当前位置:文档之家› 断裂力学-ansys

断裂力学-ansys

断裂力学-ansys
断裂力学-ansys

ansys的断裂参数的计算

ANSYS的断裂参数的计算 1 引言 断裂事故在重型机械中是比较常见的。一方面,由于传统的设计是以完整构件的静强度和疲劳强度为依据,并给以较大的安全系数,但是含裂纹在役设备还是常有断裂事故发生。另一方面,对于一些关键设备,缺乏对不完整构件剩余强度的估算,让其提前退役,从而造成了不必要的浪费。因此,有必要对含裂纹构件的断裂参量进行评定,如应力强度因了和J积分。确定应力强度因了的方法较多,典型的有解析法、边界配位法、有限单元法等。对于工程上常见的受复杂载荷并包含不规则裂纹的构件,数值模拟分析是解决这些复杂问题的最有效方法。本文以某一锻件中取出的一维断裂试样为计算模型,介绍了利用有限元软件ANSYS计算应力强度因子。 2 断裂参量数值模拟的理论基础 对于线弹性材料裂纹尖端的应力场和应变场可以表述为: (1) 其中K是应力强度因子,r和θ是极坐标参量,可参见图1,(1)式可以应用到三个断裂模型的任意一种。 图1 裂纹尖端的极坐标系

(2) 应力强度因子和能量释放率的关系: G=K/E" (3) 其中:G为能量释放率。 平面应变:E"=E/(1-v2) 平面应力:E=E" 3 求解断裂力学问题 断裂分析包括应力分析和计算断裂力学的参数。应力分析是标准的ANSYS线弹性或非线性弹性问题分析。因为在裂纹尖端存在高的应力梯度,所以包含裂纹的有限元模型要特别注意存在裂纹的区域。如图2所示,图中给出了二维和三维裂纹的术语和表示方法。 图2 二维和三维裂纹的结构示意图 3.1 裂纹尖端区域的建模 裂纹尖端的应力和变形场通常具有很高的梯度值。场值得精确度取决于材料,几何和其他因素。为了捕获到迅速变化的应力和变形场,在裂纹尖端区域需要网格细化。对于线弹性问题,裂纹尖端附近的位移场与成正比,其中r是到裂纹尖端的距离。在裂纹尖端应力和应变是奇异的,并且随1/变化而变化。为了产生裂纹尖端应力和应变的奇异性,裂纹尖端的划分网格应该具有以下特征: ·裂纹面一定要是一致的。

损伤与断裂力学论文

损伤力学研究的是材料内部缺陷的产生和发展引起的宏观力学效应以及缺陷最终导致材料破坏的过程和规律。1958年Kachanov在研究蠕变断裂时引入了损伤力学的概念,提出了“连续性因子”和有效应力。1963年Rabotonov在Kachanov基础上引入了“损伤变量”的概念,奠定了损伤力学的基础。在其后的二三十年中,各国学者对损伤力学的基本概念、研究方法、损伤变量的定义等做了大量的开创性工作,极大推动了损伤力学理论的进展。1976年Dougill将损伤力学从金属材料中引入到岩石材料,之后岩石损伤力学迅速发展,已成为当今岩石研究领域的热门课题之一。 岩石损伤力学的研究关键是定义材料的损伤变量及正确地给出演变规律的本构方程。能否得到合理的损伤演变方程和含损伤的本构方程关键是对损伤变量的定义是否合理,建立一个损伤模型的基本要求是能在实验中直接或间接确定与损伤演变规律有关的材料参数。 对损伤变量的定义,从损伤力学提出就开始进行广泛的研究,可从微观和宏观这两个方面选择。微观方面,可以选择裂纹数目、长度、面积和体积等;宏观方面,可以选择弹性模量、屈服应力、拉伸强度、密度等。 国内学者唐春安从岩体材料内部所含裂纹缺陷分布的随机性出发,利用岩石微元强度服从正态分布或Weibull分布的特征,用发生破坏的微元数在微元总数中所占的比例来定义损伤变量。 谢和平等将分形几何理论应用于岩石损伤研究中,将岩石损伤程度的增加看作是分形维数的增加,从损伤与断裂之间的联系方面定量的描述了损伤,从而创建了分形几何与岩石力学理论体系,提出了分形损伤力学理论。 从微观角度出发对损伤变量进行定义,不仅物理意义明确,而且能够比较真实地反映材料性能逐渐劣化,但是从微观角度定义的损伤变量难以量测。 Lamaitre基于弹性模量变化用无损杨氏模量和损伤杨氏模量定义损伤变量,谢和平和鞠杨等讨论了该损伤变量定义的适用条件,进行了修正。使基于宏观弹性模量定义的损伤变量在实际应用中比较方便,但这种定义方法需要事先知道材料的初始弹性模量,而且在实际的工程中很多材料都有具有初始损伤的。 谢和平、鞠杨等认为单元强度丧失实则为其粘聚力的丧失,即单元在经历一定的能量耗散后,其内部的损伤达到了最大值,与此同时微结构中的粘聚力完全丧失。国内外学者进行了大量通过能量分析的方法来描述岩体的破坏行为的研究。 另外还有学者使用CT技术在岩石损伤检测中的应用,并给出了一种基于

断裂力学习题

断裂力学习题 一、问答题 1、什么是裂纹? 2、试述线弹性断裂力学的平面问题的解题思路。 3、断裂力学的任务是什么? 4、试述可用于处理线弹性条件下裂纹体的断裂力学问题两种方法: 5、试述I型裂纹双向拉伸问题中的边界条件,如何根据该边界条件确定一复变函数,并由此构成应力函数,最后写出问题的解。b5E2RGbCAP 6、什么是应力场强度因子K1?什么是材料的断裂韧度K1C?对比单向拉伸条件下的应力及断裂强度极限b,,说明K1与K1C的区别与联系?p1EanqFDPw 7、在什么条件下应力强度因子K的计算可以用叠加原理 8、试说明为什么裂纹顶端的塑性区尺寸平面应变状态比平面应力状态小? 9、试说明应力松驰对裂纹顶端塑性区尺寸有何影响。 10、K准则可以解决哪些问题? 11、何谓应力强度因子断裂准则?线弹性断裂力学的断裂准则与材料力学的强度条件有何不同? 12、确定K的常用方法有哪些? 13、什么叫裂纹扩展能量释放率?什么叫裂纹扩展阻力? 14、从裂纹扩展过程中的能量变化关系说明裂纹处于不稳定平衡的条件是什么? 15、什么是格里菲斯裂纹?试述格氏理论。

