当前位置:文档之家› 高数第八章典型习题

高数第八章典型习题

高数第八章典型习题
高数第八章典型习题

第八章典型习题

一.求函数的表达式 1.

设z x y f

=++,且当0y =时2

z x

=,则z = .

2.设22

,y f x y x y x ??+=- ??

?

,则(),f x y =

.

3.设()(,ln f x y x =-,其中0x y >>,则(),f x y x y +-= . 二.

求定义域 1.2

2

ln 1z x y =

--

2.u =

3.()2ln 21z y x =-+

三.求极限 1.0

lim

x y →→=

.

2.00

sin lim

x y xy x

→→=

.

3.()322

3

00

1lim sin

x y x y x y

→→+= .

4.()1

00

lim 1xy x y xy →→+= .

四.求偏导数和全微分

1.设2,,y

z f x x y x ??

=+ ??

?,则dz = .

2.设y z x =,则dz = .

3.设(),y

z yf xy e

=,其中f

具有二阶连续偏导数,求

2

,

z

z

x x y

?????.

4.设(),,,y

z f u x y u xe ==,其中f 具有二阶连续偏导数,求2

,z

z

x x y

?????. 5.设函数(),z z x y =由方程5431z xz yz -+=确定,求dz .

6.设函数(),z z x y =由方程0z e xyz -=确定,求dz .

7.设函数(),z z x y =由方程z x y ze xe ye =+确定,求dz . 五.多元函数连续、可导、可微之间的关系 P72.总习题八4

六.多元函数微分法的几何应用 1.曲线sin ,1cos ,4sin

2

t x t t y t z =-=-=在对应于2

t π

=

的点处的

切线方程为 ,法平面方程为 , 2.曲面3z e z xy -+=在点()2,1,0P 处的切平面方程为 , 法线方程为 ,

3.若函数()22,22425f x y x xy y x y =++++-有驻点()03,1M -,

且0

xx

M A f ''==

,0

x y

M B f ''== ,

yy

M C f ''==

,2B AC -= ,

由此可判定函数(),f x y 在0M 有 值.

4.设曲线22sin :sin cos cos x a t

y b t t

z c t

?=?

Γ=??=?,则它在对应4

t π

=

的点处的法平面必( )

(A)平行于ox 轴 (B)平行于oy 轴 (C)垂直于xo y 面 (D)垂直于yo z 面

5.曲面222426x y z -+=上点()2,2,3处法线方程是 . 七.条件极值

1.求曲面21z xy -=上到原点最近的点.

2.求平面

1345

x y z ++=和柱面2

2

1x y +=的交线上到xo y 面距离最短的点.

3.要设计一个容量为0V 的长方体开口水箱,试问 水箱长、宽、高等于多少时所用材料最省?

4.已知曲面方程为()22210,0,0x y z x y z ++=≥≥≥. ⑴.求曲面上任一点()000,,P x y z 处的切平面方程;

⑵.求在曲面上哪一点的切平面与三坐标面构成的四面体体积最小.

高等数学下册典型例题精选集合.doc

最新高等数学下册典型例题精选集合 第八章 多元函数及其微分法 最大者泄义域,并在平面上画出泄义域的图形。 A - 77 Z[ = J4x_),的定义域是y 2 < 4x z 2二丿 的定义域是 从而z = :)-的定义域是Z]=』4x-护 与z? = / 1 定义域 的公共部分,即 V4x >y>0 x 2 > y>0 例 2 设 z 二 x+y + /(x 一 y),当 y = 0吋 z = ,求 z. 解:代入y = 0时Z = F,得〒=兀+ /(兀),即/(兀)=亍一匕 所以 z = (x- y)2 +2y. 2 2 例3求lim —— >4o J ,+)" +1 _ [ lim(Jx 2 + y 2 +1 +1) = 2 XT O V 尸0 例1求函数z 解:此函数可以看成两个函数Z 严』4x-y2与Z2 =的乘积。 兀-">0,即兀2 >y >0o y>0 lim (* + )(J 兀2 + y2 + ] 4- 1) 解: XT O 原式=厂0 (J 对 + )厂 +1 -1)( J 兀~ + + ] + 1)

法2化为一元函数的极限计算。令衣+八]=(,则当 x —0, y —?0 吋,t ―> 1 o 『2 _1 原式=lim --------- = lim(r +1) = 2。 t —I / — ] i ―I 例 4 求 lim r 兀+厂 ,T() 丿 解:法1用夹逼准则。因为2 | xy \< x 2 2 + y 2,所以 2 9 0<

