当前位置:文档之家› 电喷摩托车的工作原理

电喷摩托车的工作原理

电喷摩托车的工作原理
电喷摩托车的工作原理

电喷摩托车的工作原理

电喷摩托车的工作原理

电喷摩托车是一种新型摩托车,是通过微电脑根据发动机的负荷,控制喷油嘴给需要工作的汽缸喷油,不工作的汽缸不给油。与传统的化油器摩托车相比,电喷摩托车节油,与同型化油器车比,能节油20%以上;由于实现数字点火和喷油功能,油耗降低,排放改善,所以比化油器车环保,直接达到欧洲11号排放标准,同时还具有易启动的特点,一触即发,怠速稳定。

工作原理:化油器用机械方式实现给发动机供油,其供油量与转速或油门开度的关系只能是线性关系,无法保证发动机全工况全天候下的空燃比都能达到理想。同时,当发动机本身状态发生变化时,化油器不能随机应变,造成大量的能源浪费,并且很不利于燃烧,而使油耗升高,排放恶化。电喷摩托车采用电喷技术,用电喷系统装置(EFI)取消了化油器装置,采用含有电喷专用软件的微型计算机(ECU)对发动机燃油的供给和点火进行实时智能控制,供油极其精确,使发动机在任何工况任何环境下的空燃比、点火角度随时都能达到最佳,从而使摩托车的油耗降低,排放改善,综合性能大大提高。

分类比较:电喷摩托车大致分为开环式电喷摩托车和闭环式电喷摩托车。

开环式电喷摩托车,起功用不不一定比化油器的好;闭环式的电喷摩托车,就做得相当到位,其功能和作用跟汽车的基本上一样。闭环式电喷摩托车可以根据消音器里面氧气的含量来调节电喷嘴喷油量,同时也可以根据外界大气压的变化而改变进气压力的压力。现在市面上见得国产的基本都是开环式电喷摩托车。

电喷发动机:摩托车发动机的电喷装置一般是由喷油油路、传感器组和电子控制单元(ECU)三大部分组成的。如果喷射器安装在原来化油器位置上,即整个发动机只有一个汽油喷射点,这就是单点电喷;如果喷射器安装在每个气缸的进气管上,即汽油的喷射是由多个地方(至少每个气缸都有一个喷射点)喷入气缸的,这就是多点电喷。

摩托车开环与闭环优劣:开环就不能算真正意义上的电喷,它介于化油器和电喷之间,相较化油器比较好启动,只有闭环,通过ECU精确供油才叫电喷,能够在不同环境气候做出相应的自动调整,不会出现如高原气候车辆怠速抖动等,早晚摩托会进入全电喷时代

结构部件:ECU:电控单元的英文缩写,其实是一块集成电路板,负责将从各传感器送来的电信号转化为数字信号并用存储在电路板的可读写存储器内的程序处理,再发出控制信号来控制喷油器喷油和高压线圈点火。

喷油器:负责将燃油喷出并雾化的精密部件,一般是装在节气门体的进气管端。

节气门体:相当于化油器的喉管腔,但没有化油器上的其他部件,但有一个怠速旁通空气通路,当发动机在怠速及低速工况下温度升高后,空气由于受热密度下降而会出现进气量不足的情况,这时靠控制旁通空气通路来补充适量的空气。

节气门位置传感器(TPS):同节气门阀板连接在一起,当节气门阀板角度变化,开度增大时,传感器内的部件随阀板一起转动。节气门位置传感器实际是一个可变电位器,当它随节气门同步旋转时,就将节气门的转角和转角的速率转换为电压信号送往ECU,此信号主要是代表发动机的负荷情况。

进气温度传感器:用于测量进气温度,本身是一个热敏电阻,温度越高,电阻值越小,从而引起电压变化并送往ECU。

进气流量传感器:用特殊材料制成的进气格栅,并在工作时通电,使其温度一定,当进气量变化时,进气格栅被冷却降温,此时就需要更大的电流来使其温度升到原标准温度,而需要的电流大小同进气量的大小成正比,由此可以测出进气量的大小。

曲轴转角传感器:由脉冲齿圈和磁电线圈组成,脉冲齿圈安装在飞轮上随曲轴一起转动,在转动时磁电线圈感应到脉冲齿圈的信号后变为电压信号并送往ECU。

氧传感器:它主要是将废气中的氧含量信息送给ECU,ECU再根据信号来调整空燃比,使三元催化器效率最高,污染排放最少。氧传感器一般安装在排气歧管中,其电压输出值随废气中氧的浓度变化而变化,ECU根据氧传感器来的电压变化判断空燃比高低,并相应调整喷油量。因此即使发动机由于机件的磨损而引起空燃比变化,氧传感器也可及时反馈给ECU,从而实现发动机最佳空燃比的闭环控制。工作系统

电喷技术的分类

电喷系统的作用:电喷系统实际上是集成了化油器和点火器的一个系统,在不同工况下给发动机提供适量的燃油

及控制点火时间,保证发动机正常工作。

电喷系统的优点:同化油器供油相比,电喷系统的控制更精确,能在不同工况下实现精确的供油量控制,点火角度可以根据需要任意变化。另外有氧传感器的闭环电喷系统,就算是摩托车经过一段时间的使用,电喷系统也能根据发动机的实际情况进行喷油量的修正,从而能较好的控制排放,并能提高燃油经济性。

电喷系统的分类

有汽油泵的电喷系统:供油原理:点火开关开启后,油箱内的汽油泵通电运转,

电喷摩托车(图5)

将油送往喷油器,在油路中有一个燃油压力调节器,将燃油压力稳定后送往喷油器,喷油泵一次喷射完毕剩余的燃油通过回油管流回油箱。

控制信号输入:通过“节气门位置传感器、进气流量传感器、进气温度传感器、发动机温度传感器、曲轴位置传感器、氧传感器”等传感器即时测量的信号送往ECU。

信号处理及输出:ECU(中央控制单元)接收到各传感器的信号后,根据内置的计算程序计算出所需要的喷油量,根据喷油量的多少给喷油器发送一个波长不等的脉冲信号,通过控制喷油油嘴开启时间的长短来达到在不同工况下供应不同量燃油的目的。同时适时给点火线圈提供初级电压,达到点火的目的。无汽油泵的电喷系统:

供油原理:同普通摩托车一样,油箱内的汽油通过重力作用送往喷油器,

电喷摩托车(图6)

喷油器喷射完毕后剩余的燃油通过回油管流回油箱。

控制信号输入:通过“节气门位置传感器、进气流量传感器、进气温度传感器、发动机温度传感器、曲轴位置传感器、氧传感器”等传感器即时测量的信号送往ECU。

信号处理及输出:

ECU(中央控制单元)接收到各传感器的信号后,根据内置的计算程序计算出所需要的喷油量,根据喷油量的多少给喷油器发送一个波长不等的脉冲信号,通过控制喷油器内柱塞的作动将燃油加压,当压力超过压力控制阀时,阀门开启,燃油喷出,燃油量也是通过脉冲信号的长短来控制的。信号波长越长,柱塞周围的电磁线圈加电时间也越长,柱塞的运动时间和距离也越长,从而喷油量也越大。

两种电喷系统的比较:

供油方面:FI系统有燃油泵,需要改造油箱,另外额外增加了电力消耗,同时因为是高压供油,对油管等部件要求较高,如要求油管不能有太大的弹性,以便保证燃油压力,由于是压力供油,油箱与喷油器的位置不存在高低要求。

DCP系统采用重力供油,油箱不需变更,也不增加电力消耗,油管等部件也无特别要求,但由于是重力供油,油箱出油口的位置一定要高于喷油器,可能在某些车型上布置起来不是很方便。

控制信号输入:在控制信号输入上此两种系统没什么区别。

信号处理及输出:在信号处理及输出上此两种系统也无大的区别,主要是喷油器的结构有所不同,由于DCP系统的喷油器等于集成了FI系统的喷油器和燃油泵,所以结构比较复杂,体积一般也稍大一点。

编辑本段

主要优点

1、燃油供给精确,空燃比易于控制,燃油经济性好;

2、点火采用数字点火模式,在任何工况都在最佳点火时刻点火,燃烧充分、完全;

3、空燃比可控制在λ=1附近脉动,使三效催化器对CO、HC和NOX三种有害气体均有较高的转化效率,排放性能好;

