当前位置:文档之家› 理论力学

理论力学

理论力学
理论力学

河南理工大学理论力学复习参考资料

M

l

:

由平面力偶系的平衡方程

α

A

B C A

C

F T

F 两端用铰支座和处作用一集A

15

例3-5平行轴减速箱可以认为各力都作用在同一平面内。已知减速箱的速比为2:1,若匀速转动时,在主动轴I 上作用有力矩为的顺钟向力偶,而在输出轴II 上作用

有工作机械施予的矩的阻力偶,由于减速,则。求在A 及B 处螺栓和支承台所受的力。

30 N m

=?M 1

M 2|M 2|> |M 1|解:

由于减速箱的速度比为2:1,则阻力偶M 2=2M 1=60 N·m 。按力偶平衡条件有

ΣM=0 F A l-M 1-M 2=0

解之,

F A =F B =(M 1+M 2)/l =500 N

α

A

B C a a b

A

C

O

点为矩心,并取坐标系ΣF x =0, -F T +W O

例4-3在水平面双伸梁上作用有有集中荷载F,矩为M的力偶和集度为q的均布荷载。如已知F=20 kN, M=16 kN·m, q=20 kN/m,

a=0.8m。求支座A、B的约束反力。

解:取AB梁为研究对象,画

出受力如图所示,以梁的中心线

为x轴,建立如图所示的直角坐

标系Axy,由平面平行力系的平

衡条件列平衡方程

M F F q

F A F B

x y

∑M A(F)=0,F B a+qa×a/2+M-F×2a=0

∑F y=0,F A+F B-qa-F=0

解之,F

B=-qa/2-M/a+2F=12 kN

F A=F+qa –F B =24 kN

例4-5图示静定多跨梁由AB梁和BC梁用中间铰连接而成,支承和荷载情况如图所示。已知:F =20kN,q =5kN/m,α= 45°;求支座A 、C的反力和中间铰B处的压力。

解:(1) 先研究BC 梁(附属部分)

受力分析如右下图所示,列平衡

方程求解:

解之,F C=14.14 kN,F Bx=10 kN

F By=10kN

F

F Ax

F Ay

F

F C

∑M B(F)=0,-F×1+F C cos a×2=0 (1)

∑F x=0,F Bx-F C sin a =0 (2)

∑F y=0,F By-F+F C cos a =0 (3)

(2) 再研究AB部分(基本部分),受力分析如下图所示,列平衡方程求解

解之,

F Ay

F Ax

F By’

F Bx’

B

F q

∑M A(F)=0,M A-q×22/2-F By′×2=0

(4)

∑F x=0,F Ax-F Bx′=0 (5)

∑F y=0,F Ay-q×2-F By′=0 (6)

M

A =30 kN·m,F Ax=F Bx′10

kN

F Ay=20kN

28

例4-6 某三铰刚架由AC 和CB 两个桁架通过中间铰C 连接而成,若支座A 、B 等高程,桁架重量各为W 1=W 2=W ,在左边桁架上作用一水平风压力为F ,尺寸如图所示为已知。求支座A 、B 的约束力和中间铰C 处的压力。解: (1)研究刚架系统整体,刚架受力分析如图,列平衡方程求解

F By =(Wl+Fh )/l ,F Ay =(Wl-Fh )/l

解之,

∑M A (F )=0,F By l-W 1a-W 2(l-a )-Fh =0 (1)∑M B (F )=0,-F Ay l -Fh+W 1(l-a )–W 2a =0 (2)

∑F x =0,F Ax +F Bx +F =0 (3)W 2

W 1F F Ay

F Ax

F Bx

F By

W 2W 1

F

(2) 再研究CB 部分,受力分析如图,列平衡方程求解

∑M C (F )=0,F By l/2-F Bx H-W 2(l/2-a )=0 (4)∑F x =0,F Cx +F Bx =0 (5)F Cx

F By

F Cy

F Bx

W 2

∑F y =0,F By +F Cy-W 2=0 (6)

解之,

F Bx =-(2Wa+Fh )/(2H )

F Cx =-F Bx =(2Wa+Fh )/(2H )F Cy =-Fh/l

将F Bx 代入式(3),则有

F Ax = (2Wa+Fh-2FH )/(2H )

0sin 2cos cos ,0)(min N min min =--=αααa F Wa F B tan 0

,0N =-=A B F F 0

,0N =-+=W F F B A A

A F f F N s ?=B

B F f F N s ?=③

,:s W f F F ==

解得④⑤

34

分离开、闸杆与鼓轮

设鼓轮被制动处于平衡状态

对鼓轮,对闸杆,解得

0=∑O M 0='-'-c F b F Fa s N

1

=∑O M 0

=-s T RF rF N s s F f F '≤',

T s s F W F F '==Ra

f c f b Wr F s s )(-≥

1

例5-4在用铰链O 固定的木

l/2

∑M x (F )=0,

F Bz (a +c )-F a r-F r a + F 2sin θ(a +b+c )=0 (4)∑F x =0 , F Ax +F Bx + F t -F 1-F 2cos θ=0 (1)∑F y =0 , F By +F a =0 (2)∑F z =0 , F Az +F Bz +F r +F 2sin θ=0 (3)∑M z (F )=0 , -F Bx (a +c )-F t a+F 1(a +b+c ) + F 2cos θ(a +b+c )= 0 (6)∑M y (F )=0 , F t r -F 1R+F 2R =0 (5)