而lim凶=0,从而lim| |=0 XT O 2 XT O厂 + \厂 〉?T O 〉?T O兀十〉 于是lim「1=0 牙-叮兀.+ y 尸0 丿 法2利用无穷小与有界函数的乘积 是无穷小的性质。 因为2|xy|< x2 + y2所以—^― Q +y =lim( AT O 〉?T O 尢y ?x) = 0 例5研究lim^- :护+y 解:取路径y二二一x + kxSke R± ,则lim 小 = [由k是任意非零 F *+y k yTO 丿 的常数,表明原极限不存在。a, 又limx = 0 XT O 〉T() 所以

同济版高等数学下册练习题附答案

第 八 章 测 验 题 一、选择题: 1、若a →,b →为共线的单位向量,则它们的数量积 a b →→ ?= ( ). (A) 1; (B)-1; (C) 0; (D)cos(,)a b →→ . 向量a b →→?与二向量a → 及b → 的位置关系是( ). 共面; (B)共线; (C) 垂直; (D)斜交 . 3、设向量Q → 与三轴正向夹角依次为,,αβγ,当 cos 0β=时,有( ) 5、2 () αβ→ → ±=( ) (A)2 2 αβ→→±; (B)2 2 2ααββ →→→ →±+; (C)2 2 αα ββ →→→ →±+; (D)2 2 2αα ββ →→→ →±+. 6、设平面方程为0Bx Cz D ++=,且,,0B C D ≠, 则 平面( ). (A) 平行于轴; x ;(B) y 平行于轴; (C) y 经过轴;(D) 经过轴y . 7、设直线方程为111122 00A x B y C z D B y D +++=??+=?且 111122,,,,,0A B C D B D ≠,则直线( ). (A) 过原点; (B)x 平行于轴; (C)y 平行于 轴; (D)x 平行于轴. 8、曲面2 50z xy yz x +--=与直线 5 13 x y -=- 10 7 z -= 的交点是( ). (A)(1,2,3),(2,1,4)--;(B)(1,2,3); (C)(2,3,4); (D)(2,1,4).-- 9、已知球面经过(0,3,1)-且与xoy 面交成圆周 22160 x y z ?+=?=?,则此球面的方程是( ). (A)222 6160x y z z ++++=; (B)2 2 2 160x y z z ++-=; (C)2 2 2 6160x y z z ++-+=; (D)2 2 2 6160x y z z +++-=. 10、下列方程中所示曲面是双叶旋转双曲面的是( ). (A)2221x y z ++=; (B)22 4x y z +=; (C)22 2 14y x z -+=; (D)2221916 x y z +-=-. 二、已知向量,a b r r 的夹角等于3 π ,且2,5a b →→==,求 (2)(3)a b a b →→→→ -?+ . 三、求向量{4,3,4}a → =-在向量{2,2,1}b → =上的投影 . 四、设平行四边形二边为向量 {1,3,1};{2,1,3}a b → → =-=-{}2,1,3b =-,求其面积 . 五、已知,,a b →→ 为两非零不共线向量,求证: ()()a b a b →→→→-?+2()a b →→ =?. 六、一动点与点(1,0,0)M 的距离是它到平面4x =的距 的一半,试求该动点轨迹曲面与 yoz 面的交线方程 .

高等数学求极限的常用方法附例题和详解

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和 0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推 论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f

高数典型例题解析

第一章函数及其图形 例1:(). A. {x | x>3} B. {x | x<-2} C. {x |-2< x ≤1} D. {x | x≤1} 注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。 例2:函数的定义域为(). 解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。由根式内要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。 例3:下列各组函数中,表示相同函数的是() 解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。 B中的函数是相同的。因为对一切实数x都成立,故应选B。 C中的两个函数是不同的。因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。 D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。例4:设

解:在令t=cosx-1,得 又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有 。 5: 例 f(2)没有定义。 注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。 例6:函数是()。 A.偶函数 B.有界函数 C.单调函数 D .周期函数 解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。 由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。 事实上,对任意的x,由,可得,从而有。可见,对于任意的x,有 。 因此,所给函数是有界的,即应选择B。 例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。 A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定

