当前位置:文档之家› DC-DC 电路中电感的选择

DC-DC 电路中电感的选择

DC-DC 电路中电感的选择
DC-DC 电路中电感的选择

DC/DC 电路中电感的选择

在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的DC电流效应。这也会为选择合适的电感提供必要的信息。

理解电感的功能

电感常常被理解为开关电源输出端中的LC滤波电路中的L(C是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。

在降压转换中(Fairchild典型的开关控制器),电感的一端是连接到DC输出

电压。另一端通过开关频率切换连接到输入电压或GND。

在状态1过程中,电感会通过(高边 “high-side”)MOSFET连接到输入

电压。在状态2过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET

接地。如果是后一种方式,转换器就称为“同步(synchronus)”方式。

现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。

我们利用电感上电压计算公式:

V=L(dI/dt)

因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。通过电感的电流如图2所示:

通过上图我们可以看到,流过电感的最大电流为DC电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流:

其中,ton是状态1的时间,T是开关周期(开关频率的倒数),DC为状态1的占空比。

警告:上面的计算是假设各元器件(MOSFET上的导通压降,电感的导通压降或异步电路中肖特基二极管的正向压降)上的压降对比输入和输出电压是可以忽略的。

如果,器件的下降不可忽略,就要用下列公式作精确计算:

同步转换电路:

异步转换电路:

其中,Rs为感应电阻阻抗加电感绕线电阻的阻。Vf 是肖特基二极管的正向压降。R是Rs加MOSFET导通电阻,R=Rs+Rm。

电感磁芯的饱和度

通过已经计算的电感峰值电流,我们可以发现电感上产生了什么。很容易会知道,随着通过电感的电流增加,它的电感量会减小。这是由于磁芯材料的物理特性决定的。电感量会减少多少就很重要了:如果电感量减小很多,转换器就不会正常工作了。当通过电感的电流大到电感实效的程度,此时的电流称为“饱和电流”。这也是电感的基本参数。

实际上,转换电路中的开关功率电感总会有一个“软”饱和度。要了解这个概念可以观察实际测量的电感Vs DC电流的曲线:

当电流增加到一定程度后,电感量就不会急剧下降了,这就称为“软”饱和特性。如果电流再增加,电感就会损坏了。

注意:电感量下降在很多类的电感中都会存在。例如:toroids,gapped E-cores 等。但是,rod core电感就不会有这种变化。

有了这个软饱和的特性,我们就可以知道在所有的转换器中为什么都会规定在DC输出电流下的最小电感量;而且由于纹波电流的变化也不会严重影响电感量。在所有的应用中都希望纹波电流尽量的小,因为它会影响输出电压的纹波。这也就是为什么大家总是很关心DC输出电流下的电感量,而会在Spec中忽略纹波电流下的电感量。

为开关电源选择合适的电感

电感是开关电源中常用的元件,由于它的电流、电压相位不同,所以理论上损耗 为零。电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上,用来平滑电流。电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”。换句 话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的电压尖峰。

电感为磁性元件,自然有磁饱和的问题。有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和,也有的应用不允许电感出现饱和,这要 求在具体线路中进行区分。大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。但是,开关电源存在一个不可忽视的问题, 即电感的绕线将导致两个分布参数(或寄生参数),一个是不可避免的绕线电阻,另一个是与绕制工艺、材料有关的分布式杂散电容。杂散电容在低频时影响不大,但随频率的提高而渐显出来,当频率高到某个值以上时,电感也许变成电容特性了。如果将杂散电容“集中”为一个电容,则从电感的等效电路可以看出在某一频率 后所呈现的电容特性。

当分析电感在线路中的工作状况或者绘制电压电流波形图时,不妨考虑下面几个特点:

1. 当电感L中有电流I流过时,电感储存的能量为:

E=0.5×L×I2 (1)

2. 在一个开关周期中,电感电流的变化(纹波电流峰峰值)与电感两端电压的关系为:

V=(L×di)/dt (2)

由此可看出,纹波电流的大小跟电感值有关。

3. 就像电容有充、放电电流一样,电感器也有充、放电电压过程。电容上的电压与电流的积分(安·秒)成正比,电感上的电流与电压的积分(伏·秒)成正比。只要电感电压变化,电流变化率di/dt也将变化;正向电压使电流线性上升,反向电压使电流线性下降。

计算出正确的电感值对选用合适的电感和输出电容以获得最小的输出电压纹波而言非常重要。

从图1可以看出,流过开关电源电感器的电流由交流和直流两种分量组成,因为交流分量具有较高的频率,所以它会通过输出电容流入地,产生相应的输出纹波电压dv=di×RESR。这个纹波电压应尽可能低,以免影响电源系统的正常操作,一般要求峰峰值为10mV~500mV。

图1:开关电源中电感电流。

纹波电流的大小同样会影响电感器和输出电容的尺寸,纹波电流一般设定为最大输出电流的10%~30%,因此对降压型电源来说,流过电感的电流峰值比电源输出电流大5%~15%。

降压型开关电源的电感选择

为降压型开关电源选择电感器时,需要确定最大输入电压、输出电压、电源开关频率、最大纹波电流、占空比。下面以图2为例说明降压型开关电源电感值的计算,首先假设开关频率为300kHz、输入电压范围12V±10%、输出电流为1A、最大纹波电流300mA。

图2:降压型开关电源的电路图。

最大输入电压值为13.2V,对应的占空比为:

D=Vo/Vi=5/13.2=0.379 (3)

其中,Vo为输出电压、Vi为输出电压。当开关管导通时,电感器上的电压为:

V=Vi-Vo=8.2V (4)

当开关管关断时,电感器上的电压为:

V=-Vo-Vd=-5.3V (5)

dt=D/F (6)

把公式2/3/6代入公式2得出:

升压型开关电源的电感选择

对于升压型开关电源的电感值计算,除了占空比与电感电压的关系式有所改变外,其它过程跟降压型开关电源的计算方式一样。以图3为例进行计算,假 设开关频率为300kHz、输入电压范围5V±10%、输出电流为500mA、效率为80%,则最大纹波电流为450mA,对应的占空比为:

D=1-Vi/Vo=1-5.5/12=0.542 (7)

图3:升压型开关电源的电路图。

当开关管导通时,电感器上的电压为:

V=Vi=5.5V (8)

当开关管关断时,电感器上的电压为:

V=Vo+Vd-Vi=6.8V (9)

把公式6/7/8代入公式2得出:

请注意,升压电源与降压电源不同,前者的负载电流并不是一直由电感电流提供。当开关管导通时,电感电流经过开关管流入地,而负载电流由输出电容 提供,因此输出电容必须有足够大的储能容量来提供这一期间负载所需的电流。但在开关管关断期间,流经电感的电流除了提供给负载,还给输出电容充电。

一般而言,电感值变大,输出纹波会变小,但电源的动态响应也会相应变差,所以电感值的选取可以根据电路的具体应用要求来调整以达到最理想效果。 开关频率的提高可以让电感值变小,从而让电感的物理尺寸变小,节省电路板空间,因此目前的开关电源有往高频发展的趋势,以适应电子产品的体积越来越小的要 求

