础及应用期末习题

题1:设{},j V j Z ∈是依尺度函数()x φ的多分辨率分析,101()0x x φ≤

11()3.k k h k p -=为高通分解滤波器,写出个双倍平移正交关系等式 题6:列出二维可分离小波的4个变换基。 题8:要得到“好”的小波,除要求滤波器0()h n 满足规范、双正交平移性、低通等最小条件外,还可以对0()h n 加消失矩条件来得到性能更优良的小波。 (1) 请写出小波函数()t ψ具有p 阶消失矩的定义条件: (2) 小波函数()t ψ具有p 阶消失矩,要求0()h n 满足等式: (3) 在长度为4的滤波器0()h n 设计中,将下面等式补充完整: 222200000000(0)(1)(2)(3)1 (0)(2)(1)(3)0 ,1 2h h h h h h h h n ?+++=???+==??? 规范性低通双平移正交阶消失矩

用MATLAB中的小波函数和小波工具箱

研究生课程考试答题纸 研究生学院 考核类型:A()闭卷考试(80%)+平时成绩(20%); B()闭卷考试(50%)+ 课程论文(50%); 一、以图示的方式详细说明连续小波变换(CWT)的运算过程,分析小波变换的内涵;并阐述如何从多分辨率(MRA)的角度构造正交小波基。(20分) 二、综述小波变换理论与工程应用方面的研究进展,不少于3000字。(25分) 三、运用MATLAB中的小波函数和小波工具箱,分别对taobao.wav语音信号在加噪之后的taobao_noise.wav信号进行降噪处理,要求列出程序、降噪结果及降

噪的理论依据。(25分) 四、平时成绩。(30分) 一、论述 1. 连续小波变换 将任意2 ()L R 空间中函数(t)f 在小波基下展开,称这种展开为函数(t)f 的连续小波变换(CWT), 其表达式为,T (,)(),()()()f a R t W a f t t f t dt a τττψψ-=<>=?,其中a 为尺度因子,表示与频率相关的伸缩,b 为时间平移因子。其中,()(),0,a t t a R a ττψτ-= >∈为窗口函数也是小波母函数。 任意函数在某一尺度a 、平移点τ上的小波变换系数,实质上表征的是在τ位置处,时 间段a t ?上包含在中心频率为 0a ω、带宽为a ω?频窗内的频率分量大小。随着尺度a 的变化,对应窗口中心频率0a ω及带宽为a ω?也发生变化。小波变换是一种便分辨率的时频联合分析方法,当分析低频信号时,其时间窗很大,而分析高频信号时,其时间窗减小。这恰恰符合实际问题中高频信号的持续时间短、低频信号持续时间长的自然规律。 尺度伸缩,对波形的尺度伸缩就是在时间轴上对信号进行压缩和伸展。在不同尺度下,