《高等数学》第八章练习题及答案

《高等数学(下册)》第八章练习题 一、填空题 1、________________ )sin(==dz xy z 则, 设 2、设),cos(2y x z =,则=??)2,1(πx z 3、函数22)(6y x y x z ---=的极值点为 4、设xy e z =,则=dz 5、设y z ln z x =,则=?zx z 二、选择题 )2 0( D. )0 2( C. )0 0( B. )2 2( A.) (33) ( 12233,,,,的极小值点为,函数、y x y x y x f --+= 2、),(y x f 在点),(00y x 处偏导数),(),(0000y x f y x f y x ''、存在就是),(y x f 在该点连续的( )、 (a)充分条件, (b)必要条件, (c)充要条件, (d)既非充分条件又非必要条件。 3、设)2ln(),(x y x y x f +=,则=())1,1(-'x f 、 (A),31 (B),31- (C),65 (D).6 5- 三、计算题 方程。处的切线方程与法平面,,在点求曲线、)1 2 1( 2 132 ???==x z x y 2、设),(y x z z =就是由方程0),(=--z y z x F 确定的隐函数,F 具有一阶连续偏导数,且,0≠'+'v u F F 其中,,z y v z x u -=-=求.,y z x z ???? 3、求曲面3222-=+-z xz y x 在点)1,2,1(处的切平面及法线方程。 4、设,222z y x e u ++=而y x z sin 2=,求x u ??、 5、求曲线t z e y e x t t ===-,,,对应于0=t 点处的切线与法平面方程。 6、求函数)4(2y x y x z --=在闭域4,0,0≤+≥≥y x y x 上的最大值及最小值。

高中数学典型例题详解和练习- 求分段函数的导数

求分段函数的导数 例 求函数?????=≠=0 ,00 ,1sin )(2 x x x x x f 的导数 分析:当0=x 时因为)0(f '存在,所以应当用导数定义求)0(f ',当 0≠x 时,)(x f 的关系式是初等函数x x 1 sin 2,可以按各种求导法同求它的导数. 解:当0=x 时,01sin lim 1 sin lim ) 0()(lim )0(0200 ===-='→?→?→?x x x x x x f x f f x x x 当 ≠x 时, x x x x x x x x x x x x x x x f 1 cos 1sin 2)1cos 1(1sin 2)1(sin 1sin )()1sin ()(22222-=-+='+'='=' 说明:如果一个函数)(x g 在点0x 连续,则有)(lim )(0 0x g x g x x →=,但如 果我们不能断定)(x f 的导数)(x f '是否在点00=x 连续,不能认为 )(lim )0(0 x f f x →='. 指出函数的复合关系 例 指出下列函数的复合关系. 1.m n bx a y )(+=;2.32ln +=x e y ; 3.)32(log 322+-=x x y ;4.)1sin(x x y +=。 分析:由复合函数的定义可知,中间变量的选择应是基本函数的结构,解决这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外及里,一层一层地分析,把复合函数分解成若干个常

见的基本函数,逐步确定复合过程. 解:函数的复合关系分别是 1.n m bx a u u y +==,; 2.2,3,ln +===x e v v u u y ; 3.32,log ,322+-===x x v v u y u ; 4..1,sin ,3x x v v u u y +=== 说明:分不清复合函数的复合关系,忽视最外层和中间变量都是基本函数的结构形式,而最内层可以是关于自变量x 的基本函数,也可以是关于自变量的基本函数经过有限次的四则运算而得到的函数,导致陷入解题误区,达不到预期的效果. 求函数的导数 例 求下列函数的导数. 1.43)12(x x x y +-=;2.2 211x y -= ; 3.)3 2(sin 2π +=x y ;4.21x x y +=。 分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体,就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,而其中特别要注意中间变量的系数.求导数后,要把中间变量转换成自变量的函数.

高数下典型习题及参考答案

第八章典型习题 一、填空题、选择题 1、y x z += 1的定义域为 ; 2、1 1lim 0-+→→xy xy y x ; 3、设xy z 3=, x z ??= ; 4、 z z x ?==?设则 5、由方程z y x e xyz e =++确定了函数()y x z z ,=,求dz 。 6、函数()y x f z ,=在点()00,y x 处()00,y x f x ,()00,y x f y 存在,则()y x f ,在该点( ) A 、连续 B 、不连续 C 、不一定连续 D 、可微 二、解答题 1、求曲面632222=++z y x 在点P (1,1,1)的切平面方程和法线方程。 2、2,y z f x y f x ? ?= ?? ?已知 ,其中为可微函数,y z x z ????,求。 3、设()y x z z ,=是由方程 y z z x ln =确定,求x z ??,y z ??。 4、做一个表面积为12平方米的长方体无盖铁皮箱,问长、宽、高如何选取,才能使铁箱的容积为最大。 第九章、第十章典型习题 一、填空题、选择题 1、将二重积分()dxdy y x f D ??,化为二次积分,其中积分区域D 是由0,,42≥==x x y y 所围成,下列各式 中正确的是( )A 、()dy y x f dx x ??2 04 ,2 B 、()dy y x f dx ??4 4 , C 、()dx y x f dy y ??0 40 , D 、()dx y x f dy y ? ?0 40 , 2、设Ω是由1,0,1,0,1,0======z z y y x x 所围成的区域,则=???Ω xyzdxdydz 3、旋转抛物面2 2 2y x z +=在20≤≤z 那部分的曲面面积S=( )

