当前位置:文档之家› 勾股定理

勾股定理

勾股定理
勾股定理

勾股定理

勾股定理就就是一个基本得几何定理,指直角三角形得两条直角边得平方与等于斜边得平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,就就是数学定理中证明方法最多得定理之一。勾股定理就就是人类早期发现并证明得重要数学定理之一,用代数思想解決几何问题得最重要得工具之一,也就就是数形结合得纽带之一。

在中国,商朝时期得商高提出了“勾三股四弦五”得勾股定理得特例。在西方,最早提出并证明此定理得为公元前6世纪古希腊得毕达哥拉斯学派,她用演绎法证明了直角三角形斜边平方等于两直角边平方之与。

在任何一个得直角三角形(Rt△)中,两条直角角边得长度得平方与等于斜边长度得平方(也可以理解成两个长边得平方相減与最短边得平方相等)。

性质

1、直角三角形两直角边为a与b,斜边为c,那a2+b2=c2

2、勾股数,勾股数得推算公式

①罗士琳法则(罗士琳就就是我国清代得数学家1789――1853)

任取两个正整数m与n(m>n),那么m2-n2,2mn,m2+n2就就是一组勾股数、

勾股数通式与常见勾股素数,若m与n就就是互质,而且m与n至少有一个就就是偶数,计算出来得a,b,c就就就是素勾股数(若m与n都就就是奇数,a,b,c就会全就就是偶数,不符合互质)。

所有素勾股数(不就就是所有勾股数)都可用上述列式当中找出,这亦可推论到数学上存在无穷多得素勾股数。

②如果k就就是大于1得奇数,那么k,(k2+1)/2,(k2-1)/2就就是一组勾股数、(3,4,5), (5,12,13),(7,24,25)……

③如果k就就是大于2得偶数,那么k,k2/4+1, k2/4-1就就是一组勾股数、

(6,8,10)(8,15,17)(10,24,26),……

④如果a,b,c就就是勾股数,那么na nb,nc (n就就是正整数)也就就是勾股数、

⑤另一种通式:2n+1,2n2+2n,2n2+2n+1(n就就是正整数),(3,4,5), (5,12,13),(7,24,25)(9,40,41)…

例1、四边形ABCD中∠DAB=60,∠B=∠D=Rt∠,BC=1,CD=2

求对角线AC得长

解:延长BC与AD相交于E,则∠E=30

∴CE=2CD=4,

在Rt△ABE中

设AB为x,则AE=2x

根据勾股定理x2+52=(2x)2,……

例2、已知△ABC中,AB=AC,∠B=2∠A

求证:AB2-BC2=AB×BC

证明:作∠B得平分线交AC于D,

则∠A=∠ABD,

∠BDC=2∠A=∠C

∴AD=BD=BC

作BM⊥AC于M,则CM=DM

AB2-BC2=(BM2+AM2)-(BM2+CM2)

=AM2-CM2=(AM+CM)(AM-CM)

=AC×AD=AB×BC

例3、如图已知△ABC中,AD⊥BC,AB+CD=AC+BD

求证:AB=AC

证明:设AB,AC,BD,CD分别为b,c,m,n

则c+n=b+m, c-b=m-n

∵AD⊥BC,根据勾股定理,得

AD2=c2-m2=b2-n2

∴c2-b2=m2-n2, (c+b)(c-b)=(m+n)(m-n)

(c+b)(c-b) =(m+n)((c-b)

(c+b)(c-b) -(m+n)(c-b)=0

(c-b){(c+b)-(m+n)}=0

∵c+b>m+n, ∴c-b=0即c=b

∴AB=AC

练习

1,已知△ABC中,AB=17,AC=10,BC边上得高AD=8、则△ABC得周长为多少?

2、一个三级台阶,它得每一级长、宽、高分别就就是100cm,15cm与10cm,A,B就就是这个台阶上两个相对得端点,A点有一只蚂蚁,想到B点去吃可口得食物,则蚂蚁沿台阶爬行到B点得最短路程就就是、

3、一块直角三角形绿地,两直角边长分别为3m,4m,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m得直角边,则扩充后等腰三角形绿地得面积为多少m2?

4、如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP, PE与CD相交于点0,且OE=0D,则AP得长为多少?

