当前位置:文档之家› 电动汽车制动力的分配分析及优化

电动汽车制动力的分配分析及优化

电动汽车制动力的分配分析及优化
电动汽车制动力的分配分析及优化

电动汽车制动力的分配分析及优化

薛咏梅,郝彩红,鲁凤杰

(长安大学汽车学院,陕西西安710064)

摘要:新能源汽车中,特别是电动汽车,因其节能环保的优势,是社会和国家相关部门提倡的重点,在私人轿车中的比例也逐步增大。因此,当今对电动车的研究也更加深入,电动汽车的制动力分配作为电动汽车安全性的主要内容,也是本文重点研究的方向。本文主要介绍电动汽车制动力分配特点,兼顾制动力分配的制动系统能量回收以及制动力分配的相关理论曲线。并引入实际车型,通过其实际制动力分配曲线与理想制动力分配曲线的对比来验证其制动力分配的合理性,根据对比结论分析制动力分配的特点。并对制动力分配的优化方案进行介绍与展望。通过整个体系的阐述,强调制动力分配的重要性以及对电动汽车制动安全性、稳定性的意义,也是电动汽车今后发展的重要方向。为我们今后对电动汽车的研究奠定了一定的基础。

关键词:电动汽车制动;能量回收;制动力分配;分配优化

The braking force of electric car distribution optimization analysis

XUE Yong-Mei,HA0 Cai-Hong,LU Feng-Jie

School of automobile,Chang’an University,Xi’an,710064,China

Abstract: this article expounds the electric car braking force distribution optimization , chapter five written in full. Was the center of the braking energy recovery and the optimization of braking force distribution of two parts, the two parts is also a corresponding content. The first chapter focuses on the overview of the electric car braking and research background; The second chapter mainly analyzes the braking energy recovery, recycling development present situation and the main methods of recycling and how to maximize the recovery of energy; The third chapter expounds the theory of braking force distribution, the theoretical basis of this is the fourth chapter; The fourth chapter mainly studies the optimal allocation of braking force, this is the ultimate goal of our research and results; The last chapter of this article has carried on the summary and prospect of the system. In this paper, based on the research of the electric car braking, based on the theory of braking force distribution optimization analysis to its, this paper expounds the current new technology of the car care point and deficiency, and on the analysis of the study and prospect.

Key words: the electric car braking energy recovery, braking force distribution, distribution optimization

1绪论

新世纪以来,社会发展趋势使得电动汽车成为新时期轿车的主力之一。而且,当今能源和环境问题更加严重,电动汽车因节能环保很占优势。而将电动汽车的制动能量回收与制动力的分配相结合的优化设计,正是我们研究的重点。本文通过对制动系统能量回收和制动力的优化分配策略两大体系内容的研究与分析,对电动汽车进行系统研究。进而实现电动汽车的节能环保。本文的主要写作思路是:1.制动系统的能量回收。2.制动力优化分配策略。制动系统构型,制动强度二次再分数学模型,优化过程及实例分析。

2兼顾制动力分配的制动能量回收

同时,对电动汽车来说,制动力在优化分配的同时。还要考虑另一个重要的理论,就是电动汽车制动能量的回收。因其靠电机驱动,没有内燃机提供动力,因此电动汽车需要回收相应的制动能量以提高汽车行驶的动力性,而电动汽车能量的回收又与制动力的优化互不兼容。因此,我们需要对两者做详细的分析。主要是制动力的分配原理,因为电动汽车没有内燃机,故其动力性也是一个需要考虑在内的问题,我们不能只考虑制动力的优化分配,也要兼顾制动能量的回收。

制动系统能量回收是将汽车刹车时的能量存储于蓄电池,然后用于牵引驱动。回收制动能量采用回馈制动。制动系统能量回收仅管节约了能源;但其中也不乏一些不足之处,如消耗电能多。因此,我们需要在原有基础上进行技术和设计上的改进和更加成熟,使能量回收发挥更大的优势。

电动汽车能量回收的基本原理是电动机的可逆性。即电机可以在发电机和电动机两种模式切换,再将汽车的驱动和制动能量储存起来。

3 制动力分配及其合理性分析

制动力的分配是制动系统制动的主要关注要点。如果制动力分配不恰当甚至是不可靠,会使汽车在制动过程中因为发生制动不当等引起制动跑偏、甩尾等严重的问题。严重时,甚至会引起严重的交通事故,其后果是不堪设想的。

3.1纯电动汽车稳定性要求

稳定性要求,根据汽车稳定性的理论研究,汽车在制动过程中对其前后车轮的受力有如下的条件是较为安全的:

(1)第一为不发生后轴侧滑,避免后轮比前轮先抱死或只有后轮抱死,这样的后果是危险的。

(2)同时,为保证转向能力,我们要减少前后车轮同时抱死或只有前轮先抱死。

(3)最理想的情况是前后车轮均不抱死[9]。

根据上述汽车制动时的稳定性要求,我们要研究三种制动力的特性曲线,从理论上应满足汽车制动时的制动力的合理分配,以保持汽车制动的安全性能。

3.2 前后制动力理想分配曲线

如果汽车在制动时,分配到前后车轮的制动力能够保证前后车轮同时抱死的情况,这是以前后车轮的制动力Fμ1、Fμ2作为横纵坐标而制成的曲线称为理想制动力分配曲线,通常称为I 曲线[10]。

较好的制动情况即为前后轴同时抱死的情况,应满足的条件为:

Fμ1+Fμ2=φG (3.1) Fμ1=φFz1 (3.2) Fμ2=φFz2 (3.3) 即前轮制动器制动力加后轮制动器制动力等于附着力。前后轴各自的制动器制动力等于其自身附着力即

由(3.1)、(3.2)、(3.3)可得

Fμ1/Fμ2 = Fz1/Fz2 (3.4) 而汽车制动时,其受力图如下图3.1所示:

图3.1汽车制动时受力分析

则汽车受力情况为:Fz1=Fz10+mg hg L Z=mg(l2L +hg L Z) (3.5)

Fz2=Fz20-mg hg

L Z=mg(

l1

L-

hg

L Z) (3.6)

由(3.4)、(3.5)、(3.6)联立可得:Fμ1

Fμ2=

l2+hgZ

l1-hgZ(3.7)

又因为:Fμ1+Fμ2=Fj=W·Z (3.8)

由(3.8)可得:Fμ2

mg=Z-

Fμ1

mg(3.9)

由(3.7)和(3.9)分别为函数,并以Fμ1、Fμ2分别为横纵坐标,则可作出过原点和与坐标轴呈45°角的两组直线,将这两条直线的交点以光滑的曲线联接,就形成了理想制动力分配曲线-I曲线[11],如下图3.2所示:

图3.2理想制动力分配曲线

理想制动力分配曲线上,汽车前后轴同时抱死是较为理想的状态。这种抱死的状态,也是我们所追求的,由I曲线可知,前后轮制动力之比不是一固定数值,而是不断不变化的。根据这一理论,我们引入了一套如今通用的较为安全的装置即ABS防抱死控制系统,保持制动的安全性。

3.3实例分析

制动力的分配是否复合制动性能的基本要求,是汽车相关参数在考虑制动系统设计方面的最终检验目的。因此,我们也可以利用制动力分配的相关数据模型,来验证已成型汽车的设计的合理性,以及路面相关因素对制动性能的影响。

3.3.1汽车相关参数设计的合理性

通过对制动力分配的理论研究,运用I曲线,结合以下实例,分析制动力的分配。以下为唐骏王子电动汽车的相关参数如下表3.1所示:

表3.1实例车型相关参数

参数数值

汽车质量m/kg1220

前轴到质心长度a/m 1.010

后轴到质心长度b/m 1.464

根据I 曲线和β曲线的制作过程,如上述式Fμ1Fμ2 =l2+hgZ l1-hgZ (3.7)、Fμ2mg =Z-Fμ1mg (3.9)以及式

Fμ1Fμ2 =l2+φhg

l1-φhg ,在不同附着系数下,将表格中的相应参数值带入。分别取不同附着系数的φ值,分别取Fμ1、Fμ2为横纵坐标,按Fμ1逐渐增大的趋势随机取值,带入实际制动力分配曲线公式可得如下4组数据:(5,6)、(10,8)、(25,14)、(30,15)。连接上述各点,模拟实际制动力分配曲线可得如下图 3.5 ,β为实际参数经实际制动力分配的公式计算制成的制动力分配曲线,由下图3.5和图3.3(即实际制动力分配曲线图)可知,制动力的中度和重度制动段与理想制动力分配的I 曲线一致。故此汽车的相关参数设计比较合理,因而,具有良好的制动性能。

图3.5 实际制动力分配曲线

3.3.2 不同路面附着系数对制动性能的影响 在制动过程中,要想满足汽车前后车轮同时抱死的理想制动情况,应使实际制动力分配曲线与理想制动力分配曲线重合。但一般情况发下两者不可能完全重合,下面,我们就以两条曲线的交点来分析。

以上述3.3.1中的实例进行分析,以所给参数进行计算,选取附着系数φ值分别为:0.2、0.4、0.6、0.7、0.8、0.9。

表2.2 不同路面附着系数对比 质心高度h/m 0.553 车轮半径r/m 0.315 电动机功率p/kw 7.3(4000r/min 时) 满载质量 m 满/kg 1650 传动效率η 0.83 主减速比i0 2.653 变速器速比i 1.335

路面类型

附着系数 柏油或水泥路面

0.70~0.80 卵石路面

0.50~0.55 碎石路面

0.60~0.70 木块路面

0.60~0.75

将已给参数代入Fμ1Fμ2 =l2+hgZ l1-hgZ (3.7)、Fμ2mg =Z-Fμ1mg (3.9)以及式Fμ1Fμ2 =l2+φhg l1-φhg 中,并将计

算结果连点描线可得如下图3.6所示制动力分配曲线。

图3.6 制动力分配曲线 由上图可知,唐骏王子电动汽车在空载和满载时,附着系数分别为0.45和0.75时两曲线重合。因此,此时的汽车制动为理想制动情况,即前后车轮同时抱死,是较为安全也是较为稳定的制动情况。由下表3.2各种路面的附着系数可知[15],唐骏王子电动汽车在空载时,为能得到良好的制动性能,应在土路或卵石路面行驶;而在满载时,柏油和水泥路面的制动性能更佳。

4 制动优化策略

4.1 制动力分配优化策略

欧洲经济委员会(ECE ) 制定了相法规,即ECE 制动法规来提高汽车制动性能。其具体分析如下:

对于M1类型汽车,其制动力分配应满足:

(1)当制动强度z<0.60时,后轴利用附着系数曲线低于对应的前轴该曲线,且满足φ=(z+0.07)/0.85。

(2)当制动强度 z =0.3~0.45 时,如果后轴利用附着系数曲线在曲线φ =z +0.05 的下方,

土路 0.50~0.60 积雪软路面 0.20~0.35 结冰路面 0.10~0.20

图4.1 ECE法规对M1类型汽车制动强度的规定

后轴利用附着系数可以稍大。即一定范围内后轮可以抱死,但超过这个范围,后轮的抱死是不允许的。

电动汽车的制动系统的设计要遵循以下两点:一是制动性能要满足要求,确保制动的安全性与稳定性,二是制动能量的回收方面,制动能量回收要多。由上图4.1的规定可以推导。一般情况下制动力的分配主要是根据制动强度的取值来规定的[17],原则为:

1) 当制动强度z不大于0.45时,主要考虑制动能量回收值。

2)当制动力的范围大于0.45小于0.6时,应该把制动系统的安全性和稳定性放在一个主要位置。

3)当制动减速度超过0.6时,我们不考虑制动能量的回收问题,保证达到可靠的制动性能就好。

4.2制动系统优化

在制动过程中,在能量方面,在蓄电池和驱动轮的能量传递路线中。第一,在车轮的制动力分配必须满足制动的可靠性要求。第二,传动装置会产生由于存在机械摩擦而引起的能量流失。而且,电动机工作时的角速度和制动转矩不应超过其能达到的相关参数的最大值。再者,在能量的转化过程中,电动机的工作也会由于铁损,铜损以及摩擦损失而产生的一系列对本身的破坏,进而影响其使用寿命。对于蓄电池而言,当电容较高时,就不要再给蓄电池充电,因为功率过大会对蓄电池造成一定的损害,这也必然会缩短其使用寿命。同时,蓄电池充电也会因为蓄电池的内阻而产生能量损失。因此,必须克服这些障碍,回收更多制动能量。

将其以一个函数的形式表现出来。在这个函数中,电动机的转矩、前轮机械制动摩擦转矩以及传动系统的传动比和各种限制约束条件作为控制变量;将制动性能和之制动量的加权和作为目标函数。那么上述问题的具体优化过程如下:

将上述的制动力分配加以优化,在t时刻模型如下:

Maximize f(x,t) (4.8)

x∈X

Fbf ≤ Fbfmax

Fbr ≤ Fbrmax

φf≥φt

s. t. Φf,φt≤Z+0.07

0.850.1≤Z≤0.61 (4.9)

Tm≤Tmavail

ωm≤ωmmax

Pc≤Pcm

上式中,目标函数是:f(x,t)。f( x,t) = Pb + k1[1 -( φf-z) 2]+ k2 [1 -( φr -z) 2](4.10) 式(4.10)中:k1、k2分别是权系数;式中的自变量仍为x,x = { i ,Tm,Tff },Tff为汽车前轮产生的摩擦制动转矩;i为传动系统的比值,X作为一个限制性变量,来确定变量的范围; Fbf和Fbfmax 分别是地面作用于前轮的制动力和地面可作用于前轮的制动力最大值; Fbr和Fbrmax 分别是地面作用于后轮的制动力和地面可作用于后轮的制动力最大值; φr 和φf是后轮的附着系数和前轮的附着系数; ωmmax为电动机角速度的最大值。

式(4. 10)中,权系数k1和k2的选取是优化函数的关键。当制动减速度属于小于0.5和大于0.5而小于0.7时的情况时。权系数的选择是有一定规则的。前者主要是针对制动能量的回收,而后者则侧重于制动的安全性和稳定性等制动性能的保障。且他们的取值应使制动性能和制动能量回收计算所得目标函数相关数值的数量级接近或相差不远[20]。

本章着重讲述制动力的优化,分别从制动力分配优化策略、制动系统优化进行分析。在优化分析的过程中,主要考虑制动系统的能量回收和制动性能两方面的综合协调,通过汽车前后轮制动力的分配对制动力进行合理的优化。

5总结与展望

本文主要内容是系统的阐述本文研究背景、研究的理论基础以及在基础上对电动汽车制动力分配原理进行分析,并以实际电动汽车与制动相关参数为例运用制动力分配曲线的相关理论分析该车型参数是否满足分配理论,然后对制动力分配的优化策略进行系统阐述。主要有以下几部分组成并得出一些结论:

首章内容主要讲述电动汽车的研究背景,着重从制动力的研究背景,电动汽车的制动力理论,以及电动汽车制动与传统汽车制动的区别进行分析比较。

中间两章主要分析电动汽车制动能量回收和制动力分配两大理论体系的内容。对制动力的分配,通过相关理论分析,引入实际电动汽车的具体参数进行仿真验证,最后可知制动力分配的合理性和兼顾性。

制动力优化是文章的最后一章,并综合考虑制动力的分配以及制动能量的回收对制动力的分配进行优化,也是对本文的总结与展望。

参考文献

[1]刘博,杜继宏,齐国光.电动汽车制动能量回收控制策略的研究.电子技术应用,2004 (01):34-36.