《高等数学》第八章习题答案

8.1(A ) 1、(1){ }y x y x y x ≥≥≥2,0,0),(;(2){}1),(2>-x y y x ; (3){ }1),(22>+y x y x ; (4){}0,0,0),,(>>>z y x z y x 。 2、(1)0;(2)6 1-;(3)e ;(4)1;(5)0. (B ) 1、提示:令kx y =。 8.2(A ) 1、(1)223y y x x z -=??;xy x y z 23-=??。(2)2x y y x z -=??;x x y z 1+=??。 (3)]1)1[ln()1(xy xy xy xy x z x ++++=??;12)1(-+=??x xy x y z 。 (4)22y x y x z +-=??;22y x x y z +=??。 (5) )sin()cos(y x x y x x z +-+=??;)sin(y x x y z +-=??。 (6)21y x x z +=??;2 2y x y y z +=??。 (7)1-=??z y x z y x u ;x z x y u z y ln =??;x z yx z u z y ln 2-=??。 (8)x y x y x z 2csc 22-=??;x y x y z 2csc 2=??。 2、(1)222)(2y x y x x z --=??;2 2)(y x y y x z -=???。 (2)2222222)(y x x y x z +-=??;2222) (2y x xy y x z +-=???。 (3)222)1(--=??y x y y x z ;222)(ln x x y z y =??。 3、2)1,0,0(=xx f ;0)0,1,0(=yz f 。 (B )

关于高等数学方法与典型例题归纳

关于高等数学方法与典 型例题归纳 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

2014年山东省普通高等教育专升本考试 2014年山东专升本暑期精讲班核心讲义 高职高专类 高等数学 经典方法及典型例题归纳 —经管类专业:会计学、工商管理、国际经济与贸易、电子商务 —理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其 自动化、交通运输、计算机科学与技术、土木工程 2013年5月17日星期五 曲天尧 编写 一、求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方;

(2) ???? ???=<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030+-+-=+-+→→ 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子........... 是解题的关 键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第一个重 要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 +,最后凑指数部分。 【解】22 212 12112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→

高数(上)第八单元课后习题答案8-8

习题8-8 1. 求函数f (x , y )=4(x -y )-x 2-y 2的极值. 解 解方程组???=--==-=024),(024),(y y x f x y x f y x , 求得驻点为(2,-2), 由于 A =f xx (2, -2)=-2<0, B =f xy (2, -2)=0, C =f yy (2, -2)=-2, AC -B 2>0, 所以在点(2, -2)处, 函数取得极大值, 极大值为 f (2, -2)=8. 2. 求函数f (x , y )=(6x -x 2)(4y -y 2)的极值. 解 解方程组???=--==--=0)24)(6(),(0)4)(26(),(22y x x y x f y y x y x f y x , 得???==23y x , ???==00y x , ???==40y x , ???==06y x , ? ??==46y x . 因此驻点为(0, 0), (0, 4), (3, 2), (6, 0), (6,4). 函数的二阶偏导数为 f xx (x , y )=-2(4y -y 2), f xy (x , y )=4(3-x )(2-y ), f yy (x , y )=-2(6x -x 2). 在点(0, 0)处, f xx =0, f xy =24, f yy =0, AC -B 2=-242<0, 所以f (0, 0)不是极值; 在点(0, 4)处, f xx =0, f xy =-24, f yy =0, AC -B 2=-242<0, 所以f (0, 4)不是极值; 在点(3, 2)处, f xx =-8, f xy =0, f yy =-18, AC -B 2=8?18>0, 又A <0, 所以f (3, 2)=36是函数的极大值; 在点(6, 0)处, f xx =0, f xy =-24, f yy =0, AC -B 2=-242>0, 所以f (6, 0)不是极值; 在点(6, 4)处, f xx =0, f xy =24, f yy =0, AC -B 2=-242>0, 所以f (6, 4)不是极值. 综上所述, 函数只有一个极值, 这个极值是极大值f (3, 2)=36. 3. 求函数f (x , y )=e 2x (x +y 2+2y )的极值. 解 解方程组???=+==+++=0 )22(),(0)1422(),(222y e y x f y y x e y x f x y x x , 得驻点)1 ,21(-. A =f xx (x , y )=4e 2x (x +y 2+2y +1), B =f xy (x , y )=4e 2x (y +1), C =f yy (x , y )=2e 2x . 因为在点)1 ,2 1(-处, A =2e >0, B =0, C =2e , AC -B 2=4e 2>0, 所以函数在点)1 ,21(-处取得极小值, 极小值为2 )1 ,21(e f -=-. 4. 求函数z =xy 在适合附加条件x +y =1下的极大值.