4、起动性能好,加速、减速等变工况过渡圆滑,驾驶性能好;

5、电喷与化油器摩托车相比,虽然点火更时间准确了,而空燃比变稀了,最终发动机的动力性能与燃油相当。编辑本段

电喷系统维护

随着电子控制燃油喷射系统技术工艺的进步,电喷摩托车日渐进入市场,各类型的摩托车的电喷系统都由进气系统、供油系统、点火系统(ECU控制)和控制系统四部分组成,在使用过程中,必须了解它们的养护基本原则。进气系统的养护

现代摩托车电喷系统的进气系统主要是空气流量计(器)或绝对压力传感器和进气温度传感器等组成,

电喷摩托车(图7)

它们都是精密电控元件。在使用中,要确保在清洁的条件下工作,一般情况下是不会发生技术故障的。因此,摩托车的日常例行保养十分重要。

1、经常检查空气滤清器滤芯及周围是否有赃物、尘土杂质,如有应清除或用压缩空气从内向外吹除,必要时更换。

2、检查进气胶管接头处连接是否可靠,胶管是否破裂、漏气、老化等,视需要予以更换。

3、检查各传感器是否有明显的损伤、损坏,若有应更换新件,不可进行修复。

4、检查各传感器与ECU的连线是否牢固可靠,电线插接偷是否插到位,有无腐蚀氧化现象,电线是否有磨破或线间短路、断路现象,发现异常一定要排除。

供油系统的保养

任何时候检查供油系统的时候,都应先关掉电门锁开关,拆下蓄电池的负极导线,每一步都应小心谨慎,以防爆炸或火灾。

在拆卸之前,须先释放供油系统内的压力,其方法是:打开油箱盖以释放油箱内压力,拆下燃油泵插接件,启动发动机,使其怠速运转,直到发动机自行熄灭。如果发动机无法启动,可拆下喷油器上的导线束插接件后,将其中一个接线柱接地(搭铁),另一个接线柱用跨接导线与蓄电池正极接触不超过10s,以释放系统内的压力,当以上两种泄压方式都不可行的情况下,也可采取拆油管排除供油系统内油的压力的方法,用此方法泄压时应找一块干净的抹布包裹拆卸处吸收汽油,以免压力油四处喷射。

1、电喷摩托车只允许使用93﹟及以上的无铅汽油

2、电动汽油泵、电磁喷油器只要工作正常,不可轻易拆动,但检查电线束插头的可靠性是必要的,若有故障应由专业人员作业。

3、从燃油箱中取下电动燃油泵时,不要给油泵通电,以免产生电火花,引起火灾;

4、燃油泵不允许在干态下或水里进行运转试验,否则会缩减其使用寿命,另外燃油泵的正负极线不可接反。

5、更换燃油泵支架总成时,只能更换没有打开包装的燃油泵支架总成,且即开即用,保护帽只有在油泵马上要安装时才取走。绝对不允许取走进油口滤网。进入油泵进油口或滤网的异物会导致油泵损坏。

6、不要使用损坏的油泵和曾经跌落到地上过的油泵。

7、拆卸油管后要防止外界异物进入,污染或堵塞供油系统。供油系统的油管接头是特殊设计的,拆卸时应特别注意。所有用过的O型密封圈、衬垫、管道夹箍、垫圈等都是一次性配件,都应换新件,以确保供油系统密封不渗漏油。

8、油管的拆卸和更换应在通风良好的地方由专业维修人员进行。

点火系统的保养

点火系统各部器件要有足够的绝缘强度和机械强度。要求耐高温、防潮湿、抗腐蚀、故障率低、使用寿命长,调整简便。因此在养护作业时要:

1、检查各电线束是否连接可靠,插接是否到位,有无因油污腐蚀,绝缘不良的现象。磨破导线应用绝缘胶带包扎好,布线按设计走向不可随意改动。

2、当断开或接上插接件时,一定要关闭点火开关,否则会损坏电喷零部件。

3、火花塞间隙要认真按要求调整校正,防止过大或过小。对点火系统进行检查时,只有在必要的时候才进行跳火花检测,并且时间要尽可能短,检测时不能打开节气门,否则会导致大量未燃烧的汽油进入排气管,损坏三元催化器。

4、点火系的元器件一般是不可修复的,发现故障或损坏应更换新件。

控制系统的保养

现代摩托车系统中电子控制器ECU的额定工作电压一般为5V的直流电压。

建设JS150-3A(R6)电喷摩托车[1]

ECU对高温、高压都很敏感,当外界电压高于ECU系统的额定工作电压或外界温度高于额定温度的允许值时,都会使ECU损坏。在平时日常养护中必须注意以下要则:

1、不论摩托车发动机是否在运转,只要点火开关在ON接通位置,绝不可断开任何12V电器工作装置。因为断开这类器件装置,由于任一线圈的自感作用,都会产生很高的瞬时过电压,有可能达到7000V以上。如此高的瞬时过电压,通过电源导线加到ECU系统,必然造成电控系统损坏。虽然ECU都装有电源过载保护装置,但如

此高的电压持续时间过久也会使保护装置损坏。电动燃油泵、点火线圈、各种继电器和喷油器等都是电喷系统中具有较大电感的负载。

2、ECU一般不易出故障,如出故障,只有接受过专门培训的专业人员才能检测或修理,而且一般情况下也只能更换模块。用户在使用过程中切不可随意拆卸,以免ECU受损。养护时只需检查导线是否有脱离或磨破,插接件是否到位即可。在对ECU系统检测或更换模块时,操作人员一定要将身体先接地,防止人体静电对ECU的侵害。

3、不可用指针式万用表去测试ECU的传感器,而应使用高阻抗的数字万用表(10M以上)这是因为如果用低阻抗万用表对ECU系统进行测试,就相当于ECU测点并联了一个较大的负载,可能因超负荷而损坏ECU系统。也不用测试灯去测试任何和ECU相连的电器装置。这是因为测试灯的电压远高于ECU系统额定工作电压,很可能使ECU系统损坏。

折装连接导线时,须先断开点火开关,切断ECU系统电源。同时注意,不能随意变更ECU系统的独立供电线路。

4、发动机工作的时候蓄电池的任何一根线都不能随便断开。安装蓄电池前,务必辩认清楚正、负极性,切不可接反。同时蓄电池的电极与电缆线连接要牢固可靠,搭铁牢实,否则将会使电子控制系统产生不稳定的不良影响。蓄电池装复后,如果出现发动工况不如没有断开蓄电池之前理想,先暂不要随意更换零部件,因为这种情况可能是由于蓄电池被断开之后,将ECU中的学习修正记忆参数消除的缘故。待发动机工作运行一定时间后,ECU自动建立起学习修正记忆后,发动机运转不理想现象将会自动消失。

5、清洗摩托车时,要注意保护ECU,切不可用自来水冲洗,以免使ECU系统因潮湿而引起腐蚀、短路等。如被水侵湿,要立即吹干,使其保持良好状态。

6、摩托车安装喇叭不能装在靠近ECU的位置,因为扬声器的磁铁会损环ECU中的部件。

摩托车发动机基础知识

摩托车发动机基础知识 按排量大小分: ●50ml及以下:助力车 ●50ml-250ml: 小排量摩托车 ●250ml以上:大中排量摩托车 按发动机类型分: ●四冲程摩托车 ●二冲程摩托车 按车身结构分: ●跨骑式摩托车 ●踏板式摩托车 ●摩托车发动机气缸的数量 ●常见发动机气缸数量有单缸、双缸、三缸、四缸、六缸。 ●我们平常所接触到的发动机多数是单缸。 排量大(通常超过150ml)的发动机才采用多缸布置 发动机分类 发动机按工作原理分类

二冲程发动机曲 轴 一 个 回 转 , 完 成 一 个 做 功 循 环 燃 料 与 润 滑 油 预 先 混 合 , 同 时 进 入 气 缸 , 燃 料 燃 烧 做 功 , 润 滑 油 顺 缸 壁 流 淌 润 滑 , 多 余 的 随 废 气 排 出 无 配 气 机 构 , 结 构 紧 凑 , 重 量 轻 ; 启 动 速 度 快 , 噪 音 大 , 污 染 大 , 燃 油 经 济 性 不 好 四冲程发动机 曲 轴 两 个 回 转 , 完 成 一 个 做 功 循 环 独 立 供 油 系 统 , 润 滑 油 循 环 使 用 二冲程的使用范围:助动自行车、二冲程摩托车、凿岩机、割草机、小型发电机、链锯、雪撬、船用舷外桨机及小型农林耕作机械 ?摩托车发动机大体上由下列几部分组成 ? 1.机体:包含气缸头.气缸体.气缸垫.曲轴箱等;它的作用是支承和安装发动机的其它 零部件,承受发动机工作时产生的各种冲击力和扭矩. ? 2.曲轴连杆机构:曲轴,活塞.活塞环.活塞销等,它的主要作用是将活塞的往复直线运动 变为曲轴的旋转运动,从而输出功率并带动有关附件工作. ? 3.配气机构:凸轮轴组合.气门.气门弹簧.锁夹.摇臂.摇臂轴等,其作用是及时地将可燃 混合气吸入燃烧室,并及时将废气排出,以保证发动机正常运转工作. ? 4.燃料供给系统:化油器.燃油开关等,主要作用是按照发动机的不同工况,供给发动机 空气与汽油比例适当.足够的可燃混合气.

