当前位置:文档之家› 现代密码学第七讲:公钥密码学2

现代密码学第七讲:公钥密码学2

《现代密码学》第七章

公钥密码(二)

上节内容回顾

?公钥密码体制的提出及分类

?公钥密码体制的基本概念

?单向陷门函数的概念

?设计公钥加密算法--背包密码体制

本节主要内容

?RSA算法及其分析?ElGmal算法

?椭圆曲线密码体制?其它公钥密码算法

RSA算法

RSA算法是1978年由R.Rivest, A.Shamir 和L.Adleman提出的一种用数论构造的、也是迄今为止理论上最为成熟完善的公钥密码体制,该体制已得到广泛的应用。

它既可用于加密、又可用于数字签字。

RSA算法的安全性基于数论中大整数分解的困难性。

R L Rivest,A Shamir,L Adleman,"On Digital Signatures and Public Key Cryptosystems",Communications of the ACM,vol21no2, pp120-126,Feb1978

1. 密钥的产生

①选两个安全的大素数p 和q 。

②计算n=p ×q ,φ(n)=(p -1)(q-1),其中φ(n)是n 的欧拉函数值。

③选一整数e ,满足1

⑤以{e,n}为公开钥,{d,n}为秘密钥。RSA 算法

1 选取大素数的方法:随机产生一个大整数,利用素性检测算法判定该整数是否为素数

2 以往素检测的算法都是概率性的,即存在一定的错误概率;

3 2003年,印度人发表文章“Primes is in P”,证明了素判定问题是一个多项式时间问题。1)辗转相除法2)利用欧拉定理求e^{φ(φ(n))}-1

2. 加密

加密时首先将明文比特串分组,使得每个分组对应的十进制数小于n,即分组长度小于log2n。然后对每个明文分组m,作加密运算:

c≡m e mod n

3. 解密

对密文分组的解密运算为:m≡c d mod n

证明RSA算法中解密过程的正确性.

证明:由加密过程知c≡m e mod n,所以

c d mod n≡m ed mod n≡m1mod φ(n)mod n ≡m kφ(n)+1mod n

RSA算法

下面分两种情况:

①m与n互素,则由Euler定理得

mφ(n)≡1 mod n,m kφ(n)≡1 mod n,m kφ(n)+1≡m mod n

即c d mod n≡m。

②gcd(m,n)≠1,先看gcd(m,n)=1的含义,由于n=pq,所以gcd(m,n)=1意味着m不是p的倍数也不是q的倍数。

因此gcd(m,n)≠1意味着m是p的倍数或q的倍数,不妨设m=tp,其中t为一正整数。

此时必有gcd(m,q)=1,否则m也是q的倍数,从而是pq的倍数,与m

由gcd(m,q)=1及Euler定理得

mφ(q)≡1 mod q,所以

m kφ(q)≡1 mod q,[m kφ(q)]φ(p)≡1 mod q, m kφ(n)≡1 mod q

因此存在一整数r,使得m kφ(n)=1+rq,两边同乘以m=tp得m kφ(n)+1=m+rtpq=m+rtn 即m kφ(n)+1≡m mod n,所以c d mod n≡m.

例:选p=7,q=17.

求得n=p×q=119,φ(n)=(p-1)(q-1)=96.

取e=5,满足1

因为77×5=385=4×96+1,所以d为77,

因此公开钥为{5,119},秘密钥为{77,119}.

设明文m=19,则由加密过程得密文为

c≡195mod 119≡2476099 mod 119≡66;解密过程为m ≡6677mod 119≡19.

整数分解问题:已知n是两个大素数的乘积,求n的素分解

RSA的安全性是基于分解大整数困难的假定

如果RSA的模数n被成功地分解为p×q,则获得φ(n)=(p-1)(q-1),从而攻击者能够从公钥e解出d,即d≡e-1mod φ(n),攻击成功.

至今还未能证明分解大整数就是NPC问题,也许有尚未发现的多项式时间分解算法.

随着人类计算能力的不断提高,原来被认为是不可能分

解的大数已被成功分解.

例如RSA-129(即n为129位十进制数,大约428个比特)已在网络上通

过分布式计算历时8个月于1994年4月被成功分解,RSA-130 已于1996

年4月被成功分解.

RSA-768 has 232 decimal digits and was factored on December 12, 2009 by Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K. Lenstra, Emmanuel Thomé, Pierrick Gaudry, Alexander Kruppa, Peter Montgomery, Joppe W. Bos, Dag Arne Osvik, Herman te Riele, Andrey Timofeev, and Paul Zimmermann

分解算法的进一步改进.

过去分解算法都采用二次筛法,如对RSA-129的分解. 而对RSA-130的分解则采用了一个新算法,称为推广的数域筛法,该算法在分解RSA-130时所做的计算仅比分解RSA-129多10%.

1)在使用RSA算法时对其密钥的选取要特别注意其大小。估计在未来一段比较长的时期,密钥长度介于1024比特至2048比特之间的RSA是安全的.

2)|p-q|要大

由,如果|p-q|小,则(p-q)2/4 也小;因此(p+q)2/4 稍大于n, 即(p+q)/2稍大于n 1/2。那么

①顺序检查大于n 1/2的每一整数x ,直到找到一个x 使得x 2-n 是某一整数(记为y )的平方。

②由x 2-n=y 2,得n=(x+y)(x-y),可得n 的分解.

()()

()

222

444p q p q p q n pq ++--=-=

3)p-1和q-1都应有大素因子

设攻击者截获密文c ,可如下进行重复加密:

()()

()()

()()

()()

22

231

11mod mod mod mod t t t t

t t e e e e e e e e e e e e e e e e c m m n c m m n c m m n c m m n --+≡≡≡≡≡≡≡≡

若,即,则有,即,所以在重复加密的倒数第2步就可以恢复出明文m.这种攻击法只有在t 较小时才是可行的,为抵抗这种攻击,应保证使t 很大.