高等数学试题库

高等数学试题库 第二章 导数和微分 一.判断题 2-1-1 设物体的运动方程为S=S(t),则该物体在时刻t 0的瞬时速度 v=lim lim ()()??????t t s t s t t s t t →→=+-0000与 ?t 有关. ( ) 2-1-2 连续函数在连续点都有切线. ( ) 2-1-3 函数y=|x|在x=0处的导数为0. ( ) 2-1-4 可导的偶函数的导数为非奇非偶函数. ( ) 2-1-5 函数f(x)在点x 0处的导数f '(x 0)=∞ ,说明函数f(x)的曲线在x 0点处的切 线与x 轴垂直. ( ) 2-1-6 周期函数的导数仍是周期函数. ( ) 2-1-7 函数f(x)在点x 0处可导,则该函数在x 0点的微分一定存在. ( ) 2-1-8 若对任意x ∈(a,b),都有f '(x)=0,则在(a,b)内f(x)恒为常数. ( ) 2-1-9 设f(x)=lnx.因为f(e)=1,所以f '(e)=0. ( ) 2-1-10(ln )ln (ln )'ln x x x x x x x x x 2224 3 21 '=-=- ( ) 2-1-11 已知y= 3x 3 +3x 2 +x+1,求x=2时的二阶导数: y '=9x 2 +6x+1 , y '|x=2=49 所以 y"=(y ')'=(49)'=0. ( ) 二.填空题 2-2-1 若函数y=lnx 的x 从1变到100,则自变量x 的增量 ?x=_______,函数增量 ?y=________. 2-2-2 设物体运动方程为s(t)=at 2 +bt+c,(a,b,c 为常数且a 不为0),当t=-b/2a 时, 物体的速度为____________,加速度为________________. 2-2-3 反函数的导数,等于原来函数___________. 2-2-4 若曲线方程为y=f(x),并且该曲线在p(x 0,y 0)有切线,则该曲线在 p(x 0,y 0) 点的切线方程为____________. 2-2-5 若 lim ()() x a f x f a x a →-- 存在,则lim ()x a f x →=______________. 2-2-6 若y=f(x)在点x 0处的导数f '(x)=0,则曲线y=f(x)在[x 0,f(x 0)]处有 __________的切线.若f '(x)= ∞ ,则曲线y=f(x)在[x 0,f(x 0)]处有 _____________的切线. 2-2-7 曲线y=f(x)由方程y=x+lny 所确定,则在任意点(x,y)的切线斜率为 ___________在点(e-1,e)处的切线方程为_____________. 2-2-8 函数

高等数学同济大学第六版第八章单元练习题参考答案.doc

第八章空间解析几何与向量代数单元测试题参考答案: 一、填空题 1. 点M x, y, z关于x轴的对称点为M1 x, y, z ;关于xOy平面的对称点为M 2x, y, z ;关于原点的对称点为M3 x, y, z . 2. 平行于a ={1 ,1,1} 的单位向量为1 1,1,1 ;若向量 a { ,1,5} 与向量 b { 2,10,50} 3 平行,为1 . 5 3. 已知两点M1 4, 2,1 和 M 2 3,0,2 ,则向量M1M2在三个坐标轴上的投影分别是–1 2 、1 ,在坐标轴方向上的分量分别是i 、 2 j 、 k , M1M 2 2 , 方向余弦cos 1 、 cos 2 、 cos 1 , 方向角1200 、 2 2 2 1350 、60 0 , 与M1M2 同方向的单位向量是 1 , 2 , 1 . 2 2 2 4. 已知两向量a 6i 4 j 10k , b 3i 4 j 9k ,则 a 2b 12i 4 j 8k , 3a 2b 12i 20 j 48k , 3a 2b 在oz轴上的投影为48 . x t 2 5.过点 M (1,2, 1) 且与直线y 3t 4 垂直的平面方程是 x 3 y z 4 0 z t 1 二、选择题 1.向量a与b的数量积 a b=(C). A a rj 2.非零向量 A a ∥b b a ;B a rj a b ; C a rj a b ; D b rj a b.a, b 满足a b0 ,则有(C). ; B a b (为实数);C a b ;D a b0 . 3.设 a 与b为非零向量,则a A a ∥b的充要条件; C a b 的充要条件;b0是(A). B a ⊥b的充要条件; D a ∥b的必要但不充分的条件.