[2]余志生.汽车理论[M].北京: 机械工业出版社,2000

[3]熊璐钱超余卓平 . 电动汽车复合制动系统研究现状综述[J]. 汽车技术,2015,(1)

制动能量回馈系统协调控制

制动能量回馈系统协调控制 张俊智,张鹏君,陆欣,陈鑫 清华大学汽车安全与节能国家重点实验室,北京,100084 【摘要】本文为混合动力电动汽车设计了分层控制的制动能量回馈系统,该分层结构主要包括驾驶员意图识别、能量管理和元件协调控制三个部分。分层控制结构的采用,将复杂的制动能量回馈系统简化为若干部分,降低了控制难度,为研究提供了便利。所设计的系统已在一款串联混合动力客车上实现,并根据中国城市公交循环工况进行了道路测试。 【关键词】混合动力电动汽车,制动能量回馈系统,分层控制结构,协调控制 Coordinated Control for Regenerative Braking System Zhang Junzhi, Zhang Pengjun, Luxin, Chen Xin State Key Lab. of Automotive Energy and Safety, Tsinghua University, Beijing, China, 100084 Abstract: This paper presents a design of regenerative braking system(RBS) for hybrid electric vehicles using hierarchical control structure and method. The hierarchical model is mainly composed of three modules for driver intent identification, energy management and coordinated control based on components control. As a consequence, RBS, a complicated hybrid dynamic system, is successfully decomposed by several simple modules. The control system and strategies are carried out on a typical serial HEV bus, and tested on road based china typical urban cycle.. Key words: hybrid electric vehicles, regenerative braking system, hierarchical control structure, coordinated control 1 介绍 车辆的动能通过制动能量回馈系统可转化为其它形式能量储存起来,并进一步用于车辆驱动。研究显示,在城市驾驶循环中,发动机发出能量的大约1/3至1/2被制动过程所消耗[1,2]。因此,回馈制动是车辆提高燃油经济性并降低排放的有效方法,有助于缓解能源危机和环境污染。

电动汽车能量回馈的整车控制(1)

2005005 电动汽车能量回馈的整车控制 张 毅,杨 林,朱建新,冒晓建,卓 斌 (上海交通大学汽车电子研究所,上海 200030) [摘要] 以4种典型循环工况为例对电动汽车进行能量分析,设计了基于常规汽车制动系统的整车能量回馈控制方式,研究了控制策略,完成了车辆道路试验与标定优化。试验表明,整车能量回馈控制方式与控制策略安全、可靠,且柔顺性良好;利用能量回馈技术,蓄电池能量消耗可减少10%,能有效延长电动汽车的一次充电续驶里程。 关键词:电动汽车,能量回馈,控制策略 The Control Strategy of Energy Regeneration for Electric Vehicle Zhang Yi,Yang Lin,Zhu Jianxin,Mao Xiaojian&Zhuo Bin Instit ute of A utomotive Elect ronic Technology,S hanghai Jiaotong U niversity,S hanghai200030 [Abstract] The energy consumption in four typical vehicle testing cycles(FTP,HWEFT,ECE2EUDC and J P1015)is analyzed for EV.Based on the traditional vehicle braking system,a new regenerative braking scheme and its control strategy are designed.The road testing,calibration and optimization are performed.T est results show that the control scheme and strategy is safe,https://www.doczj.com/doc/e67294610.html,ing the regenerating scheme,the energy consumption of battery can re2 duce by10percent and the driving range of EV in one charge can increase effectively. K eyw ords:Electric vehicle,E nergy regeneration,Control strategy 原稿收到日期为2003年12月29日,修改稿收到日期为2004年3月8日。 1 前言 电动汽车采用了新型的汽车动力,如何充分提 高车辆行驶能量效率,进而延长车辆续驶里程,是电 动汽车需要解决的一个关键问题。能量回馈是解决 该问题的主要技术措施。 能量回馈包括车辆制动能量回馈与车辆滑行能 量回馈两种。此时,驱动电机按发电机运行,将车辆 行驶动能转化为电能,可以起到3个作用:辅助制 动;回收能量给动力蓄电池充电,从而延长车辆续驶 里程;在车辆有供热需求时,直接利用这部分电能供 热取暖。 能量回馈制动与电动汽车其它电气制动方式 (主要有能耗制动、反接制动[1])比较,无须改变系 统硬件结构,回馈电流可柔性控制,可使制动效果与 能量回收效果综合最佳。因此,能量回馈是最适合 电动汽车的电气制动方式,其关键是能量回馈的过 程控制。电动汽车的能量回馈控制由整车控制与电 机控制交互作用而实现,作者在电动汽车制动能量 分析的基础上,设计一种能量回馈的整车控制方式, 并进行相应控制策略的研究。 2 制动能量分析 为了进行电动汽车能量回馈控制,需首先探明 其在各种用途中的制动能量回馈潜力。作者分别以 美国F TP工况、高速公路HFET工况、欧洲城市循 环ECE2EUDC工况和日本J P10154种循环工况为 例,进行制动能量的分析。 4种循环工况的驱动与制动能量如图1所示, 可见在这4种循环工况中,制动能量都占了不小的 比例,其中J P1015工况为2517%,ECE2EUDC工况 为18%,HFET工况为6%,F TP为25%。 回馈能量还与制动方式和回馈系统各环节的效 率因子有关[2]。电动汽车的制动方式包括:电气制2005年(第27卷)第1期 汽 车 工 程 Automotive Engineering 2005(Vol.27)No.1

纯电动汽车制动能量回收技术

纯电动汽车制动能量回 收技术 Document number:PBGCG-0857-BTDO-0089-PTT1998

纯电动汽车制动能量回收技术 电动汽车制动能量回收技术是利用汽车在踩动刹车进行减速时将制动效能转变为电能储存并回收到电池当中,摩擦能量没有被浪费掉而是变相扩充了电池的容量,增加了纯电动汽车的续航里程,并且减少了刹车系统耗材的磨损。 电动汽车在“新能源”话题备受瞩目的今日已经不是个陌生词语,但是电动汽车的历史比大多数人想像得要长很多。1896年还推出了为电动车换电的服务,也就是我们今天所说的“充电桩”的雏形[仇建华,张珍,电动汽车制动能量回收方式设计[J].上海汽车.2012,12.];在十九世纪末二十世纪初的交通大变革中,电动汽车作为一种新型事物快速成长但又迅速陨落。有社会环境的影响也有自身条件的限制。 目前常见的纯电动汽车,其动力电池组、电池变换器和电动机之间为电气连接,电动机、减速器和车轮之间为机械连接。 纯电动汽车制动能量回收技术研究背景 ?动车从登上历史的舞台开始,续航性能如何提升一直是人们争议很大的点。从根本上来说,续航能力可以通过

