Pseudo-polarbasedestimationoflargetranslationsrotationsand scalingsinimages ¤ Y.Keller 1,2
- 格式:pdf
- 大小:922.58 KB
- 文档页数:27
Pseudo-polarbasedestimationoflargetranslationsrotationsand
scalingsinimages
¤Y.Keller1;2,A.Averbuch1,M.Isreali3
1SchoolofComputerScience
TelAvivUniversity,TelAviv69978,Israel
2Dept.ofElectricalEngineeringSystems
Tel-AvivUniversityTel-Aviv69978,Israel
3FacultyofComputerScience,Technion,
Haifa32000,Israel
Phone:*972-55-694-464
Fax:*972-151-55-694-464
Email:keller@post.tau.ac.il
SubmittedtotheIEEETransactionsonImageProcessing
August2002
Abstract
Oneofthemajorchallengesrelatedtoimageregistrationistheestimationoflargemotionswithoutpriorknowledge.ThispaperpresentsaFourierbasedapproachthatestimateslargetranslation,scaleandrotationmotions.Thealgorithmusesthepseudo-polartransformtoachievesubstantialimprovedapproximationsofthepolarandlog-polarFouriertransformsofanimage.Thus,rotationandscalechangesarereducedtotranslationswhichareestimatedusingphasecorrelation.Byutilizingthepseudo-polargridweincreasetheperformance(accuracy,speed,robustness)oftheregistrationalgorithms.Scalesupto4andarbitraryrotationanglescanberobustlyrecovered,comparedtoamaximumscalingof2recoveredbythecurrentstate-of-the-artalgorithms.Thealgorithmutilizesonly1DFFTcalculationswhoseoverallcomplexityissigni…cantlylowerthanpriorworks.Experimentalresultsdemonstratetheapplicabilityofthesealgorithms.
Keywords:Globalmotionestimation,Sub-pixelregistration,Gradientmethods,image
alignment
EDICSCategory={2-ANAL,2-MOTD}
11Introduction
Imageregistrationplaysavitalroleinmanyimageprocessingapplicationssuchasvideocompres-
sion[1,2],videoenhancement[3]andscenerepresentation[4,5,6]tonameafew.Thisproblemwas
analyzedusingvariouscomputationaltechniques,suchaspixeldomainGradientmethods[1,4,5],
correlationtechniques[20]anddiscreteFourier(DFT)domainalgorithms[10,16].Gradientmeth-
odsbasedimageregistrationalgorithmsareconsideredtobethestate-of-the-art.But,mayfail
unlessthetwoimagesaremisalignedbyamoderatemotion.Fourierbasedschemes,whichareable
toestimaterelativelylargerotation,scalingandtranslation,areoftenusedasbootstrapforthe
moreaccurategradientmethods.ThebasicnotionrelatedtoFourierbasedschemesistheshift
property[23]oftheFouriertransformwhichallowsrobustestimationoftranslationsusingthenor-
malizedphase-correlationalgorithm[10,12,13,14,15].Hence,inordertoaccountforrotationsand
scaling,theimageistransformedintoapolarorlog-polarFouriergrid(referredtoastheFourier-
Mellintransform).Rotationsandscalingarereducedtotranslationsintheserepresentationsand
areestimatedusingphase-correlation.
Inthispaperweproposetoestimatethepolarandlog-polarDFTusingthepseudo-polarFFT
(PPFFT)[27,28].ThePPFFTestimatestheDFTonanon-Cartesiangrid,whichisgeometri-
callysimilartothepolargrid.Hence,byinterpolatingthepolarandlog-polarDFTusingthe
PPFFTasigni…cantlysmallerinterpolationerrorisachieved.Furthermore,thesmallertherela-
tiverotation/scalingbetweentheimagesbecomes,thesmallerthedi¤erencebetweentheirPPFFT
magnitudesandtheinterpolatedpolar/log-polarDFTmagnitudes.Inpriorworks[16,21]the
relativeinterpolationerrorisnotdecreasedbythedecreaseoftherelativemotion.
Theresultingalgorithmisabletorobustlyregisterimagesrotatedbyarbitraryanglesandscaled
uptoafactorof4.Itshouldbenotedthatthemaximumscalefactorrecoveredin[16]and[21]
was2.0and1.8,respectively.Inparticular,theproposedalgorithmdoesnotresulttointerpolation
ineitherspatialorFourierdomain.Only1DFFToperationsareused,makingitmuchfasterand
especiallysuitedforreal-timeapplications.
Therestofpaperisorganizedasfollows:PriorresultsrelatedtoFFTbasedimageregistration
aregiveninSection2,whilethepseudo-polarFFT,whichisusedasabasisfortheproposedalgo-
rithmispresentedinSection3.Theproposedalgorithm,ispresentedinSection4anditsaccuracy
isanalyzedinSection5.ExperimentalresultsarediscussedinSection6and…nalconclusionsare
giveninSection7.
22Previousrelatedwork
2.1Translationestimation
ThebasisoftheFourierbasedmotionestimationistheshiftproperty[23]oftheFouriertransform.
Denoteby
Fff(x;y)g,bf(!x;!y)(2.1)
theFouriertransformoff(x;y).Then,
Fff(x+¢x;y+¢y)g=bf(!x;!y)ej(!x¢x+!y¢y):(2.2)
Equation(2.2)canbeusedfortheestimationofimagetranslation[10,15].Assumetheimages
I1(x;y)andI2(x;y)satisfy
I1(x+¢x;y+¢y)=I2(x;y):(2.3)
Equation(2.3)isFouriertransformed,yielding
bI1(!x;!y)ej(!x¢x+!y¢y)=bI2(!x;!y)(2.4)
andbI2(!x;!y)bI1(!x;!y)=ej(!x¢x+!y¢y):(2.5)
Thus,thetranslationparameters(¢x;¢y)canbeestimatedinthespatialdomain[10,11]bytaking
theinverseFFTofEq.(2.5)
Corr(x;y),F¡1nej(!x¢x+!y¢y)o=±(x¡¢x;y¡¢y)(2.6)
andby…ndingthepositionofthemaximumvalueofthecorrelationfunctionCorr(x;y):
(x;y)=arg½max(~x;~y)fCorr(~x;~y)g¾:(2.7)
Bynormalizingtheinputimages’magnitude,theNormalizedphasecorrelation[10,11]isderived
]Corr(!x;!y),bI1(!x;!y)bI¤2(!x;!y)¯¯¯bI1(!x;!y)¯¯¯¯¯¯bI¤2(!x;!y)¯¯¯=ej(!x¢x+!y¢y)(2.8)
where*denotesthecomplexconjugate.
Thisestimatorof]Corrisrobusttogainando¤setchanges
I1=a¢I2+b
whereaandbarescalars.TheintensitygainaiscompensatedbyEq.(2.8)whiletheo¤setb
a¤ectsonlytheDCcoe¢cientof]Corr.
3