高等数学第八章第二次习题测验

高等数学 第八章 多元函数微分法及其应用 习题课(第二次) 课堂练习题(A) 一.填空题 1.球面2222x y z R ++=的向外的一个法向量为________,方向余弦为________. 2平行的切线有几条 . 3.M (1,-1,2)为曲面),(y x f z =上的一点,(1,1)2x f '-=,(1,1)2y f '-=-,则曲面在点M 处的切平 面方程为 . 1处方向导数的最大值为 . A. D. 2倾角的方向导数等于 . B. 34560+ C. D. 3.已知曲面224y x z --= 在点p 处的切平面平行于平面122=++z y x 则点 p 的坐标是 . B. C. D. 三.计算下列各题: 1. 求函数568),(33+-+=xy y x y x f 的极值.

2. 3. 在曲面xy z =上求一点,使这点处的法线垂直于平面093=+++z y x .并写出法线的方程. 4.求过直线?? ?=-+=-01201z y x 且与曲面z y x 4422=-相切的平面方程. 5 轴正向的方向导数为 . 四.求平面 15 43=++z y x 和柱面122=+y x 的交线上与xoy 平面距离最短的点.

最大容积. 六.证明:曲面3 上任一点的切平面与三个坐标面围成的四面体的体积为定值.xyz a

课堂练习题(B) 1处的切线方程是 . 2,2tan t z = 处一个切向量与ox 轴正向夹角为锐角, 则此向量与oz . 函数6)2,2,2(-=v F ,曲面,则过该点的法线方程是 . 曲点,,且在任一有,则曲面在这一点的切平面方程为 . 5,)2,2,1(0-P 是曲面 0P 点的切平面方程.

高等数学同济大学第六版第八章单元练习题参考标准答案.doc

第八章 空间解析几何与向量代数 单元测试题 参考答案 : 一、填空题 1. 点 M x, y, z 关 于 x 轴 的 对 称 点 为 M 1 x, y, z ; 关 于 xOy 平 面 的 对 称 点 为 M 2 x, y, z ;关于原点的对称点为 M 3 x, y, z . 2. 平行于 a ={1,1,1}的单位向量为 1 1,1,1 ;若向量 a { ,1,5} 与向量 b { 2,10,50} 3 平行, 为 1 . 5 3. 已知两点 M 1 4, 2,1 和 M 2 3,0,2 ,则向量 M 1 M 2 在三个坐标轴上的投影分别是 1 – 2 、 1 ,在坐标轴方向上的分量分别是 i 、 2 j 、 k , M 1 M 2 2 , 方向余弦 cos 1 、 cos 2 、 cos 1 , 方向角 1200 、 2 2 2 1350 、 60 0 , 与 M 1 M 2 同方向的单位向量是 1 , 2 , 1 . 2 2 2 4. 已知两向量 6 4 j 10 k , b 3i 4 j 9k , 则 a 2b 12i 4 j 8k , ai 3a 2b 12i 20 j 48k , 3a 2b 在 oz 轴上的投影为 48 . x t 2 5.过点 M (1,2, 1) 且与直线 y 3t 4 垂直的平面方程是 x 3 y z 4 0 z t 1 二、选择题 1. 向量 a 与 b 的数量积 a b =( C ). A a rj b a ; B a rj a b ; C a rj a b ; D b rj a b . 2. 非零向量 a, b 满足 a b 0 ,则有( C ). A a ∥ b ; B a b ( 为实数 ); C a b ; D a b 0. 3. 设 a 与 b 为非零向量,则 a b 0 是( A ). A a ∥ b 的充要条件; B a ⊥ b 的充要条件 ; C a b 的充要条件; Da ∥ b 的必要但不充分的条件.