有了上面对电感的认识,下面就作开关电源的分析与应用:

楞次定律相关内容: 在直流供电的时候,由于线圈的自感作用,线圈将产生一个自感电动势,此电动势将阻碍线圈电流的增加,所以在通电的一瞬间,电路电流可以认为是0,此时电路全部压降全落在线圈上,然后电流缓慢增加,线圈端电压缓慢下降直到为零,暂态过程结束

在转换器的开关运行中,必须保证电感不处在饱和状态,以确保高效率的能量存储和传递。饱和电感在电路中等同于一个直通DC通路,故不能存储能量,也就会使开关模式转换器的整个设计初衷功亏一篑。在转换器的开关频率已经确定时,与之协同工作的电感必须足够大,并且不能饱和。

开关电源中的电感确定:开关频率低,由于开和关的时间都比较长,因此为了输出不间断的需要,需要把电感值加大点,这样可以让电感可以存储更多的磁场能量。同时,由于每次开关比较长,能量的补充更新没有如频率高时的那样及时,从而电流也就会相对的小点。这个原理也可以用公式来说明:L=(dt/di)*uL

D=Vo/Vi,降压型占空比 D= 1- Vi/Vo,升压型占空比

dt=D/F ,F=开关频率

di=电流纹波

所以得 L=D*uL /(F*di),当F开关频率低时,就需要L大一点;同意当L设大时,其他不变情况下,则纹波电流di就会相对减小

在高的开关频率下,加大电感会使电感的阻抗变大,增加功率损耗,使效率降低。同时,在频率不变条件下,一般而言,电感值变大,输出纹波会变小,但电源的动态响应(负载功耗偶尔大偶尔小,在大小变化之间相应慢)也会相应变差,所以电感值的选取可以根据电路的具体应用要求来调整以达到最理想效果

问题:

电感啸叫:

基本理念是听觉范围内的谐波才会被听到.但是一般开关电源开关频率只要不在20K范围内,其谐波含量均不会引起较大噪声.但是这个理论是基于开关电源开关频率比较稳定的情况下. 所以说,如果开关电源占空比不稳定,其产生的谐波就有可能在20K之内并且幅度较大,这样就能引起听觉效应.

解决方法有两个:一、从根本解决,占空比的不稳定一般是控制环路的小信号被噪声干扰.DC/DC的占空比需要调节到很稳定;二、如果是电感响,也有可能是磁芯的磁滞伸缩引起的.可对电感浸胶.

https://www.doczj.com/doc/e68132466.html,

Inspection of this ?gure shows that the maximum current that the inductor ever sees consists of the DC current, plus half of the peak-to-peak current due to the switching. This latter is called the ripple current. Using the equation above, we can calculate this peak current as:

where t on is the time that the converter is in State 1, T is the switching period (one over the switching frequency) and DC is the Duty Cycle, that is, the percentage of time that the con-verter is in State 1.

Caveat: This calculation has assumed that the voltage drops due to the various components (such as the resistive drop of the MOSFETs and inductor or current sense resistor, or the forward voltage of a schottky in a non-synchronous con-verter) are negligible compared to the input and output volt-ages. If they are not, use these more accurate equations instead:

Synchronous Converter:

Nonsynchronous Converter:

where R s is the sum of the sense resistor’s resistance and the winding resistance of the inductor, V f is the forward drop of the schottky, and R is the sum of the resistance of R s and the on-resistance of the MOSFET, R = R s + R M. Inductor Core Saturation

Having now calculated the peak inductor current, we can look at what this does to the inductor. The fundamental fact to know is that as the current through an inductor increases, its inductance decreases. This is due to the underlying phys-ics of the core material. How much the inductance decreases is the important question: if it decreases too much, the con-verter may not work properly any more. The current at which the inductor does not function properly in the circuit any more is called the “saturation current”, and is a fundamental parameter of the inductor.

In practice, the switching power inductors used for convert-ers always have a “soft” saturation. What this means can be understood by viewing a plot of actually measured induc-tance vs. DC current:

This inductor has a “soft” saturation characteristic because its inductance doesn’t radically decrease at some particular current: as the current increases, the inductance very gradu-ally tails off.

NOTE: The relatively large drop in inductance shown in this curve is typical of most inductors such as toroids, gapped E-cores, etc. However, rod core inductors show almost no change in inductance at almost any current.

Given this soft saturation characteristic, it is apparent that in most converters, it is adequate to specify the inductor’s mini-mum inductance at the DC output current; adding a little bit of extra current due to the ripple doesn’t greatly affect the inductance. In most applications, ripple current will be rela-tively small anyway, since it directly impacts output ripple voltage. Thus it is common practice in the industry to specify inductance at the DC output current, and to ignore the ripple current in the spec.

I PK I DC

I PP

2

-------

+I DC

1

2

--

V in V out

()t on

L

-------------------------------------------

+

===

I DC

1

2

--

V in V out

()T DC

L

-------------------------------------------------------+

I PK I DC

1

2

--

V in V out

–I R

()

L

------------------------------------------------

V out I R

+

()

V in

----------------------------------T +

=

I PK I DC

1

2

--

V in V out

–I R

()

L

------------------------------------------------

V out I R S V f

+

+

()

V in I R M V f

+

()

-------------------------------------------------T +

=

9

8

7

6

5

4

3

2

1

01234567891011121314151617181920 I

n

d

u

c

t

a

n

c

e

(

m

H

)

Current (A)

2

Notes:

3

7/21/98 0.0m 001Stock#AB00000012

ó 1998 Fairchild Semiconductor Corporation

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1.Life support devices or systems are devices or systems

which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be

reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support

device or system whose failure to perform can be

reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

https://www.doczj.com/doc/e68132466.html,

电感在在电路中的作用及使用方法

电感在电路中的作用与使用方法 一、电感器的定义。 电感的定义: 电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。 当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。根据法拉弟电磁感应定律---磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。当形成闭合回路时,此感应电势就要产生感应电流。由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有阻止交流电路中电流变化的特性。电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这就是自感现象产生很高的感应电势所造成的。 总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。这种因线圈本身电流的变化而产生的电动势,称为“自感电动势”。 由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。 电感的具体作用: 1、在DCDC转换的时候,电源输入和DCDC芯片之间常接着一个22uh的功率电感, 一,扼流:在低频电路用来阻止低频交流电;脉动直流电到纯直流电路;它常用在整流电路输出端两个滤波电容的中间,扼流圈与电容组成Π式滤波电路。在高频电路:是防止高频电流流向低频端,在老式再生式收音机中的高频扼流圈。得到应用。 二,滤波:和上述理论相同;也是阻止整流后的脉动直流电流流向纯直流电路由扼流圈(为简化电路,降低成本,用纯电阻替带扼流圈)两个电容(电解电容)组成派式滤波电路。利用电容充放电作用和扼流圈通直流电,阻挡交流电特性来 完成平滑直流电而得到纯正的直流电。

§5-5 纯电感正弦交流电路

单相交流电路讲授课 空凋01/02 1、掌握单相交流电的纯电感电路 重点:单相交流电的纯电感电路 难点:单相交流电的纯电感电路 措施:以理论的讲解、例题的演算,生活实例说明 《电工基础教学参考书》 习题册P 53-54