16、奥罗万是如何对格里菲斯理论进行修正的? 17、裂纹对材料强度有何影响? 18、裂纹按其力学特征可分为哪几类?试分别述其受力特征 19、什么叫塑性功率? 20什么是G准则? 21、线弹性断裂力学的适用范围。 22、“小范围屈服”指的是什么情况?线弹性断裂力学的理论公式能否应用?如何应用? 23、什么是Airry应力函数?什么是韦斯特加德

材料的韧性及断裂力学简介

第二节材料的韧性及断裂力学简介 一、低应力脆断及材料的韧性 人们在对船舶的脆断、无缝输气钢管的脆断裂缝、铁桥的脆断倒塌、飞机因脆断而失事、石油、电站设备因脆断而发生重大事故的分析中,发现了一些它们的共同特点: 1.通常发生脆断时的宏观应力很低,按强度设计是安全的; 2.脆断事故通常发生在比较低的工作温度环境下; 3.脆断从应力集中处开始,裂纹源通常在结构或材料的缺陷处,如缺口、裂纹、夹杂等; 4.厚截面、高应变速率促进脆断。 由此,人们发现了传统设计思想和材料的性能指标在强度设计上的不足,试图提出新的性能指标和安全判据,找到防止脆断的新的设计方法。 传统的强度设计所依据的性能指标主要为弹性模量E、屈服极限σs、抗拉强度σb,而塑性指标延伸率δ和面收缩率φ在设计中只是参考数据,通常还会考虑应力集中现象,即使如此,设计的安全判据仍不足以防止脆断的发生,这说明材料的强度、塑性、弹性这些性能指标还不能完全反映材料抵抗脆断的发生。经过对众多脆断事故的分析和研究,人们提出了一个便于反映材料抗脆断能力的新的性能指标——韧性,从使脆性材料和韧性材料断裂所消耗的能量不同,归纳出韧性的定义为:所谓韧性是材料从变形到断裂过程中吸收能量的太小,它是材料强度和塑性的综合反映。 例如图l-2为球墨铸铁和低碳钢的拉伸曲线,可以用拉伸曲线下的面积来表示材料的韧性,即 图中可见,虽然球墨铸铁的抗拉强度σb比低碳钢高,但其断裂时的塑性应变εp确远较低碳钢小,综合起来看,低碳钢的韧性高。 图1-2 球铁和低碳钢拉伸曲线表示的韧性 材料的韧性可用实验的方法测试和判定。应用较早和较广泛的是缺口冲击试验,这种方法已经规范化。具体方法是将图1-3所示的缺口试样用专用冲击试验机施加冲击载荷,使试 样断裂,用冲击过程中吸收的功除以断口面积,所得即为材料的冲击韧性,以αk表示,单位为J/cm^2。目前国际上多用夏氏V型缺口试样,我国多用U型缺口试样。由于缺口冲击

断裂力学期末考试试题含答案

一、 简答题(80分) 1. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型?请画出这些类型裂纹的受力示意图。(15分) 2 请分别针对完全脆性材料和有一定塑性的材料,简述裂纹扩展的能量平衡理论?(15分) 3. 请简述应力强度因子的含义,并简述线弹性断裂力学中裂纹尖端应力场的特点?(15) 4. 简述脆性断裂的K 准则及其含义?(15) 5. 请简述疲劳破坏过程的四个阶段?(10) 6. 求出平面应变状态下裂纹尖端塑性区边界曲线方程,并解释为什么裂纹尖端塑性区尺寸在平面应变状态比平面应力状态小?(5分) 7. 对于两种材料,材料1的屈服极限s σ和强度极限b σ都比较高,材料2的s σ和b σ相对较低,那么材料1的断裂韧度是否一定比材料2的高?试简要说明断裂力学与材料力学设计思想的差别? (5分) 二、 推导题(10分) 请叙述最大应力准则的基本思想,并推导出I-II 型混合型裂纹问题中开裂角的表达式? 三、 证明题(10分) 定义J 积分如下, (/)J wdy T u xds Γ =-????,围绕裂纹尖端的回路Γ,始于裂纹下表面,终于裂纹上表面,按逆时针方向转动,其中w 是板的应变能密度,为作用在路程边界上的力,是路程边界上的位移矢量,ds 是路程曲线的弧元素。证明J 积分值与选择的积分路程无关,并说明J 积分的特点。 四、 简答题(80分) 1. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型?请画出这些类型裂纹的受力示意图。(15分) 答: 按裂纹受力情况把裂纹(或断裂)模式分成三类:张开型(I 型)、滑开型(II 型)和撕开型(III 型),如图所示

损伤与断裂课程总结

中国矿业大学 2013 级硕士研究生课程考试试卷 考试科目损伤与断裂力学 考试时间2014. 01 学生姓名梁亚武 学号ZS13030020 所在院系力建学院 任课教师高峰 中国矿业大学研究生院培养管理处印制