高等数学第八章练习题及答案

第八章 空间解析几何与向量代数自测题 A 一、填空 1. 已知空间三点(1,2,0)A 、(1,3,2)B -、(2,3,1)C ,则cos BAC ∠ =AB u u u v 在AC u u u v 上的投影为 ;三角形的面积ABC S ? =2;同时垂直于向量AB u u u v 与AC u u u v 的单位向量为1,4,3)±--. 2. xOy 面上的曲线2 y x =绕y 轴旋转一周所得旋转曲面方程为22y x z =+. 3. 在平面解析几何中2y x =表示抛物线_图形,在空间解析几何中表示_抛物柱面_图形. 4. 球面0242222=++-++z y x z y x 的球心坐标为(1,2,1)-- . 5. 曲线22291x y z x z ?++=?+=?在xOy 面上的投影为222280 x x y z ?-+=?=?. 6. 曲面z =被曲面22 20x y x +-=所截下的部分在xOy 面上的投影为22200x x y z ?-+≤?=?. 7. 过点A (3,0,1)-且与平面375120x y z -+-=平行的平面方程为37540x y z -+-=. 8. 点A (3,0,1)-到平面2230x y z -+-=的距离为 23. 9. 直线531123-=++=-z k y k x 与直线22531-+=+=-k z y x 相互垂直,则k =34. 二、解答题 1. 求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面. 解:由已知可知,已知平面的法向量为0(6,2,3)n =-v ,取所求平面的法向量为 1207 43(6,3,10)62 3i j k n M M n =?=--=--v v v u u u u u u v v v ,所以所求平面方程为 6(4)3(1)10(2)0x y z -+---=,即631070x y z +--=. 2. 求通过直线13213x y z +-==-与点A (3,0,1)的平面方程. 解:由已知可知,直线过点(0,1,3)P -,方向向量为(2,1,3)s =-v ,取所求平面的法向量 312(1,13,5)213 i j k n PA s =?=-=---v v v u u u v v v ,所以所求平面方程为3135(1)0x y z ----=,即 13520x y z --+=. 3. 求直线2 432-= -=-z y x 与平面062=-++z y x 的交点及夹角余弦. 解:直线的参数是方程为2,3,42x t y t z t =+=+=+,代入平面方程得1t =-,所以交点坐标为(1,2,2),

高等数学同济大学版第八章典型习题

第八章典型习题 一.求函数的表达式 1. 设z x y f =++,且当0y =时2z x =,则z = . 2.设22,y f x y x y x ??+=- ?? ?,则(),f x y = . 3.设( )(,ln f x y x =,其中0x y >>,则(),f x y x y +-= . 二.求定义域 1. ln 1z x y =-- 2.u = 3.()2ln 21z y x =-+ 三.求极限 1.0x y →→= . 2.00 sin lim x y xy x →→= . 3.()322300 1lim sin x y x y x y →→+= . 4.()1 00 lim 1xy x y xy →→+= . 四.求偏导数和全微分 1.设2,,y z f x x y x ??=+ ?? ?,则dz = . 2.设y z x =,则dz = . 3.设(),y z yf xy e =,其中f 具有二阶连续偏导数,求2,z z x x y ?????. 4.设(),,,y z f u x y u xe ==,其中f 具有二阶连续偏导数,求2,z z x x y ?????. 5.设函数(),z z x y =由方程5431z xz yz -+=确定,求dz .

6.设函数(),z z x y =由方程0z e xyz -=确定,求dz . 7.设函数(),z z x y =由方程z x y ze xe ye =+确定,求dz . 五.多元函数连续、可导、可微之间的关系 P72.总习题八4 六.多元函数微分法的几何应用 1.曲线sin ,1cos ,4sin 2t x t t y t z =-=-=在对应于2 t π=的点处的 切线方程为 ,法平面方程为 , 2.曲面3z e z xy -+=在点()2,1,0P 处的切平面方程为 , 法线方程为 , 3.若函数()22,22425f x y x xy y x y =++++-有驻点()03,1M -, 且0xx M A f ''== ,0xy M B f ''== , 0yy M C f ''== ,2B AC -= , 由此可判定函数(),f x y 在0M 有 值. 4.设曲线22sin :sin cos cos x a t y b t t z c t ?=?Γ=??=?,则它在对应4t π=的点处的法平面必( ) (A)平行于ox 轴 (B)平行于oy 轴 (C)垂直于xoy 面 (D)垂直于yoz 面 5.曲面222426x y z -+=上点()2,2,3处法线方程是 . 七.条件极值 1.求曲面21z xy -=上到原点最近的点. 2.求平面1345 x y z ++=和柱面221x y +=的交线上到xoy 面距离最短的点. 3.要设计一个容量为0V 的长方体开口水箱,试问 水箱长、宽、高等于多少时所用材料最省? 4.已知曲面方程为()22210,0,0x y z x y z ++=≥≥≥. ⑴.求曲面上任一点()000,,P x y z 处的切平面方程; ⑵.求在曲面上哪一点的切平面与三坐标面构成的四面体体积最小.