由式(5)可以求得斜齿轮的圆周力为:

F t =1083 N

按照斜齿轮圆周力与径向力和轴向力之间的关系,可得

F a =290 N ,F r =408 N

然后根据其它几个方程,可以求得

F Ax =-1395 N ,F Az

=305 N;

F Bx =2175 N ,F By =-290 N ,F Bz =-222 N

例9-5图示曲柄滑道机构中,曲柄OA=10cm ,绕O 轴转动。当

时,其角速度为,角加速度为。求导杆BC 的加速度和滑块A 在滑道中的相对加速度。?=30?rad/s 1=ω2rad/s 1=α解∶t

a a =OA ·α=10 cm/s 2n a

a

=OA ·ω2=10 cm/s 2

方向如图所示。a

e

a r

?

n

a

a t

a

a α

ω?

η

ξ

动点A 的相对运动为沿滑道的

往复直线运动,因而相对加速度沿水平方向,

大小待定;牵连运动为滑道与导杆的直线平动,因而牵连加速度沿铅垂方向,大小待定。

根据牵连运动为平动时的加速度合成定理,则有:取滑块A 为动点,动系固连在滑道(

导杆BC)上,定系固连在地面上。此时,动点A 的绝对运动是圆周运动,绝对加速度可分为切向加速度和法向加速度两部分,大小分别为

a a = =a e +a r t a a n a

+a 选取投影轴,则可用投影关

系确定a e 和a r ,请大家自己完成。■

o

r ω3)(↓=o r ω2

3

3:

m/s

5.11015.0ππ=?=()

rad/s

16AB :

O , 杆OC , 楔块M 圆盘作平面运动;

)

m

722

1

422=???)

(PB ⊥rad/s

(楔块M : α=30o,

楔块间无滑的速度和B 点速度.速度分析,用速度瞬心法求w 、v O 及v B :24

例10-5]导槽滑块机构

已知:曲柄OA = r , 匀角速度ω转动, 连杆AB 的中点C 处连接一

滑块C 可沿导槽O 1D 滑动, AB =l ,图示瞬时O ,A ,O 1三点在同一水平线上, OA ⊥AB , ∠AO 1C =θ=30。

求:该瞬时O 1D 的角速度.

解:⒈运动分析:OA , O 1D 均作定轴转动, AB 作平面运动;ω

r v v v A c B ===⒉研究AB :

图示位置,v A ∥v B ,w AB =0 ,AB 杆作瞬时平动, 所以:

ωr v A =⒊用合成运动方法求O 1D 杆的角速度先求O 1D 杆上与滑块C 接触的点的速度

[例10-6]平面机构

图示瞬时, O 点在AB 中点, α

=60o,BC ⊥AB , 已知O ,C 在同一水平线上,AB =20cm,v A =16cm/s ,

试求该瞬时AB 杆, BC 杆的角速度及滑块C 的速度.

解: ⒈运动分析:轮A 、杆AB 、

杆BC 均作平面运动, 套筒O 作定轴转动, 滑块C 平动. 取AB 杆上O ′点为动点, 动系固结于套筒; 静系固结于机架,

⒉研究AB 杆:

⑴根据点的速度合成定理确定AB 杆上O ′点速度方向

cm/s

,很简便cm

382

12

2122

12212t

e m m m m m t e m t

e m m m m m t e m ωωωωsin sin cos cos 212212212212+=+++=++

39

2

y m g =

工程力学(Ⅱ)期终考试卷(A ) 专业 姓名 学号 题号 一 二 三 四 五 六 总分 题分 25 15 15 20 10 15 100 得分 一、填空题(每题5分,共25分) 1. 杆AB 绕A 轴以=5t ( 以rad 计,t 以s 计) 的规律转动,其上一小环M 将杆AB 和半径为 R (以m 计)的固定大圆环连在一起,若以O 1 为原点,逆时针为正向,则用自然法 表示的点M 的运动方程为_Rt R s 102 π+= 。 2. 平面机构如图所示。已知AB //O 1O 2,且 AB =O 1O 2=L ,AO 1=BO 2=r ,ABCD 是矩形板, AD =BC =b ,AO 1杆以匀角速度绕O 1轴转动, 则矩形板重心C '点的速度和加速度的大小分别 为v =_ r _,a =_ r 。 并在图上标出它们的方向。

3. 两全同的三棱柱,倾角为,静止地置于 光滑的水平地面上,将质量相等的圆盘与滑块分 别置于两三棱柱斜面上的A 处,皆从静止释放, 且圆盘为纯滚动,都由三棱柱的A 处运动到B 处, 则此两种情况下两个三棱柱的水平位移 ___相等;_____(填写相等或不相等), 因为_两个系统在水平方向质心位置守恒 。 4. 已知偏心轮为均质圆盘,质心在C 点,质量 为m ,半径为R ,偏心距2 R OC =。转动的角速度为, 角加速度为 ,若将惯性力系向O 点简化,则惯性 力系的主矢为_____ me ,me 2 ;____; 惯性力系的主矩为__2 )2(22α e R m +__。各矢量应在图中标出。 5.质量为m 的物块,用二根刚性系数分别为k 1和k 2 的弹簧连接,不计阻尼,则系统的固有频率 为_______________,若物体受到干扰力F =H sin (ωt ) 的作用,则系统受迫振动的频率为______________ 在____________条件下,系统将发生共振。 二、计算题(本题15分)