小波实验报告一维Haar小波2次分解

一、题目:一维Haar 小波2次分解 二、目的:编程实现信号的分解与重构 三、算法及其实现:离散小波变换 离散小波变换是对信号的时-频局部化分析,其定义为:/2200()(,)()(),()()j j Wf j k a f t a t k dt f t L R φ+∞---∞=-∈? 本实验实现对信号的分解与重构: (1)信号分解:用小波工具箱中的dwt 函数来实现离散小波变换,函数dwt 将信号分解为两部分,分别称为逼近系数和细节系数(也称为低频系数和高频系数),实验中分别记为cA1,cD1,它们的长度均为原始信号的一半,但dwt 只能实现原始信号的单级分解。在本实验中使用小波函数db1来实现单尺度小波分解,即: [cA1,cD1]=dwt(s,’db1’),其中s 是原信号;再通过[cA2,cD2]=dwt(cA1,’db1’)进行第二次分解,长度又为cA2的一半。 (2)信号重构:用小波工具箱中的upcoef 来实现,upcoef 是进行一维小波分解系数的直接重构,即: A1 = upcoef('a',cA1,'db1'); D1 = upcoef('a',cD1,'db1')。 四、实现工具:Matlab 五、程序代码: %装载leleccum 信号 load leleccum; s = leleccum(1:3920); %用小波函数db1对信号进行单尺度小波分解 [cA1,cD1]=dwt(s,'db1'); subplot(3,2,1); plot(s); title('leleccum 原始信号'); %单尺度低频系数cA1向上一步的重构信号 A1 = upcoef('a',cA1,'db1'); %单尺度高频系数cD1向上一步的重构信号 D1 = upcoef('a',cD1,'db1'); subplot(3,2,3); plot(A1); title('单尺度低频系数cA1向上一步的重构信号'); subplot(3,2,5); plot(D1); title('单尺度高频系数cD1向上一步的重构信号'); [cA1,cD1]=dwt(cA1,’db1'); subplot(3,2,2); plot(s); title('leleccum 第一次分解后的cA1信号'); %第二次分解单尺度低频系数cA2向上一步的重构信号 A2= upcoef('a',cA2,'db1',2); %第二次分解单尺度高频系数cD2向上一步的重构信号 D2 = upcoef('a',cD2,'db1',2); subplot(3,2,4); plot(A2);

研究生《小波理论及应用》复习题

2005年研究生《小波理论及应用》复习题 1. 利用正交小波基建立的采样定理适合于:紧支集且有奇性(函数本身或其导数不连续)的函数(频谱无限的函数)。Shannon 采样定理适合于频谱有限的信号。 2. 信号的突变点在小波变换域常对于小波变换系数模极值点或过零点。并且信号奇异性大小同小波变换的极值随尺度的变化规律相对立。只有在适当尺度下各突变点引起的小波变化才能避免交迭干扰,可以用于信号的去噪、奇异性检测、图象也缘提取、数据压缩等。 3. 信号在一点的李氏指数表征了该点的奇异性大小,α越大,该点的光滑性越小,α越小,该点的奇异性越大。光滑点(可导)时,它的1≥α;如果是脉冲函数,1-=α;白噪声时0≤α。 4. 做出三级尺度下正交小波包变换的二进数图,小波包分解过程?说明小波基与小波包基的区别? 5. 最优小波包基的概念:给定一个序列的代价函数,然后在小波包基中寻找使代价函数最小的基――最优基。 6. 双通道多采样率滤波器组的传递函数为: ()()()()()()()()()()()()()z X z G z G z H z H z X z G z G z H z H z Y z Y z Y -??????-++??????+=+=∧∧∧∧212121请根据此式给出理想重建条件: 为了消除映象()z X -引起的混迭:()()()()0=-+-∧ ∧z G z G z H z H

为了使()z Y 成为()z X 的延迟,要求:()()()()k CZ z G z G z H z H -∧∧=+ (C,K 为任一常数) 7. 正交镜像对称滤波器()()n h n g ,的()jw e G 与()jw e H 以2π=w 为轴左右对称。如果知道QMF 的()n h ,能否确定()()()n h n g n g ∧ ∧,,? ()()()n h n g n 1-= ,()()()n g n h n 1--=∧ , ()()()n h n g n 1-=∧ 8. 试列出几种常用的连续的小波基函数 Morlet 小波,Marr 小波,Difference of Gaussian (DOG ),紧支集样条小波 9. 试简述海森堡测不准原理,说明应用意义? 10. 从连续小波变换到离散小波变换到离散小波框架-双正交小波变换-正交变换、紧支集正交小波变换,其最大的特点是追求变换系数的信息冗余小,含有的信息量越集中。 11. 解释紧支集、双正交、正交小波、紧支集正交小波、光滑性、奇异性。 12. 已知共轭正交滤波器组(CQF )()n h 请列出()()()n g n h n g ∧ ∧,,。 ()()() ()()()()()()???????-=--=-=---=∧∧n h n N g n g n N h n h n N h n g n n 11 13. 共轭正交滤波器()()n g n h ,的()jw e G 与()jw e H 的关系与QMF 情况