5,如图,△ACB与△ECD都就就是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上ー点,求证(1)△ACE≌△BCD;(2) AD2+DB2=DE2

6,如图,长方形纸片ABCD中,AB=8,将纸片折叠使顶点B落在边AD上得E点处,折痕

(2)得一端G点在边BC上(1)如图(1),当折痕得另一端F在AB边上且AE=4时,求AF得长、

如图(2)、当折痕得一端F在AD边上BG=10, 求证:EF=EG、求AF得长、

7、△ABC中,AB=25,BC=20,CA=15,CM与CH分别就就是中线与高、那么S△ABC=__,CH =__,MH=___

8、梯形两底长分别就就是3与7,两对角线长分别就就是6与8,则S梯形=___

9、已知:△ABC中,AD就就是高,BE⊥AB,BE=CD,CF⊥AC,CF=BD

求证:AE=AF

10已知:M就就是△ABC内得一点,MD⊥BC,ME⊥AC,MF⊥AB,

且BD=BF,CD=CE

求证:AE=AF

11、在△ABC中,∠C就就是钝角,a2-b2=bc 求证∠A=2∠B

12、求证每一组勾股数中至少有一个数就就是偶数; 至少有一个数就就是3得倍数;至少有一个数就就是4得倍数;至少有一个数就就是5得倍数、

13、已知直角三角形三边长均为整数,且周长与面积得数值相等,求各边长

14等腰直角三角形ABC斜边上一点P,求证:AP2+BP2=2CP2

15、已知△ABC中,∠A=Rt∠,M就就是BC得中点,E,F分别在AB,AC,ME⊥MF

求证:EF2=BE2+CF2

16、Rt△ABC中,∠ABC=90,∠C=60,BC=2,D就就是AC得中点,从D作DE⊥AC与C B得延长线交于点E,以AB、BE为邻边作矩形ABEF,连结DF,则DF得长就就是____、

17△ABC中,AB=AC=2,BC边上有100个不同得点p1,p2,p3, (100)

记mi=APi2+BP i×PiC (I=1,2……,100),则m1+m2+…+m100=____

18、平平湖水清可鉴,湖上半尺生红莲。出泥不染亭亭立,忽被吹倒清水面。

渔人观瞧忙上前,花离原位二尺远。诸君能算请解题,湖水如何知深浅?

19、(读诗解题)有诗曰:“平地秋千未起,踏板一尺离地、送行二步与人齐,五尺人高曾记、仕女佳人争蹴,终朝笑语欢嬉、良工高士好奇,算出索长有几?”(注:一步合五尺)

勾股定理经典例题解析版

类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= b=9,c=°,a=40,(2) 在△ABC中,∠C=90 (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? °ACD=90 【答案】∵∠13, CD=12 = AD 222 ∴AC-=ADCD 22-=1312 =25 =5 ∴AC =3 °且BC又∵∠ABC=90 ∴由勾股定理可得 -222 ACBC AB= 22 =53- =16 = 4 AB∴ 4. 的长是∴AB 类型二:勾股定理的构造应用

. BC的长中,、如图,已知:在,,. 求: 2 ,则有角的直角三角形,为此作于D,想到构造含思路点拨:由条件 的DC的长,进而求出BC,再由勾股定理计算出AD、,. 长 ,则因:作,D于解析 (∴的两个锐角互余) 中,如果一个锐角等于∴(在,

. 那么它所对的直角边等于斜边的一半) 根据勾股定理,在中, . 根据勾股定理,在中, . . ∴ . 求证: . P于,,如图,已知:】1【变式举一反三 解析:连结BM,根据勾股定理,在中, . 中,则根据勾股定理有而在

. ∴ 又∵(已知), ∴. 中,根据勾股定理有在 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。 解析:延长AD、BC交于E。 ∵∠A=∠60°,∠B=90°,∴∠E=30°。 CE=2CD=4,∴AE=2AB=8, 22222BE==8= -4∴BE。=AE=48-AB,