习题1-1 图中设AB=l ,在A 点受四个大小均等于F 的力1F r 、2F r 、3F r 和4F r 作用。试分别计算每个力对 B 点之矩。 【解答】: 112()sin 452 B M F F l F l =-???=-?r 22()B M F F l F l =-?=-?r 332()sin 452 B M F F l F l =-???=-?r 4()0B M F =r 。 习题1-2 如图所示正平行六面体ABCD ,重为P F =100N ,边长AB=60cm ,AD=80cm 。 今将其斜放使它的底面与水平面成30?=?角,试求其重力对棱A 的力矩。又问当?等于多大时,该力矩等于零。 【解法1——直接计算法】: 设AC 与BD 的交点为O ,∠BAO=α,则: cos()cos cos sin sin 3341 0.11965252 α?α?α? +=-=?-?= 221 806050cm=0.5m 2AO =+= ()cos() 1000.50.1196 5.98N m A P P P M F F d F AO α?=?=??+=??=?r 当()0A P M F =r 时,重力P F r 的作用线必通过A 点,即90αβ+=?,所以: 令cos()cos cos sin sin 0α?α?α?+=-=→34 cos sin 055 ???- ?=,得: 3 tan 4 ?= →3652?'=?。 【解法2——利用合力矩定理】: 将重力P F r 分解为两个正交分力1P F r 和2P F r , 其中:1P F AD r P ,2P F AB r P ,则: 1cos P P F F ?=?,2sin P P F F ?=?

三明学院 《理论力学》期末考试卷1答案 (考试时间:120分钟) 使用班级:学生数:任课教师:考试类型闭卷 一.判断题(认为正确的请在每题括号内打√,否则打×;每小题3分,共15分)(√)1.几何约束必定是完整约束,但完整约束未必是几何约束。 (×)2.刚体做偏心定轴匀速转动时,惯性力为零。 (×)3.当圆轮沿固定面做纯滚动时,滑动摩擦力和动滑动摩擦力均做功。 (√)4.质点系动量对时间的导数等于作用在质点系上所有外力的矢量和。 (√)5.平面运动随基点平动的运动规律与基点的选择有关,而绕基点转动的规律与基点选取无关。 二.选择题(把正确答案的序号填入括号内,每小题3分,共30分) 1.如图1所示,楔形块A,B自重不计,并在光滑的mm,nn平面相接触。若其上分别作用有大小相等,方向相反,作用线相同的二力P,P’,则此二刚体的平衡情况是(A )(A)二物体都不平衡(B)二物体都能平衡 (C)A平衡,B不平衡(D)B平衡,A不平衡 2.如图2所示,力F作用线在OABC平面内,则力F对空间直角坐标Ox,Oy,Oz轴之距,正确的是(C ) (A)m x(F)=0,其余不为零(B)m y(F)=0,其余不为零 (C)m z(F)=0,其余不为零(D)m x(F)=0, m y(F)=0, m z(F)=0 3.图3所示的圆半径为R,绕过点O的中心轴作定轴转动,其角速度为ω,角加速度为ε。记同 一半径上的两点A,B的加速度分别为a A,a B(OA=R,OB=R/2),它们与半径的夹角分别为α,β。 则a A,a B的大小关系,α,β的大小关系,正确的是(B ) (A) B A a a2 =, α=2β(B) B A a a2 =, α=β (C) B A a a=, α=2β(D) B A a a=, α=β 4.直管AB以匀角速度ω绕过点O且垂直于管子轴线的定轴转动,小球M在管子内相对于管子以匀速度v r运动。在图4所示瞬时,小球M正好经过轴O点,则在此瞬时小球M的绝对速度v,绝对加速度a 是(D ) (A)v=0,a=0 (B)v=v r, a=0 (C)v=0, r v aω 2 =,← (D)v=v r , r v aω 2 =, ← 5. 图5所示匀质圆盘质量为m,半径为R,可绕轮缘上垂直于盘面的轴转动,转动角速度为ω,则 图 5 图4 图3 y 图1