改进蓄能和驱动方式来提高,除此之外,制动能量回收也是重要的方式之一。 制动能量回收,简单来说,就是把电动汽车的电机组中无用的部分、不需要的部分,甚至有害的惯性转动带来的动能转化为电能,并返回给蓄电池,与此同时产生制动力矩,使电动机快速停止惯性转动,这整个过程也就成为再生制动过程[叶永贞,纯电动汽车制动能量回收系统研究[D].山东:青岛理工大学,2013.]。 电动汽车发展至今,已有大部分安装了类似装置以节约制动能,经过研究发现,在行驶路况频繁变化的路段,制动能量回收技术可以增加20%左右的续驶里程。 制动能量回收方法 制动能量回收方法有常见三种: 飞轮蓄能。特点:①结构简单;②无法大量蓄能。 液压蓄能。特点:①简便、可大量蓄能;②可靠性高。 蓄电池储能。特点:①无法大量蓄能②成本太高。 电动汽车制动能量回收系统的结构 无独立发电机的制动能量回收系统。①前轮驱动制动能量回收系统;②全轮驱动能量回收制动系统。有独立发电机的制动能量回收系统。 系统传动方式

低速电动车市场分析报告资料

低速电动车市场分析资料 一、行业定义及分类 二、行业概况及现状 三、政策及环境 四、竞争分析 五、产业布局 六、技术特点 七、市场分析 八、发展趋势 九、投资分析 十、行业资讯 一、低速电动车行业定义如何?低速电动四轮车并非以传统轿车为原型,而是多以高尔夫球车等为原型发展而来。 低速电动车行业定义及分类 1.低速电动车行业定义 2016年中国低速电动车产业研究报告显示,低速电动车广泛的定义可以涵盖电动自行车、电动摩托车、电动三轮车、低速电动汽车等。低速电动汽车是指速度低于70km/h的简易四轮纯电动汽车。一般最高速度为70km/h,而外形、结构、性能与燃油汽车类似。 2.低速电动车行业分类 由于目前国内还没有出台这类车型的标准,因此国内生产厂家们

大都参考欧盟、日本等国的标准设计,即同时满足车身尺寸小、车身重量轻、最高时速低等条件。 四轮低速电动车可分为以下几类: ①高尔夫车及改装车:用于高尔夫球场、公司仓库搬运货物、建筑工地、家庭使用。 l 观光车、老爷车。譬如用于车速20~30km 旅游观光、住宅小区保安巡逻等场所使用。全国以玛西尔电动车为首约有200多家企业生产,年产约1万辆。 ②打猎车、越野车:由于电动车具有低速大扭矩的特点,爬坡能力比内燃机汽车更强。年产1万辆左右。 ③特种车:如高空作业车、城市扫地车、垃圾车等。年产l万辆,国内已经开始使用。 ④警用巡逻车:年产l万辆。车速在40km/h,6~20个座位,产量不多,主要集中在山东省小城镇. ⑤微型电动轿车:多数为私人购买,用于出租、客运、私家车等。车速在50~60km/h,2009国内销售8000多辆,出口2000多辆,市场增长率极高。 2016年中国低速电动车产业研究报告显示,就市场销售来说,山东省低速电动车从2010年的1.82万辆迅速增长到2014年的18.74万辆,五年即增长了近10倍,且自2010年起,累计向海外市场出口3.2万辆。2014年,山东省共生产低速电动车18.75万辆,同比增长50.46%,主要品牌有时风、雷丁、力驰、宝雅,共生产低速电动车14.36万辆。

纯电动汽车制动能量回收技术

纯电动汽车制动能量回收技术 电动汽车制动能量回收技术是利用汽车在踩动刹车进行减速时将制动效能转变为电能储存并回收到电池当中,摩擦能量没有被浪费掉而是变相扩充了电池的容量,增加了纯电动汽车的续航里程,并且减少了刹车系统耗材的磨损。 电动汽车在“新能源”话题备受瞩目的今日已经不是个陌生词语,但是电动汽车的历史比大多数人想像得要长很多。1896年还推出了为电动车换电的服务,也就是我们今天所说的“充电桩”的雏形[仇建华,张珍,电动汽车制动能量回收方式设计[J].上海汽 车.2012,12.];在十九世纪末二十世纪初的交通大变革中,电动汽车作为一种新型事物快速成长但又迅速陨落。有社会环境的影响也有自身条件的限制。 目前常见的纯电动汽车,其动力电池组、电池变换器和电动机之间为电气连接,电动机、减速器和车轮之间为机械连接。 纯电动汽车制动能量回收技术研究背景 ?动车从登上历史的舞台开始,续航性能如何提升一直是人们争议很大的点。从根本上来说,续航能力可以通过改进蓄能和驱动方式来提高,除此之外,制动能量回收也是重要的方式之一。 制动能量回收,简单来说,就是把电动汽车的电机组中无用的部分、不需要的部分,甚至有害的惯性转动带来的动能转化为电能,并返回给蓄电池,与此同时产生制动力矩,使电动机快速停止惯性转动,这整个过程也就成为再生制动过程[叶永贞,纯电动汽车

制动能量回收系统研究[D].山东:青岛理工大学,2013.]。 电动汽车发展至今,已有大部分安装了类似装置以节约制动能,经过研究发现,在行驶路况频繁变化的路段,制动能量回收技术可以增加20%左右的续驶里程。 制动能量回收方法 制动能量回收方法有常见三种: 飞轮蓄能。特点:①结构简单;②无法大量蓄能。 液压蓄能。特点:①简便、可大量蓄能;②可靠性高。 蓄电池储能。特点:①无法大量蓄能②成本太高。 电动汽车制动能量回收系统的结构 无独立发电机的制动能量回收系统。①前轮驱动制动能量回收系统;②全轮驱动能量回收制动系统。有独立发电机的制动能量回收系统。 系统传动方式 液压混合动力系统的系统传动方式有四种:串联式;并联式;混联式;轮边式。 串联式混合动力驱动系统。串联式混合动力驱动系统,动力源有:发动机和高压蓄能器。 这种方式只适合整车质量小、车速不能过高的小型公交车等。 并联式混合动力驱动系统。并联式混合动力驱动系统动力源是发动机和高压蓄能器。但并联式车辆在制动能量再生系统不工作或出故障时可以由发动机单独直接驱动车辆。 并联式系统的驱动路线有两条,一条是由发动机传给变速器,

电动汽车电机驱动控制策略研究

本科毕业设计(论文) () 论文题目:电动汽车电机驱动控制策略研究 本科生姓名:关海波学号:201211318 指导教师姓名:赵峰职称: 申请学位类别:工学学士专业:电力工程及管理 设计(论文)提交日期:(小四号楷体加黑)答辩日期:(小四号楷体加黑) 本科毕业设计(论文)

电动汽车电机驱动控制策略研究 姓名:关海波 学号:201211318 学院:新能源及动力工程学院专业班级:电力工程及管理1201班

指导教师:赵峰 完成日期: 兰州交通大学LanzhouJiaotongUniversity

摘要 本论文首先介绍了异步电动机的数学模型,通过坐标变换,得到了异步电动机的空间矢量等效电路。并由理想逆变器的8种开关状态入手,得到了理想逆变器的数学模型,建立了空间电压矢量的定义。并在此基础上对定子磁链和电磁转矩及空间电压矢量之间的关系进行了分析,阐述了六边形磁链轨迹和近似圆形磁链轨迹异步电动机直接转矩控制系统的结构和工作原理。 根据异步电动机直接转矩控制的工作原理,本论文在的平台下,分别搭建了六边形磁链轨迹和圆形磁链轨迹直接转矩控制系统模型。并对仿真结果进行了相应的分析,验证了异步电动机直接转矩控制策略的可行性。而且,对两种磁链轨迹直接转矩控制系统的优缺点及应用范围进行了比较。 本论文以电动汽车的电机驱动部分为研究对象,对于异步电动机的直接转矩控制技术进行了较为深入的理论研究,在电动汽车及其他相关领域的应用具有一定的参考价值。 关键词:电动汽车;电机驱动;直接转矩控制