《损伤与断裂力学》课程学习总结 1 前言 据美国和欧共体的权威专业机构统计:世界上由于机件、构件及电子元件的断裂、疲劳、腐蚀、磨损破坏造成的经济损失高达各国国民生产总值的6%到8%。包括压力管道破裂、铁轨断裂、轮毂破裂、飞机、船体破裂等。 长期以来,工程上对结构或构件的计算方法,是以结构力学和材料力学为基础的。它们通常都假定材料是均匀的连续体,没有考虑客观存在的裂纹和缺陷,计算时只要工作应力不超过许用应力,就认为结构是安全的,反之就是不安全的。工作应力根据载荷情况、构件几何尺寸计算出来,许用应力则根据工作条件和材料性质选用。 对于实际结构中可能存在的缺陷和其他考虑不到的因素,都放在安全系数里考虑。安全系数并未考虑到其他失效形式的可能性,例如脆性断裂或快速断裂。人们曾普遍认为,选用较高的安全系数就能避免这种低应力断裂。然而,实践证明并非如此,材料存在缺陷或裂纹的结构或构件,在应力值远低于设计应力的情况下就会发生全面失效。这样的例子很多,因而动摇了上述传统设计思想的安全感,使人们认识到,对含有裂纹的物体必须作进一步的研究。断裂力学就是在这个基础上应运而生的。 断裂力学是研究带裂纹体的强度以及裂纹扩展规律的一门学科。由于研究的主要对象是裂纹,因此,人们也称它为“裂纹力学”。它的主要任务是:研究裂纹尖端附近的应力应变情况,掌握裂纹在载荷作用下的扩展规律;了解带裂纹构件的承载能力,从而提出抵抗断裂的设计方法,以保证构件的安全工作。由于断裂力学能把含裂纹构件的断裂应力和裂纹大小以及材料抵抗裂纹扩展的能力定量地联系在一起,所以,它不仅能圆满地解释常规设计不能解释的“低应力脆断”事故,而且也为避免这类事故的发生找到了办法。同时,它也为发展新材料、创造新工艺指明了方向,为材料的强度设计打开了一个新的领域。 由于研究的观点和出发点不同,断裂力学分为微观断裂力学和宏观断裂力学。微观断裂力学是研究原子位错等晶粒尺度内的断裂过程,根据对这些过程的了解,建立起支配裂纹扩展和断裂的判据。宏观断裂力学是在不涉及材料内部的断裂机

ansys使用技巧(后处理)

2009-04-28 14:26 ANSYS中查看截面结果的方法 一般情况下,对计算结果后处理时,显示得到的云图为结构的外表面信息。有时候,需要查看结构内部的某些截面云图,这就需要通过各种后处理技巧来获得截面的结果云图。另外,有时候需要获得截面的结果数据,也需要用到后处理的技巧。 下面对常用的查看截面结果的方法做一个介绍: 1. 通过工作平面切片查看截面云图工作平面实现。 这是比较常用的一种方法。 首先确保已经求解了问题,并得到了求解结果。 调整工作平面到需要观察的截面,可通过移动或者旋转工作平面实现。调整时注意保证工作平面与需要观察的截面平行。 在PlotCtrls菜单中设置观察类型为Section,切片平面为Working Plane。也可以通过等效的/type以及/cplane命令设置。 在通用后处理器中显示云图,得到需要查看的云图。 更简单地说,我们只需在显示云图命令前加上下面两条命令就可以了: /CPLANE,1 ! 指定截面为WP /TYPE,1,5 ! 结果显示方式选项 2. 通过定义截面查看截面云图 这种方法也需要用到工作平面与切片,步骤如下: 首先确保已经得到了求解结果。 调整工作平面到需要观察的截面。 在PlotCtrls菜单中设置观察类型为Working Plane,或者使用命令/cplane,1。通过sucr命令定义截面,选择(cplane)。 通过sumap命令定义需要查看的物理量。 通过supl命令显示结果。 3. 通过定义路径查看云图与保存数据 首先确保已经得到了求解结果。 通过path与ppath命令定义截面路径。 通过pdef命令映射路径。 通过plpath、prpath与plpagm命令显示及输出结果。

ansys断裂力学技巧

Ansys断裂力学 裂纹和瑕疵在很多结构和零部件中会出现,有时会导致严重的后果。断裂力学就是研究裂纹扩散问题的学科。 12.1 断裂力学的理解 断裂力学就是解决结构在外载荷作用下,裂纹和瑕疵如何扩散的问题。它包含裂纹扩散相应的解析预报和实验结果验证。解析预报是通过断裂参数的计算得出的,如裂纹区域的应力强度因子,它可以用来评估裂纹的生长率。最具典型的是,裂纹的长度随着一些循环载荷的每一次作用而增长,如飞机上机舱的增压-减压。另外,环境的情况,如温度或光线的照射等,都会影响某些材料的断裂性能。 在研究中,断裂问题需重点研究的典型参数如下: ●应力强度因子(K I, K II和K III),是断裂的三个基本形式。 ●J-积分,是一种不受线路影响的线积分,用来测量裂纹端点的奇异应力和应变。 ●能量释放率(G),它代表裂纹开始和终止处的能量的大小。 12.2 求解断裂力学问题 求解断裂力学问题包括执行线弹性或弹塑性静态分析,以及使用专用的后处理命令或宏来计算需要的断裂参数。此处分成两个部分来介绍: ●裂纹区域的建模 ●计算断裂参数 12.2.1裂纹区域的建模 断裂模型中最重要的部分就是裂纹边界的部分。在ansys中,在二维模型和三位模型中,分别将裂纹的边界看成是裂纹端点和裂纹前端。如图12.1所示。 r是距离裂纹端点的长度。裂 裂纹面应该是重合 纹端点处的应力和应变是奇异的, 的,裂纹端点(或裂纹前端)附近的单元应该是二次的,即角点之间有中间节点。这种单元被称为奇异单元。

12.2.1.1 二维断裂模型 二维断裂模型的推荐单元类型是PLANE2,6节点的三角实体单元。裂纹端点附近的单元的第一行是奇异的,如图12.2(a)所示。前处理模块PREP7的命令(Main Menu> Preprocessor> Meshing> Size Cntrls> Concentrat KPs> Create)可以定义某关键点附近的单元划分的大小,在断裂模型中特别有用。它在指定关键点附近可以自动生成奇异单元。此命令的其他域可以控制单元第一行的半径,在圆周方向的单元的数量等。图12.3为命令KSCON 生成的断裂模型。