机油泵的结构、工作原理以及故障排除方法

机油泵的结构、工作原理以及故障排除方法机油泵(Oil Pump) 在润滑系统中,可迫使机油自油底壳送到引擎运动件的装置。 机油泵是用来使机油压力升高和保证一定的油量,向各摩擦表面强制供油的部件。内燃机广泛采用齿轮式和转子式机油泵。齿轮式油泵结构简单,加工方便,工作可靠,使用寿命长,泵油压力高,得到广泛应用.转子泵转子形体复杂,多用粉末冶金压制.这种泵具有齿轮泵同样的优点,但结构紧凑,体积小,运转平稳,噪音小。摆线转子泵内外转子齿数只差一齿,它们做相对运动时,齿面滑动速度小,啮合点在不断地沿着内外转子的齿廓移动,因此,两转子齿面的相互磨损小。由于吸油腔和排油腔的包络角度大,接近145°,吸油和排油时间都比较充分,因此,油流比较平稳,运动也比较平稳。 一、机油泵的结构和工作原理 机油泵是由装在泵体和泵盖之间一对高度和泵体腔相等而又互相啮合的外转子和内转子组成。外转子与泵体径向间隙一般为0.09~ ̄0.12mm,内外转子啮合间隙为0.07~0.12mm,内外转子与泵盖间隙0.03~0.075mm.由柱塞、弹簧和螺塞组成机油泵的调(限)压系统,它的作用是调整机油泵出油口的压力。 当发动机工作时,凸轮轴上的驱动齿轮带动机油泵的传动齿轮,使固定在主动齿轮轴上的主动齿轮旋转,从而带动从动齿轮作反方向的旋转,将机油从进油腔沿齿隙与泵壁送至出油腔。这样,进油腔处

便形成低压而产生吸力,把油底壳内的机油吸进油腔。由于主、从动齿轮不断地旋转,机油便不断地被压送到需要的部位。 机油泵在内燃机上的应用越来越多。同时,在半导体,太阳能,LCD等工程领域方面,也起着一定的作用。据泵阀英才网调查,近年来,随着加工技术的发展,汽车用油泵——摆线转子泵被应用到缝纫机中,特别是对一些全封闭自动润滑系统的机种,如包缝机、绷缝机。 内转子的齿廓和外转子的齿廓是一对共轭曲线所组成,因此,内转子上的齿廓和外转子齿上的齿廓相啮合,形成若干独立的密封工作空间,这些密封工作空间的容积随着内外转子的啮合旋转而发生变化。当内转子由电动机带动绕内转子回转中心作逆时针旋转时,外转子就绕外转子回转中心随同内转子作同向旋转。 二、机油泵常见故障分析 (1)、油压低,供油不足,发动机出现异响,甚至造成研瓦和研轴等故障。 产生原因是机油泵流量低,造成机油泵流量低可能是限压阀开启压力点早或内外转子、转子与泵体,泵盖与转子间隙过大。有时内转子与轴连接不牢,轴转而内转子时转时不转也是造成机油泵流量低的原因。 (2)、油压高将使发动机功率受到损失,影响密封出现漏油现象。 当压力过高时,还会损坏机油滤器滤芯,使机油得不到过滤。产

摩托车发动机技术及工作原理

摩托车发动机技术及工作原理 (一)摩托车发动机工作原理概述 1.四冲程发动机工作原理(如图1所示) (1)第一行程-进气行程 活塞在上止点前某一规定曲柄转角时,进气门开启,可燃混合气被吸入汽缸。当活塞由上止点向下止点运动,排气阀则在上止点某一规定的曲轴转角时关闭,同

时活塞上方的汽容积增大,使汽缸形成真空度,可燃混合气继续通过进气门吸入。当活塞行至下止点后某一规定曲柄转角时,进气门关闭。此时,进气工作过程结束。 (2)第二行程-压缩行程 活塞由下止点向上止点运动,当进气工作过程终了时,进气门和排气门都处于关闭状态,此时汽缸内的可燃混台气形台被压缩。 (3)第三行程-翻烧膨胀作功行程 在压缩行程,当活塞向上行至上止点前某-规定曲柄转角时,火花塞电极间发出火花,将被压缩的可燃混合气点燃。燃烧着的可燃混合旬吏汽缸内的温度和压力急剧升高,活塞则在此高温高压气压的作用下,再由上止点向下止点运动,且通过连杆驱使曲轴旋转而做有用功。 (4)第四行程-排气行程 在燃烧膨胀行程,当活塞行至下止点前某一规定曲轴转角时,扫汽阀开启,废气即通过排气门开始排出。曲轴仍继续旋转,并推动活塞再由下止点向上止点运动,将废气推出汽缸。此排气过程直到活塞行至上止点后某一规定曲轴转角,扫汽门被关闭时终止。 2.四冲程发动机优缺点 (1)优点 进气、压缩、膨胀(爆发)、排气各过程各自单独进行,因此工作可靠效率高,稳定性好。低速至高速的转速范围大(500-1000r/min以上)。不存在二冲程发动机那样的窜气回流损失,燃油消耗率低。低速运转平稳,依靠闰渭系润滑,不易过热。进气就压缩过程时间长,容积效率及平均有效压力高。热负荷比二冲程发动机小。不用担心变形和烧蚀问题。扫漫大,可设计成大功率发动机。 (2)缺点 气门配气机构复杂,零部件多,保养困难;机械噪声大;由于曲轴旋转二圈爆发1次,所以旋转平衡不稳定。

电喷发动机工作原理

电喷发动机工作原理 现在的电喷车在行驶过程中,当司机突然松开油门踏板(使节气门完全关闭)时,发动机不需要输出转矩,而是由汽车的动能拖动。这一工况被称为拖动工况或滑行工况。 在拖动工况为了减少废弃排放和降低燃油消耗以及改善行驶特性,电控系统中央控制器识别出发动机处于拖动工况后,首先立即推迟当时的点火角,然后全部切断向发动机喷油,这样可使工况的过度过程较为平稳。 当发动机转速超过规定转速界限(转速界限2)并且节气门关闭时,喷嘴将不再喷油,发动机的供油被切断;而发动机转速一旦低于下个转速界限(转速界限3),则喷嘴又重新开始喷油。如果在拖动工况出现发动机转速急剧下降,如在紧急刹车时,则喷嘴将在较高转速(转速界限1)恢复喷油,以防止低于发动机怠速转速或发动机完全熄火。 一、简介 电子燃油喷射控制系统(简称EFI或EGI系统),以一个电子控制装置(又称电脑或ECU)为控制中心,利用安装在发动机不同部位上的各种传感器,测得发动机的各种工作参数,按照在电脑中设定的控制程序,通过控制喷油器,精确地控制喷油量,使发动机在各种工况下都能获得最佳浓度的混合气。 此外,电子控制燃油喷射系统通过电脑中的控制程序,还能实现起动加浓、暖机加浓、加速加浓、全负荷加浓、减速调稀、强制断油、自动怠速控制等功能,满足发动机特殊工况对混合气的要求,使发动机获得良好的燃料经济性和排放性,也提高了汽车的使用性能。 电子控制燃油喷射系统的喷油压力是由电动燃油泵提供的,电动燃油泵装在油箱内,