北大考研辅导班-北大理论物理考研接收优秀应届本科毕业生推免硕士专业目录(校本部) 理论物理是研究物质的基本结构和基本运动规律的一门学科,它既是物理学的理论基础,又与物理学乃至自然科学其它领域很多重大基础和前沿研究密切相关。展望二十一世纪,理论物理的发展将会有很好的前景。北京大学(原)理论物理研究室和(现)理论物理研究所是原高教部确定的全国高校理论物理学科的第一个研究室和研究所。北大理论物理是原国家教委确定的第一批重点学科之一。北大理论物理学科有优良的传统,王竹溪、彭桓武、胡宁、杨立铭等著名老一辈理论物理学家曾在这里长期执教。建国以来,北大理论物理专业为国家培养了两弹一星功臣于敏、周光召和15位中国科学院院士(于敏、周光召、冼鼎昌、甘子钊、苏肇冰、吴杭生、徐至展、霍裕平、张宗烨、陈难先、杨国桢、雷啸林、夏建白、周又元、赵光达)、3位第三世界科学院院士(苏肇冰、冼鼎昌、陈创天),以及许多在我国教育和科学研究领域有突出贡献的优秀专家学者。本学科点覆盖面广,优势突出。在理论物理的主流前沿方向上具有坚实的研究基础和较强的实力。本学科点队伍整齐、实力雄厚,凝聚了一批学术造诣精深和富有创造精神的专家学者,其中中科院院士二人,长江学者一人和国家杰出青年基金获得者三人。这一研究集体已作出在国际上有较大影响工作,目前继续招收研究生的研究方向主要有: 1.粒子物理理论 具体包括强子物理(如粲偶素物理、自旋物理、格点规范等)、标准模型和超出标准模型的新物理(如CP破坏、辐射修正、超对称的量子效应等)等。该方向研究集体是目前国家自然科学基金资助的全国唯一一个理论物理方面的“创新研究群体”。 2.原子核理论 具体包括如原子核内的夸克自由度、极端条件下的核结构、原子核的代数模型及微观基础、原子核的集体运动模式及其相变、超重核的结构及合成反应、核天体物理、相对论性重离子碰撞、强相互作用物质的成分、形态、相及相变等。 3.场论和宇宙学 包括如弦理论、共形场论、非对易几何、宇宙甚早期演化及宇宙结构等。 4.凝聚态理论和统计物理 包括介观体系输运性质和强关联系统统计模型、高温超导理论、强电磁场等极端条件下凝聚态物质的性质等。 5.计算物理及其应用 包括多粒子系统的研究方法、对称性理论和方法、模拟计算方法等。自1996年以来,本学科点在国际权威学术期刊发表高水平学术论文多篇,其中有一批在国际上有相当影响的工作。按照SCI和 SLAC-SPIRES的检索结果,本学科成员的论文被他人引用几千次,这充分说明了这些工作的原创性和影响力。本学科成员1996年以来出版专著和教材20余部。获得国家自然科学三等奖1项、国家优秀教材奖12项(其中一等奖3项)。承担了量子力学、电动力学、热力学与统计物理、理论力学、数学物理方法等本科生主干基础课和高等量子力学、量子场论、量子规范场论、量子场论专题、微分几何与拓扑学、粒子物理、广义相对论、宇宙学、中高能原子核理论、计算物理等十多门研究生核心课程的教学

物理与电信工程学院2006 /2007学年(2)学期期末考试试卷 《理论力学》 试卷(A 卷) 专业 物理教育 年级 2005 班级 姓名 学号 一、 单项选择题 (每小题4分,共32分) 1 在自然坐标系中,有关速度的说法,正确的是( ) A 只有切向分量; B 只有法向分量; C 既有切向分量,又有法向分量; D 有时有切向分量,有时有切向分量。 2 确定刚体的位置需要确定( ) A 刚体内任意一点的位置; B 刚体内任意两点的位置; C 刚体内同一条直线上任意两点的位置; D 刚体内不在同一条直线上任意三点的位置 3 关于刚体惯量积,正确的说法是( ) A 有具体物理意义; B 跟所选坐标系无关; C 坐标轴选惯量主轴时惯量积也不为零; D 没有具体物理意义。 4 平面转动参考系的角速度为ω ,对运动质点产生牵连速度r ω? ,一质点相对该参考系速 度为v ' ,转动和相对运动相互作用而产生科里奥利加速度,则下列说法正确的是( ) A 牵连速度r ω? 改变相对速度v ' 的方向,相对速度v ' 也改变牵连速度r ω? 的方向从而 产生科里奥利加速度2v ω? ; B 牵连速度r ω? 改变相对速度为v ' 的方向而相对速度v ' 改变牵连速度r ω? 的大小从 而产生科里奥利加速度2v ω? ; C 牵连速度r ω? 改变相对速度为v ' 的大小,相对速度v ' 改变牵连速度r ω? 的方向从而 产生科里奥利加速度2v ω? ; D 牵连速度r ω? 改变相对速度v ' 的大小,相对速度v ' 也改变牵连速度r ω? 的大小从而 产生科里奥利加速度2v ω? 。 5关于质点组的机械能,下列说法正确的是:( ) A 所有内力为保守力时,总机械能才守恒; B 所有外力为保守力时,总机械能才守恒; C 只有所有内力和外力都为保守力时,总机械能才守恒; D 总机械能不可能守恒。

1. 图示圆盘受一平面力系作用,已知圆盘半径R =0.1m ,F 1=100N ,F 2=200N ,M 0=400Nm 。 求该平面任意力系的合力及其作用线与AC 或其延长线的交点位置。 平面任意力系简化 191.42,54.82,199.12391.347.16R x y F N F N F N M Nm OE m ==-==-=∑∑∑ 2. 求图示桁架中各杆的内力。 桁架内力计算,截面法与节点法:136 F F = 3. 已知图示结构中2m a =,在外力5kN F =和力偶矩=10kN m M ?作用下,求A 、B 和D 处的约束反力。 力系的平衡条件的应用,隔离体与整体分析: ()()()1010D Ax Ay Bx By A F F F F F kN M kNm ↑=→=↓====

