当前位置:文档之家› 基于ANSYS Workbench的高速电主轴动力学特性分析

基于ANSYS Workbench的高速电主轴动力学特性分析

基于ANSYS Workbench的高速电主轴动力学特性分析
基于ANSYS Workbench的高速电主轴动力学特性分析

ANSYS Workbench 显示动力学 质量块冲击薄板

ANSYS Workbench显示动力学质量块冲击薄板 案例分析: 本例模拟一立方体刚性质量块以速度300mm/s冲击一方形薄板的过程,立方体质量块的边长为20mm,方形薄板的边长为200mm,厚度为10mm,薄板材料为显式材料Steel1006,立方体材料为IRON-ARMCO,分析薄板在冲击载荷作用下的连续动态过程。 几何模型的建立 打开workbench,载入几何模型模块和显式动力学模块,生成的几何模型为显式分析做准备。 双击A2打开几何模型,在弹出的单位选择窗口选择长度单位为mm。

点亮xy工作平面,同时点击面对视图图标来确定一个比较方便建模的视角。 XY平面显示如下,可以开始进行XY二维平面内的几何建模操作。 切换到草图模式进行草图建模编辑。

点击Draw主目录条下面的Rectangle生成方形几何外形线。在坐标原点附近拖动鼠标形成一个方框草图。 对方框草图进行位置约束和几何尺寸的标定。假设薄板平面依坐标轴

对称,则每个边距离平行坐标轴的距离均为100mm。约束各条边界。 点击尺寸Dimensions主条目下面的General来标注几何尺寸。点击Y 坐标轴,按住Ctrl键,点选右侧线段,出现距离标注如下图。 依次标注其余三条线段的到平行坐标轴的距离,修改标准尺寸均为100mm,同时四条线段均为蓝色,说明线段均约束完全。

点击concept在下拉菜单中选择surfaces from sketches 点击SurfaceSK1,然后点亮xyplane下的Sketch1,在base objects后面点击apply确认。在SurfaceSK1右键generate生成几何面。 生成有有厚度的实体。点击create下拉菜单Extrude拉伸实体。

电主轴的介绍 090404041009

电主轴的介绍 1.概括:高速数控机床(CNC)是装备制造业的技术基础和发展方向之一,是装备制造业的战略性产业。高速数控机床的工作性能,首先取决于高速主轴的性能。数控机床高速电主轴单元影响加工系统的精度、稳定性及应用范围,其动力性能及稳定性对高速加工起着关键的作用。高速主轴单元的类型主要有电主轴、气动主轴、水动主轴等。不同类型的高速主轴单元输出功率相差较大。 2.电主轴的结构:电动机的转子直接作为机床的主轴,主轴单元的壳体就是电动机机座,并且配合其他零部件,实现电动机与机床主轴的一体化。 3. 优点:电主轴具有结构紧凑、重量轻、惯性小、振动小、噪声低、响应快等优点,而且转速高、功率大,简化机床设计,易于实现主轴定位,是高速主轴单元中的一种理想结构。电主轴轴承采用高速轴承技术,耐磨耐热,寿命是传统轴承的几倍。 4.电主轴的融合技术: 高速轴承技术 电主轴通常采用动静压轴承、复合陶瓷轴承或电磁悬浮轴承。 动静压轴承具有很高的刚度和阻尼,能大幅度提高加工效率、加工质量、延长刀具寿命、降低加工成本,这种轴承寿命多半无限长。 复合陶瓷轴承目前在电主轴单元中应用较多,这种轴承滚动体使用热压Si3N4陶瓷球,轴承套圈仍为钢圈,标准化程度高,对机床结构改动小,易于维护。 电磁悬浮轴承高速性能好,精度高,容易实现诊断和在线监控,但是由于电磁测控系统复杂,这种轴承价格十分昂贵,而且长期居高不下,至今没有得到广泛应用。 高速电机技术 电主轴是电动机与主轴融合在一起的产物,电动机的转子即为主轴的旋转部分,理论上可以把电主轴看作一台高速电动机。关键技术是高速度下的动平衡; 润滑