浸在燃油中。油箱内的燃油被电动燃油泵吸出并加压,压力燃油经燃油滤清器滤去杂质后,被送至发动机上方的分配油管。分配油管与安装在各缸进气歧管上的喷油器相通。喷油器是一种电磁阀,由电脑控制。通电时电磁阀开启,压力燃油以雾状喷入进气歧管内,与空气混合,在进气行程中被吸进气缸。分配油管的末端装有燃油压力调节器,用来调整分配油管中燃油的压力,使燃油压力保持某一定值,多余的燃油从燃油压力调节器上的回油口返回燃油箱。 进气量由驾驶员通过加速踏板操纵节气门来控制。节气门开度不同,进气量也不同,进气歧管内的真空度也不同。在同一转速下,进气歧管真空度与进气量成一定的比例关系。进气管压力传感器可将进气歧管内真空度的变化转变成电信号的变化,并传送给电脑,电脑根据进气歧管真空度的大小计算出发动机进气量,再根据曲轴位置传感器测得信号计算出发动机转速。根据进气量和转速计算出相应的基本喷油量。电脑根据进气压力和发动机转速控制各缸喷油器,通过控制每次喷油的持续时间来控制喷油量。喷油持续时间愈长,喷油量就愈大。一般每次喷油的持续时间为2~10ms。各缸喷油器每次喷油的开始时刻则由电脑根据安装于离合器壳体上的发动机转速(曲轴位置)传感器测得某一位置信号来控制。这种类型的燃油喷射系统的每个喷油器在发动机每个工作循环中喷油两次,喷油是间断进行的,属于间歇喷射方式 二、电子燃油喷射控制的原理 (一)各种工况控制简介

油泵工作原理的介绍

油泵工作原理的介绍 关于油泵工作原理的介绍: 川崎负流量系统对油泵排量的控制分液控和电控两种状态 电控状态:与排量变化相关的控制液压信号是前泵油流,后泵油流和先导油及负流量,其中前后泵的油流直接控制油泵,先导油经过电比例阀节流后控制油泵,我们可以称之为先导二次压力。下面我们以后泵的控制为例来分析排量的变化情况。 首先,我们必须明确几个概念 1.排量控制的源信号是:前泵油流,后泵油流和先导二次油流和负流量,其中前泵油流控制一级活塞,后泵油流控制一级活塞和斜盘活塞(一端控制斜盘活塞的小端,处于常开状态,一端控制大端处于常闭状态,一端控制主压活塞),负流量控制一级活塞,先导二次油流控制二级活塞 2.控制元件是 ①滑阀:是一个三位三通阀,它由阀芯和滑套组成,两者之间能相对运动。阀芯的移动由阀芯右端的一级活塞和二级活塞与阀芯左端的弹簧构成平衡。滑套的移动由斜盘活塞控制,随着斜盘活塞的移动而移动,其移动距离和方向跟斜盘活塞一致。 ②二级活塞:在电控状态下,先导二次油流单独控制二级活塞,负流量不参与直接控制,而是由负压传感器采集其压力参数,提供给电脑,经电脑计算作为控制电比例阀电流的一个参数来控制先导二次油流;在液控状态下,先导二次油流被液改电控阀截断,不参与对二级活塞的控制,由负流量单独对二级活塞进行直接控制。二级活塞的工作方向为推动滑阀阀芯向左运动,由自带弹簧回位构成平衡。 ③一级活塞:由前泵油流,后泵油流及先导一次油流(仅在液控状态下)进行控制,其工作方向为推动滑阀阀芯向左运动,由自带弹簧回位,构成平衡。 3.执行元件是变量活塞: 变量活塞由固定的活塞套和一个两端截面积大小不一样的柱塞构成,柱塞与斜盘和滑阀套连接,当两个端面受压产生压差时,柱塞带动其他两个一起运动。 下面我们来分析液压系统中压力和流量控制在油泵中间的具体的变化关系。 指导思想:1.压力取决于负载.2..油泵输出的压力与流量成反比。

电喷发动机工作原理

电喷发动机工作原理 电喷发动机工作时,需要随时从各种传感器中获取数据,然后由行车电脑运算后,送到各执行部件进行调整来实现对发动机的控制的。简单的说分以下几种情况:(只对电喷型发动机)1. 着车:当你将钥匙转动到on位时,行车电脑开始对各传感器和执行器进行自检,并同时接通汽油泵继电器供油,这时如果车子里很静的话,你会听到在油箱里的电子油泵转动的声音,1-2秒左右后,当油压达到标准压力后,汽油泵停转。同时,电脑将向位于节气门处的怠速步进电机供电,使其进入正常位置。这时将钥匙转向start位置,接通启动继电器,启动机开始转动; 2. 怠速:启动机开始转动后,电脑开始读取位于发动机飞轮处的曲轴位置传感器和位于分电器中的同步传感器这两个传感器的读数,如果读数正常,且两信号数据变化与启动条件吻合,则电脑再根据当前的发动机冷却水温度,进气岐管空气温度数据调整怠速步进电机,将怠速调整杆调整到合适位置。一切就绪后,电脑开始根据曲轴位置传感器和同步传感器传来的信号计算出点火时机,并根据水温和气温传感器的数据计算出喷油咀开启时隙(脉冲),然后根据计算结果开始向高压包的低压线供电和向喷油咀线路供电,其中,向喷油咀供电是以脉冲方式进行的。根据以上原理,在冻天启动电喷车是不用加油门的,不然行车电脑还要将节气们开启度数据进行运算,会影响启动效果。点火成功后,行车电脑将时刻监视各传感器数据,并根据安装在发动机进气岐管上的进气岐管绝对压力传感器所传入的真空压力值,结合水温、进气温度等信号,调整怠速电机和喷油咀开启脉冲,将转速控制在最低的稳定转速下; 3. 加速:当你踩下油门时,电脑及时从节气门上的节气门位置传感器读到数值,并结合节气门上的进气岐管绝对压力(真空度)传感器和分动箱上(2021切诺基)的行车速度传感器共同算出车辆负荷信息,调整喷油咀喷油脉冲(实际上是延长喷油时间),加大喷油量,完成加速动作; 4. 减速:当你松开油门时,电脑如上面加速一样,根据各传感器信号,调整喷油脉冲实现减速,但此时为保证减速效果平稳,电脑会对喷油量

康明斯电喷发动机故障代码资料

注意:此翻译稿仅供参考,所有内容以英文原版公告AEB15.43为准。

第I节 - Quantum诊断 先进的诊断技术 先进的诊断技术可对Quantum发动机进行简单的维修和服务。故障或保养条件的诊断检验可通过机载或非机载系统进行。 机载诊断 ?ECM具有大范围检测故障的能力 ?闪烁故障代码 ?位于驾驶室仪表盘上的故障指示灯可指示警告/停机故障 ?保养指示灯 机载诊断 1. 故障检测 在设备自己工作期间,当钥匙开关处于ON位置时检测故障。如果此时故障变为现行故障(当前检测到),存储器中就会记录故障,同时记录发动机参数速录数据。另外根据现行故障的严重程度,特定的故障可能会使警告指示灯(黄色)或停机指示灯(红色)、保养指示灯或燃油含水(WIF)指示灯变亮。 2. 闪烁故障代码 可通过诊断开关或油门踏板进入故障代码闪烁模式。要进入故障代码闪烁模式,钥匙开关必须处于ON(接通)位置并且发动机停机。使用诊断开关进入该模式时,在诊断开关转到ON位置后,ECM将自动闪烁第一个故障代码。诊断增加/减少将向前或向后调整现行故障代码。要使用油门踏板进入故障代码闪烁模式,必须循环踩下和释放油门踏板,使油门开度连续3次从0到100%。一旦进入诊断模式,循环踩下和释放油门踏板可顺序向前达到现行故障代码。下图描述了通过停机指示灯指示的故障代码闪烁方式的类型。