勾股定理试题较难

勾股定理试题较难内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

1、如图,由4个全等的直角三角形拼合而成的一个大正方形,如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于多少? 2、如图,三个半圆的面积分别为S 1=4.5π,S 2=8π,S 3=12.5π,把这三个半圆拼在一起,则图中的三角形一定是直角三角形吗?为什么? 3、Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2 = 。 4、直角三形有一条直角边的长为11,另外两边的长也是正整数,则此三角形的 周长是 。 5、长方体底面边长分别为1㎝和3㎝,高为6㎝,如果一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要多长?如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要多长? 6、已知如图,在长方形ABCD 中,AB=3㎝,AD=9㎝,将此长方形折叠,使点B 与点D 重合,折痕为EF ,求△BEF 的面积。 7、已知△ABC 中,AB >,AD 是BC 边上的高,求AB 2-AC 2=BC (BD-) 8、如图,在钝角△中,BC=9,AB=17,AC=10,AD ⊥BD 于D ,求AD 的长。 9、如图,一块砖宽AN=5㎝,长ND=10㎝,顶上A 处的一只蚂蚁要到B 处吃食物,已知B 距顶部D 处8 ㎝,则蚂蚁爬行的最短路程是多 少? 10、如图,是一个长8㎝,宽6㎝,高5㎝的仓库,在其内壁的A 处有一只壁虎,B 处有一只蚊子,则壁虎爬到蚊子处的最短距离为多秒㎝,其中AC=6㎝,BD=4㎝。 11、如图,圆柱底面半径为2㎝,高为9π㎝,点A 、B 分别是圆柱两底两圆周上 的点,且A 、B 在同一母线上,有一棉线从A 顺着圆柱侧面绕3圈到达 B ,求棉线最短是多少? 12、用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x 、y 表示矩形的长和宽(x >y ),则下列关系式不正确的是:( ) A 、x+y=12 B 、x-y=2 C 、xy=35 D 、14422=+y x S 1 S 2 S 3 A B 6㎝㎝1㎝ B A E D C F C ′ B D C A A B D A B · · N D 8 6 · · B D A B · ·

勾股定理_经典题型(偏难)复习过程

勾股定理_经典题型 (偏难)

勾股定理_经典题复习 1.定理:直角三角形两条直角边a、b的平方和等于斜边c的平方:即 2.逆定理:如果三角形的三边长a、b、c有下面关 系:,那么这个三角形是直角三角形. 3.勾股数:能构成为直角三角形三条边长的三个,称为勾股数.二)直角三角形 1.定义:有一个角是直角的三角形叫直角三角形. 2.性质:(1)直角三角形的两个锐角 (2)直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的. (3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于 (4)直角三角形斜边上的中线等于斜边的. 一、选择题(每小题3分) 1.下列各组线段中,能够组成直角三角形的是(). A.6,7,8 B.5,6,7 C.4,5,6 D.3,4,5 2.下列各命题的逆命题成立的是() A.全等三角形的对应角相等 B .如果两个数相等,那么它们的绝对值相等 C.两直线平行,同位角相等 D.如果两个角都是 45°,那么这两个角相 等 3.下面四组数中是勾股数的有( ). (1)1.5,2.5,2 (2),,2 (3)12,16,20(4)0.5,1.2,1.3 A.1组 B.2组 C.3组 D.4组 4.直角三角形有一条直角边长为13,另外两条边长都是自然数,则周长为(). A.182 B.183 C.184 D.185 5.如图,长方形ABCD中,AB=4,BC=3,将其沿直线MN折叠,使点C与点A重合, ?则CN的长为(). A.B.C.D. (第5题) (第6题) 6、如图,分别以直角的三边为直径向外作半圆.设直线 左边阴影部分的面积为,右边阴影部分的面积和为,则() 收集于网络,如有侵权请联系管理员删除

中考数学勾股定理知识点-+典型题及解析

中考数学勾股定理知识点-+典型题及解析 一、选择题 1.图中不能证明勾股定理的是( ) A . B . C . D . 2.勾股定理是几何中的一个重要定理,在我国算书《网醉算经》中就有“若勾三,股四,则弦五”的记载.如图1,是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,BC=5,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( ) A .121 B .110 C .100 D .90 3.如图,在ABC 中,90A ∠=?,6AB =,8AC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 作⊥OD AB 于点D ,若则AD 的长为( )

A .2 B .2 C .3 D .4 4.已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的面积是( ) A .2n ﹣2 B .2n ﹣1 C .2n D .2n+1 5.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( ) A .0个 B .1个 C .2个 D .3个 6.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么()2 a b +值为( ) A .25 B .9 C .13 D .169 7.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A ∠=?正方形ADOF 的边长是2,4BD =,则CF 的长为( ) A .6 B .2 C .8 D .10 8.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了上图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是( )

(完整版)勾股定理典型题总结(较难)(可编辑修改word版)

勾股定理 一.勾股定理证明与拓展模型一 . 图中三个正方形面积关系 思考:如下图,以直角三角形 a 、b 、c 为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积有和关系? 例 1、有一个面积为 1 的正方形,经过一次“生长”后,在他的左右肩上上生出两个小正方形(如图 1),其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,生出了 4 个正方形(如图 2),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”;在“生长”了 2017 次后形成的图形中所有正方形的面积和是 . 变式 1:在直线 l 上依次摆放着七个正方形(如图 1 所示).已知斜放置的三个正方形的面积 分别是 1,1. 21,1. 44,正放置的四个正方形的面积依次是S 1 , S 2, S 3, S 4 ,则 S 1 S 4 = .