博士复试题目+答案

1、小波变换在图像处理中有着广泛的应用,请简述其在图像压缩中的应用原理? 答:一幅图像经过一次小波变换之后,概貌信息大多集中在低频部分,而其余部分只有微弱的细节信息。为此,如果只保留占总数数量1/4的低频部分,对其余三个部分的系数不存储或传输,在解压时,这三个子块的系数以0来代替,则就可以省略图像部分细节信息,而画面的效果跟原始图像差别不是很大。这样,就可以得到图像压缩的目的。 2、给出GPEG数据压缩的特点。 答:(1)一种有损基本编码系统,这个系统是以DCT为基础的并且足够应付大多数压缩方向应用。 (2)一种扩展的编码系统,这种系统面向的是更大规模的压缩,更高精确性或逐渐递增的重构应用系统。 (3)一种面向可逆压缩的无损独立编码系统。 3、设计雪花检测系统 答:1)获得彩色雪花图像。2)灰度雪花图像。3)图像的灰度拉伸,以增强对比度。4)阈值判断法二值化图像。5)图像的梯度锐化。6)对图像进行自定义模板中值滤波以去除噪声。7)用梯度算子对雪花区域的定位。8)利用hough变换截下雪花区域的图片。 9)雪花图片几何位置调整。 4、用图像处理的原理设计系统,分析木材的年轮结构。 答:1)获得彩色木材年轮图像。2)灰度木材年轮图像。3)灰度拉伸以增加对比度。4)阈值判定法二值化图像。5)图像的梯度锐化。6)对图像进行自定义模板中值滤波以去除噪声。7)用梯度算子对木材年轮圈进行定位。8)图片二值化。9)利用边界描述子对木材的年轮结构进行识别。 5、给出生猪的尺寸和形貌检测系统。 答:1)获得彩色生猪图像。2)灰度生猪图像。3)图像的灰度拉伸,以增强对比度。4)阈值判定法二值化图像。5)图像的梯度锐化。6)对图像进行自定义模板中值滤波以除去噪声。 7)用梯度算子对生猪区域的定位。8)利用hough变换截下生猪区域的图片。9)生猪图片几何位置调整。10)生猪图片二值化。11)利用边界描述子对生猪尺寸和形貌的识别。 第二种答案:(类似牌照检测系统) 1)第一步定位牌照 由图像采集部件采集生猪的外形图像并将图像存储在存储器中,其特征在于:数字处理器由存储器中读入并运行于生猪外形尺寸检测的动态检测软件、从存储器中依次读入两幅车辆外形图像数据、经过对生猪外形图像分析可得到生猪的高度,宽度和长度数据即生猪的外形尺寸。通过高通滤波,得到所有的边对边缘细化(但要保持连通关系),找出所有封闭的边缘,对封闭边缘求多边形逼近,在逼近后的所有四边形中,找出尺寸与牌照大小相同的四边形。生猪形貌被定位。 2)第二步识别 区域中的细化后的图形对象,计算傅里叶描述子,用预先定义好的决策函数,对描述子进行计算,判断到底是数字几。 6、常用的数字图像处理开发工具有哪些?各有什么特点? 答:目前图像处理系统开发的主流工具为Visual C++(面向对象可视化集成工具)和MATLAB的图像处理工具箱(lmage processing tool box)。两种开发工具各有所长且有相互间的软件接口。 微软公司的VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开发出来