§5-5 纯电感正弦交流电路 1、含义:交流电路中只有电感线圈作负载的电路。 2、电流与电压的关系 在电感线圈两端加上交流电U L ,线圈中必定产生交流电流i ,因而线圈中将产生感生电动势,其大小: e L =-L t i ?? 则线圈两端的电压u L =- e L =-L t i ?? 通过线圈的电流i= t sin I m ω 在0-2 π 即第一个4 1 周期内: 电流从0→I m , t i ??>0且最大→0,电压e Lm →0。 在2 π -π即第二个4 1 周期内: 电流从I m →0,t i ??<0且0→最大负值,电压0→-e Lm 。 在π-2 3π即第三个4 1周期内: 电流从0→-I m ,t i ??<0且最大负值→0,电压-e Lm →0。 在 2 3π-2π即第四个4 1周期内: 电流从-I m →0, t i ??>0且0→最大,电压0→e Lm 。 结论: 在纯电感电路中,电感两端的电压超前电流90度,或电流滞

后电压90度. i= t sin I m ω u=U Lm sin(ωt+2 π ) 电流一电压最大值之间的关系: LI L :2L U I L L lm m ωωω== = U U I 或得两边同除于 设X L =ωL 代入上式:L L X U I = 在纯电感正弦交流电路中,电流和电压的最大值及有效值之间符合欧姆定律. 3、感抗: 1)、计算:X L =ωL=2πfL 2)、特点:“通直阻交” 3)、注意:I U X L L =只表示电压与电流的最大值或有效值之比。 i u x L L ≠ 不是瞬时值之比 4、电路的功率: 1)、瞬时功率 电压瞬时值u 和电流 瞬时值i 的乘积,称为瞬时功率。用P 表示。 即:

射频电路中无源器件特性

无源器件特性 1.高频电阻 低频电子学中最普通的电路元件就是电阻,它的作用是通过将一些电能装化成热能来达到电压降低的目的。电阻的高频等效电路如图所示,其中两个电感L模拟电阻两端的引线的寄生电感,同时还必须根据实际引线的结构考虑电容效应;用电容C模拟电荷分离效应。 电阻等效电路表示法 根据电阻的等效电路图,可以方便的计算出整个电阻的阻抗: 下图描绘了电阻的阻抗绝对值与频率的关系,正像看到的那样,低频时电阻的阻抗是R,然而当频率升高并超过一定值时,寄生电容的影响成为主要的,它引起电阻阻抗的下降。当频率继续升高时,由于引线电感的影响,总的阻抗上升,引线电感在很高的频率下代表一个开路线或无限大阻抗。 一个典型的1K?电阻阻抗绝对值与频率的关系 2.高频电容 片状电容在射频电路中的应用十分广泛,它可以用于滤波器调频、匹配网络、晶体管的偏置等很多电路中,因此很有必要了解它们的高频特性。电容的高频等效电路如图所示,其

中L为引线的寄生电感;描述引线导体损耗用一个串联的等效电阻R1;描述介质损耗用一个并联的电阻R2。 电容等效电路表示法 同样可以得到一个典型的电容器的阻抗绝对值与频率的关系。如下图所示,由于存在介质损耗和有限长的引线,电容显示出与电阻同样的谐振特性。 一个典型的1pF电容阻抗绝对值与频率的关系 3.高频电感 电感的应用相对于电阻和电容来说较少,它主要用于晶体管的偏置网络或滤波器中。电感通常由导线在圆导体柱上绕制而成,因此电感除了考虑本身的感性特征,还需要考虑导线的电阻以及相邻线圈之间的分布电容。电感的等效电路模型如下图所示,寄生旁路电容C 和串联电阻R分别由分布电容和电阻带来的综合效应。 高频电感的等效电路 与电阻和电容相同,电感的高频特性同样与理想电感的预期特性不同,如下图所示:首

电容电感在射频电路的作用

EMI/EMC设计经验总结 电容 一、电容的应用: (一)电容在电源上的主要用途:去耦、旁路和储能。 (二)电容的使用可以解决很多EMC问题。 二、电容分类: (一)按材质分类: 1、铝质电解电容: 通常是在绝缘薄层之间以螺旋状绕缠金属箔而制成,这样可以在电位体积内得到较大的电容值,但也使得该部分的内部感抗增加。 2、钽电容: 由一块带直板和引脚连接点的绝缘体制成,其内部感抗低于铝电解电容。 3、陶瓷电容: 结构是在陶瓷绝缘体中包含多个平行的金属片。其主要寄生为片结构的感抗,并且低于MHz的区域造成阻抗。 应用描述: 铝质电解电容和钽电解电容适用于低频终端,主要是存储器和低频滤波器领域。 在中频范围内(从KHz到MHz),陶质电容比较适合,常用于去耦电路和高频滤波.特殊的低损耗陶质电容和云母电容适合月甚高频应用和微波电路。 为了得到最好的EMC特性,电容具有低的ESR(等效串联电阻)值是很重要的,因为它会对信号造成大的衰减,特别是在应用频率接近电容谐振频率场合。 (二)按作用分类: 1、旁路电容: 电源的第一道抗噪防线是旁路电容。主要是通过产生AC旁路,消除不想要的RF能量,避免干扰敏感电路。 通过储存电荷抑制电压降并在有电压尖峰产生时放电,旁路电容消除了电源电压的波动。旁路电容为电源建立了一个对地低阻抗通道,在很宽频率范围内都可具有上述抗噪功能。 要选择最合适的旁路电容,我们要先回答四个问题: (1)需要多大容值的旁路电容 (2)如何放置旁路电容以使其产生最大功效 (3)要使我们所设计的电路/系统要工作在最佳状态,应选择何种类型的旁路电容? (4)隐含的第四个问题----所用旁路电容采用什么样的封装最合适?(这取决于电容大小、电路板空间以及所选电容的类型。)其中第二个问题最容易回答,旁边电容应尽可能靠近每个芯片电源引脚来放置。距离电源引脚越远就等同于增加串联电感,这样会降低旁路电容的自谐振频率(使有效带宽降低)。 通常旁路电容的值都是依惯例或典型值来选取的。例如,常用的容值是1μF和0.1μF。简单的说,将大电容作为低频和大电流电路的旁路,而小电容作为高频旁路。 旁路电容主要功能是产生一个交流分路,从而消去进入易感区的那些不需要的能量。旁路电容一般作为高频旁路电容来减小对电源模块的瞬态电流需求。通常铝电解电容和胆电容比较适合作旁路电容,其电容值取决于PCB板上的瞬态电流需求,一般在10至470μF范围内。若PCB板上有许多集成电路、高速开关电路和具有长引线的电源,则应选择大容量的电容。 2、去耦电容: 去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。主要是为器件提供信号状态在高速切换时所需要的瞬间电流,避免射频能量进入配电网络,为器件提供局部化的直流电压源。去耦电容一般都采用高速电容。 高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。而去耦电容可以