(完整版)断裂力学试题

2007断裂力学考试试题 B 卷答案 一、简答题(本大题共5小题,每小题6分,总计30分) 1、(1)数学分析法:复变函数法、积分变换;(2)近似计算法:边界配置法、有限元法;(3)实验标定法:柔度标定法;(4)实验应力分析法:光弹性法. 2、假定:(1)裂纹初始扩展沿着周向正应力θσ为最大的方向;(2)当这个方向上的周向正应力的最大值max ()θσ达到临界时,裂纹开始扩展. 3、应变能密度:r S W = ,其中S 为应变能密度因子,表示裂纹尖端附近应力场密度切的强弱程度。 4、当应力强度因子幅值小于某值时,裂纹不扩展,该值称为门槛值。 5、表观启裂韧度,条件启裂韧度,启裂韧度。 二、推导题(本大题10分) D-B 模型为弹性化模型,带状塑性区为广大弹性区所包围,满足积分守恒的诸条件。 积分路径:塑性区边界。 AB 上:平行于1x ,有s T dx ds dx σ===212,,0 BD 上:平行于1x ,有s T dx ds dx σ-===212,,0 5分 δ σσσσΓ s D A s D B s B A s BD A B i i v v v v dx x u T dx x u T ds x u T Wdx J =+=+-=??-??-=??-=???)()(1 122112212 5分 三、计算题(本大题共3小题,每小题20分,总计60分) 1、利用叠加原理:微段→集中力qdx →dK = Ⅰ ?0 a K =?Ⅰ 10分 A

令cos cos x a a θθ==,cos dx a d θθ= ?111sin () 10 cos 22(cos a a a a a K d a θθθ--==Ⅰ 当整个表面受均布载荷时,1a a →. ?12()a a K -==Ⅰ 10分 2、边界条件是周期的: a. ,y x z σσσ→∞==. b.在所有裂纹内部应力为零.0,,22y a x a a b x a b =-<<-±<<±在区间内 0,0y xy στ== c.所有裂纹前端y σσ> 单个裂纹时 Z = 又Z 应为2b 的周期函数 ?sin z Z πσ= 10分 采用新坐标:z a ξ=- ?sin ()a Z π σξ+= 当0ξ→时,sin ,cos 1222b b b π π π ξξξ== ?sin ()sin cos cos sin 22222a a a b b b b b π π π π π ξξξ+=+ cos sin 222a a b b b π π π ξ= + 222 2[sin ()]( )cos 2 cos sin (sin )2222222a a a a a b b b b b b b π π π π π π π ξξξ+=++

ansys前后处理技巧

[转载]一些ansys 前后处理技巧 已有 2141 次阅读 2012-3-23 17:42 |系统分类:科研笔记[1]|关键词:计算菜单工作面技巧如何 1.ANSYS后处理时如何按灰度输出云图? 1)你可以到utilitymenu-plotctrls-style-colors-window colors试试 2)直接utilitymenu-plotctrls-redirect plots 2 将云图输出为JPG 菜单->PlotCtrls->Redirect Plots->To JPEG Files 3.怎么在计算结果实体云图中切面? 命令流 /cplane /type 图形界面操作 <1.设置工作面为切面 <2.PlotCtrls-->Style-->Hidden line Options 将[/TYPE]选项选为section 将[/CPLANE]选项选为working plane 4.非线性计算过程中收敛曲线实时显示 solution>load step opts>output ctrls>grph solu track>on

5.运用命令流进行计算时,一个良好的习惯是: 使用SELECT COMMEND后.........其后再加上ALLSEL......... 6.应力图中左侧的文字中,SMX与SMN分别代表最大值和最小值 如你plnsolv,s,eqv 则 SMX与SMN分别代表最大值等效应力和最小值等效应力 如你要看的是plnsolv,u 则SMX与SMN分别代表位移最大值和位移最小值 不要被S迷惑 mx(max) mn(min) 7.在非线性分析中,如何根据ansys的跟踪显示来判断收敛? 在ansys output windows 有 force convergenge valu 值和 criterion 值当前者小于后者时,就完成一次收敛 你自己可以查看 两条线的意思分别是: F L2:不平衡力的2范数 F CRIT:不平衡力的收敛容差, 如果前者大于后者说明没有收敛,要继续计算 当然如果你以弯矩M为收敛准则那么就对应 M L2 和 M CRIT 希望你现在能明白 8.两个单元建成公共节点,就成了刚性连接,不是接触问题了。做为接触问题,两个互相接触的单元的节点必须是不同的。

损伤与断裂力学读书报告

中国矿业大学 2012 级硕士研究生课程考试试卷 考试科目损伤与断裂力学 考试时间2012. 12 学生姓名张亚楠 学号ZS12030092 所在院系力建学院 任课教师高峰 中国矿业大学研究生院培养管理处印制

《损伤与断裂力学》读书报告 一.断裂力学 1.基本概念及研究内容 断裂力学是为解决机械结构断裂问题而发展起来的力学分支,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。 随时间和裂纹长度的增长,构件强度从设计的最高强度逐渐地减少。假设在储备强度A点时,只有服役期间偶而出现一次的最大载荷才能使构件发生断裂;在储备强度B点时,只要正常载荷就会发生断裂。因此,从A点到B点这段期间就是危险期,在危险期中随时可能发生断裂。如果安排探伤检查的话,检查周期就不能超过危险期。如下图所示: 问题是储备强度究竟是个什么样的参量?它与表征裂端区应力变场强度的参量有何关系?如何计算它?如何测量它?它随时间变化的规律如何?受到什么因素的影响?这一系列问题如能找到答案的话,则提出的以上五个工程问题就有可能得到解决。断裂力学这门学科就是来解决这些问题的。 1.1影响断裂力学的两大因素 a.荷载大小b.裂纹长度 考虑含有一条宏观裂纹的构件,随着服役时间后使用次数的增加,裂纹总是愈来愈长。在工作载荷较高时,比较短的裂纹就有可能发生断裂;在工作载荷较低时,比较长的裂纹才会带来危险。这表明表征裂端区应力变场强度的参量与载荷大小和裂纹长短有关,甚至可能与构件的几何形状有关。