, . . , . . , . a , a , . . :,, 目录 摘要错误!未指定书签。 错误!未指定书签。 1 绪论错误!未指定书签。 1.1国内外电动汽车的发展及现状错误!未指定书签。 2 电动汽车电机驱动系统分析错误!未指定书签。 2.1电动汽车驱动电机的特殊要求错误!未指定书签。 2.2电动汽车电机驱动系统的分类及选择错误!未指定书签。

纯电动汽车整车控制器的设计

纯电动汽车整车控制器的设计 发表时间:2019-07-05T11:27:03.790Z 来源:《电力设备》2019年第4期作者:王坚 [导读] 摘要:随着社会的发展与科技的进步,各个城市的汽车使用户喷井式增加。 (柳州五菱汽车工业有限公司广西柳州 545007) 摘要:随着社会的发展与科技的进步,各个城市的汽车使用户喷井式增加。传统的内燃机汽车消耗石油,排出大量废气,使得城市的空气质量不断下降。纯电动汽车由于不使用传统化石能源,对环境不造成污染,受到人们的青睐。随着科技的进步,电动汽车的核心技术不断地革新与突破,逐渐完善的城市基础设施提供了有利的帮助,电动汽车已经成为潜力股,逐步取代传统汽车变为可能。本文从汽车结构出发,结合整车信息传输过程,设计了整车控制器的软硬件结构。 关键词:纯电动汽车;整车控制器;硬件设计;软件设计 纯电动汽车作为新能源汽车的一种,以其清洁无污染、驱动能源多样化、能量效率高等优点成为现代汽车的发展趋势。整车控制器(vehicle control unit,VCU)作为纯电动汽车整车控制系统的中心枢纽,主要实现数据采集和处理、控制信息传递、整车能量管理、上下电控制、车辆部件控制和错误诊断及处理、车辆安全监控等功能。国外在纯电动汽车整车控制器的产品开发中,积极推行整车控制系统架构的标准化和统一化,汽车零部件厂商提供硬件电路和底层驱动软件,整车厂只需要开发核心应用软件,有利的推动了整车行业的快速发展。虽然国内各大汽车厂商基本掌握了整车控制器的设计方案,开发技术进步明显,但是对核心电子元器件、开发环境的严重依赖,所以导致了整车控制器的国产化水平较低。本文以复合电源纯电动汽车作为研究对象,针对电动汽车应有的结构和特性,对整车控制器的设计和开发展开研究。 一、整车控制系统分析与设计 (一)整车控制系统分析 复合电源纯电动汽车整车控制系统主要由整车控制器、能量管理系统、整车通信网络以及车载信息显示系统等组成。首先纯电动汽车整车控制器通过采集启动、踏板等传感器信号以及与电机控制器、能量管理系统等进行实时的信息交互,获取整车的实时数据,然后整车控制器通过所有当前数据对驾驶员意图和车辆行驶状态进行判断,从而进入不同的工况与运行模式,对电机控制系统或制动系统发出操控命令,并接受各子控制器做出的反馈。 保障纯电动汽车安全可靠运行,并对各个子控制器进行控制管理的整车控制器,属于纯电动汽车整车控制系统的核心设备。整车控制器实时地接收传感器传输的数据和驾驶操作指令,依照给定的控制策略做出工况与模式的判断,实现实时监控车辆运行状态及参数或者控制车辆的上下电,以整车控制器为中心通信节点的整车通信网络,实现了数据快速、可靠的传递。 (二)整车控制系统设计 复合电源的结构设计,选择了超级电容与DC/DC串联的结构,双向DC/DC跟踪动力电池电压来调整超级电容电压,使两者电压相匹配。为了车辆驾驶运行安全,同时为了更好地使超级电容吸收纯电动汽车的再生制动能量,在复合电源系统中动力电池与一组由IGBT组成双向可控开关,防止了纯电动汽车处于再生制动状态时,动力电池继续供电,降低再生制动能量的吸收效率。 整车CAN通信网络设计,由整车控制器(VCU)、电机控制器(motor control unit,MCU)、电池管理系统(battery management system,BMS)、双向DC/DC控制器以及汽车组合仪表等控制单元(Electronic Control Unit,ECU)组成了复合电源纯电动汽车的整车通信网络。 二、整车控制器硬件设计及软件设计 (一)整车控制器结构设计 整车控制器的硬件结构根据其基本的功能需求进行设计,如图1所示。支持芯片正常工作的微控制器最小系统是整车控制器的核心,基础的信号处理模块,CAN通信与串口通信组成的通信接口模块,以及LCD显示等其他模块分别作为它的各大功能模块。 图1 整车控制器硬件结构图 (二)整车控制器硬件设计 从功能上可以把整车控制器分为6个模块。 1)微控制器模块:本设计选用美国德州仪器公司TI的数字信号处理芯片TMS320F2812为主控芯片,负责数据的运算及处理,控制方法的实现,是整车控制器的控制核心。此芯片运算速度快,控制精度高的特点基本满足了整车控制器的设计需求。TMS320F2812的最小系统主要由DSP主控芯片、晶振电路、电源电路以及复位电路组成。 2)辅助电源模块:由于整车控制器的控制系统中用到多种芯片,所以需要设计辅助电源电路为各个芯片提供电源,使其正常工作,因此输出电平有多种规格。采用芯片LM317、LM337可分别产生+5V和-5V的供电电压。 3)信号调理模块:输入整车控制器的踏板信号是1~4.2V模拟电压信号,TMS320F2812的12位16通道的A/D采样模块输入的信号范围为0~3.0V,因此需要对踏板输入的模拟电压信号进行相应的调理运算,以满足DSP的A/D采样电平要求。选用德州仪器的OPA4350轨至轨运算放大器,在输入级采用RC低通滤波电路与电压跟随电路以滤除干扰信号,减小输入的模拟信号失真。开关信号先经RC低通滤波电路滤除高频干扰,再作为电压比较器LM393的正端输入,电压比较器的负端输入接分压电路,将LM393的输出引脚外接光耦芯片,在起到电平转换作用的同时,进一步隔离干扰信号,提高信号的安全性与可靠性。 4)通讯模块:TMS320F2812具有一个eCAN模块,支持CAN2.0B协议,可以实现CAN网络的通讯,但是其仅作为CAN控制器使用。选用3.3V单电源供电运行的CAN发送接收器SN65HVD232D,其兼容TMS320F2812的引脚电平,用于数据速率高达1兆比特每秒(Mbps)的应