所以为使t 大,p-1和q-1都应有大的素因子,且Φ((p-1)*(q-1))有大的素因子

()1mod t e c c n +≡()()mod t e e c c n ≡()1(())mod t e e e c m n -≡()mod t e c m n ≡()1mod (1)

t e c c n +≡()11mod ()(2)

t e n ?+≡1|((1)(1))(3)

t p q ?+--

4)RSA的选择密文攻击

一般攻击者是将希望解密的信息C作一下伪装r e C,让拥有私钥的实体解密。然后,经过解密计算就可得到它所想要的信息。

( r e C ) d= r ed* C d mod n = r * M mod n ,所以

M= ( r e C ) d* r-1

这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使用公钥。但从算法上无法解决这一问题,只有采用好的公钥协议,保证工作过程中实体不对其他实体任意产生的信息解密。

5)RSA的公共模数攻击

若系统中用户共有一个模数n ,而拥有不同的e和d。若存在同一信息(设为P)分别用不同的公钥(e1和e2)加密,

C1 = P e1mod n ;C2 = p e2mod n

设密码分析者截获n、e1、e2、C1和C2,若恰好e1和e2互质,则他可以得到P。

证明:因为e1和e2互质,故用Euclidean 算法能找到r 和s ,满足:

r * e1 + s * e2 = 1

则(C1) r * (C2) s = ( P e1) r * (p e2) s mod n = P r * e1 + s * e2mod n =P mod n 不要共享模数n 其它共模攻击方法:

在共模假设下,一对e 和d 将有利于攻击者分解模数;或者计算出其它成对的e’和d’,而无需分解模数。

为了提高加密效率,一般选取较小的e指数(e.g., e= 3) ,此时,如果要加密的明文m

现代密码学:第55讲 后量子密码学

现代密码学 第五十五讲后量子密码学信息与软件工程学院

第五十七讲后量子密码学 量子计算对密码学的影响 后量子密码学的研究方向

量子计算对密码学的威胁 ?贝尔实验室,Grove算法,1996年 ?针对所有密码(包括对称密码)的通用的搜索破译算法 ?所有密码的安全参数要相应增大 ?贝尔实验室,Shor算法,1994年 ?多项式时间求解数论困难问题如大整数分解问题、求解离散对数问题等?RSA、ElGamal、ECC、DSS等公钥密码体制都不再安全

量子计算对密码学的威胁(续) 密码算法类型目的受大规模量子计算机的影响 AES对称密钥加密密钥规模增大SHA-2, SHA-3Hash函数完整性输出长度增加RSA公钥密码加密,签名,密钥建立不再安全ECDSA,ECDH公钥密码签名,密钥交换不再安全DSA公钥密码签名不再安全

量子计算机的研究进展 ?2001年,科学家在具有15个量子位的核磁共振量子计算机上成功利用Shor算法对15进行因式分解。 ?2007年2月,加拿大D-Wave系统公司宣布研制成功16位量子比特的超导量子计算机,但其作用仅限于解决一些最优化问题,与科学界公认的能运行各种量子算法的量子计算机仍有较大区别。 ?2009年11月15日,世界首台可编程的通用量子计算机正式在美国诞生。同年,英国布里斯托尔大学的科学家研制出基于量子光学的量子计算机芯片,可运行Shor算法。 ?2010年3月31日,德国于利希研究中心发表公报:德国超级计算机成功模拟42位量子计算机。 ?2011年5月11日, 加拿大的D-Wave System Inc. 发布了一款号称“全球第一款商用型量子计算机”的计算设备“D-Wave One”。

现代密码学课后题答案

《现代密码学习题》答案 第一章 判断题 ×√√√√×√√ 选择题 1、1949年,( A )发表题为《保密系统的通信理论》的文章,为密码系统建立了理论基础,从此密码学成了一门科学。 A、Shannon B、Diffie C、Hellman D、Shamir 2、一个密码系统至少由明文、密文、加密算法、解密算法和密钥5部分组成,而其安全性是由( D)决定的。 A、加密算法 B、解密算法 C、加解密算法 D、密钥 3、计算和估计出破译密码系统的计算量下限,利用已有的最好方法破译它的所需要的代价超出了破译者的破译能力(如时间、空间、资金等资源),那么该密码系统的安全性是( B )。 A无条件安全B计算安全C可证明安全D实际安全 4、根据密码分析者所掌握的分析资料的不通,密码分析一般可分为4类:唯密文攻击、已知明文攻击、选择明文攻击、选择密文攻击,其中破译难度最大的是( D )。 A、唯密文攻击 B、已知明文攻击 C、选择明文攻击 D、选择密文攻击 填空题: 5、1976年,和在密码学的新方向一文中提出了公开密钥密码的思想,从而开创了现代密码学的新领域。 6、密码学的发展过程中,两个质的飞跃分别指 1949年香农发表的保密系统的通信理论和公钥密码思想。 7、密码学是研究信息寄信息系统安全的科学,密码学又分为密码编码学和密码分析学。 8、一个保密系统一般是明文、密文、密钥、加密算法、解密算法 5部分组成的。 9、密码体制是指实现加密和解密功能的密码方案,从使用密钥策略上,可分为对称和非对称。 10、对称密码体制又称为秘密密钥密码体制,它包括分组密码和序列密码。 第二章 判断题: ×√√√ 选择题: 1、字母频率分析法对(B )算法最有效。 A、置换密码 B、单表代换密码 C、多表代换密码 D、序列密码 2、(D)算法抵抗频率分析攻击能力最强,而对已知明文攻击最弱。 A仿射密码B维吉利亚密码C轮转密码D希尔密码

现代密码学课后答案第二版讲解

现代密码学教程第二版 谷利泽郑世慧杨义先 欢迎私信指正,共同奉献 第一章 1.判断题 2.选择题 3.填空题 1.信息安全的主要目标是指机密性、完整性、可用性、认证性和不可否认性。 2.经典的信息安全三要素--机密性,完整性和可用性,是信息安全的核心原则。 3.根据对信息流造成的影响,可以把攻击分为5类中断、截取、篡改、伪造和重放,进一 步可概括为两类主动攻击和被动攻击。