纯电阻、电感、电容电路之令狐文艳创作

纯电阻、纯电感、纯电容电路 一、 令狐文艳 二、知识要求: 理解正弦交流电的瞬时功率、有功功率、无功功率的含义、数学式、单位及计算。 掌握各种电路的特点,会画矢量图。 三、主要知识点:

四、例题: 1.已知电阻R=10Ω,其两端电压V t t u R )30314sin(100)(?+=,求电 流i R(t ).、电路消耗的功率。 解:由于电压与电流同相位,所以 i R(t )=10)(=R t u R )30314sin(?+t A 电路消耗的功率P=U R I=W X Um 5002 101002Im 2==? 2、已知电感L=0.5H ,其两端电压V t t u L )301000sin(100)(?+=,求 电流i L(t ). 解:L X L ω==1000X0.5=500Ω 由于纯电感电路中,电流滞后电压90°,所以: 3.已知电容C=10μF ,其两端电压V t t u c )301000sin(100)(?+=,求 电流i c (t ).. 解: Ω===-10010 101000116X X C X c ω 由于电流超前电压90°,所以: 五、练习题: (一)、填空题 1、平均功率是指( ),平均功率又称为( )。

2、纯电阻正弦交流电路中,电压有效值与电流有效值之间的关系为(),电压与电流在相位上的关系为()。纯电感正弦交流电路中,电压有效值与电流有效值之间的关系为(),电压与电流在相位上的关系为()。纯电容正弦交流电路中,电压有效值与电流有效值之间的关系为(),电压与电流在相位上的关系为()。 3、在纯电阻电路中,已知端电压V 311? + sin( =,其中 t 314 u) 30 R=1000Ω,那么电流i=(),电压与电流的相位差=(),电阻上消耗的功率P=()。 4、感抗是表示()的物理量,感抗与频率成()比,其值XL=(),单位是(),若线圈的电感为0.6H,把线圈接在频率为50HZ的交流电路中,XL=()。 5、容抗是表示()的物理量,容抗与频率成()比,其值Xc =(),单位是(),100PF的电容器对频率是106HZ的高频电流和50HZ的工频电流的容抗分别是()和()。 6、在纯电容正弦交流电路中,有功功率P=()W,无功功率Q C=()=()=()。 7、在正弦交流电路中,已知流过电容元件的电流I=10A,电压V t 20 =,则电流i=(),容抗Xc= 2 sin( 1000 u) (),电容C=(),无功功率Q C=()

电感的作用及分类

电感是用绝缘导线(例如漆包线,沙包线等)绕制而成的电磁感应元件。属于常用元件。 一,电感的作用:通直流阻交流这是简单的说法,对交流信号进行隔离,滤波或与电容器,电阻器等组成谐振电路. 调谐与选频电感的作用:电感线圈与电容器并联可组成LC 调谐电路。即电路的固有振荡频率f0与非交流信号的频率f相等,则回路的感抗与容抗也相等,于是电磁能量就在电感、电容之间来回振荡,这就是L C回路的谐振现象。谐振时由于电路的感抗与容抗等值又反向,因此回路总电流的感抗最小,电流量最大(指f=f0的交流信号),所以L C谐振电路具有选择频率的作用,能将某一频率f的交流信号选择出来。 磁环电感的作用:磁环与连接电缆构成一个电感器(电缆中的导线在磁环上绕几圈作为电感线圈),它是电子电路中常用的抗干扰元件,对于高频噪声有很好的屏蔽作用,故被称为吸收磁环,由于通常使用铁氧体材料制成,所以又称铁氧体磁环(简称磁环)。在图中,上面为一体式磁环,下面为带安装夹的磁环。磁环在不同的频率下有不同的阻抗特牲。一般在低频时阻抗很小,当信号频率升高后磁环的阻抗急剧变大。可见电感的作用如此之大,大家都知道,信号频率越高,越容易辐射出去,而一般的信号线都是没有屏蔽层的,这些信号线就成了很好的天线,接收周围环境中各种杂乱的高频信号,而这些信号叠加在原来传输的信号上,甚至会改变原来传输的有用信号,严重干扰电子设备的正常工作,因此降低电子设备的电磁干扰(E M)已经是必须考虑的问题。在磁环作用下,即使正常有用的信号顺利地通过,又能很好地抑制高频于扰信号,而且成本低廉。 电感的作用还有筛选信号、过滤噪声、稳定电流及抑制电磁波干扰等重要的作用。

正弦交流电路习习题解答

欢迎阅读 欢迎阅读 习 题 2.1 电流π10sin 100π3i t ?? =- ?? ? ,问它的三要素各为多少?在交流电路中,有两个负载,已知它们的 电压分别为1π60sin 3146u t ??=- ?? ? V ,2π80sin 3143u t ??=+ ?? ? V ,求总电压u 的瞬时值表达式,并说明u 、 u 1、u 2三者的相位关系。 解:(1)最大值为10(V ),角频率为100πrad/s ,初相角为-60°。 (2) 1U 则= m U 100=u 2.2 (1)i 1(2)i 1(3)i 1(4)i 1解:(1(2)I (3)=I (4)设+=1I I I 2.12=I 2.3 (1)u =t V (2)5i =-sin(314t – 60o) A 解:(1)U =10/0o (V) (2)m I =-5/-60o =5/180o -60o=5/120o (A) 2.4 已知工频正弦电压u ab 的最大值为311V ,初相位为–60°,其有效值为多少?写出其瞬时值 表达式;当t =0.0025s 时,U ab 的值为多少? 解:∵U U ab abm 2=

欢迎阅读 ∴有效值2203112 1 21=?== U U abm ab (V) 瞬时值表达式为 ()?-=60314sin 311t u ab (V) 当t =0.0025S 时,5.8012sin(31130025.0100sin 311-=-=??? ? ? -??=πππU ab (V) 2.5 题 解:( 所以U a 由图b 所以U a 2.6 (1(2(3解:(2=P U R == R U I (2)P (32.7 把L =51mH 的线圈(线圈电阻极小,可忽略不计),接在u t +60o) V 的交流电源上,试计算: (1)X L 。 (2)电路中的电流i 。 (3)画出电压、电流相量图。 解:(1)16105131423=??==-fL X L π(Ω)