低速电动车调研市场分析报告报告材料.doc

低速电动车市场调研 一、低速电动车概念 1、低速电动车概念 低速电动汽车是指速度低于70km/h 的简易四轮纯电动汽车。一般最高速度为70km/h , 而外形、结构、性能与燃油汽车类似。低速电动车广泛的定义可以涵盖电动自行车、电动摩 托车、电动三轮车、低速电动汽车,而四轮低速电动车又可分为: 高尔夫车及改装车。用于高尔夫球场、公司仓库搬运货物、建筑工地、家庭使用,年产量 2~3 万辆 观光车、老爷车。譬如用于车速20~30km 旅游观光、住宅小区保安巡逻等场所使用。 全国约有 200 多家企业生产,年产约 1 万辆 打猎车、越野车。由于电动车具有低速大扭矩的特点,爬坡能力比内燃机汽车更强。 年产 1 万辆左右 特种车。如高空作业车、城市扫地车、垃圾车等。年产l 万辆,国内已经开始使用 警用巡逻车。年产l 万辆左右 简易客车。车速在40km/h , 6~20 个座位,产量不多,主要集中在山东省小城镇 微型电动轿车。主要产地在山东,多数为私人购买,用于出租、客运、私家车等。 车速在 50~60km/h, 2009 国内销售8000 多辆,出口2000 多辆 二、发展低速电动车背景 国内汽车业界对于是否要发展低速电动汽车存在争议,目前低速电动汽车并不在政府的 节能与新能源汽车的鼓励范围之列, 一些生产企业也没有汽车生产资质。国家发改委、工信 部等主管部门没有明令禁止发展低速电动汽车, 但是由于低速电动汽车不能进入《车辆生产 企业及产品公告》 , 因此不能上牌 , 所以仍然属于受限制行列。 随着资源与环境双重压力的持续增大,电动汽车已成为未来汽车工业的发展方向。我国 电动汽车产业虽已取得很大进步,但在关键技术方面与海外汽车巨头相比还存在一定差距。 从我国目前的市场容量、技术水平看低速电动汽车具有经济性能好、节能环保、节约资源、 使用成本低、充电方便等优势,是二、三线城市最经济、最环保、最易推广的交通工具,是 我国实现绿色交通的战略选择。随着国家节能与新能源汽车补贴政策的出台,我国重点扶持纯电动汽车的战略路线基本确定。当前市场在售或即将进入市场的纯电动汽车基本都是高端 电动车,价格大都在 15 万元以上,甚至有的达到20 多万元,即便是享受国家补贴,但大部分人还是觉得价格偏高,同时担心充电设施不配套及电池的续航里程短等问题,导致企业已上“公告” 的纯电动汽车迟迟无法推出市场,个别已上市的产品也得不到消费者的认可。相反,低速电动汽车因为价廉物美,得到了不少消费者的青睐。在山东、江苏、河南、浙江、 河北等地一些城镇,节能环保低速纯电动汽车已经形成一定的规模,保有数量日益增长。由于我国对汽车产品准入采取的是公告管理,没有进入国家公告的汽车产品不能上市销售,所以目前多数低速电动汽车生产企业生产的电动汽车不能进入工信部的《车辆生产企业及产品公告》。当前,为解决现有高端、高价电动汽车产品有价无市的市场形势,有效利用电动汽 车现有技术水平,在发展电动汽车大方向不变的前提下,优先发展低速电动汽车更符合我国 的现实国情,也更有利于电动汽车的推广应用。 三、低速电动车市场潜力 优先发展低速电动汽车符合我国新能源汽车战略规划,根据我国汽车市场需求的层次

新能源电动汽车回收系统

现代汽车电子技术 题目:电动助力转向系统 摘要 本文从全球环境污染和能源短缺等严峻问题阐述了发展电动汽

车的重要性和必要性,着重分析概括了电动汽车制动能量回收系统的研究现状 关键字电动汽车制动能量回收系统 1 引言 目前,普通燃油汽车在国内外仍占据绝大部分汽车市场。汽车发动机燃烧燃料产生动力的同时排放出大量尾气,其成分主要有二氧化碳(CO2),一氧化碳(CO),氮氧化合物(NO X)和碳氢化合物(HC),还有一些铅尘和烟尘等固体细微颗粒物,虽然现代汽车技术已经使汽车尾气排放降到很低,但由于汽车保有量持续高速增加,汽车排放的尾气还是会对人类的生存环境造成很严重的影响,例如近年来不断加剧的温室效应,光化学烟雾,城市雾霾等大气污染现象。 内燃机汽车消耗的能源主要来自石油,石油属于不可再生资源,目前全球已探明的石油总量为12000.7亿桶,按现在的开采速度将只够开采40.6年左右,即使会不断发现新的油田,但总会有消耗的一天。全球交通领域的石油消耗占石油总消耗的57%,由于汽车的保有量持续快速增长(主要来自发展中国家),到2020年预计这一比例将达到62%以上,2010年我国的石油对外依存度已达到53.8%,到2030年预计这一比例将达到80%以上,可见石油资源的短缺将会直接影响我国的能源安全,经济安全和国家安全,不利于我国长期可持续的发展,因此探索石油以外的汽车动力能源是21世纪迫切需要解决的问题。 电动汽车具有无污染,已启动,低噪声,易操纵等优点,相关的技术研究已趋成熟,是公认的未来汽车的主流。自1997年10底丰田推出混合动力车型Prius 以来,电动汽车越来越受市场的欢迎,近年来不少国内外汽车生厂商已向市场推出不少种类的电动汽车,在混合动力汽车领域,日本的丰田和本田不管从技术研发还是在市场销售,宣传等方面已经走在世界的前列,推出了诸如Pius,Insight,Fit,Civic 等量产化混合动力车型,其他国外汽车制造商在本田和丰田之后也相继推出相应的车型,例如宝马3系,5系,7系,8系都推出了相应的混合动力车型,大众途锐的混合动力版,特斯拉推出的MODEL S 纯电动车,国内汽车生产商比亚迪在电动汽车领域已经走在前列,相继推出包含“秦”在内的许多种混合动力车型。

新能源电动汽车市场分析报告

新能源电动汽车行业分析报告 班级:车辆122 姓名:刘书成 学号:201210603103

在这深入研究新能源汽车的产业,包括它的产业链、产业结构、产业运营等。还将通过国内外数个案例来进行具体分析。进一步让读者了解新能源电动汽车的发展。 一、产业研究(一)新能源产业链上游:IC制造、正极材料、负极材料、电解液、隔膜、有色资源、钢铁等。 中游:电控系统(电池管理系统、电机控制系统、动力总成控制系统)、电池系统(电芯、电池组)、电机系统(驱动电机)、充电配套设备(充电桩、充电机)、仪表仪器、橡胶轮胎、变速箱系统、配件内饰等。 下游:乘用车、客车 后服务:销售、维修保养、金融、保险、二手车、充电设施、电池回收、汽车租赁、车联网、增值应用。 (二)产业链上游是资源类公司,主要为新能源汽车提供原始材料有色资源:天齐锂业、赣峰锂业、吉思镍业、贵研铂业、包钢稀土、厦门钨业 负极材料:杉杉股份、中国宝安 电解液:新亩邦、天赐材料、多氟多 隔膜:沧州明珠、南洋科技、云天化 正极材料:中信国安、杉杉股份、中国宝安、恒店东磁、当升科技 钢铁:宝钢股份、鞍钢股份、武钢股份、马钢股份、方大股份 (三)产业链中游的三大核心技术:电池+电机+电控,其中电池厂商可以成为东软的潜在合作伙伴新能源汽车=插电式混合动力+纯电动 核心技术: 1、镍氢电池:科力远、春兰股份、中炬高新、凯恩股份、北方稀土 2、锂电池: (1)电芯:比亚迪、成飞集团、万向集团、东莞ATL、佛山照明 (2)BMS:比亚迪、德赛电池、欣旺达、凹凸科技 3、电机+电控:大洋电机、江特电机、宁波韵升、方正电机、湘电股份、信质电机、宗升