3. 故障指示灯 Quantum 系统使用多达5个指示灯(每个指示灯具有两种功能):停机指示灯、警告指示灯、保养指示灯/发动机保护指示灯(所有发动机系列使用其中一个,而不是同时使用两个)、等待起动指示灯和燃油含水指示灯。如果钥匙开关转到ON 位置而诊断开关保持断开,这些指示灯将会亮约2秒钟然后熄灭,以证实指示灯正常工作和接线正确。参阅下面的插图,这些指示灯全部变亮然后每次熄灭一个。 警告指示灯 – 用于所有Quantum 发动机 - 警告指示灯提供重要的操作员信息。要求操作员及时注意这些信息。 警告指示灯还用于描述诊断故障代码。 停机指示灯 – 用于所有Quantum 发动机 - 停机指示灯提供紧急的操作员信息。这些信息要求操作者快速响应并采取正确措施。停机指示灯还用于闪烁诊断故障代码。 发动机保护指示灯 – 用于QSK19/45/60, QST30发动机 - 当存在发动机保护故障时,发动机保护指示灯将变亮。可通过OEM 配线配置系统,以便用红色/停机指示灯指示发动机保护故障。这是通过将红色指示灯连接至ECM 的红色/停机指示灯输入和发动机保护指示灯输入来实现的。如果发动机保护指示灯信号用于控制其它功能,如车辆驱动电路,该电路中必须接入一个二极管。 选装 - 2指示灯布置方案- 用于QSK19/45/60发动机 - 选装的2-灯布置方案将取消发动机保护(白色)指示灯。因此,操作员仪表盘上只有一个警告指示灯(黄色)和一个停机指示灯(红色)。所有通过发动机保护指示灯指示的故障将通过停机(红色)指示灯来指示。这种改进只会影响故障指示灯的线路布置,不会影响软件或标定程序。参阅下面的线路图。

电喷柴油机的工作原理教学教材

电喷柴油发动机的工作原理和使用方法 电喷柴油机的工作原理 高压共轨(Common Rail)电喷技术是指在高压油泵、压力传感器和电子控制单元(ECU)组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式。它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Pressure)大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速变化的程度. 共轨技术是指高压油泵、压力传感器和ECU组成的闭环系统 中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式,由高压油泵把高压燃油输送到公共供油管,通过对公共供油 管内的油压实现精确控制,使高压油管压力大小与发动机的转速无 Rail p^ewure sensor 屮轨 压 站 carm-qr HMMnl speed sansar p?aei (trpdl’t^rnaor 凸能IHt* i?kfk 力 High t>ressuc? pjmp CPN2 2 wdh 惟逼「irp up.* rAoin-+ilter rAoin-+ilter ffi KB S&nsors High \$屮£ limiter valw K I Low pnKQMie 带*樹泵的粋直春 E^ctrortic ewol wnii AduAt*^ MtrS Injector Tank with pre酬即 VMd sensor 祐出舸*槪専箪 利梓敢jt wnscu 驕?H■ 芍

关,可以大幅度减小柴油机供油压力随发动机转速的变化,因此也就减少了传统柴油机的缺陷。ECU空制喷油器的喷油量,喷油量大小取决于燃油轨(公共供油管)压力和电磁阀开启时间的长短。 高压共轨系统利用较大容积的共轨腔将油泵输出的高压燃油 蓄积起来,并消除燃油中的压力波动,然后再输送给每个喷油器,通过控制喷油器上的电磁阀实现喷射的开始和终止。 其主要特点可以概括如下: 共轨腔内的高压直接用于喷射,可以省去喷油器内的增压机构;而且共轨腔内是持续高压,高压油泵所需的驱动力矩比传统油泵小得多。 通过高压油泵上的压力调节电磁阀,可以根据发动机负荷状 况以及经济性和排放性的要求对共轨腔内的油压进行灵活调 节,尤其优化了发动机的低速性能。 通过喷油器上的电磁阀控制喷射定时,喷射油量以及喷射速率,还可以灵活调节不同工况下预喷射和后喷射的喷射油量以及与主喷射的间隔。 高压共轨系统由五个部分组成,即高压油泵、共轨腔及高压油管、喷油器、电控单元、各类传感器和执行器。供油泵从油箱将燃油泵入高压油泵的进油口,由发动机驱动的高压油泵将燃油

四柱液压机工作原理解读

四柱液压机工作原理 四柱液压机四柱液压机是油泵把液压油输送到集成插装阀块,通过各个单向阀和溢流阀把液压油分配到油缸的上腔或者下腔,在高压油的作用下,使油缸进行运动。液压机是利用液体来传递压力的设备。液体在密闭的容器中传递压力时是遵循帕斯卡定律。 四柱液压机由主机及控制机构两大部分组成。液压机主机部分包括液压缸、横梁、立柱及充液装置等。动力机构由油箱、高压泵、控制系统、电动机、压力阀、方向阀等组成。[1] (二用途 该液压机适用于可塑性材料的压制工艺。如粉末制品成型、塑料制品成型、冷(热挤压金属成型、薄板拉伸以及横压、弯压、翻透、校正等工艺。 四柱液压机具有独立的动力机构和电器系统,采用按钮集中控制,可实现调整、手动及半自动三种操作方式。 (三特点 机器具有独立的动力机构和电气系统,采用按钮集中控制,可实现调整、手动及半自动三种工作方式:机器的工作压力、压制速度,空载快下行和减速的行程和范围,均可根据工艺需要进行调整,并能完成顶出工艺,可带顶出工艺、拉伸工艺三种工艺方式,每种工艺又为定压,定程两种工艺动作供选择,定压成型工艺在压制后具有顶出延时及自动回程。 液压机简介 (又名:油压机利用帕斯卡定律制成的利用液体压强传动的机械,种类很多。当然,用途也根据需要是多种多样的。如按传递压强的液体种类来分,有油压机和水压机两大类。水压机机产生的总压力较大,常用于锻造和冲压。锻造水压机又分为模锻水压机和自由锻水压机两种。模锻水压机要用模具,而自由锻水压机不用模具。我国制造的第一台万吨水压机就是自由锻造水压机。

工作原理 四柱液压机[2]的液压传动系统由动力机构、控制机构、执行机构、辅助机构和工作介质组成。动力机构通常采用油泵作为动力机构,一般为积式油泵。为了满足执行机构运动速度的要求,选用一个油泵或多个油泵。低压(油压小于2.5MP用齿轮泵;中压(油压小于6.3MP用叶片泵;高压(油压小于32.0MP用柱塞泵。各种可塑性材料的压力加工和成形,如不锈钢板钢板的挤压、弯曲、拉伸及金属零件的冷压成形,同时亦可用于粉末制品、砂轮、胶木、树脂热固性制品的压制。 安全操作 1、液压机操作者必须经过培训,掌握设备性能和操作技术后,才能独立作业。 2、作业前,应先清理模具上的各种杂物,擦净液压机杆上任何污物。 3、液压机安装模具必须在断电情况下进行,禁止碰撞启动按钮、手柄和用脚踏在脚踏开关上。 4、装好上下模具对中,调整好模具间隙,不允许单边偏离中心,确认固定好后模具再试压。 5、液压机工作前首先启动设备空转5分钟,同时检查油箱油位是否足够、油泵声响是否正常、液压单元及管道、接头、活塞是否有泄露现象。深圳油压机TM系列引 6、开动设备试压,检查压力是否达到工作压力,设备动作是否正常可靠,有无泄露现象。 7、调整工作压力,但不应超过设备额定压力的90%,试压一件工件,检验合格后再生产。 8、对于不同的液压机型材及工件,压装、校正时,应随时调整压机的工作压力和施压、保压次数与时间,并保证不损坏模具和工件。