变式2:如图,四边形ABCD 中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC 为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,求S2. (变式2)(变式3) 变式3:如图,Rt△ABC的面积为10cm2,在AB 的同侧,分别以AB,BC,AC 为直径作三个 半圆,则阴影部分的面积为. (难题)如图,是小明为学校举办的数学文化节设计的标志,在△ABC 中,∠ACB=90°, 以△ABC 的各边为边作三个正方形,点G 落在HI 上,若AC+BC=6,空白部分面积为10.5, 则阴影部分面积 模型二 A D H G B C 外弦图 E F 内弦图 例题2.四年一度的国际数学大会于 2002 年8 月20 日在北京召开,大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为13 ,每个直角三角形两直角边的和是5 。求中间小正方形的面积为;

数学数学勾股定理试题及解析

数学数学勾股定理试题及解析 一、选择题 1.△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为( ) A .42 B .32 C .42或32 D .37或33 2.如图,在Rt ABC ?中,90, 5 ,3ACB AB cm AC cm ?∠=== ,动点P 从点B 出发,沿射线BC 以1 /cm s 的速度移动,设运动的时间为t 秒,当?ABP 为等腰三角形时,t 的值不可能为( ) A .5 B .8 C .254 D .258 3.如图,四边形ABCD 中,AC ⊥BD 于O ,AB =3,BC =4,CD =5,则AD 的长为( ) A .1 B .32 C .4 D .23 4.如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB 230=.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM +MN +NB 的长度和最短,则此时AM +NB =( ) A .6 B .8 C .10 D .12 5.如图,设正方体ABCD-A 1B 1C 1D 1的棱长为1,黑、白两个甲壳虫同时从点A 出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA 1→A 1D 1→…,白甲壳虫爬行的路线是AB→BB 1→…,并且都遵循如下规则:所爬行的第n+2与第n 条棱所在的直线必须

既不平行也不相交(其中n 是正整数).那么当黑、白两个甲壳虫各爬行完第2017条棱分别停止在所到的正方体顶点处时,它们之间的距离是( ) A .0 B .1 C .3 D .2 6.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么ab 的值为( ) A .49 B .25 C .12 D .10 7.如图所示,有一个高18cm ,底面周长为24cm 的圆柱形玻璃容器,在外侧距下底1cm 的点S 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm 的点F 处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是( ) A .16cm B .18cm C .20cm D .24cm 8.下列各组线段能构成直角三角形的一组是( ) A .30,40,60 B .7,12,13 C .6,8,10 D .3,4,6 9.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( ) A . B . C . D . 10.为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架2.5米长的梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是( ) A .0.6米 B .0.7米 C .0.8米 D .0.9米 二、填空题 11.如图,ACB △和ECD 都是等腰直角三角形,CA CB =,CE CD =,ABC 的顶

勾股定理的证明的方法

【】() 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三 个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上, B 、F 、 C 三点在一条直线上,C 、G 、 D 三点在一条直线上. ∵ Rt ΔHA E ≌ R t ΔEBF,

∴∠AHE = ∠BEF. ∵∠AEH + ∠AHE = 90o, ∴∠AEH + ∠BEF = 90o. ∴∠HEF = 180o―90o= 90o.∴四边形EFGH是一个边长为c的正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于()2b a+. ∴()2 2 2 1 4c ab b a+ ? = + . ∴2 2 2c b a= +. 【证法3】(赵爽证明) 以a、b 为直角边(b>a),以c为斜边作四个全等直角三角形,则每个直角 三角形的面积等于 ab 2 1 . 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴∠HDA = ∠EAB.

中考数学勾股定理知识归纳总结附解析

中考数学勾股定理知识归纳总结附解析 一、选择题 1.在ABC ?中,D 是直线BC 上一点,已知15AB =,12AD =,13AC =,5CD =,则BC 的长为( ) A .4或14 B .10或14 C .14 D .10 2.如图,在△ABC 中,∠BAC =90°,AC =2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板ADE 如图放置,连接BE ,EC .下列判 断:①△ABE ≌△DCE ;②BE =EC ;③BE ⊥EC ;④EC =3DE .其中正确的有( ) A .1个 B .2个 C .3个 D .4个 3.如图,在等腰三角形ABC 中,AC=BC=5,AB=8,D 为底边上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,则DE+DF= ( ) A .5 B .8 C .13 D .4.8 4.如果正整数a 、b 、c 满足等式222+=a b c ,那么正整数a 、b 、c 叫做勾股数.某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x y +的值为( ) A .47 B .62 C .79 D .98 5.如图,在△ABC 中,∠A =90°,P 是BC 上一点,且DB =DC ,过BC 上一点P ,作PE ⊥AB 于E ,PF ⊥DC 于F ,已知:AD :DB =1:3,BC =46,则PE+PF 的长是( ) A .6 B .6 C .42 D .26