1.2脆性断裂与韧性断裂 韧度(toughness ):是指材料在断裂前的弹塑性变形中吸收能量的能力。它是个能量的概念。 脆性(brittle )和韧性(ductile ):一般是相对于韧度低或韧度高而言的,而韧度的高低通常用冲击实验测量。 高韧度材料比较不容易断裂,在断裂前往往有大量的塑性变形。如低强度钢,在断裂前必定伸长并颈缩,是塑性大、韧度高的金属。金、银比低强度钢更容易产生塑性变形,但是因为强度太低,因此吸收能量的能力还是不高的。玻璃和粉笔则是低韧度、低塑性材料,断裂前几乎没有变形。 脆性断裂:如下图所示的一个带环形尖锐切口的低碳钢圆棒,受到轴向拉伸载荷的作用,在拉断时,没有明显的颈缩塑性变形,断裂面比较平坦,而且基本与轴向垂直,这是典型的脆性断裂。粉笔、玻璃以及环氧树脂、超高强度合金等的断裂都属于脆性断裂这一类。 韧性断裂:若断裂前的切口根部发生了塑性变形,剩余截面的面积缩小(既发生颈缩),段口可能呈锯齿状,这种断裂一般是韧性断裂。前边提到的低强度钢的断裂就属于韧性断裂。 像金、银的圆棒试样,破坏前可颈缩至一条线那样细,这种破坏是大塑性破坏,不能称为韧性断裂。 2.能量守恒与断裂判据 2.1传统强度理论 在现代断裂力学建立以前,机械零构件是根据传统的强度理论进行设计的,不论在机械零构件的哪一部分,设计应力的水平一般都不大于材料的屈服应力,即 n ys σσ≤

断裂力学答案

( ( = K I + K I(2) 1.简述断裂力学的发展历程(含3-5 个关键人物和主要贡献)。 答:1)断裂力学的思想是由Griffith 在1920 年提出的。他首先提出将强度与裂纹长度定量 地联系在一起。他对玻璃平板进行了大量的实验研究工作,提出了能量理论思想。(2)断裂 力学作为一门科学,是从1948 年开始的。这一年Irwin 发表了他的第一篇经典文章“Fracture Dynamic(断裂动力学)”,研究了金属的断裂问题。这篇文章标志着断裂力学的诞生。(3) 关于脆性断裂理论的重大突破仍归功于Irwin。他于1957 年提出了应力强度因子的概念,在 此基础上形成了断裂韧性的概念,并建立起测量材料断裂韧性的实验技术。这样,作为断裂 力学的最初分支——线弹性断裂力学就开始建立起来了。(4)1963 年,Wells 提出了裂纹张 开位移(COD)的概念,并用于大范围屈服的情况。研究表明,在小范围屈服情况下COD 法与LEFM 是等效的。(5)1968 年,Rice 等人根据与路径无关的回路积分,提出了J 积分 的概念。J 积分是一个定义明确、理论严密的应力应变参量,它的实验测定也比较简单可靠。 J 积分的提出,标志着弹塑性断裂力学基本框架形成。 2.断裂力学的定义,研究对象和主要任务。 答:1)断裂力学的定义:断裂力学是一门工程学科,它定量地研究承载结构由于所含有的 一条主裂纹发生扩展而产生失效的条件。 (2)研究对象:断裂力学的研究对象是带有裂纹的承载结构。 (3)主要任务:研究裂纹尖端附近应力应变分布,掌握裂纹在载荷作用下的扩展规律;了 解带裂纹构件的承载能力,进而提出抗断设计的方法,保证构件安全工作。 3.什么是平面应力和平面应变状态,二者有什么特点?请举例说明之。 答:(1)平面应力:薄板问题,只有xoy 平面内的三个应力分量σ x、σ y、τ xy; ε z ≠ 0, 属三向应变状态。 (2)平面应变:长坝问题,与oz 轴垂直的各横截面相同,载荷垂直于z 轴且沿z 轴方向无 变化; ε z = 0, σ z ≠ 0,属三向应力状态;材料不易发生塑性变形,更具危险。 4.什么是应力强度因子的叠加原理,并证明之。掌握工程应用的方法。 答:(1)应力强度因子的叠加原理:复杂载荷下的应力强度因子等于各单个载荷的应力强 度因子之和。 (1) 在外载荷T2作用下,裂纹前端应力场为 σ2,则相应的应力强度因子为K I(2) = σ 2 π a 如果外载荷T1和T2联合作用,则裂纹前端应力场为 σ1+ σ2,则相应的应力强度因子为 K I = (σ 1 + σ 2 ) π a = σ 1 π a + σ 2 π a (1) 6.为什么裂纹尖端会发生应力松弛?如何对应力强度因子进行修正? 答:裂纹尖端附近存在着小范围的塑性区(设塑性区是以裂纹尖端为圆心,半径为r0 的圆 π a 形区域),材料屈服后,多出来的应力将要松驰(即传递给r>r0 的区域),使r0 前方局部地 区的应力升高,又导致这些地方发生屈服。即屈服导致应力松弛。 Irwin 提出了有效裂纹尺寸的概念a eff = a + r y对应力强度因子进行修正,在小范围条件下,