发动机电喷系统的工作原理

发动机电喷系统的工作原理 现在的电喷车在行驶过程中,当司机突然松开油门踏板(使节气门完全关闭)时,发动机不需要输出转矩,而是由汽车的动能拖动。这一工况被称为拖动工况或滑行工况。 在拖动工况为了减少废弃排放和降低燃油消耗以及改善行驶特性,电控系统中央控制器识别出发动机处于拖动工况后,首先立即推迟当时的点火角,然后全部切断向发动机喷油,这样可使工况的过度过程较为平稳。 当发动机转速超过规定转速界限(转速界限2)并且节气门关闭时,喷嘴将不再喷油,发动机的供油被切断;而发动机转速一旦低于下个转速界限(转速界限3),则喷嘴又重新开始喷油。如果在拖动工况出现发动机转速急剧下降,如在紧急刹车时,则喷嘴将在较高转速(转速界限1)恢复喷油,以防止低于发动机怠速转速或发动机完全熄火。 一、简介 电子燃油喷射控制系统(简称EFI或EGI系统),以一个电子控制装置(又称电脑或ECU)为控制中心,利用安装在发动机不同部位上的各种传感器,测得发动机的各种工作参数,按照在电脑中设定的控制程序,通过控制喷油器,精确地控制喷油量,使发动机在各种工况下都能获得最佳浓度的混合气。 此外,电子控制燃油喷射系统通过电脑中的控制程序,还能实现起动加浓、暖机加浓、加速加浓、全负荷加浓、减速调稀、强制断油、自动怠速控制等功能,满足发动机特殊工况对混合气的要求,使发动机获得良好的燃料经济性和排放性,也提高了汽车的使用性能。 电子控制燃油喷射系统的喷油压力是由电动燃油泵提供的,电动燃油泵装在油箱,浸在燃油中。油箱的燃油被电动燃油泵吸出并加压,压力燃油经燃油滤清器滤去杂质后,被送至发动机上方的分配油管。分配油管与安装在各缸进气歧管上的喷油器相通。喷油器是一种电磁阀,由电脑控制。通电时电磁阀开启,压力燃油以雾状喷入进气歧管,与空气混合,在进气行程中被吸进气缸。分配油管的末端装有燃油压力调节器,用来调整分配油管中燃油的压力,使燃油压力保持某一定值,多余的燃油从燃油压力调节器上的回油口返回燃油箱。 进气量由驾驶员通过加速踏板操纵节气门来控制。节气门开度不同,进气量也不同,进气歧管的真空度也不同。在同一转速下,进气歧管真空度与进气量成一定的比例关系。进气管压力传感器可将进气歧管真空度的变化转变成电信号的变化,并传送给电脑,电脑根据进气歧管真空度的大小计算出发动机进气量,再根据曲轴位置传感器测得信号计算出发动机转速。根据进气量和转速计算出相应的基本喷油量。电脑根据进气压力和发动机转速控制各缸

四冲程摩托车发动机种类和特点

四冲程摩托车发动机地种类和特点 众所周知,发动机是摩托车地心脏.当您讨论一辆摩托车地性能时,话题一定会讨论到发动机.这是因为人们在驾乘摩托车地过程中,始终以肉体直接感受到发动机运动时地振动、热力和排气声音.发动机作为摩托车重量最重地组件,它地重量和重心都会直接影响驾乘者地操控乐趣.其实,直接影响驾乘者操控乐趣地关键是发动机地布局,各式各样地气缸布局使无数车迷为之倾倒,这是汽车所望尘莫及地.当然,这里还存在一个敏感地成本造价问题.本文拟就四冲程发动机气缸地排列方式和优缺点,以及大家普遍关心地一些热门话题展开讨论. 一、单气缸 单气缸是所有发动机地基本起点,也是发明摩托车发动机时采用地排列方式.不同型式地发动机都是由不同数量地单缸布置而成.由于曲轴需要旋转两周才会燃烧做功一次,因此工作地流畅感不佳,驾驶者会很清楚地感受到气缸内地活塞上下运动地振动.从表面上看,在性能上是缺点,但在主观情感上有地车迷却偏爱这种感受. 优点:价格便宜、造型简单、风阻和外形尺寸小.由于曲柄轴长度较短和发动机宽度窄,气缸低,有利于发动机倾斜转向,为驾乘者

提供轻快地乘骑感受.此外,单缸发动机还比多缸发动机较省油. 缺点:燃烧效率会随着燃烧室容积地增大而不断下降.加上排气量越大,发动机活塞越大,其重量也随之增加,造成转速不能设计过高,限制了大功率地输出.单缸发动机常见于小排量(一般不大于)摩托车或以轻巧为上地各种车款. 二、并列(平行)双缸 简单来说,并列双缸发动机可以想象为把两个单气缸发动机连接在一个;地曲轴上.当一个活塞在上止点时,另一个活塞则在下止点位置(少数发动机如本田除外).由于两气缸活塞上下运动惯性差不多,可以互相抵消,因此运动零件引起地震荡较单缸少. 优点:在同一排量条件下,燃烧速率较单气缸发动机为好,发动机部件地重量和体积均细小,有利于作较高转速地功率发挥,化油器和进气管地布局也较简单. 缺点:由于气缸数地增加,相应地曲轴、气缸、活塞、活塞环、活塞销等零件数量就会增加.此外,像化油器、气缸盖、曲轴、进排气系统等专用零件地结构要比单缸机更加复杂,这无疑使得双缸机地制造成本会大大高于单缸机,而且由于零件数量地增加,会导致发动

气动油泵的工作原理

GMCC PMA 班06-02主题 气动油泵的工作原理 如下图1-1所示, 一、气动泵的工作原理如下: 1、压缩空气通过过滤网14进入,推动选择阀2下降,然后气体通过通道b进入缸体 推动活塞7下降,与活塞7相连的柱塞17同时跟着活塞动作,柱塞把腔体的油通过单向阀R压向出油口。 2、当柱塞下降到下行程时,选择阀2关闭,并阻止压缩空气进入气缸体内,然后靠 气缸内的弹簧10克服气压压力并推动活塞上升,柱塞也跟着上升,这时候吸入单向阀24打开把油吸到腔体内,气体通过通道a和b从消声器12排放出去。 3、当柱塞上升到上行程时,选择阀再次打开,压缩空气推动柱塞进行排油过程。 4、在没有负载的情况下,大约以每分钟2000次冲程次数的高速频率重复以上1到3 动作,直到气压和油压稳定为止。当两者的压力都达到恒定时,泵的循环动作会

自动停止。假如油压回路压力意外下降,只要压缩空气长期供应泵就会自动运作,直到油压重新达到恒定为止。 二、压力调整 1、通过调压阀设定压缩空气的压力2到3kgf/cm2运行气动泵。 2、打开出油口的排空气阀,这时候看到一股带有奶白色气泡的流体流出来,继续排 空直到气泡消失为止,然后关闭排空气阀并停止气动泵。假如没有排空气阀提供,也可以拧松出油口的管接头进行排空气。 3、进行完泵的排空气后,用相同的方式到油压回路的其它组成部分进行排空气。 4、油压回路上所有排空气步骤都完成后,把压缩空气的压力设定为额定工作压力(泵 型号:HPE6308的额定压力是4.8kgf/cm2)并启动气动泵。 5、如果在位置不好的地方进行排空气有困难时,可以进行多次关闭和打开压缩空气 源快速地完成排空气。

康明斯电喷发动机故障代码

注意:此翻译稿仅供参考,所有内容以英文原版公告为准。

第I节 - Quantum诊断 先进的诊断技术 先进的诊断技术可对Quantum发动机进行简单的维修和服务。故障或保养条件的诊断检验可通过机载或非机载系统进行。 机载诊断 ECM具有大范围检测故障的能力 闪烁故障代码 位于驾驶室仪表盘上的故障指示灯可指示警告/停机故障 保养指示灯 机载诊断 1.故障检测 在设备自己工作期间,当钥匙开关处于ON位置时检测故障。如果此时故障变为现行故障(当前检测到),存储器中就会记录故障,同时记录发动机参数速录数据。另外根据现行故障的严重程度,特定的故障可能会使警告指示灯(黄色)或停机指示灯(红色)、保养指示灯或燃油含水(WIF)指示灯变亮。 2.闪烁故障代码 可通过诊断开关或油门踏板进入故障代码闪烁模式。要进入故障代码闪烁模式,钥匙开关必须处于ON(接通)位置并且发动机停机。使用诊断开关进入该模式时,在诊断开关转到ON位置后,ECM将自动闪烁第一个故障代码。诊断增加/减少将向前或向后调整现行故障代码。要使用油门踏板进入故障代码闪烁模式,必须循环踩下和释放油门踏板,使油门开度连续3次从0到100%。一旦进入诊断模式,循环踩下和释放油门踏板可顺序向前达到现行故障代码。下图描述了通过停机指示灯指示的故障代码闪烁方式的类型。