6.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=15,则S 2的值是( ) A .3 B .154 C .5 D .152 7.如图,已知AB AC =,则数轴上C 点所表示的数为( ) A .3- B .5- C .13- D .15- 8.如图,在Rt △ABC 中,∠A=90°,AB=6,AC=8,现将Rt △ABC 沿BD 进行翻折,使点A 刚好落在BC 上,则CD 的长为( ) A .10 B .5 C .4 D .3 9.如图, 在ABC 中,CE 平分ACB ∠,CF 平分ABC 的外角ACD ∠,且EF //BC 交AC 于M ,若CM 4=,则22CE CF +的值为( ) A .8 B .16 C .32 D .64 10.如图,△ABC 中,AB =AC ,AD 是∠BAC 的平分线.已知AB =5,AD =3,则BC 的长 为( )

勾股定理五种证明方法

勾股定理五种证明方法 【证法1】 做 8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 214214222?+=?++, 整理得 222c b a =+. 【 证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角 形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点 在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +. ∴ ()2 2214c ab b a +?=+. ∴ 222c b a =+. 【证法3】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为

几种简单证明勾股定理的方法

几种简单证明勾股定理的方法 ——拼图法、定理法 江苏省泗阳县李口中学沈正中 据说对社会有重大影响的10大科学发现,勾股定理就是其中之一。早在4000多年前,中国的大禹曾在治理洪水的过程中利用勾股定理来测量两地的地势差。迄今为止,关于勾股定理的证明方法已有500余种,各种证法融几何知识与代数知识于一体,完美地体现了数形结合的魅力。让我们动起手来,拼一拼,想一想,娱乐几种,去感悟数学 的神奇和妙趣吧! 一、拼图法证明(举例12种) 拼法一:用四个相同的直角三角形(直角边为a 、b ,斜边为c )按图2拼法。 问题:你能用两种方法表示左图的面积吗?对比两种不同的表示方法,你发现了什么? 分析图2:S 正方形=(a+b )2= c 2 + 4×2 1ab 化简可得:a 2+b 2 = c 2 拼法二:做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像左 图那样拼成两个正方形。 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 a 2+ b 2+4×21ab = c 2+4×21ab 整理得 a 2+b 2 = c 2 拼法三:用四个相同的直角三角形(直角边为a 、b ,斜边为c )按图3拼法。 问题:图3是由三国时期的数学家赵爽在为《周髀算经》作注时给出的。在图3中用同样的办法研究,你有什么发现?你能验证a 2+b 2=c 2吗? 分析图3:S 正方形= c 2 =(a-b )2+ 4×21ab 化简可得:a 2+b 2 = c 2 图1 图2 图3 图4 b a b a b a b a c b a c b a c b a c b a c b a c b a

《勾股定理教材分析》

《勾股定理》教材分析 一、课标要求: 1、体验勾股定理的探索过程,会运用勾股定理解决简单问题; 2、会运用勾股定理的逆定理判定直角三角形; 3、通过具体的例子,了解定理的含义,了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立。 二、中考要求: 1、已知直角三角形的两边长,会求第三边长。 2、会用勾股定理解决简单问题;会用勾股定理逆定理判定三角形是否为直角三角形。 3、了解定义、命题、定理含义;了解逆命题的概念,会识别两个互逆命题,并知道原命题成立,逆命题不一定成立。 三、 本章结构图: 互逆定理 四、 本章的地位和作用 五、本章课时安排: 本章教学时间约需要7课时,具体安排如下: 18.1 勾股定理 3课时 18.2 勾股定理的逆定理 2课时 18.3 小结 2课时

六、本章重要的数学思想和方法 1. 在定理、逆定理探究过程中所体现出来的由特殊到一般的思想 2.数形结合思想:面积法证明数学问题及由数到形、由形到数 3、整体的方法. 4.分类讨论思想 5.方程思想贯穿始终 6.转化思想:化斜为直,化空间为平面,化曲为直 七、教学内容设计 八、数学思想的贯穿 2、数形结合思想 例1、我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形。如果大正方形的面积是13,小正方形的面积是1,直角三角形的两条直角边分别为a,b. 那么( a+b)2的值为_____ 例2 如图,高速公路的同侧有A、B两个村庄,他们到高速公路所在直线MN的距离分别为AA1=2km,BB1=4km,A1B1=8km。现要在高速公路上