ANSYS结构分析指南 断裂力学

ANSYS结构分析指南第四章断裂力学 4.1 断裂力学的定义 在许多结构和零部件中存在的裂纹和缺陷,有时会导致灾难性的后果。断裂力学在工程领域的应用就是要解决裂纹和缺陷的扩展问题。 断裂力学是研究载荷作用下结构中的裂纹是怎样扩展的,并对有关的裂纹扩展和断裂失效用实验的结果进行预测。它是通过计算裂纹区域和破坏结构的断裂参数来预测的,如应力强度因子,它能估算裂纹扩展速率。一般情况下,裂纹的扩展是随着作用在构件上的循环载荷次数而增加的。如飞机机舱中的裂纹扩展,它与机舱加压及减压有关。此外,环境条件,如温度、或大范围的辐射都能影响材料的断裂特性。 典型的断裂参数有: 与三种基本断裂模型相关的应力强度因子(K I,K II,K III)(见图4-1); J积分,它定义为与积分路径无关的线积分,用于度量裂纹尖端附近奇异应力与应变的强度; 能量释放率(G),它反映裂纹张开或闭合时功的大小; 注意--在本节大部分的图形中裂纹的宽度被放大了许多倍。 图4-1 裂缝的三种基本模型 4.2 断裂力学的求解 求解断裂力学问题的步骤为:先进行线弹性分析或弹塑性静力分析,然后用特殊的后处理命令、或宏命令计算所需的断裂参数。本章我们集中讨论下列两个主要的处理过程。 裂纹区域的模拟; 计算断裂参数。 4.2.1 裂纹区域的模拟 在断裂模型中最重要的区域,是围绕裂纹边缘的部位。裂纹的边缘,在2D模型中称为裂纹尖端,在3D模型中称为裂纹前缘。如图4-2所示。 图4-2 裂纹尖端和裂纹前缘 在线弹性问题中,在裂纹尖端附近(或裂纹前缘)某点的位移随而变化,γ是裂纹尖端到该点的距离,裂纹尖端处的应力与应变是奇异的,随1/变化。为选取应变奇异点,相应的裂纹面需与它一致,围绕裂纹顶点的有限元单元应该是二次奇异单元,其中节点放到1/4边处。图4-3表示2-D和3-D模型的奇异单元。

岩石的损伤力学及断裂力学综述

岩石的断裂力学及损伤力学综述 摘要:论述了国内外断裂力学及损伤力学的学科发展历程,总结了岩体断裂力学损伤力学的研究内容、研究特点以及岩石力学专家们一些年来所取得的主要成果,并简单介绍了断裂力学损伤力学在岩土工程中的实际应用。最后,通过对岩石破坏的断裂-损伤理论的阐述,指出了综合考虑损伤与断裂的破坏理论是能更好地反映岩石实际破坏过程的一种新的理论, 可在以后的理论研究和实际工程中得以更为广泛的应用。 关键词:岩石 断裂力学 损伤力学 应用 1 引 言 岩石的破坏过程总是伴随着损伤(分布缺陷)和裂纹(集中缺陷)的交互扩展, 这种耦合效应使得裂纹尖端附近区域材料必然具有更严重的分布缺陷。岩石的破坏, 如脆性断裂和塑性失稳, 虽然有突然发生的表面现象, 但是, 从材料损伤的发生、发展和演化直到出现宏观的裂纹型缺陷, 伴随着裂纹的稳定扩展或失稳扩展, 是作为过程而展开的。 经典的断裂力学广泛研究的是裂纹及其扩展规律问题。物体中的裂纹被理想化为一光滑的零厚度间断面。在裂纹的前缘存在着应力应变的奇异场,而裂纹尖端附近的材料假定同尖端远处的材料性质并无区别。象裂纹这样的缺陷可称它为奇异缺陷,因此经典断裂力学中物体的缺陷仅仅表现为有奇异缺陷的存在。 而损伤力学所研究的是连续分布的缺陷, 物体中存在着位错、微裂纹与微孔洞等形形色色的缺陷,这些统称为损伤。从宏观来看, 它们遍布于整个物体。这些缺陷的发生与发展表现为材料的变形与破坏。损伤力学就是研究在各种加载条件下, 物体中的损伤随变形而发展并导致破坏的过程和规律。 事实上, 物体中往往同时存在着奇异缺陷和分布缺陷。在裂纹(奇异缺陷)附近区域中的材料必然具有更严重的分布缺陷, 它的力学性质必然不同于距离裂纹尖端远处的材料。因此, 为了更切合实际, 就必须把损伤力学和断裂力学结合起来, 用于研究物体更真实的破坏过程。 2 断裂力学 2.1 断裂力学学科发展 “断裂力学”指的是固体力学的一个重要分支,该学科要在假定裂纹存在的条件下,寻求裂纹长度、材料抗裂纹增长的固有阻力、以及能使裂纹高速扩展从而导致结构失效的应力之间的定量关系[]1。 断裂力学最早是在1920年提出的。当时格里菲斯为了研究玻璃、陶瓷等脆性材料的实际强度比理论强度低的原因,提出了在固体材料中或在材料的运行过程中存在或产生裂纹的设想,计算了当裂纹存在时,板状构件中应变能变化进而得出了一个十分重要的结果:常数≡a c δ。 1949年,奥罗万在分析了金属构件的断裂现象后对格里菲斯的公式提出了修正,他认为产生裂纹所释放的应变能不仅能转化为表面能,也应转化为裂纹前沿

断裂力学复习题(实际)解答(课件)

断裂力学复习题 1.裂纹按几何特征可分为三类,分别是(穿透裂 纹)、(表面裂纹)和(深埋裂纹)。按力学特征也可分为三类,分别是(张开型)、(滑开型)和(撕开型)。 2.应力强度因子是与(外载性质)、(裂纹)及 (裂纹弹性体几何形状)等因素有关的一个量。材料的断裂韧度则是(应力强度因子)的临界值,是通过(实验)测定的材料常数。 3.确定应力强度因子的方法有:(解析法),(数 值法),(实测法)。 4.受二向均匀拉应力作用的“无限大”平板, 具有长度为2a 的中心贯穿裂纹,求应力强度因子ⅠK 的表达式。 【解】将x 坐标系取在裂纹面上,坐标原点取在 裂纹中心,则上图所示问题的边界条件为: ① 当y = 0,x → ∞时,σσσ==y x ; ② 在y = 0,a x <的裂纹自由面上, 0,0==xy y τσ;而在a x >时,随a x →,∞→y σ。