电主轴的润滑一般采用定时定量油气润滑;也可以采用脂润滑,但相应的速度要打折扣。所谓定时,就是每隔一定的时间间隔注一次油。所谓定量,就是通过一个叫定量阀的器件,精确地控制每次润滑油的油量。而油气润滑,指的是润滑油在压缩空气的携带下,被吹入陶瓷轴承。油量控制很重要,太少,起不到润滑作用;太多,在轴承高速旋转时会因油的阻力而发热。 冷却装置 为了尽快给高速运行的电主轴散热,通常对电主轴的外壁通以循环,冷却装置的作用是保持冷却剂的温度。 高速刀具的装卡方式 广为熟悉的BT、ISO刀具,已被实践证明不适合于高速加工。这种情况下出现了HSK、SKI等高速刀具。 高频变频装置 要实现电主轴每分钟几万甚至十几万转的转速,必须用一高频变频装置来驱动电主轴的内置高速电动机,变频器的输出频率必须达到上千或几千赫兹。 电主轴的运动控制 在数控机床中,电主轴通常采用变频调速方法。目前主要有普通变频驱动和控制、矢量控制驱动器的驱动和控制以及直接转矩控制三种控制方式。 普通变频为标量驱动和控制,其驱动控制特性为恒转矩驱动,输出功率和转速成正比。普通变频控制的动态性能不够理想,在低速时控制性能不佳,输出功率不够稳定,也不具备C轴功能。但价格便宜、结构简单,一般用于磨床和普通的高速铣床等。 矢量控制技术模仿直流电动机的控制,以转子磁场定向,用矢量变换的方法来实现驱动和控制,具有良好的动态性能。矢量控制驱动器在刚启动时具有很大的转矩值,加之电主轴本身结构简单,惯性很小,故启动加速度大,可以实现启动后瞬时达到允许极限速度。这种驱动器又有开环和闭环两种,后者可以实现位置和速度的反馈,不仅具有更好的动态性能,还可以实现C轴功能;而前者动态性能稍差,也不具备C轴功能,但价格较为便宜。 直接转矩控制是继矢量控制技术之后发展起来的又一种新型的高性能交流调速技术,其控制思想新颖,系统结构简洁明了,更适合于高速电主轴的驱动,更能满足高速电主轴高转速、宽调速范围、高速瞬间准停的动态特性和静态特性的要求,已成为交流传动领域的一个热点技术。 5.电主轴的发展趋势:随着机床技术、高速切削技术的发展和实际应用的需要,对机床电主轴的性能也提出了越来越高的要求,

高速电主轴及其结构

高速电主轴及其结构报告 姓名:周李念 学号: 班级:机自实验04班 重庆大学机械工程学院

高速电主轴及其结构 周李念 (重庆大学机械工程学院机自实验04班) 摘要:高速加工能显著地提高生产率、降低生产成本和提高产品加工质量,是制造业发展的重要趋势,也是一项非常有前景的先进制造技术。实现高速加工的首要条件是高质量的高速机床,而高速机床的核心部件是高速电主轴单元,它实现了机床的“零传动”,简化了结构,提高了机床的动态响应速度,是一种新型的机械结构形式,其性能好坏在很大程度上决定了整台机床的加工精度和生产效率。 关键词:高速加工;电主轴;结构设计 1 高速电主轴概述 高速电主轴最早是用于磨削机床加工,逐步发展到加工中心电主轴及其他各行业机床主轴.典型的磨削电主轴的结构如图1 所示,传统的主轴一般是通过传动带、齿轮来进行传动驱动,而电主轴的驱动是将异步电机直接装入主轴内部,通过驱动电源直接驱动主轴进行工作,以实现机床主轴系统的零传动,形成“直接传动主轴”.从而减少中间皮带或者齿轮机械传动等环节,实现了机械与电机一体的主轴单元.电主轴不但减少了中间环节存在的打滑、振动和噪音的因素,也加速了主轴在高速领域的快速发展,成为满足高速切削,实现高速加工的最佳方案,其高转速、高精度、高刚性、低噪音、低温升、结构紧凑、易于平衡、安装方便、传动效率高等优点,使它在超高速切削机床上得到广泛的应用[1]. . 1 转轴;2 前轴承组;3 定子部件;4 转子部件;5 后轴承组;6 进-出水孔;7 进油孔;8 接线座;9 出油孔 图1 电主轴结构简图 高速电主轴的优点: 高速电主轴取消了由电机驱动主轴旋转工作的中间变速和传动装置(如齿轮、皮带、联轴节等),因此高速电主轴具有如下优点: (1)主轴由内装式电机直接驱动,省去了中间传动环节,机械结构简单、紧凑, 噪声低,主轴振动小,回转精度高,快速响应性好,机械效率高; (2)电主轴系统减少了高精密齿轮等关键零件,消除了齿轮传动误差,运行时更加平稳; (3)采用交流变频调速和矢量控制技术,输出功率大,调速范围宽,功率—扭矩特性好,可在额定转速范围实现无级调速,以适应各种负载和工况变化的需要; (4)可实现精确的主轴定位,并实现很高的速度、加速度及定角度快速准停,动态精度和稳定性好,可满足高速切削和精密加工的需要; (5)大幅度缩短了加工时间,只有原来的约 1/4; (6)加工表面质量高,无需再进行打磨等表面处理工序;