勾股定理16种证明方法

勾股定理的证明 【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21. 把这四个直角三角形拼成如图所示形状,使 A 、E 、 B 三点在一条直线上,B 、F 、 C 三点在一条直线上,C 、G 、 D 三点在一条直线上. ∵ Rt ΔHA E ≌ Rt ΔEBF, ∴ ∠AHE = ∠BE F . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于(a +∴ ()2 2 21 4c ab b a +?=+. ∴ 2 22c b a =+. 【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角

勾股定理简单应用

勾股定理应用的教学设计 教学目标 1 ?会用勾股定理进行简单的计算。 2.通过探究,会运用勾股定理解释生活中的实际问题 教学重点 勾股定理的应用。 教学难点 实际问题向数学问题的转化 教学过程 通过小组合作学习探究,研究勾股定理在实际中的应用 一、 复习旧知 复习勾股定理以及一些简单的计算 ⑴勾股定理: ____________________________________________________ (2)求出下列直角三角形中未知的边. 通过四个问题,让学生明白勾股定理在实际生活中的应用,以及如何去使用勾股定理 问题1.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口, 则圆形盖半径至 少为多少米? ? 问题2.如图所示,一旗杆在离地面 5 m 处断裂,旗杆顶部落在离底部 12 m 处,问旗杆 折断前有多咼? 合作探究 B A 2 C C C

问题4.如图,一个5米长的梯子AB 斜着靠在竖直的墙A0上,这时A0的距离为3米. ① 球梯子的底端B 距墙角0多少米? ② 如果梯的顶端A 沿墙下滑1米至C,请同学们猜一猜,底端 B 也将滑动1米吗? 算一算,底端滑动的距离。(结果保留 1位小数). 三. 深化新知 “引葭赴岸”是《九章算术》中的一道题“今有池方一丈,葭生其中央,出水一尺 , 引 葭赴岸,适与岸齐。问水深、葭长各几何?” 四、课堂小结 本节课你有什么收获?你认为用勾股定理解决实际问题的关键是什么? 五、运用新知 1校园里有两棵树,相距15米,一棵树高10米,另一棵树高18米,一只小鸟从一棵树 的顶端飞到另一棵树的顶端,小鸟至少要飞 ___________ 米。 2如图,一根12米高的电线杆两侧各用 15米的铁丝固定,两个固定点之间的距离 问题3.如下图,要将楼梯铺上地毯,则需要 _____ 米长的地毯.

勾股定理试题较难完整版

勾股定理试题较难标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

1、如图,由4个全等的直角三角形拼合而成的一个大正方形,如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于多少? 2、如图,三个半圆的面积分别为S 1=4.5π,S 2=8π,S 3=12.5π,把这三个半圆拼在一起,则图中的三角形一定是直角三角形吗为什么 3、Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2= 。 4、直角三形有一条直角边的长为11,另外两边的长也是正整数,则此三角形的周长是 。 5、长方体底面边长分别为1㎝和3㎝,高为6㎝,如果一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要多长如果从点A 开始经过4 个侧面缠绕n 圈到达点B ,那么所用细线最短需要多长 6、已知如图,在长方形ABCD 中,AB=3㎝,AD=9㎝,将此长方形折 叠,使点B 与点D 重合,折痕为EF ,求△BEF 的面积。 7、已知如图,△ABC 中,AB >AC ,AD 是BC 边上的高,求证:AB 2-AC 2=BC (BD-DC ) S 1 S 2 S 3 A B 6 1 B A C F C ′ B C A

8、如图,在钝角△ABC 中,BC=9,AB=17,AC=10,AD ⊥BD 于D ,求AD 的长。 9、如图,一块砖 ㎝,长ND=10㎝,顶上A 处的一只蚂 蚁要到B 爬行的最短路程是 多少? 10、如图,是一个长8㎝,宽6㎝,高5㎝的仓库, 在其内壁的A 处有 一只壁虎, B 处有一只蚊子,则壁虎爬到蚊子处的最短距离为多秒㎝,其中AC=6㎝,BD=4㎝。 11、如图,圆柱底 面半径为2㎝,高为9π㎝,点A 、B 分别是圆柱两底两圆周上的点,且A 、 B 在同一母线上,有一棉线 从A 顺着圆柱侧面圈到达B ,求棉线最短是多少? 12、用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大 正方形的面积是144,小正方形的面积是 4,若用x 、y 表示矩形的长和 宽(x >y ),则下列关系式不正确的是:( ) A 、x+y=12 B 、x-y=2 C 、xy=35 D 、14422=+y x A B D N