在高频电路中如何选用RF电感

如何选用RF电感 在手机、RFID、测试设备、GPS、雷达、Wi-Fi以及卫星无线电等应用的高频模拟电路和信号处理中,电感是最重要的元件之一。通常,它可以承担的几项主要功能包括电路调谐、阻抗匹配、高通和低通滤波器,还可以用作RF扼流圈。 选择在设计中使用RF电感的电子工程师有多种选择。为了简化这种选择,本文将讨论电感元件的各种类型及其常见用法。 RF电感的用途 大部分电子器件都含有RF电感。“为了跟踪动物,在我们家养动物的皮肤中植入的玻璃管内部都含有一个电感”,普莱默公司的一位研发工程师Maria del Mar Villarrubia说,“每次启动汽车的时候两个电感之间都会产生无线通信,一个在汽车内部,另一个在钥匙内部。” 不过,正如这种元件的无所不在一样,RF电感也有着非常具体的用途。在谐振电路中,这些元件通常与电容结合使用,以便选择特定的频率(如振荡电路、压控振荡器等)。 RF电感也可以用于阻抗匹配应用,以便实现数据传输线的阻抗平衡。这是为了确保IC间高效的数据传输所必需的。 作为RF扼流圈使用时,电感串联在电路中,起到RF滤波器的作用。简单来说,RF 扼流圈是个低通滤波器,它会给较高的频率造成衰减,而较低的频率则畅通无阻。 Q值是什么 在讨论电感性能时,Q值是最重要的衡量指标。Q值是一种衡量电感性能的指标,它是一个无量纲的参数,用于比较振荡频率和能量损耗速率。 Murata公司的高级产品经理Deryl J. Kimbro说:“Q值越高,电感的性能就越接近于理想的无损电感。也就是说,它在谐振电路中的选择性更好。” 高Q值的另一个好处是损耗低,也就是说电感消耗的能量少。低Q值会造成带宽较宽,而且在振荡频率处及其附近的谐振幅度较低。 电感值

单一元件的正弦交流电路

单一元件的正弦交流电路交流电纯电阻电路公式(电压与电流的关系及电功率) 将一个电阻接到交流电源上,如右图所示。电压和电流的关系可以根据欧姆定律来确定。即: 上述公式表面,交流纯电阻电路的基本性质是电流瞬时值与电阻两端电压的瞬时值成正比。 电阻两端电压有效值U和电阻中流过的电流有效值I的关系可由欧姆定律得出: 在电阻大小一定时,电压增大,电流也增大。电压为零,电流也为零。即电流的正弦曲线与电压的正弦曲线波形起伏一致。所以在电阻负载电路中电压与电流是同相位的。 由于交流电路的电压和电流都随时间而变化,在任意瞬间,电压瞬时值u与电流瞬时值i的乘积为瞬时功率,用“p”表示:即: 由上述公式可以得知:电阻元件上瞬时功率由两部分组成,第一部分是常熟,第二部分是幅值为,并以2ω的角频率随时间按余弦规律变化的变量。 上右图波形图中虚线所示,p为功率随时间变化的波形。它在一个周期内总是大于零,表面电阻元件总是吸收电能,即消耗功率。 瞬时功率虽然能表面功率在一周期内的变化情况,但是其数值不便于测量和计算,其实际意义不大。人们通常所说的电路的功率都是指瞬时功率在一周期内的平均值,称为平均功率或有功功率,以大写字母“P”表示,经数学推算可得:

其单位为瓦塔,由上式可见,当电压和电流以有效值表示时,纯电阻电路中的平均功率的表示式具有和直流电路相同的形式。 从交流电纯电感电路中感抗/电压/电流/电功率的关系了解电感的作用 一个具有电感磁效应作用,其直流电阻值小到可以忽略的线圈,就可以看作是一个纯电感负载。如日光灯电路的整流器,整流滤波电路的扼流圈,感应熔炼炉的感应圈,电力系统中限制短路电流的电抗器等,都可以看作是电感元件。电感元件用符“”表示。 感抗与电流和电压的关系 当交流电通过线圈时,在线圈中产生自感电动势。根据电磁感应定律(楞次定律),自感电动势总是阻碍电路内电流的变化,形成对电流的“阻力”作用,这种“阻力”作用称为电感电抗,简称感抗。用符号X L表示,单位也是欧姆。 实验证明,线圈的电感L越大,交流电的频率f越高,则其感抗X L就越大,它们之间的关系为: 上述公式中: f:表示交流电的频率,单位Hz; L:表示自感系数;单位为亨利(H) X L:线圈的感抗,单位为欧姆(Ω) 上面的公式表明,当电感系数一定时,感抗与频率成正比,即电感元件具有通低频率阻高频率特性。 当f=0时,X L=0。这说明感抗对直流电不起阻碍作用。所有在直流电路中,可将线圈看成是短路。 如右图所示的纯电杆电路中,如果线圈两端加上正弦交流电压u,理论证明,在纯电感电路中线圈两端电压有效值U与线圈中电流有效值I之间的关系为:

2016年《射频电路设计》实验

实验三RFID标签的设计、制作及测试一、【实验目的】 在实际的生产过程中,RFID电子标签在设计并测试完成后,都是在流水线上批量制造生产的。为了让学生体会RFID标签天线设计的理念和工艺,本实验为学生提供了一个手工蚀刻制作RFID电子标签的平台,再配合微调及测试,让学生在亲自动手的过程中,不断地尝试、提炼总结,从而使学生对RFID标签天线的设计及生产工艺,有进一步深刻的理解。 二、【实验仪器及材料】 计算机一台、HFSS软件、覆铜板、Alien Higgs芯片、热转印工具、电烙铁、标签天线实物,UHF测试系统,皮尺 三、【实验内容】 第一步(设计):从UHF标签天线产品清单中,挑选出一款天线结构,或者自己设计一款标签天线结构,进行HFSS建模画图 第二步(制作):将第一步中设计好的标签模型用腐蚀法进行实物制作 第三步(测试):利用UHF读写器测试第二步中制作的标签实物性能 四、【实验要求的知识】 下图是Alien(意联)公司的两款标签天线,型号分别为ALN-9662和ALN-9640。这两款天线均采用弯折偶极子结构。弯折偶极子是从经典的半波偶极子结构发展而来,半波偶极子的总长度为波长的一半,对于工作在UHF频段的半波偶极子,其长度为160mm,为了使天线小型化,采用弯折结构将天线尺寸缩小,可以适用于更多的场合。ALN-9662的尺寸为70mm x 17mm,ALN-9640的尺寸为94.8mm x 8.1mm,之所以有不同的尺寸是考虑到标签的使用情况和应用环境,因为天线的形状和大小必须能够满足标签顺利嵌入或贴在所指定的目标上,也需要适合印制标签的使用。例如,硬纸板盒或纸板箱、航空公司行李条、身份识别卡、图书等。 ALN-9662天线版图 ALN-9640天线版图

射频电路的无源元件及其等效电路

Apr. 18. 2010Apr. 18. 2010 Apr. 18. 2010Apr. 18. 2010 Apr. 18. 2010Apr. 18. 2010

Apr. 18. 2010 Apr. 18. 2010 Apr. 18. 2010 Apr. 18. 2010 Apr. 18. 2010 电阻器的射频等效电路不仅呈现出单纯的电阻 R ,还具有两端引线的引线电感L 以及模拟电荷分离效应的电容C a 和跨接两端引线之间的电容C b Apr. 18. 2010 From SEIEE SJTU 金属膜电阻器的阻抗绝对值与频率之间的关系 在低频时,电阻器的阻抗是R ,随着频率的升高,寄生电容的影响成为引起电阻阻抗下降的主要因素;随着频率的进一步升高,引线电感的作用就越加明显,电阻阻抗上升;在频率很高时,引线电感就成为一个无限大的阻抗,甚至开路。