4.1949年,香农发表《保密系统的通信理论》,为密码系统建立了理论基础,从此密码学 成为了一门学科。 5.密码学的发展大致经历了两个阶段:传统密码学和现代密码学。 6.1976年,W.Diffie和M.Hellman在《密码学的新方向》一文中提出了公开密钥密码的 思想,从而开创了现代密码学的新领域。 7.密码学的发展过程中,两个质的飞跃分别指 1949年香农发表的《保密系统的通信理 论》和 1978年,Rivest,Shamir和Adleman提出RSA公钥密码体制。 8.密码法规是社会信息化密码管理的依据。 第二章 1.判断题 答案×√×√√√√××

2.选择题 答案:DCAAC ADA

3.填空题 1.密码学是研究信息寄信息系统安全的科学,密码学又分为密码编码学和密码分 析学。 2.8、一个保密系统一般是明文、密文、密钥、加密算法、解密算法 5部分组成的。 3.9、密码体制是指实现加密和解密功能的密码方案,从使用密钥策略上,可分为对称和 非对称。 4.10、对称密码体制又称为秘密密钥密码体制,它包括分组密码和序列 密码。

第三章5.判断 6.选择题

密码学在网络安全中的应用

密码学在网络安全中的应用 0 引言 密码学自古就有,从古时的古典密码学到现如今数论发展相对完善的现代密码学。加密算法也经历了从简单到复杂、从对称加密算法到对称和非对称算法并存的过程。现如今随着网络技术的发展,互联网信息传输的安全性越来越受到人们的关注,很需要对信息的传输进行加密保护,不被非法截取或破坏。由此,密码学在网络安全中的应用便应运而生。 1 密码的作用和分类 密码学(Cryptology )一词乃为希腊字根“隐藏”(Kryptós )及“信息”(lógos )组合而成。现在泛指一切有关研究密码通信的学问,其中包括下面两个领域:如何达成秘密通信(又叫密码编码学),以及如何破译秘密通信(又叫密码分析学)。密码具有信息加密、可鉴别性、完整性、抗抵赖性等作用。 根据加密算法的特点,密码可以分为对称密码体制和非对称密码体制,两种体制模型。对称密码体制加密和解密采用相同的密钥,具有很高的保密强度。而非对称密码体制加密和解密是相对独立的,加密和解密使用两种不同的密钥,加密密钥向公众公开,解密密钥只有解密人自己知道,非法使用者根据公开的加密密钥无法推算出解密密钥[1]。 2 常见的数据加密算法 2.1 DES加密算法 摘 要:本文主要探讨的是当今流行的几种加密算法以及他们在网络安全中的具体应用。包括对称密码体制中的DES加密算法和AES加密算法,非对称密码体制中的RSA加密算法和ECC加密算法。同时也介绍了这些加密方法是如何应用在邮件通信、web通信和keberos认证中,如何保证网络的安全通信和信息的加密传输的。 关键词:安全保密;密码学;网络安全;信息安全中图分类号:TP309 文献标识码:A 李文峰,杜彦辉  (中国人民公安大学信息安全系,北京 102600) The Applying of Cryptology in Network Security Li Wen-feng 1, Du Yan-hui 2 (Information security department, Chinese People’s Public Security University, Beijing 102600, China) Abstract: This article is discussing several popular encryption methods,and how to use this encryption method during security transmittion.There are two cipher system.In symmetrical cipher system there are DES encryption algorithm and AES encryption algorithm.In asymmetrical cipher system there are RSA encryption algorithm and ECC encryption algorithm. At the same time, It introduces How is these encryption applying in the mail correspondence 、the web correspondence and the keberos authentication,how to guarantee the security of the network communication and the secret of information transmits. Key words: safe security; cryptology; network security; information security DES 算法为密码体制中的对称密码体制,又被成为美国数据加密标准,是1972年美国IBM 公司研制的对称密码体制加密算法。其密钥长度为56位,明文按64位进行分组,将分组后的明文组和56位的密钥按位替代或交换的方法形成密文组的加密方法。 DES 加密算法特点:分组比较短、密钥太短、密码生命周期短、运算速度较慢。DES 工作的基本原理是,其入口参数有三个:Key 、Data 、Mode 。Key 为加密解密使用的密钥,Data 为加密解密的数据,Mode 为其工作模式。当模式为加密模式时,明文按照64位进行分组,形成明文组,Key 用于对数据加密,当模式为解密模式时,Key 用于对数据解密。实际运用中,密钥只用到了64位中的56位,这样才具有高的安全性。 2.2 AES加密算法 AES (Advanced Encryption Standard ):高级加密标准,是下一代的加密算法标准,速度快,安全级别高。2000年10月,NIST (美国国家标准和技术协会)宣布通过从15种候选算法中选出的一项新的密匙加密标准。Rijndael 被选中成为将来的AES 。Rijndael 是在1999年下半年,由研究员Joan Daemen 和 Vincent Rijmen 创建的。AES 正日益成为加密各种形式的电子数据的实际标准。 算法原理:AES 算法基于排列和置换运算。排列是对数据重新进行安排,置换是将一个数据单元替换为另一个。 doi :10.3969/j.issn.1671-1122.2009.04.014

现代管理信息系统第二版,清华大学出版社 知识点总结

第一章管理信息系统概述 信息数据知识的概念:信息来源于数据但又不同于数据,是经过加工后的数据,信息是关于客观事实的可通信的知识,信息是形成知识的基础数据时记录下来的可以鉴别的符合和数字,是指客观实体属性的值,数据解释后才能成为信息。知识是人类社会实践的总结,是人的主观世界对于客观世界的概括和反应。 基本特性:a客观性,b共享性c价值性d时效性e无限性 管理信息是对企业生产经营活动种收集的数据经过加工,解释分析后,对企业生产经营活动产生的影响数据。 特点:来源的离散性,资源的非消耗性,处理方法的多样性。信息量大,信息发生加工应用在时间和空间上的不一致。 分类:按稳定性:固定信息,流动信息。按层次:战略,战术,业务。 作用:企业经营管理的决策基础,经营管理棕有效控制的前提,经营活动的的组织手段和协调工具,提高企业经济效益和竞争力的手段。提供企业管理工作效率的有效措施。 影响企业信息工作开展的因素:单纯残缺的信息观念,信息工作得不到应有的重视,手段落后,时效性差,信息工作方式和内容的不适应。 系统相互联系相互作用的诸要素主城的具有特定功能的有机整体。 分类按其组成的部分可分为自然系统,人工系统,和复合系统。 特性:目的性,相关性,层次性,整体性,环境适应性。 信息系统:以信息现象和信息过程为主导特征的系统。 分类按组织层次分:操作层,知识层,管理层,战略层 管理信息系统:一个由人和计算机等组成的能进行信息搜集传送储存加工维护使用的系统 管理信息系统特点:在企业管理中全面使用计算机,应用数据库技术和计算机网络,采用决策模型解决结构化的决策问题 管理信息系统三要素:系统的观点,数学的方法,计算机的应用 管理信息系统结构:管理信息系统的基本结构,基于管理层次的系统结构,基于组织功能的系统结构,管理信息系统的三维总体结构,与网络结构相似的系统七层结构。 管理信息系统功能:收集,存储,处理,传递,提供。 管理信息系统的发展阶段:以前,单项事物的处理阶段,综合业务的数据处理阶段,管理信息系统阶段。未来,面向高层的管理决策,面向综合应用,面向智能应用,面向全社会的信息业务即社会化信息网络。 管理信息系统的应有:制作资源计划系统,企业资源计划系统,客户关系管理系