电主轴的工作原理、典型结构及优点

电主轴的工作原理、典型结构及优点 打印引用发布时间:2010-04-25 电主轴是高速数控加工机床的“心脏部件”,本文介绍了电主轴的工作原理、典型结构,阐述了电主轴的关键技术,总结了其发展趋势. 1、概述 由于高速加工不但可以大幅度提高加工效率,而且还可以显著提高工件的加工质量,所以其应用领域非常广泛,特别是在航空航天、汽车和模具等制造业中。于是,具有高速加工能力的数控机床已成为市场新宠。目前,国内外各著名机床制造商在高速数控机床中广泛采用电主轴结构,特别是在复合加工机床、多轴联动、多面体加工机床和并联机床中。电主轴是高速数控加工机床的“心脏部件”,其性能指标直接决定机床的水平,它是机床实现高速加工的前提和基本条件。 2、电主轴的工作原理、典型结构及优点 2.1 电主轴的工作原理 电主轴就是直接将空心的电动机转子装在主轴上,定子通过冷却套固定在主轴箱体孔内,形成一个完整的主轴单元,通电后转子直接带动主轴运转。 2.2电主轴的典型结构 电主轴单元典型的结构布局方式是电机置于主轴前、后轴承之间(如图所示),其优点是主轴单元的轴向尺寸较短,主轴刚度大,功率大,较适合于大、中型高速数控机床;其不足是在封闭的主轴箱体内电机的自然散热条件差,温升比较高。 1主轴箱体 2冷却套 3冷却水进口 4定子 5转子 6套筒 7冷却水出口 8转轴 9反馈装置 10主轴前轴承 11主轴后轴承 2.3电主轴的优点 电主轴省去了带轮或齿轮传动,实现了机床的“零传动”,提高了传动效率。电主轴的刚性好、回转精度高、快速响应性好,能够实现极高的转速和加、减速度及定角度的快速准停(C轴控制),调速范围宽。 3、电主轴的关键技术 “电主轴”的概念不应简单理解为只是一根主轴套筒,而应该是一套组件,包括:定子、转子、轴承、高速变频装置、润滑装置、冷却装置等。因此电主轴是高速轴承技术、润滑技术、冷却技术、动平衡技术、精密制造与装配技术以及电机高速驱动等技术的综合运用。 3.1电主轴的高速轴承技术 实现电主轴高速化精密化的关键是高速精密轴承的应用。目前在高速精密电主轴中应用的轴承有精密滚动轴承、液体动静压轴承、气体静压轴承和磁悬浮轴承等,但主要是精密角接触陶瓷球轴承和精密圆柱滚子轴承。液体动静压轴承的标准化程度不高;气体静压轴承不适合于大功率场合;磁悬浮轴承由于控制系统复杂,价格昂贵,其实用性受到限制。

ANSYS动力学分析报告

第5章动力学分析 结构动力学研究的是结构在随时间变化载荷下的响应问题,它与静力分析的主要区别是动力分析需要考虑惯性力以及运动阻力的影响。动力分析主要包括以下5个部分:模态分析:用于计算结构的固有频率和模态。 谐波分析(谐响应分析):用于确定结构在随时间正弦变化的载荷作用下的响应。 瞬态动力分析:用于计算结构在随时间任意变化的载荷作用下的响应,并且可涉及上述提到的静力分析中所有的非线性性质。 谱分析:是模态分析的应用拓广,用于计算由于响应谱或PSD输入(随机振动)引起的应力和应变。 显式动力分析:ANSYS/LS-DYNA可用于计算高度非线性动力学和复杂的接触问题。 本章重点介绍前三种。 【本章重点】 ?区分各种动力学问题; ?各种动力学问题ANSYS分析步骤与特点。 5.1 动力学分析的过程与步骤 模态分析与谐波分析两者密切相关,求解简谐力作用下的响应时要用到结构的模态和振

型。瞬态动力分析可以通过施加载荷步模拟各种何载,进而求解结构响应。三者具体分析过程与步骤有明显区别。 5.1.1 模态分析 1.模态分析应用 用模态分析可以确定一个结构的固有频率利振型,固有频率和振型是承受动态载荷结构设计中的重要参数。如果要进行模态叠加法谐响应分析或瞬态动力学分析,固有频率和振型也是必要的。可以对有预应力的结构进行模态分析,例如旋转的涡轮叶片。另一个有用的分析功能是循环对称结构模态分析,该功能允许通过仅对循环对称结构的一部分进行建模,而分析产生整个结构的振型。 ANSYS产品家族的模态分析是线性分析,任何非线性特性,如塑性和接触(间隙)单元,即使定义也将被忽略。可选的模态提取方法有6种,即Block Lanczos(默认)、Subspace、Power Dynamics、Reduced、Unsymmetric、Damped及QR Damped,后两种方法允许结构中包含阻尼。 2.模态分析的步骤 模态分析过程由4个主要步骤组成,即建模、加载和求解、扩展模态,以及查看结果和后处理。 (1)建模。指定项目名和分析标题,然后用前处理器PREP7定义单元类型、单元实常数、材料性质及几何模型。必须指定杨氏模量EX(或某种形式的刚度)和密度DENS(或某种形式的质量),材料性质可以是线性或非线性、各向同性或正交各向异性,以及恒定或与温

高速电主轴动力学特性分析综述

《机械模态分析与实验》结课论文高速电主轴模态分析综述 班级研1201 姓名赵川 学号2012020003

高速电主轴模态分析综述 前言 高速电主轴是高速机床的核心部件, 它将机床主轴与变频电机 轴合二为一, 即将主轴电机的定子、转子直接装入主轴组件内部, 也被称为内装式电主轴( Built- in Motor spindle) ,其间不再使用皮带或齿轮传动副。其具有结构紧凑、重量轻、惯性小、动态特性好等优点, 并改善了机床的动平衡, 避免振动和噪声, 在超高速机床中 得到广泛应用。随着科学技术的发展,高速精密加工技术已广泛应用于高端装备制造各个行业。高速精密数控机床目前成为现代化制造业的关键生产设备。提高高速精密数控机床在加工运行过程中精度的可靠性、稳定性和可维护性,对提升企业竞争力越来越重要。高速精密机床的工作性能,取决于机床的主轴系统。主轴也是最容易失效的部位之一,主轴系统在加工过程中由于各种原因会引起回转精度劣化和功能丧失,严重影响产品加工精度和质量。如精密车削的圆度误差30%-70%是主轴的回转误差引起。加工的精度越高,所占的比例越大。其动态性能的好坏对机床的切削抗振性、加工精度及表面粗糙度均有很大的影响,是制约数控机床加工精度和使用效率的关键因素。 正文 高速加工技术已广泛应用于航空航天、模具及汽车制造等行业。高速主轴在加工过程中, 由于离心力和陀螺力矩效应, 其动态特性相对静止状态发生很大改变。若仍然利用静态主轴的动态特性参数进