关于高等数学经典方法与典型例题归纳

2014年山东省普通高等教育专升本考试 2014年山东专升本暑期精讲班核心讲义 高职高专类 高等数学 经典方法及典型例题归纳 —经管类专业:会计学、工商管理、国际经济与贸易、电子商务 —理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其自 动化、交通运输、计算机科学与技术、土木工程 2013年5月17日星期五 曲天尧 编写 一、求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方;

(2) ???? ???=<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ 3.分子(母)有理化求极限 例3:求极限)13(lim 22 +- ++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】 1 3) 13)(13(lim )13(lim 2 2 22222 2+++++++-+=+-++∞ →+∞ →x x x x x x x x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子........... 是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第一个重要极限过 于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 + ,最后凑指数部分。 【解】22 21212112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =?? ? ??-++∞ →x x a x a x ,求a 。 5.用等价无穷小量代换求极限 【说明】 (1)常见等价无穷小有:

(超级总结吐血推荐)考研数学二经典知识点题型技巧总结(高数线代)综合网上及个人线代心得

高等数学(数二> 一.重点知识标记 高等数学 科目大纲章节知识点题型重要度等级 高等数学 第一章函数、极限、连续 1 .等价无穷小代换、洛必达法则、泰勒展开式求函数的极限★★★★★ 2 .函数连续的概念、函数间断点的类型 3 .判断函数连续性与间断点的类型★★★ 第二章一元函数微分学 1 .导数的定义、可导与连续之间的关系 按定义求一点处的导数,可导与连续的关系★★★★ 2 .函数的单调性、函数的极值讨论函数的单调性、极值★★★★ 3.闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用★★★★★ 第三章一元函数积分学 1 .积分上限的函数及其导数变限积分求导问题★★★★★ 2 .有理函数、三角函数有理式、简单无理函数的积分 计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分★★ 第四章多元函数微分学 1 .隐函数、偏导数、的存在性以及它们之间的因果关系 2 .函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连 续性的讨论与它们之间的因果关系★★ 3 .多元复合函数、隐函数的求导法求偏导数,全微分★★★★★ 第五章多元函数积分学 1. 二重积分的概念、性质及计算 2.二重积分的计算及应用★★ 第六章常微分方程 1.一阶线性微分方程、齐次方程, 2.微分方程的简单应用,用微分方程解决一些应用问题★★★★ 一、函数、极限、连续部分:

极限的运算法则、极限存在的准则(单调有界准则和夹逼准则>、未定式的极限、主要的等价无穷小、函数间断点的判断以及分类,还有闭区间上连续函数的性质(尤其是介值定理>,这些知识点在历年真题中出现的概率比较高,属于重点内容,但是很基础,不是难点,因此这部分内容一定不要丢分。 二、微分学部分: 主要是一元函数微分学和多元函数微分学,其中一元函数微分学是基础亦是重点。 一元函数微分学,主要掌握连续性、可导性、可微性三者的关系,另外要掌握各种函数求导的方法,尤其是复合函数、隐函数求导。微分中值定理也是重点掌握的内容,这一部分可以出各种各样构造辅助函数的证明,包括等式和不等式的证明,这种类型题目的技巧性比较强,应多加练习。函数的凹凸性、拐点及渐近线,也是一个重点内容,在近几年考研中常出现。 多元函数微分学,掌握连续性、偏导性、可微性三者之间的关系,重点掌握各种函数求偏导的方法。多元函数的应用也是重点,主要是条件极值和最值问题。 三、积分学部分: 一元函数积分学 一个重点是不定积分与定积分的计算。在计算过程中,会用到不定积分/定积分的基本性质、换元积分法、分部积分法。其中,换元积分法是重点,会涉及到三角函数换元、倒代换,如何准确地进行换元从而得到最终答案,却是需要下一番工夫的。定积分的应用同样是重点,常考的是面积、体积的求解,多练掌握解题技巧。对于定积分在物理上的应用(数二有要求>,如功、引力、压力、质心、形心等,近几年考试基本都没有涉及,考生只要记住求解公式即可。 多元函数积分学的一个重点是二重积分的计算,其中要用到二重积分的性质,以及直角坐标与极坐标的相互转化。这部分内容,每年都会考到,考生要引起重视,需要明白的是,二重积分并不是难点。 四、微分方程: 这里有两个重点:一阶线性微分方程。二阶常系数齐次/非齐次线性微分方程。 线性 第一章行列式 1.行列式的运算 2.计算抽象矩阵的行列式★★★ 第二章矩阵 1. 矩阵的运算 2. 求矩阵高次幂等★★★ 3. 矩阵的初等变换、初等矩阵与初等变换有关的命题★★★★★ 第三章向量 1. 向量组的线性相关及无关的有关性质及判别法 2. 向量组的线性相关性★★★★★ 3. 线性组合与线性表示判定向量能否由向量组线性表示★★★★

相关主题
文本预览
相关文档 最新文档