可以验证,完全满足该问题的全部边界条件的解 析函数为 22Ⅰ )(a z z z Z -=σ (1) 将坐标原点从裂纹中心移到裂纹右尖端处,则有 z =ζ+a 或ζ= z -a , 代入(1),可得: )2() ()(I a a Z ++=ζζζσζ 于是有: a a a a a K πσζζσπζζζσπζζζ=++?=++?= →→)2()(2lim )2() (2lim 00Ⅰ 5.对图示“无限大”平板Ⅱ型裂纹问题,求应 力强度因子ⅡK 的表达式。

【解】将x 坐标系取在裂纹面上,坐标原点取在 裂纹中心,则上图所示问题的边界条件为: ① 当y = 0,x → ∞时,ττσσ===xy y x ,0; ② 在y = 0,a x <的裂纹自由面上,0,0==xy y τσ;而在a x >时,随a x →,∞→xy τ。 可以验证,完全满足该问题的全部边界条件的解 析函数为 2 2Ⅱ )(a z z z Z -=τ (1) 将坐标原点从裂纹中心移到裂纹右尖端处,则有 z =ζ+a 或ζ= z -a , 代入(1),可得: ) 2()()(Ⅱa a Z ++=ζζζτζ 于是有: a a a a a K πτζζτπζζζτπζζζ=++?=++?=→→) 2()(2lim )2()(2lim 00Ⅱ 6.对图示“无限大”平板Ⅲ型裂纹问题,求应 力强度因子ⅢK 的表达式。

断裂力学答案

( ( = K I + K I(2) 1.简述断裂力学的发展历程(含 3-5 个关键人物和主要贡献)。 答: 1)断裂力学的思想是由 Griffith 在 1920 年提出的。他首先提出将强度与裂纹长度定量 地联系在一起。他对玻璃平板进行了大量的实验研究工作,提出了能量理论思想。(2)断裂 力学作为一门科学,是从 1948 年开始的。这一年 Irwin 发表了他的第一篇经典文章“Fracture Dynamic (断裂动力学)”,研究了金属的断裂问题。这篇文章标志着断裂力学的诞生。(3) 关于脆性断裂理论的重大突破仍归功于 Irwin 。他于 1957 年提出了应力强度因子的概念,在 此基础上形成了断裂韧性的概念,并建立起测量材料断裂韧性的实验技术。这样,作为断裂 力学的最初分支——线弹性断裂力学就开始建立起来了。(4)1963 年,Wells 提出了裂纹张 开位移(COD )的概念,并用于大范围屈服的情况。研究表明,在小范围屈服情况下 COD 法与 LEFM 是等效的。(5)1968 年,Rice 等人根据与路径无关的回路积分,提出了 J 积分 的概念。J 积分是一个定义明确、理论严密的应力应变参量,它的实验测定也比较简单可靠。 J 积分的提出,标志着弹塑性断裂力学基本框架形成。 2.断裂力学的定义,研究对象和主要任务。 答: 1)断裂力学的定义:断裂力学是一门工程学科,它定量地研究承载结构由于所含有的 一条主裂纹发生扩展而产生失效的条件。 (2)研究对象:断裂力学的研究对象是带有裂纹的承载结构。 (3)主要任务:研究裂纹尖端附近应力应变分布,掌握裂纹在载荷作用下的扩展规律;了 解带裂纹构件的承载能力,进而提出抗断设计的方法,保证构件安全工作。 3.什么是平面应力和平面应变状态,二者有什么特点?请举例说明之。 答:(1)平面应力:薄板问题,只有 xoy 平面内的三个应力分量σ x 、σ y 、τ xy ; ε z ≠ 0 , 属三向应变状态。 (2)平面应变:长坝问题,与 oz 轴垂直的各横截面相同,载荷垂直于 z 轴且沿 z 轴方向无 变化; ε z = 0 , σ z ≠ 0 ,属三向应力状态;材料不易发生塑性变形,更具危险。 4.什么是应力强度因子的叠加原理,并证明之。掌握工程应用的方法。 答:(1)应力强度因子的叠加原理:复杂载荷下的应力强度因子等于各单个载荷的应力强 度因子之和。 (1) 在外载荷 T 2 作用下,裂纹前端应力场为 σ2,则相应的应力强度因子为 K I(2) = σ 2 π a 如果外载荷 T 1 和 T 2 联合作用,则裂纹前端应力场为 σ1+ σ2 ,则相应的应力强度因子为 K I = (σ 1 + σ 2 ) π a = σ 1 π a + σ 2 π a (1) 6.为什么裂纹尖端会发生应力松弛?如何对应力强度因子进行修正? 答:裂纹尖端附近存在着小范围的塑性区(设塑性区是以裂纹尖端为圆心,半径为 r0 的圆 π a 形区域),材料屈服后,多出来的应力将要松驰(即传递给 r>r0 的区域),使 r0 前方局部地 区的应力升高,又导致这些地方发生屈服。即屈服导致应力松弛。 Irwin 提出了有效裂纹尺寸的概念 a eff = a + r y 对应力强度因子进行修正,在小范围条件下,

ANSYS workbench 裂纹分析

基于ANSYS Workbench的表面裂纹计算 By Yan Fei 本教程使用ANSYS Workbench17.0 进行试件表面裂纹的分析,求应力强度因子。需要提前说明的是,本案例没有工程背景,仅为说明裂纹相的计算方法,因此参数取值比较随意,大量设置都采用了默认值。 1.背景知识 传统的强度设计思想把材料视为无缺陷的均匀连续体,而实际工程构件中存在多种缺陷,断裂力学是从20实际50年代末期发展起来的一门弥补了传统强度设计思想严重不足的新的学科,是专门研究含缺陷或裂纹的物体在外界条件作用下构件的强度、裂纹扩展趋势以及疲劳寿命的科学。断裂力学是从构件内部具有初始缺陷这一实际情况出发,研究在外部荷载下的裂纹扩展规律,从而提出带裂纹构件的安全设计准则。 a 张开型裂纹 b 滑开型裂纹 c 撕开型裂纹 图 1 裂纹的分类 使用弹性力学方法可以求得,在裂纹尖端处的应力的解析解为无穷大,此时应力值已经失去意义,一般采用应力强度因子作为判断结构是否安全的指标。目前的断裂力学研究主要集中在I型裂纹的开裂,数值计算工具也多集中在I型裂纹的计算上,因此以I型裂纹为例。