Apr. 18. 2010 电阻器的阻抗首先是随着频率的升高而增加;但到某Apr. 18. 2010 Apr. 18. 2010 ,总的旁路电在200MHz Apr. 18. 2010 电容器的射频等效电路 C :电容数值;Rs :串联电阻;Rp :绝缘电阻;:引线和平板的电感;其中电阻都会形成热损耗,用Apr. 18. 2010 Apr. 18. 2010 From SEIEE SJTU 理想的阻抗随着工作频率的升高而近似线性地减小。而实际阻抗, 随着频率的升高,其引线电感变得越来越重要;电容器的特性随着频率的升高而改变。在谐振频率Fr ,引线电感与实际电容形成串联谐振,使得总的电抗趋向于0Ω;之后,在高于Fr 的些政频率之上,电容器的行为呈现为电感性而不再是电容性。

电感的作用及用途

电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应元件,也是电子电路中常用的元器件之一,相关产品如共膜滤波器等。 一、自感与互感 (一)自感 当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(电动势用以表示有源元件理想电源的端电压),这就是自感。 (二)互感 两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度。 二、电感器的作用与电路图形符号 (一)电感器的电路图形符号 电感器是用漆包线、纱包线或塑皮线等在绝缘骨架或磁心、铁心上绕制成的一组串联的同轴线匝,它在电路中用字母"L"表示,图6-1是其电路图形符号。 (二)电感器的作用 电感器的主要作用是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路。 三、变压器的作用及电路图形符号 (一)变压器的电路图形符号 变压器是利用电感器的电磁感应原理制成的部件。在电路中用字母"T"(旧标准为"B")表示,其电路图形符号如图6-12所示。 (二)变压器的作用 变压器是利用其一次(初级)、二次(次级)绕组之间圈数(匝数)比的不同来改变电压比或电流比,实现电能或信号的传输与分配。其主要有降低交流电压、提升交流电压、信号耦合、变换阻抗、隔离等作用。 (一)电感器的结构与特点 电感器一般由骨架、绕组、屏蔽罩、封装材料、磁心或铁心等组成。 1.骨架骨架泛指绕制线圈的支架。一些体积较大的固定式电感器或可调式电感器(如振荡线圈、阻流圈等),大多数是将漆包线(或纱包线)环绕在骨架上,再将磁心或铜心、铁心等装入骨架的内腔,以提高其电感量。 骨架通常是采用塑料、胶木、陶瓷制成,根据实际需要可以制成不同的形状。 小型电感器(例如色码电感器)一般不使用骨架,而是直接将漆包线绕在磁心上。 空心电感器(也称脱胎线圈或空心线圈,多用于高频电路中)不用磁心、骨架和屏蔽罩等,而是先在模具上绕好后再脱去模具,并将线圈各圈之间拉开一定距离。 2.绕组绕组是指具有规定功能的一组线圈,它是电感器的基本组成部分。 绕组有单层和多层之分。单层绕组又有密绕(绕制时导线一圈挨一圈)和间绕(绕制时每圈导线之间均隔一定的距离)两种形式;多层绕组有分层平绕、乱绕、蜂房式绕法等多种,如图6-5所示。 3.磁心与磁棒磁心与磁棒一般采用镍锌铁氧体(NX系列)或锰锌铁氧体(MX系列)等材料,它有"工"字形、柱形、帽形、"E"形、罐形等多种形状,如图6-6所示。 4.铁心铁心材料主要有硅钢片、坡莫合金等,其外形多为"E"型。 5.屏蔽罩为避免有些电感器在工作时产生的磁场影响其它电路及元器件正常工作,就为其增加了金属屏幕罩(例如半导体收音机的振荡线圈等)。采用屏蔽罩的电感器,会增加线圈的损耗,使Q值降低。 6.封装材料有些电感器(如色码电感器、色环电感器等)绕制好后,用封装材料将线

正弦交流电路习题解答

习 题 电流π10sin 100π3i t ??=- ?? ?,问它的三要素各为多少?在交流电路中,有两个负载,已知它们的电压分别为1π60sin 3146u t ??=- ???V ,2π80sin 3143u t ??=+ ?? ?V ,求总电压u 的瞬时值表达式,并说明u 、u 1、u 2三者的相位关系。 解:(1)最大值为10(V ),角频率为100πrad/s ,初相角为-60°。 (2)?-=30/601m U &(V )?=60/802m U &(V ) 则?=?+?-=+=1.23/10060/8030/6021m m m U U U &&&(V ) )1.23314sin(100?+=t u (V )u 滞后u 2,而超前u 1。 两个频率相同的正弦交流电流,它们的有效值是I 1=8A ,I 2=6A ,求在下面各种情况下,合成电流的有效值。 (1)i 1与i 2同相。 (2)i 1与i 2反相。 (3)i 1超前i 2 90o 角度。 (4)i 1滞后i 2 60o 角度。 解:(1)146821=+=+=I I I (A ) (2)6821+=-=I I I (A ) (3)1068222221=+=+=I I I (A ) (4)设?=0/81I &(A )则?=60/62 I &(A ) ?=?+?=+=3.25/2.1260/60/82 1I I I &&&(A ) 2.12=I (A ) 把下列正弦量的时间函数用相量表示。 (1)u =t V (2)5i =-sin(314t – 60o) A 解:(1)U &=10/0o (V) (2)m I &=-5/-60o =5/180o -60o=5/120o (A) 已知工频正弦电压u ab 的最大值为311V ,初相位为–60°,其有效值为多少?写出其瞬时值表达式;当t =时,U ab 的值为多少? 解:∵U U ab abm 2= ∴有效值2203112 121=?==U U abm ab (V) 瞬时值表达式为 ()?-=60314sin 311t u ab (V) 当t =时,5.80)12sin(31130025.0100sin 311-=-=??? ? ?-??=πππU ab (V) 题图所示正弦交流电路,已知u 1sin314t V ,u 2t –120o) V ,试用相量表示法求电压u a 和u b 。 题图 解:(1)由图a 知,21u u u a +=

电阻,电容,电感,二极管,三极管,在电路中的作用

电阻,电容,电感,二极管,三极管,在电路中的作用 电阻 定义:导体对电流的阻碍作用就叫导体的电阻。 电阻(Resistor)是所有电子电路中使用最多的元件。电阻的主要物理特征是变电能为热能,也可说它是一个耗能元件,电流经过它就产生热能。电阻在电路中通常起分压分流的作用,对信号来说,交流与直流信号都可以通过电阻。 电阻都有一定的阻值,它代表这个电阻对电流流动阻挡力的大小。电阻的单位是欧姆,用符号“Ω”表示。欧姆是这样定义的:当在一个电阻器的两端加上1伏特的电压时,如果在这个电阻器中有1安培的电流通过,则这个电阻器的阻值为1欧姆。出了欧姆外,电阻的单位还有千欧(KΩ,兆欧(MΩ)等。 电阻器的电气性能指标通常有标称阻值,误差与额定功率等。 它与其它元件一起构成一些功能电路,如RC电路等。 电阻是一个线性元件。说它是线性元件,是因为通过实验发现,在一定条件下,流经一个电阻的电流与电阻两端的电压成正比——即它是符合欧姆定律:I=U/R