北邮DSP实验报告

北京邮电大学 数字信号处理硬件实验 实验名称:dsp硬件操作实验姓名:刘梦颉班级: 2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 实验一常用指令实验 一、实验目的 了解dsp开发系统的组成和结构,熟悉dsp开发系统的连接,熟悉dsp的开发界面,熟 悉c54x系列的寻址系统,熟悉常用c54x系列指令的用法。 二、实验设备 计算机,ccs 2.0版软件,dsp仿真器,实验箱。 三、实验操作方法 1、系统连接 进行dsp实验之前,先必须连接好仿真器、实验箱及计算机,连接方法如下所示: 1)上电复位 在硬件安装完成后,接通仿真器电源或启动计算机,此时,仿真盒上的“红色小灯”应 点亮,否则dsp开发系统与计算机连接有问题。 2)运行ccs程序 先实验箱上电,然后启动ccs,此时仿真器上的“绿色小灯”应点亮,并且ccs正常启 动,表明系统连接正常;否则仿真器的连接、jtag接口或ccs相关设置存在问题,掉电,检 查仿真器的连接、jtag接口连接,或检查ccs相关设置是否正确。 四、实验步骤与内容 1、实验使用资源 实验通过实验箱上的xf指示灯观察程序运行结果 2、实验过程 启动ccs 2.0,并加载“exp01.out”;加载完毕后,单击“run”运行程序; 五、实验结果 可见xf灯以一定频率闪烁;单击“halt”暂停程序运行,则xf灯停止闪烁,如再单击 “run”,则“xf”灯又开始闪烁; 关闭所有窗口,本实验完毕。 六、源程序代码及注释流程图: 实验二资料存储实验 一、实验目的 掌握tms320c54的程序空间的分配;掌握tms320c54的数据空间的分配;熟悉操作 tms320c54数据空间的指令。 二、实验设备 计算机,ccs3.3版软件,dsp仿真器,实验箱。 三、实验系统相关资源介绍 本实验指导书是以tms32ovc5410为例,介绍相关的内部和外部内存资源。对于其它类型 的cpu请参考查阅相关的资料手册。下面给出tms32ovc5410的内存分配表: 对于存储空间而言,映像表相对固定。值得注意的是内部寄存器与存储空间的映像关系。 因此在编程应用时这些特定的空间不能作其它用途。对于篇二:31北邮dsp软件实验报告北京邮电大学 dsp软件

数字图像处理复习题(选择题及相应答案)解析

第一章 1.1.1可以用f(x,y)来表示:(ABD) A、一幅2-D数字图像 B、一个在3-D空间中的客观景物的投影; C 2-D空间XY中的一个坐标的点的位置; D、在坐标点(X,Y)的某种性质F的数值。 提示:注意3个符号各自的意义 1.1.2、一幅数字图像是:(B) A、一个观测系统; B、一个有许多像素排列而成的实体; C、一个2-D数组中的元素 D、一个3-D空间的场景。 提示:考虑图像和数字图像的定义 1.2.2、已知如图1.2.2中的2个像素P和Q,下面说法正确的是:(C) A、2个像素P和Q直接的De距离比他们之间的D4距离和D8距离都短: B、2个像素p和q之间的D4距离为5; C、2个像素p和q之间的D8距离为5; D、2个像素p和q之间的De距离为5。 1.4.2、半调输出技术可以:(B) A、改善图像的空间分辨率; B、改善图像的幅度分辨率; C、利用抖动技术实现; D、消除虚假轮廓现象。 提示:半调输出技术牺牲空间分辨率以提高幅度分辨率 1.4.3、抖动技术可以(D) A、改善图像的空间分辨率; B、改善图像的幅度分辨率; C、利用半输出技术实现; D、消除虚假轮廓现象。 提示:抖动技术通过加入随即噪声,增加了图像的幅度输出值的个数 1.5.1、一幅256*256的图像,若灰度级数为16,则存储它所需的比特数是:(A) A、256K B、512K C、1M C、2M 提示:表达图像所需的比特数是图像的长乘宽再乘灰度级数对应的比特数。1.5.2、图像中虚假轮廓的出现就其本质而言是由于:(A)(平滑区域内灰度应缓慢变化,但当图像的灰度级数不够多时会产生阶跃) A、图像的灰度级数不够多造成的; B、图像的空间分辨率不够高造成; C、图像的灰度级数过多造成的 D、图像的空间分辨率过高造成。 提示:图像中的虚假轮廓最易在平滑区域内产生。 1.5.3、数字图像木刻画效果的出现是由于下列原因所产生的:(A) A、图像的幅度分辨率过小; B、图像的幅度分辨率过大; C、图像的空间分辨率过小; D、图像的空间分辨率过大;