行高速切削稳定性分析, 会带来较大的误差。因此有必要对高速旋转状态下的主轴进行精确建模, 以达到优化切削参数的目的。 国内电主轴的研究始于20世纪60 年代, 主要用于零件内表面磨削, 这种电主轴的功率低, 刚度小。且采用无内圈式向心推力球轴承, 限制了高速电主轴的生产社会化和商品化。20世纪70年代后期至80年代, 随着高速主轴轴承的开发, 研制了高刚度、高速电主轴, 它被广泛应用于各种内圆磨床和各机械制造领域。在20世纪80 年代末以后, 由磨用电主轴转向铣用电主轴, 它不仅能加工各种形体复杂的模具, 还开发了用于木工机械用的风冷式高速铣用电主轴, 推动高速电主轴在铣削中的应用。此外, 食品工业的固体饮料; 染化工业的染料; 医药工业的药品等粉状和粒状物质均需用高速离心干燥技术来生产, 而高速离心干燥设备也需要高速电主轴技术。高速拉伸电主轴的应用促进了我国有色管材精密冷成型技术的发展。高精度硅片切割机用电主轴, 促进电子工业设备的更新和进步。利用高速电主轴的优良性能, 还可开发多种高性能试验机。 国外电主轴最早用于内圆磨床, 20世纪80年代, 随着数控机床和高速切削技术的发展和需要, 逐渐将电主轴技术应用于加工中心、数控铣床等高档数控机床, 成为近年来机床技术所取得的重大成就之一。目前, 采用电主轴技术的数控机床越来越多。电主轴已成为现代数控机床最热门的主要功能部件之一, 世界上形成许多著名机床电主轴功能部件专业制造商, 它们生产的电主轴功能部件已经系列化, 如瑞士的FIS2CHER, Step-Tec和IBAG, 德国的GMN和CYTEC, 意

高速电主轴热态特性与动力学特性耦合分析模型_杨佐卫

第41卷 第1期吉林大学学报(工学版)  V ol.41 No.12011年1月 Journal of Jilin University(Engineering and Technology  Edition) J an.2011收稿日期:2009-10- 19.基金项目:“十一五”国家重大科技专项项目(2009ZX04001-023);四川省科技支撑计划项目(07GG008-023).作者简介:杨佐卫(1980-),男,博士研究生.研究方向:机床性能优化及误差补偿.E-mail:super_yzw@sina.com.cn通信作者:殷国富(1956-),男,教授,博士生导师.研究方向:现代集成制造系统.E-mail:gfy in@scu.edu.cn高速电主轴热态特性与动力学特性耦合分析模型 杨佐卫1,殷国富1,尚 欣1,姜 华2,钟开英2 (1.四川大学制造科学与工程学院,成都610065;2.四川普什宁江机床有限公司,四川都江堰611830 )摘 要:针对高速电主轴的耦合分析,考虑到结合面接触热阻和润滑剂黏温变化对其热态特性影响的同时, 以轴承拟静力学模型描述了径向刚度函数,建立了一种高速电主轴热态特性与动力学特性耦合分析模型。分析了轴承离心力软化效应和热诱导预紧力硬化效应联合作用下的支撑刚度变化规律及其对主轴系统动力学性能的影响。仿真分析与实验结果验证了本文模型的有效性。 关键词:机床;耦合分析模型;接触热阻;热诱导预紧力 中图分类号:TG502.1 文献标志码:A 文章编号:1671-5497(2011)01-0100- 06Coupling  analysis model of thermal and dynamic characteristicsfor high-speed motorized sp indleYANG Zuo-wei1,YIN Guo-fu1,SHANG Xin1,JIANG Hua2,ZHONG Kai-ying 2(1.School of Manufacturing Science and Engineering,Sichuan University,Cheng du610065,China;2.Sichuan PushNingjiang Machine Tool Group Co.,Ltd,Dujiangy an611830,China)Abstract:A coupling  analysis model of thermal and dynamic characteristics was built for the high-speedmotorized spindle.In the model,the thermal contact resistance of joints and the effect of the lubricantviscosity variation with temperature were considered,the radial stiffness function of the bearing wasdescribed by aquasi-static model of bearing.The variation of the supporting stiffness under thecombined action of the softening effect of bearing centrifugal force and the hardening effect ofthermally induced preload and its effect on the dynamic characteristics of spindle system wereanalyzed.Simulation and experiment results proved the established model satisfied the need ofcoupling  analysis for the high-speed motorized spindle.Key words:machine tool;coupling analysis model;thermal contact resistance;thermally inducedp reload0 引 言 高速电主轴内置电机大量的热生成以及附加的转子质量增加了热态特性、 动力学性能及其耦合行为的复杂性,因此,国内外学者对其进行了深 入的研究。T.A.Harris[1] 提出了解析轴承系统温度分布的热网络法。B.Bossmanns等[2]提出 了基于有限差分法的高速电主轴热分析模型。