密码学在电子商务中的应用

密码学在电子商务中的应用

密码学在电子商务中的应用 摘要 : 随着Internet的发展,电子商务已经逐渐成为人们进行商务活动的新模式。越来越多的人通过Internet进行商务活动。从而人们面对面的交易和作业变成网上相互不见面的操作,电子商务的发展前景十分诱人,但是由于没有国界、没有空间时间限制,可以利用互联网的资源和工具进行访问、攻击甚至破坏。而其安全问题也变得越来越突出,如何建立一个安全、便捷的电子商务应用环境,对心细提供足够的保护,已经成为商家和用户都十分关心的话题。本文从密码学基础,电子商务安全问题,电子商务中的信息安全技术出发进行分析。 关键词:密码学;电子商务;交易安全问题。 收稿日期:2011-06-11 中图分类号TP391 文献标识码 B 文章编号1007 - 7731 (2011) 23 - 40 – 02 作者简介:李春丹, 女, 理科部电子商务班大二学生,40926102。 互联网已经日渐融入到人类社会的各个方面中,网络防护与网络攻击之间的斗争也将更加激烈。这就对网络安全技术提出了更高的要求。未来的网络安全技术将会涉及到计算机网络的各个层次中,但围绕电子商务安全的防护技术将在未来几年中成为重点,如身份认证、授权检查、数据安全、通信安全等将对电子商务安全产生决定性影响。一,密码学基础 现代密码学研究信息从发端到收端的安全传输和安全存储,是研

究“知己知彼”的一门科学。其核心是密码编码学和密码分析学。前者致力于建立难以被敌方或对手攻破的安全密码体制,即“知己”;后者则力图破译敌方或对手已有的密码体制,即“知彼”。 编码密码学主要致力于信息加密、信息认证、数字签名和密钥管理方面的研究。信息加密的目的在于将可读信息转变为无法识别的内容,使得截获这些信息的人无法阅读,同时信息的接收人能够验证接收到的信息是否被敌方篡改或替换过;数字签名就是信息的接收人能够确定接收到的信息是否确实是由所希望的发信人发出的;密钥管理是信息加密中最难的部分,因为信息加密的安全性在于密钥。历史上,各国军事情报机构在猎取别国的密钥管理方法上要比破译加密算法成功得多。 密码分析学与编码学的方法不同,它不依赖数学逻辑的不变真理,必须凭经验,依赖客观世界觉察得到的事实。因而,密码分析更需要发挥人们的聪明才智,更具有挑战性。 现代密码学是一门迅速发展的应用科学。随着因特网的迅速普及,人们依靠它传送大量的信息,但是这些信息在网络上的传输都是公开的。因此,对于关系到个人利益的信息必须经过加密之后才可以在网上传送,这将离不开现代密码技术。 二,电子商务安全问题。 电子商务的一个重要技术特征是利用IT技术来传输和处理商业信息。因此,电子商务安全从整体上可分为两大部分:计算机网络安全和商务交易安全。

现代密码学教学大纲

《现代密码学》课程教学大纲 一课程说明 1.课程基本情况 课程名称:计算机基础 英文名称:Modern Cryptography 课程编号:2412216 开课专业:信息与计算科学 开课学期:第6学期 学分/周学时: 3 /3 课程类型:专业任选课 2.课程性质(本课程在该专业的地位作用) 本课程的主要目的是让学生学习和了解密码学的一些基本概念,理解和掌握古典密码体制、分组密码体制、公钥密码体制、流密码、数字签名和密码协议的基本概念、基本理论以及基本运算,领会密码体制设计与分析的基本思想与方法,理解密码产品的基本工作原理,以及培养学生在实践中解决问题的能力。本课程属于信息与计算科学专业的专业课程,是数学在信息安全中的一个重要应用,是一门理论性和应用性很强的课程。 3.本课程的教学目的和任务 (1)学生学习本课程之前,应具备《概率论》、《近世代数》和《计算机网络》等基础知识。在理解、掌握、了解三个能力层次上,对学生学习和掌握本课程知识有如下要求: ①理解:能识记密码学基础理论中的基本概念、原理和方法的涵义,并能表述和判断其是与非。 ②掌握:在理解的基础上,能较全面的掌握应用密码学的基本概念、基本原理、基本密码协议和基本技术,并熟练掌握一些典型的密码学方案,能表达基本内容和基本道理,分析相关问题的区别与联系。 ③了解:在掌握的基础上,能运用应用密码学的基本概念、基本原理、协议