电动汽车市场分析报告

新能源汽车行业 概述: ●十二五规划中明确要求,重点发展新兴产业,新能源汽车要着重发展插电式混 合动力汽车、纯电动汽车、燃料电池汽车等安全、节能的汽车。 ●即将出台的《节能与新能源汽车产业发展规划》(2011 年~2020 年),为我国新能源汽车的发展指明了方向。 ●在油价和政策的双重影响,节能和新能源汽车将更受关注。油价上涨在一定程 度上影响到消费者利益的同时,也在发挥着它的积极作用,促使一些消费者改变消费习惯。可以预见的是,随着燃油成本上升和消费者对燃油经济性的关注,再加上“节能产品惠民工程”的惠及面不断扩大,小排量、经济型轿车和新能与汽车的市场前景要乐观一些。 ●新能源汽车必将取代传统内燃机汽车。在石油资源枯竭和环境污染严重的双重 压力下,传统汽车产业已经走到了穷途末路,人类再次站在了交通能源动力系统变革的十字路口,以纯电动汽车为代表的新能源汽车将最终取代传统内燃机汽车。 ●新能源汽车有望成为“再次改变世界的机器”。汽车曾被誉为“改变世界的机 器”,在给我们带来快捷交通方式的同时,也产生了能源安全、环境污染和全球气候变暖等一系列问题。目前节能减排已成为全球汽车产业的首要任务,发展新能源汽车产业已成为我国汽车工业的战略方向。 ●中国发展新能源汽车产业的优势。巨大的市场容量,明确的增长预期;政策的

大力扶持;较好的技术储备;众多企业和科研机构的联合攻关;能源状况、自然资源对发展新能源汽车产业比较有利。预计到2015年中国新能源汽车将达到100万辆左右,年均复合增长率在216%左右。 ●初步建立了“三纵三横”的研发布局和技术体系,技术路线基本明确。混合动 力汽车具有较好的节能减排效果,技术上易实现,是近期产业化重点,但其过渡性特征明显;纯电动汽车是中长期发展方向;燃料电池是未来汽车工业发展战略方向。预计“三纵”各类产品将各领风骚数十年。与此同时,多能源动力总成控制、驱动电机和动力蓄电池”三横”技术得到很大提升。 ●产业政策加快新能源汽车技术进步的步伐。国家对私人购买新能源汽车补贴政 策意义重大,政策效果将远大于政府补贴对公交领域新能源汽车的影响。预计国家近期将出台全面、系统的新能源汽车发展规划,为新能源汽车产业发展增添新动力,同时也将成为新能源汽车类股票表现的催化剂。 ●新能源汽车的产业带动作用强。将带动上游矿产资源开采、电池材料制造和充 电设备需求的大幅增长,此外还将产生电池租赁等新的商业模式。整车领域则看好传统汽车基础扎实、具有一定新能源产业链技术、较强整合匹配能力和产业化能力的公司。 ●驱动电机系统是新能源车三大核心部件之一。电机驱动控制系统是新能源汽车 车辆行使中的主要执行结构,其驱动特性决定了汽车行驶的主要性能指标,它是电动汽车的重要部件。电机驱动系统主要由电动机、功率转换器、控制器、各种检测传感器以及电源等部分构成。 ●动力电池是新能源汽车的绿色心脏。动力电池是电动汽车的动力之源,是能量

电动汽车制动能量回馈研究开题报告

学院 毕业设计开题报告 学生姓名:学号: 专业: 设计题目:电动汽车制动能量回馈研究 指导教师: 年月日

1.本课题的研究意义,国内外研究现状、水平和发展趋势 目前用于车载的电储能装置主要是蓄电池储能装置,储能装置既可以作为驱动系统提供能量,又可以作为回馈系统回收制动能量。 制动能量的回馈已经应用于少数豪华跑车,作为噱头,真正的效果并不尽如人意。但是这是一个必然的发展趋势,节能减排是整个世界的共同主题。从1990年起,世界各地的大型汽车公司如美国的通用、福特,日本的本田、丰田与日产等都加大了对电动汽车研究的资金投入。这些公司很快就制造出了概念电动汽车及电动汽车,而且很多概念车在当时就配置了制动能量回馈系统。 可持续发展是人类社会的共同目标。为了解决日益匮乏的原油煤炭资源以及尾气排放等问题,混合动力型汽车是现在及以后需大力发展及推广的重要举措。如今混动汽车,纯电动公交车已经推广至社会中的大街小巷。然而电动汽车在频繁的制动过程中有许多能量流失浪费,本次设计的任务就是在现有的技术基础上,研究电动汽车在行车制动时能量的回馈吸收,使能量得到进一步的利用,延长行驶里程。首先阐释如今电动汽车的能量运转方式,分析制动能量回馈的可行性,在现有技术基础上展开研究,阐述先进性。

2.本课题的基本内容,预计可能遇到的困难,提出解决问题的方法和措施 主要内容 1.电动汽车制动能量回馈的研究现状。 2. 电动汽车制动能量回馈的主要关键技术有哪些。 3.现有电动汽车能量回馈系统及回馈控制方法有哪些,各有什么特点。 4.熟悉电动汽车制动能量回馈的工作原理。 5.提出一种电动汽车制动能量回馈系统,阐述所提出系统的先进性。 可能遇到困难: 1. 供电电源的电压必须大于电机的感应电动势。当电机的感应电动势较大时,供电电源的电压较高,使得电源系统体积较大,成本较高。 2. 在电机的转速变化范围较大的场合,从电机的感应电动势到电源电压的变换范围较大,使得变换效率较低。 3. 在制动能量回馈系统中,当制动速度较低时,产生的感应电动势较小,由于功率变换器具有一定的变压比,感应电动势无法升压到电源电压,从而不能回馈能量,在频繁低速制动的城市公交车中,回馈效率低或几乎不能回馈能量。 4. 利用电机绕组电感作为升压电感,使得电感电流波动较大,产生的热量较大,增加了电机本身的损耗,且当电机绕组电感较小时,需要串联电感以平滑电流的波动,使得结构复杂。 5.电池寿命短。 为了解决上述问题,需要我们多多查阅资料,利用相关软件进行模拟设计,在不

电动汽车整车控制系统介绍

电动汽车整车控制系统介绍 本文主要探讨纯电动汽车整车控制系统功能及研发流程。根据用途,整个电气系统可分为动力系统、能源系统、底盘电子控制系统、照明指示系统、仪表显示系统、辅助系统、整车综合控制系统、空调系统和舒适性安全系统等子系统。其中很多功能模块都需要和整车综合控制系统相关。整车电气系统列出如表1所示。 整车综合控制系统根据驾驶员的操作指示(油门、刹车等),综合汽车当前的状态解释出驾驶员的意图,并根据各个单元的当前状态作出最优协调控制。 1 整车控制器系统配置 整车控制器与整车其他电气系统连接如图1所示。整车控制器通过CAN总线与电池ECU、电机ECU、电源分配ECU、ABS系统、中控门锁、仪表显示系统连接。与其余的电气系统通过IO端口连接(也可使用CAN通讯)。下面分别对各电气单元的功能要求分别叙述。 1.1 动力系统提供整车的动力输出,其核心是驱动电机和电机驱动ECU 电机驱动ECU通过CAN总线与整车综合控制器通讯。应能提供电机转速、转矩、功率、电压、电流、水温、工作模式等参数。并应该能接受整车控制器发来的控制命令。 1.2 能源系统包括电池、电池管理单元和电源分配系统 与整车控制器通讯的有电池管理ECU和电源分配ECU。 电池管理ECU对电池进行充放电管理及保护。它应能提供电池组总电压、电流、单体电池电压、温度、剩余电量、电池健康状态、故障类型等信息。 电源分配ECU应能提供各个子电源的电压、电流和工作温度以及故障类型等信息。 1.3 ABS系统应能提供各个车轮的转速、液压系统状态、各个制