3. 故障指示灯 Quantum 系统使用多达5个指示灯(每个指示灯具有两种功能):停机指示灯、警告指示灯、保养指示灯/发动机保护指示灯(所有发动机系列使用其中一个,而不是同时使用两个)、等待起动指示灯和燃油含水指示灯。如果钥匙开关转到ON 位置而诊断开关保持断开,这些指示灯将会亮约2秒钟然后熄灭,以证实指示灯正常工作和接线正确。参阅下面的插图,这些指示灯全部变亮然后每次熄灭一个。 警告指示灯 – 用于所有Quantum 发动机 - 警告指示灯提供重要的操作员信息。要求操作员及时注意这些信息。 警告指示灯还用于描述诊断故障代码。 停机指示灯 – 用于所有Quantum 发动机 - 停机指示灯提供紧急的操作员信息。这些信息要求操作者快速响应并采取正确措施。停机指示灯还用于闪烁诊断故障代码。 发动机保护指示灯 – 用于QSK19/45/60, QST30发动机 - 当存在发动机保护故障时,发动机保护指示灯将变亮。可通过OEM 配线配置系统,以便用红色/停机指示灯指示发动机保护故障。这是通过将红色指示灯连接至ECM 的红色/停机指示灯输入和发动机保护指示灯输入来实现的。如果发动机保护指示灯信号用于控制其它功能,如车辆驱动电路,该电路中必须接入一个二极管。 选装 - 2指示灯布置方案- 用于QSK19/45/60发动机 - 选装的2-灯布置方案将取消发动机保护(白色)指示灯。因此,操作员仪表盘上只有一个警告指示灯(黄色)和一个停机指示灯(红色)。所有通过发动机保护指示灯指示的故障将通过停机(红色)指示灯来指示。这种改进只会影响故障指示灯的线路布置,不会影响软件或标定程序。参阅下面的线路图。

汽车构造发动机原理试卷及标准答案

发动机构造试卷 考号姓名专业 1.EQ6100――1型汽油机 2.压缩比 3.发动机的工作循环 4.活塞环端隙 5.轴瓦的自由弹势 6.干式缸套 7.气门重叠角 8.配气相位 9.空燃比 10.发动机怠速 11.多点喷射 12.压力润滑 13.冷却水大循环 14.废气涡轮增压 二、选择(12×1=12分) 1.汽车用发动机一般按(C )来分类。 A.排量B.气门数目C.所用燃料D.活塞的行程 2.气缸工作容积是指(C )的容积。 A.活塞运行到下止点活塞上方B.活塞运行到上止点活塞上方C.活塞上、下止点之间D.进气门从开到关所进空气 3.湿式缸套上平面比缸体上平面( A ) A.高B.低C.一样高D.依具体车型而定,有的高有的低。 4.为了限制曲轴轴向移动,通常在曲轴采用( A )方式定位。 A.在曲轴的前端加止推片B.在曲轴的前端和后端加止推片C.在曲轴的前端和中部加止推片D.在曲轴的中部和后端加止推片 5.液力挺柱在发动机温度升高后,挺柱有效长度( B )。 A.变长B.变短C.保持不变D.依机型而定,可能变长也可能变短。 6.排气门在活塞位于( B )开启。 A.作功行程之前B.作功行程将要结束时C.进气行程开始前D.进气行程开始后 7.发动机在冷启动时需要供给( A )混合气。 A.极浓B.极稀C.经济混合气D.功率混合气 8.在电喷发动机的供油系统中,油压调节器的作用是( C )。 A.控制燃油压力衡压B.在节气门开度大时燃油压力变小C.燃油压力与进气管压力之差保持恒定D.进气管压力大时燃油压力小 9.在柴油机燃料供给系中,喷油压力的大小取决于( D )。 A.发动机的转速B.节气门开度的大小C.喷油泵的柱塞行程D.喷油器弹簧的预紧力 共2页第1页 10.当节温器失效后冷却系( A )。 A.冷却系只有小循环B.冷却系只有大循环C.冷却系既有大循环又有小循环D.电控风扇停转11.转子式机油细滤清器( B )。 A.依靠曲轴前端的皮带轮驱动运转B.依靠机油压力驱动其运转C.依靠蓄电池的电力驱动其运转D.依靠压缩空气驱动其运转 12.电喷发动机的在怠速时( A )。 A.节气门全关B.节气门全开C.节气门微开D.阻风门全关

电喷发动机工作原理及常见故障

电喷发动机工作原理及常见故障 概述 电喷发动机是采用电子控制装置,取代传统的机械系统(如化油器)来控制发动机的供油过程。如汽油机电喷系统就是通过各种传感器将发动机的温度、空燃比油门状况、发动机的转速、负荷、曲轴位置、车辆行驶状况等信号输入电子控制装置,电子控制装置根据这些信号参数.计算并控制发动机各气缸所需要的喷油量和喷油时刻,将汽油在一定压力下通过喷油器喷入到进入气管中雾化。并与进入的空气气流混合,进入燃烧室燃烧.从而确保发动机和催化转化器始终工作在最佳状态。这种由电子系统控制将燃料由喷油器喷入发动机进气系统中的发动机称为电喷发动机。 电喷发动机按喷油器数量可分为多点喷射和单点喷射。发动机每一个气缸有一个喷油嘴,英文缩写为MPI,称多点喷射。发动机几个气缸共用一个喷油嘴,英文缩写SPl,称单点喷射。 故障诊断及排除 电喷发动机怠速不稳故障诊断及排除 发动机怠速不稳是汽车使用中常见的故障之一。尽管现在大多数的轿车都有故障自诊断系统,但也会出现汽车有故障面自诊断系统却显示正常代码或显示与故障无关的代码的情况。这通常是由不受电控单元(ECU)直接控制的执行装置发生故障或传统机械故障成。下面列举在此情况下常兄的故障原因及它们的诊断与排除方法。 1、怠速开关不闭合 故障分析:怠速触点断开,ECU便判定发动机处于部分负荷状态。此时ECU根据空气流量计和曲轴转速信号确定喷油量。面此时发动机却是在怠速工况下工作,进气量较少,造成混合气过浓,转速上升。当ECU收到氧传感器反馈的“混合气过浓”信号时,减少喷油量,增加怠速控制阀的开度,又造成混合气过稀。使转速下降。当ECU收到氧传感器反馈的“混合气过稀”信号时,又增加喷油量,减小怠速控制阀的开度,又造成混合气过浓,使转速上升。如此反复使发动机怠速不稳,在怠速工况时开空调,打方向盘,开前照灯会增加发动机的负荷。为了防止发动机因负荷增大而熄火.ECU会增人喷油量来维持发动机的平稳运转。怠速触点断开,ECU认为发动机不是处于怠速工况,就小会增大喷油量,因而转速没有提升。 诊断方法:怠速时打开空调,打方向盘.发动机转速不升高,可证明是此故障。 故障排除:对节气门位置传感器进行调整、修复或更换。 2、怠速控制阀(ISC)故障 故障分析:电喷发动机的正确怠速足通过电控怠速控制阀来保证的。ECU根据发动机转速、温度、节气门开关及空调等信号,红过运算对怠速控制阀进行调节。当怠速转速低于设定转速值时,电脑指令怠速控制阀打开进气旁通道或直接或直接加大节气门的开度,使进气量增加,以提高发动机怠速。当怠速转速高于设定转速值时,电脑便指令怠速控制阀关小进飞旁通道,使进气最减小,降低发动机转速。由于油污、积炭造成怠速控制阀动作滞涩或卡死,

齿轮油泵工作原理及原理图

齿轮油泵工作原理及原理图 齿轮油泵工作原理,齿轮油泵工作原理图 一、齿轮油泵的结构 齿轮油泵的工作机构是一对相互啮合的齿轮。根据啮合特点,齿轮油泵可分为外啮合和内啮合两种,如图7-8所示。齿轮油泵的齿形有渐开线齿形和圆弧摆线齿形。 二、齿轮油泵工作原理 齿轮油泵工作原理是依靠齿轮相互啮合,在啮合过程中工作容积变化来输送液体的,如图7-9所示。工作容积由泵体、侧盖及齿的各齿间槽构成,啮合区将此空间隔成吸人腔和排出腔。当一对齿按图示方向转动时,位于吸入腔的轮齿逐渐退出啮合,使吸人腔容积逐渐增大,压力降低,液体沿管道进入吸人腔,并充满齿间容积,随齿轮转动,进人齿间的液体被带到排出腔。由于齿轮的啮合占据了齿轮间的容积,使排出腔容积变小,液体被排出。因此,齿轮油泵是一种容积泵。其特点是:流量与排出压力基本上无关,流量和压力有脉动,无进排阀,结构较往复泵简单,制造容易,维修方便,运转可靠,流量较往复泵均匀。 为防止排出管堵塞等原因使排出压力过高,发生事故,泵壳上装有安全阀。在排出压力过高时,高压液体顶开安全阀,使部分液体从通道回流到吸入口,以降低出口压力,起到保护作用。安全压力的大小,可由调整螺旋改变弹簧力进行调整。 为保证齿轮连续输送液体和啮合齿的运动平衡,必须要求前一对齿尚未脱开后一对齿就进入啮合,所以有一部分液体被困在两啮合线及两端盖之间形成的封