和技术,阐释一般安全网络环境中密码产品如何利用密码学理论工作的原理,分析密码技术的实现过程和方法,并能应用有关原理和技术设计出一些简单的密码方案。 (2)课程教学重点与难点: ①教学重点:密码学的基本架构、基本概念、基本原理、基本密码协议和基本技术,以及密码学中一些典型的方案,能表达基本内容和基本道理。 ②教学难点:数学基础知识及其在密码学基本原理、基本密码协议和基本技术中的应用。 (3)课程教学方法与手段: 本课程采用讲授与学生自行练习相结合方式,其手段有: ①利用网络资源、多媒体等教学手段为教学服务,结合相关知识进行讲解 ②详细讲解相关内容,引导学生对此进行深入的思考与分析,勇于单独发表自己的见解; ③课前安排学生查找相关资料,课后布置书面作业,理论与实践相结合,让学生体会并领略密码技术,对密码学有更深刻的认识。 ③引导学生进行创新思维,力求提出新见解 (4)课程考核方法与要求 本课程考核以笔试为主。主要考核学生对基础理论,基本概念的掌握程度,以及学生实际应用能力。平时作业成绩占10%,期中考试成绩占20%,期末考试成绩占70%。 4.本课程与其他课程的关系 学生学习本课程之前,应具备《概率论》、《近世代数》和《计算机网络》等基础知识。

现代密码学10-11-A卷 重庆邮电大学

试题编号: 重庆邮电大学10-11学年第2学期 《现代密码学》试卷(期末)(A卷)(闭卷) 一、选择题(本大题共10题,每小题1分,共10分) 1.一个密码系统至少由明文、密文、加密算法、解密算法和密钥5部分组成,其安全性由()决定的。 A. 密文 B. 加密算法 C. 解密算法 D. 密钥 2.对密码的攻击可分为4类:唯密文攻击、已知明文攻击、选择明文攻击和选择密文攻击,其中破译难度最大的是()。 A. 唯密文攻击 B. 已知明文攻击 C. 选择明文攻击 D. 选择密文攻击 3.AES算法由以下4个不同的模块组成,其中()模块是非线性模块。 A. 字节代换 B. 行移位 C. 多表代换密码 D. 序列密码 4. DES密码算法中密钥长度为( ) A.64比特 B.128比特 C.256比特 D.160比特 5.目前,使用最广泛的序列密码是() A. RC4 B. A5 C. SEAL D. PKZIP 6.下列()不是Hash函数具有的特性。 A. 单向性 B. 可逆性 C. 压缩性 D. 抗碰撞性 7.设在RSA公钥密码体制中,公钥(e,n)=(13,35),则私钥d = () A. 11 B. 13 C. 15 D. 17 8.A收到B发给他的一个文件的签名,并要验证这个签名的有效性,那么签名验证算法需要A选用的密钥是() A. A的公钥 B. A的私钥 C. B的公钥 D. B的私钥 9. 在下列密钥中( )密钥的权限最高 A.工作密钥 B.会话密钥 C.密钥加密密钥 D.主密钥 《现代密码学》试卷第1页(共6页)

10. PGP是一个基于( )公钥密码体制的邮件加密软件。 A.RSA B.ElGamal C.DES D.AES 二、填空题(本大题共10空,每空1分,共10分) 1.IDEA密码算法中明文分组长度为比特,密钥长度为比特,密文长度为比特,加密和解密算法相同。 2. ElGamal公钥密码体制的安全性是基于的困难性。 3.密钥流的生成并不是独立于明文流和密文流的流密码称为。 4.SHA-1算法的主循环有四轮,每轮次操作,最后输出的摘要长度为。 5.Kerberos协议是一种向认证协议。 6.密钥托管加密体制主要由三部分组成:、和数据恢复分量。 三、名词解释(本大题共5小题,每小题4分,共20分) 1. 密码编码学 2. 数字签名 3.认证 《现代密码学》试卷第2页(共6页)

浅谈密码学的影响与应用

密码学是研究信息加密、解密和破密的科学,含密码编码学和密码分析学。密码技术是信息安全的核心技术。随着现代计算机技术的飞速发展,密码技术正在不断向更多其他领域渗透。它是集数学、计算机科学、电子与通信等诸多学科于一身的交叉学科。使用密码技术不仅可以保证信息的机密性,而且可以保证信息的完整性和确证性,防止信息被篡改、伪造和假冒。目前密码的核心课题主要是在结合具体的网络环境、提高运算效率的基础上,针对各种主动攻击行为,研究各种可证安全体制。密码学的加密技术使得即使敏感信息被窃取,窃取者也无法获取信息的内容;认证性可以实体身份的验证。以上思想是密码技术在信息安全方面所起作用的具体表现。密码学是保障信息安全的核心;密码技术是保护信息安全的主要手段。本文主要讲述了密码的基本原理,设计思路,分析方法以及密码学的最新研究进展等内容密码学主要包括两个分支,即密码编码学和密码分析学。密码编码学对信息进行编码以实现信息隐藏,其主要目的是寻求保护信息保密性和认证性的方法;密码分析学是研究分析破译密码的学科,其主要目的是研究加密消息的破译和消息的伪造。密码技术的基本思想是对消息做秘密变换,变换的算法即称为密码算法。密码编码学主要研究对信息进行变换,以保护信息在传递过程中不被敌方窃取、解读和利用的方法,而密码分析学则于密码编码学相反,它主要研究如何分析和破译密码。这两者之间既相互对立又相互促进。密码的基本思想是对机密信息进行伪装。 二、密码学的发展历程密码学的发展历程大致经历了三个阶段:古代加密方法、古典密码和近代密码。 1.古代加密方法(手工阶段)源于应用的无穷需求总是推动技术发明和进步的直接动力。存于石刻或史书中的记载表明,许多古代文明,包括埃及人、希伯来人、亚述人都在实践中逐步发明了密码系统。从某种意义上说,战争是科学技术进步的催化剂。人类自从有了战争,就面临着通信安全的需求,密码技术源远流长。古代加密方法大约起源于公元前440年出现在古希腊战争中的隐写术。当时为了安全传送军事情报,奴隶主剃光奴隶的头发,将情报写在奴隶的光头上,待头发长长后将奴隶送到另一个部落,再次剃光头发,原有的信息复现出来,从而实现这两个部落之间的秘密通信。 我国古代也早有以藏头诗、藏尾诗、漏格诗及绘画等形式,将要表达的真正意思或“密语”隐藏在诗文或画卷中特定位置的记载,一般人只注意诗或画的表面意境,而不会去注意或很难发现隐藏其中的“话外之音”。比如:我画蓝江水悠悠,爱晚亭枫叶愁。秋月溶溶照佛寺,香烟袅袅绕轻楼 2.古典密码(机械阶段)古典密码的加密方法一般是文字置换,使用手工或机械变换的方式实现。古典密码系统已经初步体现出近代密码系统的雏形,它比古代加密方法复杂,其变化较小。古典密码的代表密码体制主要有:单表代替密码、多表代替密码及转轮密码。 3.近代密码(计算机阶段)密码形成一门新的学科是在20世纪70年代,这是受计算机科学蓬勃发展刺激和推动的结果。快速电子计算机和现代数学方法一方面为加密技术提供了新的概念和工具,另一方面也给破译者提供了有力武器。计算机和电子学时代的到来给密码设计者带来了前所未有的自由,他们可以轻易地摆脱原先用铅笔和纸进行手工设计时易犯的错误,也不用再面对用电子机械方式实现的密码机的高额费用。总之,利用电子计算机可以设计出更为复杂的密码系统20世纪中叶以前, 由于条件所限, 密码技术的保密性基于加密算法的秘密, 3 因此称之为古典密码体制或受限的密码算法。尽管古典密码体制受到当时历史条件的限制, 没有涉及非常高深或者复杂的理论, 但在其漫长的发展演化过程中, 已经充分表现出了现代密码学的两大基本思想一“代替”和“换位” , 而且还将数学的方法引人到密码分析和研究中。这为后来密码学成为系统的学科以及相关学科的发展莫定了坚实的基础。密码学真正成为科学是在19世纪末和20世纪初期,由于军事、数学、通讯等相关技术的发展,特别是两次世界大战中对军事信息保密传递和破获敌方信息的需求,密码学得到了空前的发展,并广泛的用于军事情报部门的决策. 从以上密码学的发展历史可以看出,整个密码学的发展过程是从简单到复杂,从不完美