ansys动力学分析全套讲解

第一章模态分析 §模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS产品家族中的模态分析是一个线性分析。任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。ANSYS提供了七种模态提取方法,它们分别是子空间法、分块Lanczos法、PowerDynamics法、缩减法、非对称法、阻尼法和QR阻尼法。阻尼法和QR阻尼法允许在结构中存在阻尼。后面将详细介绍模态提取方法。 §模态分析中用到的命令 模态分析使用所有其它分析类型相同的命令来建模和进行分析。同样,无论进行何种类型的分析,均可从用户图形界面(GUI)上选择等效于命令的菜单选项来建模和求解问题。 后面的“模态分析实例(命令流或批处理方式)”将给出进行该实例模态分析时要输入的命令(手工或以批处理方式运行ANSYS时)。而“模态分析实例(GUI方式)” 则给出了以从ANSYS GUI中选择菜单选项方式进行同一实例分析的步骤。(要想了解如何使用命令和GUI选项建模,请参阅<>)。<>中有更详细的按字母顺序列出的ANSYS命令说明。 §模态提取方法 典型的无阻尼模态分析求解的基本方程是经典的特征值问题: 其中: =刚度矩阵, =第阶模态的振型向量(特征向量), =第阶模态的固有频率(是特征值), =质量矩阵。 有许多数值方法可用于求解上面的方程。ANSYS提供了7种方法模态提取方法,下面分别进行讨论。 1.分块Lanczos法 2.子空间(Subspace)法 Dynamics法

ansys动力学瞬态分析详解

§3.1瞬态动力学分析的定义 瞬态动力学分析(亦称时间历程分析)是用于确定承受任意的随时间变化载荷结构的动力学响应的一种方法。可以用瞬态动力学分析确定结构在稳态载荷、瞬态载荷和简谐载荷的随意组合作用下的随时间变化的位移、应变、应力及力。载荷和时间的相关性使得惯性力和阻尼作用比较重要。如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。 瞬态动力学的基本运动方程是: 其中: [M] =质量矩阵 [C] =阻尼矩阵 [K] =刚度矩阵 {}=节点加速度向量 {}=节点速度向量 {u} =节点位移向量 在任意给定的时间,这些方程可看作是一系列考虑了惯性力([M]{})和 阻尼力([C]{})的静力学平衡方程。ANSYS程序使用Newmark时间积分方法在离散的时间点上求解这些方程。两个连续时间点间的时间增量称为积分时间步长(integration time step)。 §3.2学习瞬态动力学的预备工作 瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算,瞬态动力学分析通常要占用更多的计算机资源和更多的人力。可以先做一些预备工作以理解问题的物理意义,从而节省大量资源。例如,可以做以下预备工作:

1.首先分析一个较简单模型。创建梁、质量体和弹簧组成的模型,以最小的代价深入的理解动力学认识,简单模型更有利于全面了解所有的动力学响应所需要的。 2.如果分析包括非线性特性,建议首先利用静力学分析掌握非线性特性对结构响应的影响规律。在某些场合,动力学分析中是没必要包括非线性特性的。 3.掌握结构动力学特性。通过做模态分析计算结构的固有频率和振型,了解这些模态被激活时结构的响应状态。同时,固有频率对计算正确的积分时间步长十分有用。 4.对于非线性问题,考虑将模型的线性部分子结构化以降低分析代价。<<高级技术分指南>>中将讲述子结构。 §3.3三种求解方法 瞬态动力学分析可采用三种方法:完全(Full)法、缩减(Reduced)法及模态叠加法。ANSYS/Professional产品中只允许用模态叠加法。在研究如何实现这些方法之前,让我们先探讨一下各种方法的优点和缺点。 §3.3.1完全法 完全法采用完整的系统矩阵计算瞬态响应(没有矩阵缩减)。它是三种方法中功能最强的,允许包括各类非线性特性(塑性、大变形、大应变等)。 注─如果并不想包括任何非线性,应当考虑使用另外两种方法中的一种。这是因为完全法是三种方法中开销最大的一种。 完全法的优点是: ·容易使用,不必关心选择主自由度或振型。 ·允许各种类型的非线性特性。 ·采用完整矩阵,不涉及质量矩阵近似。 ·在一次分析就能得到所有的位移和应力。 ·允许施加所有类型的载荷:节点力、外加的(非零)位移(不建议采用)和单元载荷(压力和温度),还允许通过TABLE数组参数指定表边界条件。 ·允许在实体模型上施加的载荷。 完全法的主要缺点是它比其它方法开销大。

Workbench心得——行星齿轮瞬态动力学分析

然后我们就需要对模型添加约束和连接,主要包括有 看下面 详述。在这里首先将三角形的齿轮架给刚化, 因为整个分析中不考虑它的影响, 主要 首先拿到模型可以看出这里是个行星轮结构。 考虑 齿轮之间的作用。 joints 禾口 frictionl ess con tacts ,添加完的效果如图。添加过程请