动阀的状态以及自身的工作状态等信息 1.4 中控门锁,应提供各车门状态等信息 1.5 仪表显示系统,应向整车控制系统提供所显示信息的全部内容 1.6 照明指示系统,可以通过CAN总线来控制,也可以通过IO来指示照明指示系统的运行状态 1.7 转向助力、制动助力、变速箱需提供档位位置、液压压力、工作状态等信息 可以是简单的开关量也可以用CAN总线通讯。 1.8 驾驶员的油门踏板和制动踏板经信号调理后接入到整车控制器内 2 整车控制器详细功能 纯电动汽车的整车控制器的主要功能包括:汽车驱动控制、制动能量的优化控制、整车的能量管理、CAN网络的维护和管理、故障的诊断和处理、车辆状态监视、行车记录等。整车控制器功能框图如图2所示。整车控制器通过CAN总线和IO端口来获得如加速踏板开度、电池SOC、车速等信息,并根据这些信息输出不同的控制动作。 下面分别介绍各部分实现的具体功能。 2.1 汽车驱动控制 根据司机的驾驶要求、车辆状态等状况,经分析和处理,向电机控制器发出指令,满足驾驶工况要求。包括启动、前进、倒退、回馈制动、故障检测和处理等工况。 2.2 整车能量优化管理 通过对电动汽车的电机驱动系统、电池管理系统、传动系统以及其它车载能源动力系统(如空调)的协调和管理,以获得最佳的能量利用率。 2.3 网络管理 整车控制器作为信息控制中心,负责组织信息传输,网络状态监控,网络节点管理等功能,网络故障诊断和处理。

电动车市场调研报告

竭诚为您提供优质文档/双击可除电动车市场调研报告 篇一:雅迪电动车市场调研报告 调研承担:德州学院委托调研:完成日期: 11级市场营 销第四组 雅迪科技有限公司(市 场部) 20XX年12月调研项目:雅迪电动车市场调研 目录 经理揽要 -------------------------------------------------------------------------3引言 -------------------------------------------------------------------------------5方法 -------------------------------------------------------------------------------9调查结果 ---------------------------------------------------

----------------------12局限 -------------------------------------------------------------------------------15结论和建议 ----------------------------------------------------------------------16参考文献 -------------------------------------------------------------------------17附件 -------------------------------------------------------------------------------18 附件1、调查问卷 ----------------------------------------------------------------------------18 尊敬的市场部经理先生: 您好! 首先感谢您对我团队的信任。在过去的1个月里,我团队经过充分的市场调查和研究分析,现就本次调查的相关情况向您做一个简单的汇报。正如您多期望的,我们本次调研的主要目的是通过对德州市雅迪电动车消费市场的调研,初步了解到德州市雅迪电动车消费偏好及特征,为贵公司的经营决策提供参考意见。在调查中,我们根据具体实际情况,选取了人流量较多的步行街雅迪电动车消费者组成的对象 进行了调研。通过对以上对象实施关于雅迪电动车的优势、

混合电动汽车整车控制策略研究及发展趋势探讨

混合电动汽车整车控制策略研究及发展趋势探讨 张嘉君 武汉理工大学汽车工程学院,湖北武汉 430070 E-mail:941ai@https://www.doczj.com/doc/e67294610.html, 摘要:混合电动汽车整车控制策略是电动汽车的灵魂。本文综述了当前混合电动汽车控制关键技术,分析了应用于电动汽车的主要控制理论,提出了整车控制策略研究的重点和突破方向,对混合动力整车控制策略设计与开发具有指导和借鉴意义。 关键词:混合电动汽车,控制策略,关键技术 1 引言 混合电动汽车(Hybrid Electrical Vehicle, 简称HEV)是指同时装备两种动力来源——热动力源(由传统的汽油机或者柴油机产生)与电动力源(电池与电动机)的汽车。通过合理复合动力系统,灵活调控整车功率流向,使发动机保持在综合性能最佳的区域工作,从而降低油耗与排放。美国的PNGV (Partnership for a New Generation of Vehicles)、欧洲的“The Car of Tomorrow ”计划、日本的“Advanced Clean Energy Vehicle Project”以及我国的“清洁汽车行动”都正是基于HEV而制定的战略计划。刚刚闭幕的“十一五”规划着力自主创新,混合动力技术可能是我国汽车行业自主创新的最大突破口,而在HEV关键技术中,整车控制策略占据着核心灵魂位置,因此,科学深入研究混合动力汽车的整车控制策略显得必然重要。作者对混合电动汽车的控制理论及技术现状作了系统分析,并指出了HEV控制策略研究关键技术和发展方向。 2 概念与结构 混合动力汽车主要有串联(SHEV)、并联(PHEV)和混联(SPHEV),和传统汽车的主要区别在于其多了电动机或发电机,不同混合动力之间的结构区别主要在于起能量流向的不同,图1和图2给出了串联和并联混合动力汽车的能量流向。抽象的混合动力控制策略,就是通过合理规划整车在具体行使工况中的不同动作,使整车能量高效、合理流动,达到整车经济性、动力性、排放等各项指标达到最佳结合点。 由于各种混合动力电动汽车结构上的差异,因而需要不同的控制策略来调节和控制功率流从不同元件的流进和流出,采用不同控制策略的目的是为了实现不同的控制目标。具体来说,混合动力控制策略的控制目标主要有以下四个:燃油经济性;排放指标;系统成本;最驱动性能。 - 1 -

电动车制动能量回收.

电控制动是趋势谈电动车制动解决方案 [汽车之家技术] 围绕电动车的话题更多的集中在续航里程、电池类型、充电方式及时间等一些使用的问题上,今天我们来聊聊别的话题,电动技术在代替了传统动力技术后,引发的变革确实是巨大的,这也影响到了车辆的技术开发,制动系统就是要谋变的其中一环。 图中所示为传统制动系统,驾驶员控制踏板,与踏板相连的是真空助力器,它负责将驾驶员施予踏板的力放大并推动主泵活塞进行制动压力,最后,制动分泵由活塞推动制动片夹紧制动盘,从而实现制动力。 这里面涉及到一个很重要的部件——真空助力器,如果它的工作状态不好,驾驶员踩制动踏板时就会觉得很硬,没有经验的驾驶员就会误以为没有制动功能了。而真空助力器的真空环境是由发动机提供的,较为传统的方式是从进气歧管处引出一根气管通向真空助力器,为了确保真空环境的稳定性,有些发动机还专门为

真空助力器设计了一个由凸轮轴驱动的机械真空泵,在此之前,还有厂商用电子真空泵来弥补“真空”。 传统动力汽车,制动系统可以从发动机处获得真空源从而让真空助力器为驾驶员提供辅助作用,那电动车的动力系统不具备制造真空的能力,制动助力的问题将如何解决? 解决这个问题现在有两种模式,一种是在现有的结构基础上去解决真空 源的问题,另一种则是采用新的技术原理,彻底舍弃真空在制动系统中的用途,重新设计制动系统技术结构。不仅是汽车行业,在各行各业面临新老更替时都少不了这样的做事逻辑。 ● 利用现有基础进行技术改进 利用现有结构基础进行技术改进的方式是目前绝大多数厂商在新能源车中采用的方式,原有的真空助力器以及相关管路得到保留,管路的另一端连接的电子真空助力泵,当传感器监测到助力器真空度不足时,电子真空泵开始工作维持真空环境,通过这样的方式,确保真空助力器能够像原先一样为驾驶员提供辅助作用。不过,这样的电子真空助力泵的噪音较大,此外更重要的是,电子真空泵的工作稳定性以及寿命都不太适合当做主要及唯一的真空源供应部件(原先在传统汽车上,它只是辅助维持真空环境)。显然,这样的方案是来自传统的汽车研发理念,而并非是站在新能源车的开发角度来解决问题。 ● 舍弃真空在制动系统中的用途

相关主题
文本预览
相关文档 最新文档