现代密码学在网络安全中的应用策略

题目现代密码学在网络 安全中的应用策略 学院: 姓名: 学号: 时间:

现代密码学在网络安全中的应用策略 摘要 计算机网络飞速发展的同时,安全问题不容忽视。网络安全经过了二十多年的发展,已经发展成为一个跨多门学科的综合性科学,它包括:通信技术、网络技术、计算机软件、硬件设计技术、密码学、网络安全与计算机安全技术等。 在理论上,网络安全是建立在密码学以及网络安全协议的基础上的。密码学是网络安全的核心,利用密码技术对信息进行加密传输、加密存储、数据完整性鉴别、用户身份鉴别等,比传统意义上简单的存取控制和授权等技术更可靠。加密算法是一些公式和法则,它规定了明文和密文之间的变换方法。从技术上,网络安全取决于两个方面:网络设备的硬件和软件。网络安全则由网络设备的软件和硬件互相配合来实现的。但是,由于网络安全作为网络对其上的信息提供的一种增值服务,人们往往发现软件的处理速度成为网络的瓶颈,因此,将网络安全的密码算法和安全协议用硬件实现,实现线速的安全处理仍然将是网络安全发展的一个主要方向。 在安全技术不断发展的同时,全面加强安全技术的应用也是网络安全发展的一个重要内容。同时,网络安全不仅仅是防火墙,也不是防病毒、入侵监测、防火墙、身份认证、加密等产品的简单堆砌,而是包括从系统到应用、从设备到服务的比较完整的、体系性的安全系列产品的有机结合。 总之,网络在今后的发展过程中不再仅仅是一个工具,也不再是一个遥不可及仅供少数人使用的技术专利,它将成为一种文化、一种生活融入到社会的各个领域。 关键词:计算机;网络;安全;防范;加密

1.密码学的发展历程 密码学在公元前400多年就早已经产生了,正如《破译者》一书中所说“人类使用密码的历史几乎与使用文字的时间一样长”。密码学的起源的确要追溯到人类刚刚出现,并且尝试去学习如何通信的时候,为了确保他们的通信的机密,最先是有意识的使用一些简单的方法来加密信息,通过一些(密码)象形文字相互传达信息。接着由于文字的出现和使用,确保通信的机密性就成为一种艺术,古代发明了不少加密信息和传达信息的方法。例如我国古代的烽火就是一种传递军情的方法,再如古代的兵符就是用来传达信息的密令。就连闯荡江湖的侠士,都有秘密的黑道行话,更何况是那些不堪忍受压迫义士在秘密起义前进行地下联络的暗语,这都促进了密码学的发展。 事实上,密码学真正成为科学是在19世纪末和20世纪初期,由于军事、数学、通讯等相关技术的发展,特别是两次世界大战中对军事信息保密传递和破获敌方信息的需求,密码学得到了空前的发展,并广泛的用于军事情报部门的决策。例如在希特勒一上台时,德国就试验并使用了一种命名为“谜”的密码机,“谜”型机能产生220亿种不同的密钥组合,假如一个人日夜不停地工作,每分钟测试一种密钥的话,需要约4.2万年才能将所有的密钥可能组合试完,希特勒完全相信了这种密码机的安全性。然而,英国获知了“谜”型机的密码原理,完成了一部针对“谜”型机的绰号叫“炸弹”的密码破译机,每秒钟可处理2000个字符,它几乎可以破译截获德国的所有情报。后来又研制出一种每秒钟可处理5000个字符的“巨人”型密码破译机并投入使用,至此同盟国几乎掌握了德国纳粹的绝大多数军事秘密和机密,而德国军方却对此一无所知;太平洋战争中,美军成功破译了日本海军的密码机,读懂了日本舰队司令官山本五十六发给各指挥官的命令,在中途岛彻底击溃了日本海军,击毙了山本五十六,导致了太平洋战争的决定性转折。因此,我们可以说,密码学为战争的胜利立了大功。在当今密码学不仅用于国家军事安全上,人们已经将重点更多的集中在实际应用,在你的生活就有很多密码,例如为了防止别人查阅你文件,你可以将你的文件加密;为了防止窃取你钱物,你在银行账户上设置密码,等等。随着科技的发展和信息保密的需求,密码学的应用将融入了你的日常生活。 2.密码学的基础知识 密码学(Cryptogra phy)在希腊文用Kruptos(hidden)+graphein(to write)表达,现代准确的术语为“密码编制学”,简称“编密学”,与之相对的专门研究如何破解密码的学问称之为“密码分析学”。密码学是主要研究通信安全和保密的学科,他包括两个分支:密码编码学和密码分析学。密码编码学主要研究对信息进行变换,以保护信息在传递过程中不被敌方窃取、解读和利用的方法,而密码分析学则于密码编码学相反,它主要研究如何分析和破译密码。这两者之间既相互对立又相互促进。密码的基本思想是对机密信息进行伪装。一个密码系统完成如下伪装:加密者对需要进行伪装机密信息(明文)进行伪装进行变换(加密变换),得到另外一种看起来似乎与原有信息不相关的表示(密文),如果合法者(接收者)获得了伪装后的信息,那么他可以通过事先约定的密钥,从得到的信息中分析得到原有的机密信息(解密变换),而如果不合法的用户(密码分析者)试图从这种伪装后信息中分析得到原有的机密信息,那么,要么这种分析过程根本是不可能的,要么代价过于巨大,以至于无法进行。 在计算机出现以前,密码学的算法主要是通过字符之间代替或易位实现的,我们称这些密码体制为古典密码。其中包括:易位密码、代替密码(单表代替密码、多表代替密码等)。这些密码算法大都十分简单,现在已经很少在实际应用中使用了。由于密码学是涉及数学、通讯、计算机等相关学科的知识,就我们现有的知识水平而言,只能初步研究古典密码学的