常见的碳膜电阻或金属膜电阻器在温度恒定,且电压和电流值限制在额定条件之内时,可用线性电阻器来模拟。如果电压或电流值超过规定值,电阻器将因过热而不遵从欧姆定律,甚至还会被烧毁。线性电阻的工作电压与电流的关系如图1所示。电阻的种类很多,通常分为碳膜电阻,金属电阻,线绕电阻等:它又包含固定电阻与可变电阻,光敏电阻,压敏电阻,热敏电阻等。但不管电阻是什么种类,它都有一个基本的表示字母“R”。 电阻的单位用欧姆(Ω)表示。它包括?Ω(欧姆),KΩ(千欧),MΩ(兆欧)。其换算关系为: 1MΩ=1000KΩ ,1KΩ=1000Ω。 电阻的阻值标法通常有色环法,数字法。色环法在一般的的电阻上比较常见。由于手机电路中的电阻一般比较小,很少被标上阻值,即使有,一般也采用数字法,即: 101——表示100Ω的电阻;102——表示1KΩ的电阻;103——表示10KΩ的电阻;104——表示100KΩ的电阻;105——表示1MΩ的电阻;106——表示10MΩ的电阻。 如果一个电阻上标为223,则这个电阻为22KΩ。电阻在手机机板上一般的外观示意图如图5所示,其两端为银白色,中间大部分为黑色。

正弦交流电路中的电感

正弦交流电路中的电感 1.电压与电流的关系 纯电感线圈电路如图3.10(a )所示。 (a ) (b ) 图3.10 纯电感电路中电流与电压关系 设电路正弦电流为 t I i m ωsin = 在电压、电流关联参考方向下,根据dt di L u L =,电感元件两端电压为 )2sin(2)(2πψωωψωω++=+==i i L t LI t L dt di L u 设 )sin(2u L L t U u ψω+= 比较电压和电流的关系式可见:电感两端电压u 和电流 i 也是同频率的正弦量,电压的相位超前电流 2 π,电压与电流在数值上满足关系式 2,π ψψω+==i u L LI U 表示电感电压、电流的波形如图3.10(b )所示。写成相量形式

2πψωψ+ ∠=∠i u L j U 或. .I L j U L ω= (3-15) 2.感抗的概念 由式(3-15)可知,令 I U L L ==ωL X L X 称为感抗,感抗表示线圈对交流电流阻碍作用的大小。当0=f 时0=L X ,表明线圈对直流电流相当于短路。这就是线圈本身所固有的“直流畅通,高频受阻”作用。L 的单位是H (亨利),L X 的单位是欧姆(Ω)。 电感元件的电压、电流相量图如图3.11所示。 图3.11 电感中电流与电压关系 3.功率 1)瞬时功率 设t I i ωsin 2=,则)2sin(2πω+= t U u L L 瞬时功率为 t I t U i u p L L L ωπωsin 2)2 sin(2?+== t I U t t I U L L ωωω2sin cos sin 2=?= (3-16) 2)平均功率 由式(3-16)可见,在0~2π之间,L p 为正值,表示电感吸收能量,在2 π~π之

电源电路中电感的作用

请问这个电源部分的电感作用是什么?如何选取? 这里的电感作用是什么?如何选取?在一个电路上看到电感标的是“742792093”有没有和这个一样但比较常用的电感?型号是什么? 3_540.gif (4.44 KB) 答: 加电感是为了模拟地和数字地等电位,用一般的磁珠即可。其实也可以直接用0欧姆的电阻连通,但是电感可以滤波。 在电感线圈不变的情况下,负载电阻愈小,输出电压的交流分量愈小。只有在RL>>ωL时才 能获得较好的滤波效果。L愈大,滤波效果愈好。 关于这里用电感还是磁珠,一般认为:在信号电路中,可以用磁珠;在功率电流中,应该用电感。对于用电感还是磁珠,关键在于干扰的频率高低,如果干扰在高频范围,则用磁珠比较好,如果在低频则磁珠就无能为力了。一般磁珠对500MHz干扰的滤波效果最好。因此在这里建议用电感。 或直接短接,一点接,在ad/da电路中要用到。 该电感一般就是用磁珠,通常是用于模拟电源的滤波。如果用0欧姆的电阻代替磁珠,那么和导线是一样的,都不能起到滤波的作用。不过,如果数字电源本身就比较干净,电路间又没有相互干扰的话,是可以用0欧姆的电阻或导线代替电感的。

这是一个派型滤波电路,用来为模拟部分提供干净的电源,用磁珠即可,比较关心的参数是100MHz时的阻抗值,直流等效电阻,最大通过电流量,没有电感量!你提到的742792093,应该是wurth的产品,具体参数:2200欧姆@100MHz,DC resistor 0.6欧姆,最大通过200mA电流! 这个电感我个人认为有两个作用: 1,滤波作用 2,当数字电路工作在高频时,电源的脉动比较大,如果和模拟电源一起使用时就会给模拟电源造成干扰,电感在这里还可以因数字电路的电源的di/dt的变化量,使模拟电源和数字电源都比较的稳定,互不影响

§纯电感正弦交流电路

纯电感正弦交流电路 1、含义:交流电路中只有电感线圈作负载的电路。 2、电流与电压的关系 在电感线圈两端加上交流电U L ,线圈中必定 产生交流电流i ,因而线圈中将产生感生电动势, 其大小: e L =-L t i ?? 则线圈两端的电压u L =- e L =-L t i ?? 通过线圈的电流i= t sin I m ω 在0-2π即第一个41周期内: 电流从0→I m , t i ??>0且最大→0,电压e Lm →0。 在2π -π即第二个41周期内: 电流从I m →0, t i ??<0且0→最大负值,电压0→-e Lm 。 在π-23π即第三个4 1周期内: 电流从0→-I m ,t i ??<0且最大负值→0,电压-e Lm →0。 在23π-2π即第四个4 1周期内: 电流从-I m →0,t i ??>0且0→最大,电压0→e Lm 。 结论: 在纯电感电路中,电感两端的电压超前电流90度,或电流滞

后电压90度. i= t sin I m ω u=U Lm sin(ωt+2 π) 电流一电压最大值之间的关系: LI L :2L U I L L lm m ωωω===U U I 或得两边同除于 设X L =ωL 代入上式:L L X U I = 在纯电感正弦交流电路中,电流和电压的最大值及有效值之间符合欧姆定律. 3、感抗: 1)、计算:X L =ωL=2πfL 2)、特点:“通直阻交” 3)、注意:I U X L L = 只表示电压与电流的最大值或有效值之比。 i u x L L ≠不是瞬时值之比 4、电路的功率: 1)、瞬时功率 电压瞬时值u 和电流 瞬时值i 的乘积,称为瞬时功率。用P 表示。 即:

滤波电路中电感的作用(图文版)