勾股定理 例题详解

勾股定理经典例题详解 知识点一:勾股定理 如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方. 要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。 (2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。 (3)理解勾股定理的一些变式: c2=a2+b2, a2=c2-b2, b2=c2-a2,c2=(a+b)2-2ab 知识点二:用面积证明勾股定理 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。 图(1)中,所以。 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。 图(2)中,所以。 方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。

在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积), 在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积), 所以,甲的面积=乙和丙的面积和,即:. 方法四:如图(4)所示,将两个直角三角形拼成直角梯形。 ,所以。 知识点三:勾股定理的作用 1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系; 3.用于证明平方关系的问题; 4.利用勾股定理,作出长为 的线段。 2. 在理解的基础上熟悉下列勾股数 满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。 熟悉下列勾股数,对解题是会有帮助的: ①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、 40、41.

勾股定理的证明方法

【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即 a^2+b^2+4*(ab/2)=c^2+4*(ab/2), 整理得到:a^2+b^2=c^2。 【证法2】 以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 ab/2.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴∠AHE = ∠BEF. ∵∠AEH + ∠AHE = 90o, ∴∠AEH + ∠BEF = 90o. ∴∠HEF = 180o―90o= 90o. ∴四边形EFGH是一个边长为c的 正方形. 它的面积等于c^2. ∵ RtΔGDH ≌ RtΔHAE, ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于(a+b)^2. ∴(a+b)^2=c^2+4*(ab/2),∴ a^2+b^2=c^2。

【证法3】 以a、b 为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于ab/2. 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴∠HDA = ∠EAB. ∵∠HAD + ∠HAD = 90o, ∴∠EAB + ∠HAD = 90o, ∴ ABCD是一个边长为c的正方形,它的面积等于c^2. ∵ EF = FG =GH =HE = b―a , ∠HEF = 90o. ∴ EFGH是一个边长为b―a的正方形,它的面积等于(b-a)^2. ∴(b-a)^2+4*(ab/2)=c^2,∴ a^2+b^2=c^2。 【证法4】 以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab/2. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上. ∵ RtΔEAD ≌ RtΔCBE, ∴∠ADE = ∠BEC.

勾股定理试题较难

勾股定理试题较难 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

1、如图,由4个全等的直角三角形拼合而成的一个大正方形,如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于多少? 2、如图,三个半圆的面积分别为S 1=π,S 2=8π,S 3=π,把这三个半圆拼在一起,则图中的三角形一定是直角三角形吗为什么 3、Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2= 。 4、直角三形有一条直角边的长为11,另外两边的长也是正整数,则此三角形的周长是 。 5、长方体底面边长分别为1㎝和3㎝,高为6㎝,如果一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要多长如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要多长 6、已知如图,在长方形ABCD 中,AB=3㎝,AD=9㎝,将此长方形折叠,使点B 与点D 重合,折痕为EF ,求△BEF 的面积。 7、已知△ABC 中, AB >,AD 是BC 边上的 高,求AB 2-AC 2=BC (BD-) 8、如图,在钝角△ABC 中,BC=9,AB=17, AC=10,⊥BD 于D ,求AD 的长。 9、如图,一块砖宽AN=5㎝,长ND=10㎝,顶上A 处的 一只蚂蚁要到B 处吃食物,已知B 距顶部D 处8㎝,则蚂蚁爬行的最短路程是多少? 10、如图,是一个长8㎝,宽6㎝,高5㎝的仓库,在其内壁的A 处 有一只壁虎,B 处有一只蚊子,则壁虎爬到蚊子处的最短距离为多秒㎝,其中AC=6㎝,BD=4㎝。 11、如图,圆柱底面半径为2㎝,高为9π㎝,点A 、B 分别是圆柱两底两圆周上的 点,且A 、B 在同一母线 A 顺着圆柱侧面绕3圈到达 B ,求棉线最短是多少? 12如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x 、y 表示矩形的长和宽(x >y ),则下列关系式不正确的是:( ) 14422=+y x A 、x+y=12 B 、x-y=2 C 、xy=35 D 、 S 1 S 2 S 3 A B 6㎝ ㎝ 1 B A C F C ′ B D C A A B D A B · · N D 8 6 · · B D A B · ·