4. 已知图示结构中1m =60,a οθ=,在外力10kN F =和力偶矩0=20kN m M ?作用下,求A 、 C 处的约束反力。 同上()20,0,20,17.32Ax Ay A c F kN F M kNm F kN =→=== 5. 图示构件截面均一,图中小方形边长为b ,圆形半径均为R ,若右图中大方形和半圆形 材料密度分别为12,ρρ,试计算确定两种情况下平面图形的质心位置。 以圆心为原点:() ()3 222c b x =-R b π→-左 以方形下缘中点为原点:()() () 12212123238c 2x = ρπρρρπρ++↑+右

6. 斜坡上放置一矩形匀质物体,质量m=10kg ,其角点A 上作用一水平力F ,已知斜坡角 度θ=30°,物体的宽高比b/h=0.3,物体与斜坡间的静摩擦系数s f =0.4。试确定不致破坏平衡时F 的取值范围。 计算滑动和翻倒两种情况得到(1)滑动平衡范围14.12124.54N F N -≤≤,(2)翻倒平衡范围:8.6962.27N F N ≤≤ 7. 如图机构,折杆OBC 绕着O 轴作顺时针的匀速定轴转动,角速度为ω,试求此时扣环 M 的速度和加速度。 点的合成运动:动系法 2 4sin 2tan ,sin 2M M V OM a OM ?ω?ω? -=??= 8. 悬臂刚性直杆OA 在O 处以铰链连接一圆环,半径R=0.5m ,圆环绕O 逆时针作定轴转 动,在图示瞬时状态下,圆环角速度1rad/s ω=,试求同时穿过圆环与杆OA 的扣环M 的速度和加速度。 9. 摇杆OA 长r 、绕O 轴转动,并通过C 点水平运动带动摇杆OA 运动。图示瞬时摇杆 OA 杆与水平线夹角?,C 点速度为V ,加速度a ,方向如图,试求该瞬时摇杆OA 的角速度和角加速度。

一.平面桁架问题 (1) 求平面桁架结构各杆的内力,将零力杆标在图中。已知P , l ,l 2。(卷2-4) (2)已知F 1=20kN ,F 2=10kN 。 ①、计算图示平面桁架结构的约束力;②、计算8杆、9杆、10杆的内力(卷4-3)。 (3)求平面桁架结构1、2、3杆的内力,将零力杆标在图中。已知P =20kN ,水平和竖杆长度均为m l 1 ,斜杆长度l 2。(卷5-4) (4) 三桁架受力如图所示,已知F 1=10 kN ,F 2=F 3=20 kN ,。试求桁架8,9,10杆的内力。 (卷6-3) (5)计算桁架结构各杆内力(卷7-3)

(6)图示结构,已知AB=EC,BC=CD=ED=a=0.2m,P=20kN,作用在AB中点,求支座A和E的约束力以及BD、BC杆的内力。(卷5-2) 二.物系平衡问题 (1)图示梁,已知m=20 kN.m,q=10 kN/m , l=1m,求固定端支座A的约束力。(卷1-2) (2)如图所示三铰刚架,已知P=20kN,m=10kN.m,q=10kN/m不计自重,计算A、B、C 的束力。(卷2-2) (3)图示梁,已知P=20 kN , q=10kN/m , l=2m ,求固定端支座A的约束力。(卷3-2) (4)三角刚架几何尺寸如图所示,力偶矩为M ,求支座A和B 的约束力。(卷3-3)

(5)图示简支梁,梁长为4a ,梁重P ,作用在梁的中点C ,在梁的AC 段上受均布载荷q 作用,在梁的BC 段上受力偶M 作用, 力偶矩M =Pa ,试求A 和B 处的支座约束力。(卷4-1) (6)如图所示刚架结构,已知P =20kN ,q =10kN /m ,不计自重,计算A 、B 、C 的约束力。(卷4-2) (7)已知m L 10=,m KN M ?=50,?=45θ,求支座A,B 处的约束反力(卷9-2) (8)已知条件如图,求图示悬臂梁A 端的约束反力。(卷9-3)

三、计算题(计6小题,共70分) 1、图示的水平横梁AB,4端为固定铰 链支座,B端为一滚动支座。梁的长 为4L,梁重P,作用在梁的中点C。在 梁的AC段上受均布裁荷q作用,在梁 的BC段上受力偶作用,力偶矩M= Pa。试求A和B处的支座约束力。 2、在图示两连续梁中,已知q, M,a及θ,不计梁的自重,求 各连续梁在A,B,C三处的约 束力。 3、试求Z形截面重心的位置,其尺寸如图所示。 4、剪切金属板的“飞剪机”机构如图所 示。工作台AB的移动规律是s=0.2sin(π /6)t m,滑块C带动上刀片E沿导柱运动