闭容积内,此容积称“闭死容积”,当闭死容积由大变小时,被困在其中的液体受到挤压,压力急剧升高。于是被困液体从一切可以泄漏的缝隙中强行挤出,这时齿轮和轴承受到很大的脉冲径向力,功率损失增加,磨损加剧。当闭死容积由小变大时,剩余的被困液体压力下降,形成局部真空,使溶解在液体中的气体析出或液体本身气化形成汽蚀,使泵产生振动和噪声,这种现象称为图液现象。困液现象对齿轮油泵工作性能及寿命的詹害很大。齿轮油泵适用于不含固体杂质的高黏度液体。如果液体含有杂质建议选用螺杆泵或者气动隔膜泵产品更合适。 为消除困液现象,可以采取开卸荷槽、卸荷孔等卸荷措施,使闭死容积与吸油或压油腔连通。由于泵内有高压腔、低压腔,所以存在窜漏问题。为保证密封,应选择适当的间隙。 间隙大,则漏损增加,但不易卡死,机械效率高。在轴向间隙与径向间隙中,轴向间隙是主要的,一般应在0.04~0.lOmm范围内,径向间隙在0.10~0.1mm 范围内。 由于齿轮油泵间隙多,且密封面积较大,故密封性能不如往复泵,所能达到的压力也较低,齿轮泵制造装配质量对性能的影响较大。

电喷发动机空气供给系统的组成和工作原理简介

电喷发动机空气供给系统的组成和工作原理简介 ?作者:admin ?来源:本站原创 ?时间:2008-04-04 ?浏览: 内容简介:L型为进气管道设有空气流量计的电控系统,称为流量检测型。D型为没有空气流量计,而设有进气压力传感器,电脑依进气管压力来计算发动机负荷,称为压力检测型。而现代汽车电控系统广泛使用空气流量计,为了提高控制精度,个别车同是装有空气流量计和进气压力传感器 相关推荐阅读 ?上篇文章 ?造成发动机控制电脑ECU多次损坏故障实例 电喷发动机空气供给组成部件介绍

电喷发动机空气供给系统的部件图 (1)空气滤清器:过滤空气中的杂质; (2)空气流量计:检测发动机的进气量,反馈给电脑,是主脑控制喷油量的主要信号; (3)进气温度传感器:检测发动机的进气温度,作为喷油量的修正信号; (4)节气门体:安装有节气门、节节气门位置传感器及怠速控制阀等;其中节气门位置传感器检测节气门的开度信号反馈给电脑; (5)进气压力传感器:检测进气管的的压力,因为进气管的压力反映了发动机的负荷,电脑依进气压力传感器信号计算发动机的负荷。 空气供给系统的类别注意: 1 关于D型和L型电控系统:

进气压力传感器 L型为进气管道设有空气流量计的电控系统,称为流量检测型。D型为没有空气流量计,而设有进气压力传感器,电脑依进气管压力来计算发动机负荷,称为压力检测型。 空气流量计图 注:现代汽车电控系统广泛使用空气流量计,为了提高控制精度,个别车同是装有空气流量计和进气压力传感器,如别克 关于怠速控制方式:

旁通气道式怠速控制阀 1 旁通气道式:怠速时,节气门全关,ECU通过怠速控制阀控制旁通气道的通气量实现对怠速的控制。常见的怠速控制阀有步进电机式、旋转阀式和直动电磁阀式;

电喷发动机工作原理及常见故障概述

电喷发动机是采用电子控制装置,取代传统地机械系统(如化油器)来控制发动机地供油过程.如汽油机电喷系统就是通过各种传感器将发动机地温度、空燃比油门状况、发动机地转速、负荷、曲轴位置、车辆行驶状况等信号输入电子控制装置,电子控制装置根据这些信号参数.计算并控制发动机各气缸所需要地喷油量和喷油时刻,将汽油在一定压力下通过喷油器喷入到进入气管中雾化.并与进入地空气气流混合,进入燃烧室燃烧.从而确保发动机和催化转化器始终工作在最佳状态.这种由电子系统控制将燃料由喷油器喷入发动机进气系统中地发动机称为电喷发动机. 电喷发动机按喷油器数量可分为多点喷射和单点喷射.发动机每一个气缸有一个喷油嘴,英文缩写为,称多点喷射.发动机几个气缸共用一个喷油嘴,英文缩写,称单点喷射.文档来自于网络搜索 故障诊断及排除 电喷发动机怠速不稳故障诊断及排除 发动机怠速不稳是汽车使用中常见地故障之一.尽管现在大多数地轿车都有故障自诊断系统,但也会出现汽车有故障面自诊断系统却显示正常代码或显示与故障无关地代码地情况.这通常是由不受电控单元()直接控制地执行装置发生故障或传统机械故障成.下面列举在此情况下常兄地故障原因及它们地诊断与排除方法.文档来自于网络搜索 、怠速开关不闭合 故障分析:怠速触点断开,便判定发动机处于部分负荷状态.此时根据空气流量计和曲轴转速信号确定喷油量.面此时发动机却是在怠速工况下工作,进气量较少,造成混合气过浓,转速上升.当收到氧传感器反馈地“混合气过浓”信号时,减少喷油量,增加怠速控制阀地开度,又造成混合气过稀.使转速下降.当收到氧传感器反馈地“混合气过稀”信号时,又增加喷油量,减小怠速控制阀地开度,又造成混合气过浓,使转速上升.如此反复使发动机怠速不稳,在怠速工况时开空调,打方向盘,开前照灯会增加发动机地负荷.为了防止发动机因负荷增大而熄火.会增人喷油量来维持发动机地平稳运转.怠速触点断开,认为发动机不是处于怠速工况,就小会增大喷油量,因而转速没有提升.文档来自于网络搜索 诊断方法:怠速时打开空调,打方向盘.发动机转速不升高,可证明是此故障. 故障排除:对节气门位置传感器进行调整、修复或更换. 、怠速控制阀()故障 故障分析:电喷发动机地正确怠速足通过电控怠速控制阀来保证地.根据发动机转速、温度、节气门开关及空调等信号,红过运算对怠速控制阀进行调节.当怠速转速低于设定转速值时,电脑指令怠速控制阀打开进气旁通道或直接或直接加大节气门地开度,使进气量增加,以提高发动机怠速.当怠速转速高于设定转速值时,电脑便指令怠速控制阀关小进飞旁通道,使进气最减小,降低发动机转速.由于油污、积炭造成怠速控制阀动作滞涩或卡死,节气门关闭不到位等原因,使无法对发动机进行正确地怠速调节,造成怠速转速不稳.文档来自于网络搜索 诊断方法:检查怠速控制阀地作动声音,若无作动声即怠速控制阀出现故障. 故障排除:清洗或业换怠速控制阀,并用专用解码器对怠速转速进行基本设定. 、进气管路漏气 故障分析:由发动机地怠速稳定控制原理可知,在正常情况下,怠速控制阀地开度与进气量严格遵循某种函数关系,即怠速控制阀开度增大,进气量相应增加.进气管路漏气,进气量与怠速控制阀地开度将不严格遵循原函数关系,即进飞量随怠速控制阀地变化有突变现象,空气流量计此无法测出真实地进气量,造成对进气量控制不准确,导致发动机怠速不稳.文档来自于网络搜索 诊断方法:若听见进气管有泄漏地嗤嗤声,则证明进气系统漏气.

相关主题
文本预览
相关文档 最新文档