第五章 小波变换基本原理

第五章 小波变换基本原理 问题 ①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史 ③小波变换与短时傅里叶变换比较 a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法 多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现 ⑤小波的历史地位仍不如FT ,并不是万能的 5.1 连续小波变换 一.CWT 与时频分析 1.概念:? +∞ ∞ --ψ= dt a b t t S a b a CWT )( *)(1),( 2.小波变换与STFT 用于时频分析的区别 小波 构造? 1910 Harr 小波 80年代初兴起 Meyer —小波解析形式 80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现 90年代初 Daubechies 正交小波变换 90年代中后期 Sweblews 第二代小波变换

3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题 1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原 2.母小波)(t ψ必须满足容许性条件 ∞<ψ=? ∞ +∞ -ψdw w w C 2 )( ①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式 ??+∞∞-+∞ ∞-ψ -ψ= dadb a b t b a CWT a C t S )(),(11 )(2 3.CWT 高度冗余(与CSTFT 相似) 4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1 )(2 ,22,,n t t a b t a t n b a m m n m b a m m -ψ=ψ?-ψ= ??==--ψ dt t t S n CWT d n m m m n m )(*)()2,2(,,?+∞ ∞ ---ψ=?= 5.小波变换具有时移不变性 ) ,()() ,()(00b b a C W T b t S b a C W T t S -?-? 6.用小波重构信号 ∑ ∑∑∑+∞ -∞=+∞-∞ =+∞ -∞=+∞ -∞ =ψψ= m n m n n m n m n m n m t d t d t S )(?)(?)(,,,,正交小波 中心问题:如何构建对偶框架{} n m ,?ψ

哈工大小波实验报告

小波理论实验报告 院(系) 专业 学生 学号 日期 2015年12月

实验报告一 一、 实验目的 1. 运用傅立叶变换知识对常用的基本函数做基本变换。 2. 加深对因果滤波器的理解,并会判断因果滤波器的类型。 3. 运用卷积公式对基本信号做滤波处理并分析,以加深理解。 4. 熟悉Matlab 中相关函数的用法。 二、 实验原理 1.运用傅立叶正、反变换的基本公式: ( )?()() ()(),1 1?()(),22i x i t i t i t i t f f x e dx f t e dt f t e f t f e d f t e ωωωωωωωωπ π ∞∞---∞ -∞ ∞ --∞ ==== =?? ? 及其性质,对所要处理信号做相应的傅里叶变换和逆变换。 2.运用卷积的定义式: 1212()()()()+∞ -∞ *=-? f t f t f f t d τττ 对所求信号做滤波处理。 三、 实验步骤与内容 1.实验题目: Butterworth 滤波器,其冲击响应函数为 ,0 ()0, 0若若α-?≥=?

近代数学小波计算题答案

2.计算下列分形维数: (1)康托尔集合(the Cantor set) l o g l o g2 0.631 l o g l o g3 s m D c =-=≈ (2)科赫曲线(Koch) log4 1.262 log3 s D=-≈ (3)谢尔平斯基(Sierpinski)地毯、垫片、海绵 地毯: log log8 1.893 log log3 f D β κ ==≈ 垫片: log log3 1.585 log log2 f D β κ ==≈ 海绵: log log20 2.763 log log3 f D β κ ==≈ (4)阿波罗尼斯垫圆: 解:不在此圆内部的点形成一个面积为零的集合,可以说它多于一条线但少于一个面,因此它的分形维数 (5)皮亚诺曲线: log ln9 2 1ln3 log() s N D β === 1.求按下列各图所示方法生成的分形图的分维 初始元: 生成元: (a)(b)(c) (a) log ln8 1.5 1ln4 log() s N D β ==≈ (b) log ln5 1.465 1ln3 log() s N D β ==≈ (c) log ln5 1.465 1ln3 log() s N D β ==≈