以切断工件D,下刀片F固定在工作台上。设曲柄OC=0.6m,t=1 s 时,φ=60 o。求该瞬时刀片E相对于工作台运动的速度和加速度,并求曲柄OC转动的角速度及角加速度。 5、如图所示,在筛动机构中,筛子的摆动是 由曲柄连杆机构所带动。已知曲柄OA的转速 n OA=40 r/min,OA=0.3 m。当筛子BC运动 到与点O在同一水平线上时,∠BAO=90 o。 求此瞬时筛子BC的速度。 6、在图示曲柄滑杆机构中,曲柄以 等角速度ω绕O 轴转动。开始时, 曲柄OA水平向右。已知:曲柄的质 量为m1,沿块4的质量为m2,滑杆的 质量为m3,曲柄的质心在OA的中 点,OA=l;滑杆的质心在点C。 求:(1)机构质量中心的运动方 程;(2)作用在轴O的最大水平约 束力。 7、无重水平粱的支承和载荷如题图所示。已知力F、力偶矩为M的 力偶和强度为q的均布载荷。求支座A和B

处的约束力。 8、在图所示两连续梁中,已知M 及 a,不计梁的自重,求各连续梁在 A , B , C 三处的约束力。 9、工宇钢截面尺寸如图所示。求此截面 的几何中心。 10、如图所示,半径为R 的半圆形凸 轮D 以等速v 0沿水平线向右运动,带 动从动杆AB 沿铅直方向上升,求φ =30o时杆AB 相对于凸轮的速度和加 速度。 11、图示机构中,已知: ,OA=BD=DE=0.1m ,曲柄OA 的角速度ω =4rad/s 。在图示位置时,曲柄OA 与水平 m 30.1EF

本部理论力学复习资料 计算各题中构件的动量、对转轴的转动惯量,对转轴的动量矩、动能。图a-d 中未标注杆长L ,质量m ,圆盘半径R ,质量M ,均为均质构件,转动角速度均为w 。 填空题 1.平面任意力系平衡的充分必要条件是力系的( )( )为零。 2.力系向一点简化得到的主矢与简化中心位置( )关,主矩矢一般与简化中心位置( )关。平面一般力系向一点简化可能得到的结果为力系简化为( )、( )或力系平衡。 4.平面汇交力系独立的平衡方程有( )个,空间汇交力系有( )个独立 平衡方程。 5.动点作曲线运动时的全加速度等于( )与( )两者矢量和。 6.已知质点运动方程为22,x t t y t =-+=,式中单位均为国际单位,则2t =秒时质点速度在,x y 轴投影分别为( )( );质点速度大小为( );加速度在,x y 轴投影大小分别为( )( )。 8. 力F 在x 轴上投影Fx=0和力F 对x 轴之矩Mx(F)=0,那么力F 应与( )轴( )并且( )。 9. 力偶矩矢的三个基本要素是( )( )和( )。 10. 直角刚杆AO=2m ,BO=3m ,已知某瞬时A 点的速度V A =4m/s,而B 点加速度与BO 成?=α60角。则该瞬时刚杆的角速度ω=( )rad/s ,角加速度ε=( )rad/s 2。 (a)(b) (c) e f

11.物体保持原有的( )( )状态的性质称为惯性。 12.平面一般力系向一点简化可能得到的结果为力系简化为( )、( )或力系平衡。 13.质心运动定理在空间直角坐标系下的三个投影方程为:( );( );( )。 14.摩擦角是指临界平衡时( )与( )夹角。 15.瞬时平动刚体上各点的速度( );各点加速度一般( )。(填相等、不相等)。 选择题 斜面倾角为30α= ,物块质量为m ,与斜面间的摩擦系数0.5s f =,动滑动摩擦系数 d f = (A ) (B ) (C ) (D)质量为m 压力大小为(A) mg (C ) 点 (t 以厘米计),则点( ) (C)6cm,8cm/s 2 (D) 16cm,8cm/s 2 点的合成运动中的速度合成定理a e r v v v =+ ,适用于哪种类型的牵连运动? (A) 只适用于牵连运动为平动的情况 (B) (C) (D) 楔形块A ,B 自重不计,大小相等,方向相反,(A) A ,B 都不平衡(C) A 平衡, B 不平衡

理论力学 期末考试试题 1-1、自重为P=100kN 的T 字形钢架ABD,置于铅垂面内,载荷如图所示。其中转矩M=20kN.m ,拉力F=400kN,分布力q=20kN/m,长度l=1m 。试求固定端A 的约束力。 解:取T 型刚架为受力对象,画受力图. 1-2 如图所示,飞机机翼上安装一台发动机,作用在机翼OA 上的气动力按梯形分布: 1q =60kN/m ,2q =40kN/m ,机翼重1p =45kN ,发动机重2p =20kN ,发动机螺旋桨的反作用 力偶矩M=18kN.m 。求机翼处于平衡状态时,机翼根部固定端O 所受的力。 解:

1-3图示构件由直角弯杆EBD以及直杆AB组成,不计各杆自重,已知q=10kN/m,F=50kN,M=6kN.m,各尺寸如图。求固定端A处及支座C的约束力。

1-4 已知:如图所示结构,a, M=Fa, 12F F F ==, 求:A ,D 处约束力. 解: 1-5、平面桁架受力如图所示。ABC 为等边三角形,且AD=DB 。求杆CD 的内力。

1-6、如图所示的平面桁架,A 端采用铰链约束,B 端采用滚动支座约束,各杆件长度为1m 。在节点E 和G 上分别作用载荷E F =10kN ,G F =7 kN 。试计算杆1、2和3的内力。 解:

2-1 图示空间力系由6根桁架构成。在节点A上作用力F,此力在矩形ABDC平面内,且与铅直线成45o角。ΔEAK=ΔFBM。等腰三角形EAK,FBM和NDB在顶点A,B和D处均为直角,又EC=CK=FD=DM。若F=10kN,求各杆的内力。

第一章Lagrange 方程

本章主要内容 §1、约束,自由度和广义坐标 §2、虚功原理 §3、Lagrange方程

在矢量力学中,最基本、最重要的方程是F =m a 。 1、处理运动受到约束(即限制)的力学问题 一个质量为m 的质点,受到作用力F 已知,在3维空间中, t d /r md F 22 =这里包含3个标量方程,3个未知数(矢径的3个分量)。如果这个质点被限制在一个光滑的曲面f (r )=0上运动,f (r )=f (x,y,z )= 0 , 22/, F R md r dt += 在曲面上,df =0,由于曲面光滑,所以曲面对质点 的作用力R ∝,?n ? O ?r d r f (r )=0m =0?n 矢量力学的不足? 运动,运动方程是:方程为:?n 表示法向单位矢量。

同理,质点约束在光滑的曲线上运动, 独立变量减少了2个,但方程和未知量却增加2个。 但在分析力学中,情况却相反,质点的运动受到约束,描述质点运动的独立变量数减少, 方程和未知量的个数也随着减少, 使求解问题变得更简单。 2、描述质点运动的坐标 在F=m a中,r是我们要求解的重要变量, 但这种变量的形式太受局限,难于用来描述复杂的 物理体系,如电磁场、引力场,更不用说量子体系。 在分析力学中,r被广义坐标取代, 这种描述方法可直接推广到 电磁场、引力场、量子力学、量子场论, 可以用于自然界中的所有4种基本相互作用。

3、作用力 F是一个宏观量,在微观世界中没有这个量。 宏观量F与微观世界中的动量变化相联系。 在分析力学中,通常用能量、广义动量这类更基本的物理量,这样便于把分析力学推广到其它领域。 1788年,J. L. Lagrange写了一本名为“分析力学”的书,这就是现在的Lagrange形式的分析力学。1834年,W. Hamilton 建立了另一种形式的分析力学,就是现在的Hamilton形式的分析力学。 除这两种形式之外,分析力学还被表述为变分形式。我们现在所说的分析力学主要包括这3种表述形式。 分析力学比较抽象,不像矢量力学那样直观。 在Lagrange的分析力学中,没有一张图。 矢量力学则直观、图像清晰。

理论力学公式

————————————————————————————————作者:————————————————————————————————日期: ?

理论力学公式 运动学公式 定轴转动刚体上一点的速度和加速度:(角量与线量的关系) 1.点的运动 矢量法 2 2 , , )(dt r d dt v d a dt r d v t r r ==== 直角坐标法 ) ()()(321t f z t f y t f x ===z v y v x v z y x ===z a y a x a z y x === 点的合成运动 r e a v v v +=r e a a a a +=(牵连运动为平动时) k r e a a a a a ++=(牵连运动为转动时) 其中, ),sin(2 , 2r e r e k r e k v v a v a ωωω=?=2 2 , , )(dt d dt d dt d t f ? ωε?ω?====

三.运动学解题步骤.技巧及注意的问题 1.分析题中运动系统的特点及系统中点或刚体的运动形式。 2.弄清已知量和待求量。 3.选择合适的方法建立运动学关系求解。 各种方法的步骤,技巧和使用中注意的问题详见每次习题课中的总结。 动力学公式 1. 动量定理 质点系动量定理的微分形式,即质点系动量的增量等于作用于质点系的外力元冲量 的矢量和;或质点系动量对时间的导数等于作用于质点系的外力的矢量和. 质心运动定理 ω R v =ε τR a =2 ωR a n =全加速度: 2 ),(ωε= n a tg 轮系的传动比: n n n n i Z Z R R n n i ωωωω ωωωωωω13221111221212112 ,-????====== ω ω , ?=+=AB v v v v BA BA A B 为图形角速度 ετ ?=AB a BA 2 ω ?=AB a n BA ω,ε分别为图形的角速度,角加速度 n BA BA A B a a a a ++=τ() d d e i p F t =∑

一、填空题(共15分,共 5 题,每题3 分) A 处的约束反力为: M A = ;F Ax = ;F Ay = 。 2. 已知正方形板ABCD 作定轴转动,转轴垂直于板面,A 点的速度v A =10cm/s ,加速度a A =cm/s 2,方向如图所示。则正方形板的角加速度的大小为 。 题1图 题2图 3. 图示滚压机构中,曲柄OA = r ,以匀角速度绕垂直于图面的O 轴转动,半径为R 的轮子沿水平面作纯滚动,轮子中心B 与O 轴位于同一水平线上。则有ωAB = ,ωB = 。 4. 如图所示,已知圆环的半径为R ,弹簧的刚度系数为k ,弹簧的原长为R 。弹簧的一端与圆环上的O 点铰接,当弹簧从A 端移动到B 端时弹簧所做的功为 ;当弹簧从A 端移动到C 端时弹簧所做的功为 。 题3图 题4图 5. 质点的达朗贝尔原理是指:作用在质点上的 、 和 在形式上组成平衡力系。 二、选择题(共20分,共 5 题,每题4 分) AB 的质量为m ,且O 1A =O 2B =r ,O 1O 2=AB =l ,O 1O =OO 2=l /2,若曲柄转动的角速度为ω,则杆对O 轴的动量矩L O 的大小为( )。 A. L O = mr 2ω B. L O = 2mr 2ω C. L O = 12mr 2ω D. L O = 0 2. 质点系动量守恒的条件是:( ) A. 作用于质点系上外力冲量和恒为零 B. 作用于质点系的内力矢量和为零 C. 作用于质点系上外力的矢量和为零 D. 作用于质点系内力冲量和为零 3. 将质量为m 的质点,以速度 v 铅直上抛,试计算质点从开始上抛至再回到原处的过程中质点动量的改变量:( ) A. 质点动量没有改变 B. 质点动量的改变量大小为 2m v ,方向铅垂向上 B