现代密码学总结汇总

现代密码学总结 第一讲绪论 ?密码学是保障信息安全的核心 ?安全服务包括:机密性、完整性、认证性、不可否认性、可用性 ?一个密码体制或密码系统是指由明文(m或p)、密文(c)、密钥(k)、加密算法(E)和解密算法(D)组成的五元组。 ?现代密码学分类: ?对称密码体制:(又称为秘密密钥密码体制,单钥密码体制或传统密码体制)密钥完全保密;加解密密钥相同;典型算法:DES、3DES、AES、IDEA、RC4、A5 ?非对称密码体制:(又称为双钥密码体制或公开密钥密码体制) 典型算法:RSA、ECC 第二讲古典密码学 ?代换密码:古典密码中用到的最基本的处理技巧。将明文中的一个字母由其它字母、数字或符号替代的一种方法。 (1)凯撒密码:c = E(p) = (p + k) mod (26) p = D(c) = (c –k) mod (26) (2)仿射密码:明文p ∈Z26,密文c ∈Z26 ,密钥k=(a,b) ap+b = c mod (26) (3)单表代换、多表代换 Hill密码:(多表代换的一种) ——明文p ∈(Z26)m,密文c ∈(Z26)m,密钥K ∈{定义在Z26上m*m的可逆矩阵} ——加密c = p * K mod 26 解密p = c * K-1 mod 26 Vigenere密码:查表解答 (4)转轮密码机: ?置换密码 ? ? ?:将明文字符按照某种规律重新排列而形成密文的过程 列置换,周期置换 ?密码分析: ?统计分析法: 移位密码、仿射密码和单表代换密码都没有破坏明文的频率统计规律,可以直接用 统计分析法 ?重合指数法

? 完全随机的文本CI=0.0385,一个有意义的英文文本CI=0.065 ? 实际使用CI 的估计值CI ’:L :密文长。 fi :密文符号i 发生的数目。 第三讲 密码学基础 第一部分 密码学的信息论基础 ? Shannon 的保密通信系统模型 发送者 接收者 信源 分析者 加密 解密安全信道 无噪信道 安全信道 M M M C K K 密钥源 发送者 接收者 信源 分析者 加密 解密无噪信道 安全信道 M M M C K K ’密钥源 无噪信道 ? 一个密码体制是一个六元组:(P, C, K 1, K 2, E, D ) P--明文空间 C--密文空间 K 1 --加密密钥空间

清华大学现代企业管理高级研修班培训心得

感受清华报效豫光 ——清华大学现代企业管理高级研修班培训心得 田冬 今年3月23日至4月3日,我有幸参加了清华大学现代企业管理高级研修班的培训学习。清华大学作为全国首席学府,令无数学子心驰神往,此次短暂的学习经历也算是圆了自己的清华梦。在此由衷地感谢杨总和公司领导能够给我这次难得的学习机会。回眸12天的培训历程,我沉浸在老师们精彩的讲解中,思想上受到了强烈震憾,理念上有了全面更新,知识上得到了充实提高。清华园的日子令人难忘,盘点学习收获,体会颇多。 一、收获知识开拓视野 培训学习的过程是辛苦的,但是收获知识的体验是快乐的。清华大学治学严谨、学风浓郁,在12天的时间里,我认真参加了全部课程的学习,多位著名专家学者精彩讲授了《组织行为学》《高效团队建设与执行力》《企业生产运营管理与质量控制》等课程,应该说每一节课都非常精彩,使我真正感受到学海无涯,天外有天。给我们授课的大多是全国知名的专家学者,满腹经纶、学富五车,或观念超前,视角独特;或幽默风趣,妙语连珠;或通俗易懂,深入浅出。说国事民情如数家珍,话民情民生贴近百姓。一堂专业性很强的课程,让所有人听得心领神会,津津有味。我既开阔了视野,增长了知识,更感到身心愉悦,如浴春风。

二、感受风范接受洗礼 培训期间使我仿佛又回到了学生时代,每天在宿舍、教室、食堂之间奔忙,连晚上也不休息,抓紧一切时间看讲义、记笔记,和大家讨论相关问题,珍惜这来之不易的学会机会。各位老师们殚精竭虑,诲人不倦,甚至还利用课间休息时间向同学们讲授知识。大师们的学识和严谨的治学精神,清华浓厚的学习氛围和文化底蕴深深感染着我们参加培训的每一个人。在中国的首席学府,能够面对面聆听顶级教授高层次高水平讲课,感受各领域权威的大家风范,接受一次人生的再教育和心灵的洗礼,这真是一笔无可替代的宝贵财富。 三、启发思维转变观念 虽然时间短暂,但这次培训内容有较强的针对性和时效性,通过学习使我有机会接触到政治、经济、金融、企业管理等方面最新的理论成果,在团队建设、企业文化、领导力发展、创新思维等方面有了全新的认识,这些知识象新大陆一样开扩了我的视野,启发了我的思维。高度决定视野,角度改变观念,尺度把握人生。通过清华培训使我站在更高的层面上、用更全的视角去分析问题、解决问题、谋划思路,更好地完成好本职工作,努力为豫光更强更大发展创新突破,奉献一切。 四、凝聚精神展示风采 培训期间,大家在学习和生活中相互帮助,取长补短,共同进步。在课堂上认真听讲,热烈讨论;参观中留心观摩,虚心求