勾股定理知识归纳总结及解析

勾股定理知识归纳总结及解析 一、选择题 1.如图,已知ABC 中,4AB AC ==,6BC =,在BC 边上取一点P (点P 不与点B 、C 重合),使得ABP △成为等腰三角形,则这样的点P 共有( ). A .1个 B .2个 C .3个 D .4个 2.如图,在矩形纸片ABCD 中,AD =9,AB =3,将其折叠,使点D 与点B 重合,折痕为EF ,那么折痕EF 的长为( ) A .3 B .6 C .10 D .9 3.如图,已知ABC 中,10,86,AB AC BC AB ===,的垂直平分线分别交,AC AB 于 ,,D E 连接BD ,则CD 的长为( ) A .1 B . 54 C . 74 D .254 4.如图,在ABC 中,90A ∠=?,6AB =,8AC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 作⊥OD AB 于点D ,若则AD 的长为( ) A 2 B .2 C 3 D .4 5.如图,设正方体ABCD-A 1B 1C 1D 1的棱长为1,黑、白两个甲壳虫同时从点A 出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA 1→A 1D 1→…,白甲壳虫爬行的路线是AB→BB 1→…,并且都遵循如下规则:所爬行的第n+2与第n 条棱所在的直线必须

既不平行也不相交(其中n 是正整数).那么当黑、白两个甲壳虫各爬行完第2017条棱分别停止在所到的正方体顶点处时,它们之间的距离是( ) A .0 B .1 C .3 D .2 6.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=15,则S 2的值是( ) A .3 B . 154 C .5 D . 152 7.下列四组数中不能构成直角三角形的一组是( ) A .1,2,6 B .3,5,4 C .5,12,13 D .3,2,13 8.下列长度的三条线段能组成直角三角形的是( ) A .9,7,12 B .2,3,4 C .1,2,3 D .5,11,12 9.在直角三角形ABC 中,90C ∠=?,两直角边长及斜边上的高分别为,,a b h ,则下列关系式成立的是( ) A . 222221a b h += B . 222111 a b h += C .2h ab = D .222h a b =+ 10.如图,在△ABC ,∠C =90°,AD 平分∠BAC 交CB 于点D ,过点D 作DE ⊥AB ,垂足恰好是边AB 的中点E ,若AD =3cm ,则BE 的长为( )

勾股定理16种证明方法

v1.0 可编辑可修改 【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、 C 三点在一条直线上,C 、G 、 D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.

v1.0 可编辑可修改 ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于()2b a+. ∴()2 2 2 1 4c ab b a+ ? = + . ∴2 2 2c b a= +. 【证法3】(赵爽证明) 以a、b 为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角 三角形的面积等于 ab 2 1 . 把这四个直角三 角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴∠HDA = ∠EAB. ∵∠HAD + ∠HAD = 90o, ∴∠EAB + ∠HAD = 90o, ∴ ABCD是一个边长为c的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a , ∠HEF = 90o. ∴ EFGH是一个边长为b―a的正方形,它的面积等于()2a b-. ∴ ()2 2 2 1 4c a b ab= - + ? .

勾股定理试题较难

1、如图,由4个全等的直角三角形拼合而成的一个大正方形,如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于多少? 2、如图,三个半圆的面积分别为S 1=4.5π,S 2=8π,S 3=12.5π,把这三个半圆拼在一 起,则图中的三角形一定是直角三角形吗?为什么? 3、Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2= 。 4、直角三形有一条直角边的长为11,另外两边的长也是正整数,则此三角形的周长是 。 5、长方体底面边长分别为1㎝和3㎝,高为6㎝,如果一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要多长?如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要多长? 6、已知如图,在长方形ABCD 中,AB=3㎝,AD=9㎝,将此长方形折叠,使点B 与点D 重合,折痕为EF ,求△BEF 的面积。 S 1 S 2 S 3 6㎝

7、已知如图,△ABC 中,AB >AC ,AD 是BC 边上的高,求证:AB 2-AC 2=BC (BD-DC ) 8、如图,在钝角△ABC 中,BC=9,AB=17,AC=10,AD ⊥BD 于D ,求AD 的长。 9、如图,一块砖宽AN=5㎝,长ND=10㎝,顶上A 处的一只蚂蚁要到B 处吃食物,已知B 距顶部D 处8㎝,则蚂蚁爬行的最短路程是多少? 10、如图,是一个长8㎝,宽6㎝,高5㎝的仓库,在其内壁的A 处有一只壁虎,B 处有一只蚊子,则壁虎爬到蚊子处的最短距离为多秒㎝,其中AC=6㎝,BD=4㎝。 B D C A B

相关主题
文本预览
相关文档 最新文档