首先添加三个类似的运动副,都是需要Body-Ground形式。第一个添加太阳轮的旋转副。revolute joint 。Body-ground。

再添加三角架的旋转副。revolute joint 。Body-ground。

CAEm Mttric Jmm, kq, "4,気 mV, nrA) Degrees 再添加内齿圈的固定副。 fixed joint 。Body-ground 。 Filr- Fdrt Vtew UniE Toe i Hetp Q 专皿砖甸tl 诡冏因?)▼ —t 1臂斤胃A IB O 1? ■胡▼ 二屮毀題■软匹q ci.罠-科 h 営how "i/rrticr 1! W^e+fBrw ■ Edg@ "応ring 寿 〒 X T J X * 1*1 HEldwn AnnetiiiciM E 品切 li lu^iiLL^r ?'urd 呼 备肚血 Sody * AR EudL 川5帕 h b 匸 ewv&tiym :| K * Qu0mc ji] PT?|?r R jSl Gffnffle4r/ ± "Au 匚□nrtrtaiE 1 S?fcT*ms U 丿谢 匚汕neetm-s 0# 麵 iwi b - 毎-寸夸 & ^du * ?-(jTDUTd Ta E 「29] (±--^3 R E .?cki ■* - Gi QLjnd Tn F [±3] 匹、坤 I 亠 JP and 1? A [40] 占"电 *3111 2 舟Y 爷 & -FT4U 兀亍PK 审I Ccnlacb ?* Fl*KJbElhlE£? 【勒 To SL+lj. Y X 1=低凶理毋?BI] web 1 r-a n-Meaiii [B5] t .亘 intel Ccriil 口r -卉di 也W 用卜Srlifch 弼 遵伞JcH *阴tabard 帕Pty 刁片垫 Solution LB6J …> _Ll 女Ld 即"n\ “上li* i ; 昨 Ew .-ilk i 【9b Conrect]?i Type Ecdy-2rcfan!Ttr Syrtffr- ;^ferr-ic? Ctwrd ~^e z-y^t-r?" 5-upir>g Method Geonwtn 甬KI 心pe J ism li d 訓%阿0 >Aich?rigvd Behavior Rigid Pin bail R 強 i” 初 StDp5 ? Qiomndl To R41| J 2Z3:17 :a r^i Fl icf He p 让0-|<9 亠一-lL^> ^r^iphc!& Arnotabcnsi G 2 Mes^gias Na Se-ectiDH ¥ Det a -s cf "Re-vciiJte - SrcMind T e Ff?4l]' Bedy □□□□ 「■0£D 壬D?D 1OD.CU (imm) 柑 mid '■ I r - ■ J MV. p ,< ri"i' i 1. J h- -Hl ■- II ■■ Vir^/T iii.ri -^j -In- i| H M '- T ' 订?儿 ,ir ■ ■'■-* n ; .- I - JI ;I ^4 ?'■rf hiim

ANSYS动力学分析指南——模态分析

§1.1模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS产品家族中的模态分析是一个线性分析。任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。ANSYS提供了七种模态提取方法,它们分别是子空间法、分块Lanczos法、PowerDynamics法、缩减法、非对称法、阻尼法和QR阻尼法。阻尼法和QR阻尼法允许在结构中存在阻尼。后面将详细介绍模态提取方法。 §1.2模态分析中用到的命令 模态分析使用所有其它分析类型相同的命令来建模和进行分析。同样,无论进行何种类型的分析,均可从用户图形界面(GUI)上选择等效于命令的菜单选项来建模和求解问题。 后面的“模态分析实例(命令流或批处理方式)”将给出进行该实例模态分析时要输入的命令(手工或以批处理方式运行ANSYS时)。而“模态分析实例(GUI方式)” 则给出了以从ANSYS GUI中选择菜单选项方式进行同一实例 分析的步骤。(要想了解如何使用命令和GUI选项建模,请参阅<>)。<>中有更详细的按字母顺序列出的ANSYS 命令说明。 §1.3模态提取方法 典型的无阻尼模态分析求解的基本方程是经典的特征值问题: 其中: =刚度矩阵,