布尔函数在现代密码学中的应用

布尔函数在现代密码学中的应用THE APPLICATION OF THE BOOLEAN FUNCTION IN MODERN CRYPTOGRAPHY 指导教师: 申请学位级别:学士 论文提交日期:2014年6月9日 摘要 在密码学中扮演着重要角色的布尔函数被广泛用于流密码和分组密码的分析和设计中。最主要的原因是布尔函数的密码学性质在某种程度上直接决定系统的安全性。本文是一篇关于布尔函数的密码学性质及其应用的文章。 文中首先介绍了布尔函数的研究背景、重要性及国内外研究现状,并概述了

密码学相关的基础知识,给出了布尔函数的定义,对其各种表示方法和研究方法进行介绍,主要介绍了真值表,小项表示等。 其次讨论了布尔函数的几个密码学性质和定理,重点介绍了作为布尔函数研究的一个重要工具——Walsh谱,并介绍了布尔函数的密码学性质,主要包括非线性、平衡性、相关免疫和严格雪崩等。 最后重点研究了布尔函数在流密码和分组密码中的应用。序列密码体制的安全性取决于密钥流,而密钥流序列由密钥流生成器产生,在密钥流生成器中,布尔函数起着极其关键的作用。分组密码体制的算法中最具有代表性之一的是DES 算法,其设计的关键是S盒,而多输出布尔函数可以很好地用来描述S盒。 关键词:序列密码;分组密码;密钥流生成器;DES算法;S盒;布尔函数;Walsh谱

ABSTRACT The Boolean function playing an important role in cryptology is widely used in the analyses and designs of stream cipher or block cipher.The main reason is that at some degree the cryptographic properties of Boolean function directly decide the security of system.This dissertation is devoted to the cryptographic properties and applications of the Boolean functions in modern cryptography. Firstly the research background and significance of Boolean function, and the status-quo of this research both at home and abroad are introduced.And the basic knowledge of cryptography are summarized,and the Boolean function is definited , furthermore the denotation methods and the research methods of the properties of Boolean function,mainly including the truth table and polynomial denotation, etc are summarized . Secondly several cryptographic properties and theorem about the Boolean function are discussed , Walsh spectrum which is thought as an important tool of studying the Boolean function are introduced, and the cryptographic properties of the Boolean function, mainly including nonlinear, balance, related immune and strict avalanche,etc are introduced. Finally we focuse on the applications of the Boolean function in stream cipher and block cipher. The security of stream cipher depends on the key stream furthermore the key stream sequences are generated by the key stream generators where the Boolean function plays an important role.One of the most representative block cipher algorithm is DES algorithms, which the key on designing is S-box,which can be described by multiple output Boolean function. Key word:Stream cipher ; block cipher;key stream generators;S-box;Boolean function; Walsh spectrum

密码学及其应用综述

密码学及其应用最新研究进展综述 摘要:密码技术是信息安全的核心技术。随着现代计算机技术的飞速发展,密码技术正在不断向更多其他领域渗透。它是集数学、计算机科学、电子与通信等诸多学科于一身的交叉学科。使用密码技术不仅可以保证信息的机密性,而且可以保证信息的完整性和确证性,防止信息被篡改、伪造和假冒。目前密码的核心课题主要是在结合具体的网络环境、提高运算效率的基础上,针对各种主动攻击行为,研究各种可证安全体制。本文主要介绍了密码学的基本原理,和应用的方面,以及密码理论的若干问题和密码学的最新进展。 Abstract: Cryptography is the important technology of information security。With the rapid development of modern computer technology, Cryptography technology is continuing to penetrate other areas more。It is a lot of discipline in an interdisciplinary which include mathematics, computer science, electronics and communication. Using cryptographic techniques can not only ensure the confidentiality of information, but also to ensure the integrity and confirmatory information to prevent information tampering, forgery and counterfeiting. The important issues of the current cryptography is mainly in combination with specific network environment, improving operation efficiency of the basis for various initiatives attacks, provable security system to study various. This paper introduces the basic principles of cryptography, and applications, as well as a number of issues and the password theory the latest cryptography. 关键词:密码,信息安全,数字签名,身份认证,公钥体制,私钥体制 Key W ords:Cryptography,information secure,digital sign,authentication ,Public key cryptosystem,Private key system 引言:随着以Internet为代表的全球性信息化浪潮日益高涨,计算机和信息网络技术的应用正日益普及和深入,应用领域已经扩大到政府部门,金融,企业等。网络安全日益成为影响网络效能的重要问题,这就对信息安全提出了很高大的要求。如何使网络信息系统不受黑客及非法授权人的入侵,已成为社会信息化健康发展所考虑的重要问题之一。 密码学的加密技术使得即使敏感信息被窃取,窃取者也无法获取信息的内容;认证性可以实体身份的验证。以上思想是密码技术在信息安全方面所起作用的具体表现。密码学是保障信息安全的核心;密码技术是保护信息安全的主要手段。本文主要讲述了密码的基本原理,设计思路,分析方法以及密码学的最新研究进展等内容 一.密码学基础 密码是按特定法则编成,用于通信双方的信息进行明密变换的符号。研究密码的学科就称之为密码学。现代密码主要用于保护传输和存储的信息;除此之外,密码还用于保证信息的完整性、真实性、可控性和不可否认性。 密码是构建安全信息系统的核心基础。密码学发展历史主要有以下四个阶段:①科学密码学的前夜发展时期(从古代到1948年):这一时期的密码专家常常凭直觉和信念来进行密码设计和分析;②对称密码学的早期发展时期(1949~1975年):1949年Shannon发表的论文《保密系统的信息理论》为对称密码学建立了理论基础,从此密码学成为一门科学;③现代密码学的发展时期(1976~1996

相关主题
文本预览
相关文档 最新文档