滤波电路中电感的作用 一.电感的作用 基本作用:滤波、振荡、延迟、陷波等 形象说法:“通直流,阻交流” 细化解说:在电子线路中,电感线圈对交流有限流作用,它与电阻器或电容器能组成高通或低通滤波器、移相电路及谐振电路等;变压器可以进行交流耦合、变压、变流和阻抗变换等。 由感抗XL=2πfL 知,电感L越大,频率f越高,感抗就越大。该电感器两端电压的大小与电感L成正比,还与电流变化速度△i/△t 成正比,这关系也可用下式表示: 电感线圈也是一个储能元件,它以磁的形式储存电能,储存的电能大小可用下式表示:WL=1/2 Li2 。 可见,线圈电感量越大,流过越大,储存的电能也就越多。 电感在电路最常见的作用就是与电容一起,组成LC滤波电路。我们已经知道,电容具有“阻直流,通交流”的本领,而电感则有“通直流,阻交流”的功能。如果把伴有许多干扰信号的直流电通过LC滤波电路(如图),那么,交流干扰信号将被电容变成热能消耗掉;变得比较纯净的直流电流通过电感时,其中的交流干扰信号也被变成磁感和热能,频率较高的最容易被电感阻抗,这就可以抑制较高频率的干扰信号。 变成磁感和热能,频率较高的最容易被电感阻抗,这就可以抑制较高频率的干扰信号。 LC滤波电路 在线路板电源部分的电感一般是由线径非常粗的漆包线环绕在涂有各种颜色的圆形磁芯上。而且附近一般有几个高大的滤波铝电解电容,这二者组成的就是上述的LC滤波电路。另外,线路板还大量采用“蛇行线+贴片钽电容”来组成LC电路,因为蛇行线在电路板上来回折行,也可以看作一个小电感。 二、电感的主要特性参数 2.1 电感量L 电感量L表示线圈本身固有特性,与电流大小无关。除专门的电感线圈(色码电感)外,电感量一般不专门标注在线圈上,而以特定的名称标注。 2.2 感抗XL

纯电阻、电感、电容电路

纯电阻、纯电感、纯电容电路 一、知识要求: 理解正弦交流电的瞬时功率、有功功率、无功功率的含义、数学式、单位及计算。掌握各种电路的特点,会画矢量图。 二、主要知识点:

三、例题: 1.已知电阻R=10Ω,其两端电压V t t u R )30314sin(100)(?+=,求电流i R(t ).、电路消耗的功率。 解:由于电压与电流同相位,所以 i R(t )= 10) (=R t u R )30314sin(?+t A 电路消耗的功率P=U R I= W X Um 5002 10 1002Im 2== ? 2、已知电感L=,其两端电压V t t u L )301000sin(100)(?+=,求电流i L(t ). 解:L X L ω===500Ω 由于纯电感电路中,电流滞后电压90°,所以: A t t X t i L L )601000sin(2.0)90301000sin(100 )(?-=?-?+= 3.已知电容C=10μF ,其两端电压V t t u c )301000sin(100)(?+=,求电流i c (t ).. 解: Ω=== -10010101000116 X X C X c ω 由于电流超前电压90°,所以: A t t Xc t i c )1201000sin()90301000sin(100 )(?+=?+?+= 四、练习题: (一)、填空题 1、平均功率是指( ),平均功率又称为( )。 2、纯电阻正弦交流电路中,电压有效值与电流有效值之间的关系为( ),电压与电流

在相位上的关系为( )。纯电感正弦交流电路中,电压有效值与电流有效值之间的关系为( ),电压与电流在相位上的关系为( )。纯电容正弦交流电路中,电压有效值与电流有效值之间的关系为( ),电压与电流在相位上的关系为( )。 3、在纯电阻电路中,已知端电压V t u )30314sin(311?+=,其中R=1000Ω,那么电流i=( ),电压与电流的相位差=( ),电阻上消耗的功率P=( )。 4、感抗是表示( )的物理量,感抗与频率成( )比,其值XL=( ),单位是( ),若线圈的电感为,把线圈接在频率为50HZ 的交流电路中,XL=( )。 5、容抗是表示( )的物理量,容抗与频率成( )比,其值Xc =( ),单位是( ),100PF 的电容器对频率是106 HZ 的高频电流和50HZ 的工频电流的容抗分别是( )和( )。 6、在纯电容正弦交流电路中,有功功率P=( )W ,无功功率Q C =( )=( )=( )。 7、在正弦交流电路中,已知流过电容元件的电流I=10A ,电压V t u )1000sin(220=,则电流i=( ),容抗Xc=( ),电容C=( ),无功功率Q C =( ) 8、电感在交流电路中有( )和( )的作用,它是一种( )元件。 (二)、选择题 1、正弦电流通过电阻元件时,下列关系式正确的是( )。 A 、Im=U/R B 、I=U/R C 、i=U/R D 、I=Um/R 2、已知一个电阻上的电压V t u )2 314sin(210π -=,测得电阻上消耗的功率为20W ,则这 个电阻为( )Ω。 A 、5 B 、10 C 、40 3、在纯电感电路中,已知电流的初相角为-60°,则电压的初相角为( )。 A 、30° B 、60° C 、90° D 、120° 4、在纯电感正弦交流电路中,当电流A t I i )314sin(2= 时,则电压( )V 。

高中物理-电感器在交流电路中的作用练习

高中物理-电感器在交流电路中的作用练习 1.电感器对交流电有阻碍作用,阻碍作用的大小用______表示,线圈的自感系数越大,交流电的频率越高,对交流电的阻碍作用________,即感抗__________,X L=________. 2.感抗的形成是因为交变电流通过线圈时,由于自感的作用产生了____________,自感电动势要阻碍电流的变化,这样就形成了对电流的阻碍作用.3.电子技术中常用的扼流圈有两类:一类是低频扼流圈,它的作用是 “________________”;另一类是高频扼流圈,它的作用是“________________________”. 4.如图1所示,电键接直流上灯泡的亮度______(填大于、小于或等于)接到交流上灯泡亮度,说明线圈对直流电和交变电流的阻碍作用不同. 图1 5.如图2所示的电路中,正弦交流电源电压的有效值为220V,则关于交流电压表的示数,以下说法中正确的是( ) 图2 A.等于220VB.大于220V C.小于220VD.等于零 6.电感和电容对交流电的阻碍作用的大小不但跟电感、电容本身有关,还跟交流电的频率有关,下列说法中正确的是( ) A.电感是通直流、阻交流,通高频、阻低频 B.电容是通直流、阻交流,通高频、阻低频 C.电感是通直流、阻交流,通低频、阻高频

D.电容是通交流、隔直流,通低频、阻高频 【概念规律练】 知识点一电感对交变电流的阻碍作用 图3 1.如图3所示电路中,L为电感线圈,R为灯泡,电流表内阻为零.电压表内阻无限大,交流电源的电压u=2202sin10πt V.若保持电压的有效值不变,只将电源频率改为25Hz,下列说法中正确的是( ) A.电流表示数增大 B.电压表示数减小 C.灯泡变暗 D.灯泡变亮 2.一个灯泡通过一个线圈与一交流电源相连接,如图4所示.一个铁块插进线圈之后,该灯泡将( ) 图4 A.变亮B.变暗 C.对灯泡没影响D.无法判断 知识点二对扼流圈的理解 3.如图5所示电路,前级输出的电流既有高频成分又有低频成分,要把低频成分的电流输送到下一级,需在ab间接一个________扼流圈,它的自感系数应________.

相关主题
文本预览
相关文档 最新文档