图2 裂纹尖端坐标系 含有裂纹的无限大平板的I 型裂纹尖端附近的应力为: )(23cos 2sin 223sin 2sin 12cos 223sin 2sin 12cos 20ⅠⅠⅠr O r K r K r K xy y x +???????????=??? ??+=??? ???=θθπτθθθπσθθθπσ 其中,K Ⅰ叫Ⅰ型裂纹的应力强度因子。 2. ANSYS Workbench 裂纹分析 2.1. 分析模型的建立 1 建立一个静力分析步,材料使用默认,需要说明的是,现有计算技术下,断裂力学计算一般都采用线弹性材料,考虑到断裂中塑性区一般都不大,线弹性的假设还是可以接受的。 图3 分析步设置 2 建立几何模型,本案例使用spaceclaim 建立几何模型。 图4 试件平面图

Ansys 断裂力学理论

第四章断裂力学 文献来源:https://www.doczj.com/doc/e67666285.html,/document/200707/article796_2.htm 4.1 断裂力学的定义 在许多结构和零部件中存在的裂纹和缺陷,有时会导致灾难性的后果。断裂力学在工程领域的应用就是要解决裂纹和缺陷的扩展问题。 断裂力学是研究载荷作用下结构中的裂纹是怎样扩展的,并对有关的裂纹扩展和断裂失效用实验的结果进行预测。它是通过计算裂纹区域和破坏结构的断裂参数来预测的,如应力强度因子,它能估算裂纹扩展速率。一般情况下,裂纹的扩展是随着作用在构件上的循环载荷次数而增加的。如飞机机舱中的裂纹扩展,它与机舱加压及减压有关。此外,环境条件,如温度、或大范围的辐射都能影响材料的断裂特性。 典型的断裂参数有: 与三种基本断裂模型相关的应力强度因子(K I,K II,K III)(见图4-1); J积分,它定义为与积分路径无关的线积分,用于度量裂纹尖端附近奇异应力与应变的强度; 能量释放率(G),它反映裂纹张开或闭合时功的大小; 注意--在本节大部分的图形中裂纹的宽度被放大了许多倍。 图4-1 裂缝的三种基本模型 4.2 断裂力学的求解 求解断裂力学问题的步骤为:先进行线弹性分析或弹塑性静力分析,然后用特殊的后处理命令、或宏命令计算所需的断裂参数。本章我们集中讨论下列两个主要的处理过程。 裂纹区域的模拟; 计算断裂参数。 4.2.1 裂纹区域的模拟 在断裂模型中最重要的区域,是围绕裂纹边缘的部位。裂纹的边缘,在2D模型中称为裂纹尖端,在3D模型中称为裂纹前缘。如图4-2所示。

图4-2 裂纹尖端和裂纹前缘 在线弹性问题中,在裂纹尖端附近(或裂纹前缘)某点的位移随而变化,γ是裂纹尖端到该点的距离,裂纹尖端处的应力与应变是奇异的,随1/变化。为选取应变奇异点, 相应的裂纹面需与它一致,围绕裂纹顶点的有限元单元应该是二次奇异单元,其中节点放到1/4边处。图4-3表示2-D和3-D模型的奇异单元。 图4-3 2-D和3-D模型的奇异单元 4.2.1.1 2-D断裂模型 对2D断裂模型推荐采用PLANE2单元,其为六节点三角形单元。围绕裂纹尖端的第一行单元,必须具有奇异性,如图4-3a所示。PREP7 中KSCON命令(Main Menu>Preprocessor>-Meshing-Shape & Size>-Concentrat KPs-Create)用于指定关键点周围的单元大小,它特别适用于断裂模型。本命令自动围绕指定的关键点产生奇异单元。命令的其他选项可以控制第一行单元的半径,以及控制周围的单元数目等,图4-4显示用KSCON命令产生的断裂模型。

ANSYS后处理技巧

1.ANSYS后处理时如何按灰度输出云图? 1)你可以到utilitymenu-plotctrls-style-colors-window colors试试 2)直接utilitymenu-plotctrls-redirect plots 2 将云图输出为JPG 菜单->PlotCtrls->Redirect Plots->To JPEG Files 3.怎么在计算结果实体云图中切面? 命令流 /cplane /type 图形界面操作 <1.设置工作面为切面 <2.PlotCtrls-->Style-->Hidden line Options 将[/TYPE]选项选为section 将[/CPLANE]选项选为working plane 4.非线性计算过程中收敛曲线实时显示 solution>load step opts>output ctrls>grph solu track>on 5.运用命令流进行计算时,一个良好的习惯是: 使用SELECT COMMEND后.........其后再加上ALLSEL......... 6.应力图中左侧的文字中,SMX与SMN分别代表最大值和最小值 如你plnsolv,s,eqv 则 SMX与SMN分别代表最大值等效应力和最小值等效应力 如你要看的是plnsolv,u 则SMX与SMN分别代表位移最大值和位移最小值 不要被S迷惑 mx(max) mn(min) 7.在非线性分析中,如何根据ansys的跟踪显示来判断收敛? 在ansys output windows 有 force convergenge valu 值和 criterion 值当前者小于后者时,就完成一次收敛 你自己可以查看 两条线的意思分别是: F L2:不平衡力的2范数 F CRIT:不平衡力的收敛容差,

相关主题
文本预览
相关文档 最新文档