ansys动力学分析

结构动力分析研究结构在动荷载作用的响应(如位移、应力、加速度等的时间历程),以确定结构的承载能力和动力特性等。ANSYS动力分析方法有以下几种,现分别做简要介绍。 1.模态分析 用模态分析可以确定设计中的结构或机器部件的振动特性(固有频率和振型)。它也可以作为其他更详细的动力学分析的起点,例如瞬态动力学分析、谐响应分析、谱分析。 用模态分析可以确定一个结构的固有频率和振型。固有频率和振型是承受动态荷载结构设计中的重要参数。如果要进行谱分析或模态叠加法谐响应分析或瞬态动力学分析,固有频率和振型也是必要的。 ANSYS的模态分析是一线性分析,任何非线性特性(如塑性和接触单元)即使定义了也将忽略。可进行有预应力模态分析、大变形静力分析后有预应力模态分析、循环对称结构的模态分析、有预应力的循环对称结构的模态分析、无阻尼和有阻尼结构的模态分析。模态分析中模态的提取方法有七种,即分块兰索斯法、子空间迭代法、缩减法或凝聚法、PowerDynamics法、非对称法、阻尼法、QR阻尼法,缺省时采用分块兰索斯法。 2.谐响应分析 任何持续的周期荷载将在结构中产生持续的周期响应(谐响应)。谐响应分析使设计人员能预测结构的持续动力特性,从而使设计人员能够验证其设计能否成功地克服共振、疲劳及其他受迫振动引起的有害效果。谐响应分析是用于确定线性结构在承受随时间按正弦(简谐)规律变化的荷载时的稳态响应的一种技术。分析的目的是计算出结构在几种频率下的响应并得到一些响应值(通常是位移)对频率的曲线。从这些曲线上可以找到“峰值”响应,并进一步观察频率对应的应力。 这种分析技术只计算结构的稳态受迫振动。发生在激励开始时的瞬态振动不在谐响应分析中考虑。谐响应分析是一种线性分析。任何非线性特性,如塑性和接触(间隙)单元,即使被定义了也将被忽略,但在分析中可以包含非对称系统矩阵,如分析流体—结构相互作用问题。谐响应分析同样也可以分析有预应力结构,如小提琴的弦(假定简谐应力比预加的拉伸应力小得多)。 谐响应分析可以采用完全法、缩减法和模态叠加法三种方法。 3.瞬态动力学分析 瞬态动力学分析(亦称时间历程分析)是用于确定承受任意的随时间变化的荷载的结构动力学响应的一种方法。可以用瞬态动力学分析确定结构在静荷载、瞬态荷载和简谐荷载的随意组合下的随时间变化的位移、应变、应力及力。荷载和时间的相关性使得惯性力和阻尼力作用比较重要,如果惯性力和阻尼力不重要,就可以用静力学分析代替瞬态分析。 瞬态动力学分析可采用三种方法:完全法、缩减法和模态叠加法。完全法采用完整的系统矩阵计算瞬态响应,在三种方法中功能最强,可包括各类非线性特性(如塑性、大变形、大应

ANSYS动力学分析的几个入门例子

ANSYS动力学分析的几个入门例子 问题一:悬臂梁受重力作用发生大变形,求其固有频率。图片附件: 1.jpg ( 4.85 K ) 基本过程: 1、建模 2、静力分析 NLGEOM,ON STRES,ON 3、求静力解 4、开始新的求解:modal STRES,ON UPCOORD,1,ON 修正坐标 SOLVE... 5、扩展模态解 6、察看结果

/PREP7 ET,1,BEAM189 !使用beam189梁单元MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,EX,1,,210e9 MPDATA,PRXY,1,,0.3 MPDATA,DENS,1,,7850 SECTYPE, 1, BEAM, RECT, secA, 0 !定义梁截面secA SECOFFSET, CENT SECDATA,0.005,0.01,0,0,0,0,0,0,0,0 K, ,,,, !建模与分网 K, ,2,,, K, ,2,1,, LSTR, 1, 2 LATT,1, ,1, , 3, ,1 LESIZE,1, , ,20, , , , ,1 LMESH, 1 FINISH /SOL !静力大变形求解 ANTYPE,0 NLGEOM,1 PSTRES,ON !计及预应力效果 DK,1, , , ,0,ALL, , , , , , ACEL,0,9.8,0, !只考虑重力作用 TIME,1 AUTOTS,1 NSUBST,20, , ,1 KBC,0 SOLVE FINISH /SOLUTION ANTYPE,2 !进行模态求解 MSA VE,0 MODOPT,LANB,10 MXPAND,10, , ,0 !取前十阶模态 PSTRES,1 !打开预应力效应MODOPT,LANB,10,0,0, ,OFF UPCOORD,1,ON !修正坐标以得到正确的应力PSOLVE,TRIANG !三角化矩阵 PSOLVE,EIGLANB !提取特征值和特征向量FINISH /SOLU

ansys动力学分析全套讲解

a n s y s动力学分析全套讲 解 This model paper was revised by the Standardization Office on December 10, 2020

第一章模态分析 §模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS产品家族中的模态分析是一个线性分析。任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。ANSYS提供了七种模态提取方法,它们分别是子空间法、分块Lanczos法、PowerDynamics法、缩减法、非对称法、阻尼法和QR阻尼法。阻尼法和QR阻尼法允许在结构中存在阻尼。后面将详细介绍模态提取方法。 §模态分析中用到的命令 模态分析使用所有其它分析类型相同的命令来建模和进行分析。同样,无论进行何种类型的分析,均可从用户图形界面(GUI)上选择等效于命令的菜单选项来建模和求解问题。 后面的“模态分析实例(命令流或批处理方式)”将给出进行该实例模态分析时要输入的命令(手工或以批处理方式运行ANSYS时)。而“模态分析实例(GUI方式)” 则给出了以从ANSYS GUI中选择菜单选项方式进行同一实例分析的步骤。(要想了解如何使用命令和GUI选项建模,请参阅<>)。<>中有更详细的按字母顺序列出的ANSYS命令说明。 §模态提取方法 典型的无阻尼模态分析求解的基本方程是经典的特征值问题: 其中:

Ansys第31例冲击动力学分析实例——车辆受

第31例冲击动力学分析实例——车辆受 起伏路面激励的响应分析 本例用ANSYS LS-DYNA分析了车辆受起伏路面激励的响应,研究了创建车辆和负载模型的方法,研究了模拟和施加起伏路面激励载荷的方法。 31.1问题描述 为了分析车辆受起伏路面激励的响应,可以建立如图31-1所示的简化模型。由于矿石的冲击只作用于车辆底板,所以忽略车辆其余部分,车辆悬挂系统用弹簧阻尼系统模拟。在弹簧阻尼系统的端部施加随时间变化的位移载荷,以模拟起伏路面对车辆的激励。 本例各物理量单位如下:长度为mm;力为N;时间为s;质量为t;应力及材料弹性模量均为MPa;密度为t/m3;加速度为mm/s2。 31.2分析步骤 31.2.1 运行AN5YSJLS-LIYNA 用ANSYS产品启动器(图31-1)运行ANSYS LS-DYNA:开始→程序→ANSYS13.0→Mechanical APDL Product launch→选择Simulation Environment(分析环境)为ANSYS,选择License(授权)为ANSYS Multiphysics/LS-DYNA,设置Working Directory(工作目录)和Initial Jobname(初始任务名)等→Run。

图31-2ANSYS产品启动器 31. 2.2定义任务名 拾取菜单Utility Menu→File→Change Jobname,弹出如图31-3所示的对话框,在“[/FILNAM]”文本框中输入EXAMPLE31,单击“OK”按钮。 图31-3定义任务名对话框 31.2.3选择单元类型 拾取菜单Main Menu→Preprocessor→Element Type→Add/Edit/Delete,弹出如图31-4所示的对话框,单击“Add…”按钮;弹出如图31-5所示的对话框,在左侧列表中选"LS-DYNA Explicit",在右侧列表中选“3D Solid 164”,单击“Apply”按钮:再在右侧列表中选“

ANSYS动力学分析知识讲解

动力学分析机翼模态分析实例 问题描述 如图5-2所示,为一个模型飞机的机翼。机翼沿着长度方向轮廓一致,且它的横截面由直线和样条曲线定义。机翼的一端固定在机体上,另一端为悬空的自由端。且机翼由低密度聚乙烯制成,有关性质参数为:弹性模量:38×103psi;泊松比:0.3;密度:1.033×10-3slug/in3。问题的目的是显示机翼的模态自由度。 图5-2 模型飞机机翼简图 GUI操作步骤 1.定义标题和设置参数 (1)选择菜单Utility Menu>File>Change Title。 (2)输入文本“Modal analysis Of a model airplane wing”,单击。 (3)选择菜单Main Menu>Preferences。 (4)选中“Structural”选项,单击。 2.定义单元类型 (1)选择菜单Main Menu>Preprocessor>Element Type>Add/Edit/Delete,弹出【Element

Types】窗口如图5-3。 图5-3 【Element Types】窗口 (2)单击,弹出【Library of Element Types】对话框如图5-4。 图5-4 【Library of Element Types】对话框 (3)在左侧的滚动框中选择“Structural Solid”。 (4)在右侧的滚动框中选择“Quad 4node 42”。 (5)单击。 (6)在右侧的滚动框中选择“Brick 8node 45”,单击。 (7)单击关闭窗口。 3.定义材料性质 (1)选择菜单路径Main Menu>Preprocessor>Material Props>Material Models,打开【Define Material Model Behavior】材料属性对话框如图5-5。

ansys动力学分析全套讲解 (2)

第一章模态分析 §1.1模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS产品家族中的模态分析是一个线性分析。任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。ANSYS 提供了七种模态提取方法,它们分别是子空间法、分块Lanczos法、PowerDynamics法、缩减法、非对称法、阻尼法和QR阻尼法。阻尼法和QR阻尼法允许在结构中存在阻尼。后面将详细介绍模态提取方法。 §1.2模态分析中用到的命令 模态分析使用所有其它分析类型相同的命令来建模和进行分析。同样,无论进行何种类型的分析,均可从用户图形界面(GUI)上选择等效于命令的菜单选项来建模和求解问题。 后面的“模态分析实例(命令流或批处理方式)”将给出进行该实例模态分析时要输入的命令(手工或以批处理方式运行ANSYS时)。而“模态分析实例(GUI方式)”则给出了以从ANSYS GUI中选择菜单选项方式进行同一实例分析的步骤。(要想了解如何使用命令和GUI选项建模,请参阅<>)。<>中有更详细的按字母顺序列出的ANSYS命令说明。 §1.3模态提取方法 典型的无阻尼模态分析求解的基本方程是经典的特征值问题: 其中: =刚度矩阵, =第阶模态的振型向量(特征向量), =第阶模态的固有频率(是特征值), =质量矩阵。 有许多数值方法可用于求解上面的方程。ANSYS提供了7种方法模态提取方法,下面分别进行讨论。 1.分块Lanczos法 2.子空间(Subspace)法 3.Power Dynamics法 4.缩减(Reduced /Householder)法 5.非对称(Unsymmetric)法 6.阻尼(Damp)法(阻尼法求解的是另一个方程,参见<>中关于此法的详细信息) 7.QR阻尼法(QR阻尼法求解的是另一个方程,参见<>中关于此法的详细信息) 注意—阻尼法和非对称法在ANSYS/Professional中不可用。

相关主题
文本预览
相关文档 最新文档