2、计算康托尔三分集相似维、Hausdorff 维 解:相似维:log ln 2 0.63111log()ln 3s N D β= =≈ Hausdorff 维:log log 20.631log log 3 f D βκ= =≈ 3、计算不规则分形盒维数(只计算右下端) ε=1/10 ()N ε=N(1/10) ()ln ln 54ln 54 1.732 1ln ln10ln 10B N D εε=- =-=≈

小波分析的基本理论

东北大学 研究生考试试卷 考试科目:状态监测与故障诊断 课程编号: 阅卷人: 考试日期:2013.12 姓名:王培军 学号:1300483 注意事项 1.考前研究生将上述项目填写清楚 2.字迹要清楚,保持卷面清洁 3.交卷时请将本试卷和题签一起上交 东北大学研究生院

小波分析的基本理论 小波分析是当前应用数学和工程学科中一个迅速发展的新领域,是分析和处理非平稳信号的一种有力工具。经过大量学者不断探索研究,它是以局部化函数所形成的小波基作为基底而展开的。小波分析在保留傅里叶分析优点的基础上,具有许多特殊的性能和优点。而小波分析则是一种更合理的时频表示和子带多分辨分析方法。所以理论基础渐已扎实,理论体系逐步完善,在工程领域已得到广泛应用。 1 小波变换理论 1.1 连续小波变换 定义1.1 小波函数的定义:设ψ(x )为一平方可积函数,也即ψ(x )∈ L 2 (R ),若其傅里叶变换ψ(ω)满足条件: C ψ= |ψ (ω)| |ω| d ω<+∞+∞?∞ 1-1 则称ψ(x )是一个基本小波或小波母函数(Mother Wavelet ),并称上式为小 波函数的容许性条件。 由定义1.1可知,小波函数具有两个特点: (1)小:它们在时域都具有紧支集或近似紧支集。由定义的条件知道任何满足可容许性条件的L 2(R )空间的函数都可以作为小波母函数(包括实数函数或复数函数、紧支集或非紧支集函数等)。但是在一般的情况下,常常选取紧支集或近似紧支集的同时具有时域和频域的局部性实数或复数函数作为小波母函,让小波母函数在时域和频域都具有较好的局部特性,这样可以更好的完成实验。 (2)波动性:若设ψ (ω)在点ω=0连续,则由容许性条件得: ψ x dx =ψ 0 =0+∞ ?∞ 1-2 也即直流分量为零,同时也就说明ψ(x )必是具有正负交替的波动性,这也是其 称为小波的原因。 定义1.2 连续小波基函数的定义:将小波母函数ψ(x )进行伸缩和平移,设其收缩因子(即尺度因子)为a,平移因子为b,使其平移伸缩后的函数为ψa,b (x ),则有: ψa ,b x =|a |? 12 ψ x ?b a ,a >0,b ∈R 1-3 称ψa,b (x )为依赖于参数a,b 的小波基函数。由于伸缩因子a,平移因子b 都是取连续变化的值,因此又称ψa,b (x )为连续小波基函数。它们是一组函数系列,这组函数系列是由同一母函数ψ(x )经伸缩和平移后得到的。 定义1.3 若f (x )∈ L 2(R ),函数f(x)在小波基下进行展开,则f(x)的连续小波变换(CWT)定义为: W ψf a ,b = f x ,ψa ,b x = a f x ψ x ?b a dx +∞?∞ 1-4 由定义1.3可知,小波基具有收缩因子a 和平移因子b,若将函数在小波基下展开,就是把一个时间函数投影到二维的时间-尺度相平面上,把一个一维函数变换为一个二维函数,即连续小波变换W ψf (a,b )是f (x )在函数ψa,b (x )上的“投影”。

相关主题
文本预览
相关文档 最新文档