理论力学模拟题计算题 1、图示梁,已知 m =20 kN.m , q = 10 kN /m , l =1m , 求固定端支座A 的约束力。 2、如图所示三铰刚架,已知P =20kN ,m =10kN.m ,q =10kN/m 不计自重,计算A 、B 、C 的束力。 3、多跨梁在C 点用铰链连接。已知均布荷载集度q =10 kN /m ,CD 上作用一力偶,力偶矩为M=40kN ·m ,l =2m 。试求A 、B 、 D 处约束力。 4、平面曲柄摆杆机构如图所示,曲柄OA 的一端与滑块A 用铰链连接。当曲柄OA 以匀角速度ω绕固定轴O 转动时,滑块在摇杆O 1B 上滑动,并带动摇杆O 1B 绕固定轴O 1摆动。设曲柄长OA= r ,两轴间距离OO 1=l 。求当曲柄OA 在水平位置时摇杆的角速度和角加速度。 5、图示四连杆机构,O 1B =l , AB=1.5 l 且C 点是AB 中点,OA 以角速度ω转动,在图示瞬时,求 B 、C 两点的速度和加速度,刚体AB 的角速度AB ω

6、在图示四连杆机构中,已知:曲柄OA= r =0.5 m ,以匀角速度 rad/s 40=ω转动,r AB 2=, r BC 2=;图示瞬时OA 水平,AB 铅直, 45=?。试求(1)该瞬时点B 的速度;(2)连杆AB 的角速度。 7、图示摇杆机构,折杆AB 以等速度υ向右运动。摇杆长度OC =a ,用点的合成运动知 识求当? =45?(距离l OA =)时C 点的速度、加速度。 8、刨床的急回机构如图所示。曲柄OA 以匀角速度ω绕O 作定轴转动,滑块在摇杆B O 1上滑动,并带动杆B O 1绕定轴1O 摆动。设曲柄长为r OA =,在图示位置时OA 水平,1OO 铅垂, 30=?。求:该瞬时摇杆B O 1角速度和角加速度。

物理学系研究生生课程 课程号 00410240 课程名群论学分 3.0 周学时 4.0 总学时 72.0 开课学期秋 课程号 00410340 课程名高等量子力学学分 4.0 周学时 4.0 总学时 72.0 开课学期秋 课程号 00410440 课程名量子统计物理学分 3.0 周学时 4.0 总学时 72.0 开课学期秋 课程号 00410540 课程名固体理论学分 5.0 周学时 6.0 总学时 108.0 开课学期春 课程号 00410640 课程名量子场论学分 4.0 周学时 4.0 总学时 72.0 开课学期春 课程号 00410740 课程名光学理论学分 4.0 周学时 4.0 总学时 72.0 开课学期秋 课程号 00410840 课程名辐射和光场的量子理论学分 4.0 周学时 4.0 总学时 72.0 开课学期春 课程号 00410940 课程名专业文献阅读学分 4.0 周学时 3.0 总学时 54.0 开课学期秋 课程号 00411050 课程名磁性量子理论学分 3.0 周学时 3.0 总学时 54.0 开课学期不定 课程号 00411150 课程名稀土金属间化合的磁性学分 3.0 周学时 3.0 总学时 54.0 开课学期秋 课程号 00411250 课程名固体物理中的格林函数方法学分 3.0 周学时 3.0 总学时 54.0 开课学期春 课程号 00411350 课程名超导微观理论学分 3.0 周学时 3.0 总学时 54.0 开课学期春 课程号 00411450 课程名薄膜物理学分 3.0 周学时 3.0 总学时 54.0 开课学期秋 课程号 00411550 课程名半导体异质结物理学分 2.0

北京大学各院系课程设置一览 前言 很多同学希望了解在北京大学各院系的某个年级要学习哪些课程,但又不容易查到课程表。本日志充当搬运工作用,将各院系开设课程列于下方,以备查询。 查询前必读 注释: ※在课程名称后标注含义如下: 标注(必)表示此课程为专业必修课,是获得学士学位必须通过的课程; 标注(限)表示此课程为专业任选课(原称专业限选课),各院系规定需在所有专业任选课中选修足够的学分(通常为30~40)以获取学士学位; 标注(通)表示此课程为通选课,非本院系本科生可选修此类课程,并计入通选课所需总学分;通选课无年级限制; 标注(公)表示此课程为全校任选课(原称公共任选课),此类课程不与学位挂钩,公选课无年级限制。 标注(体)表示此课程为体育课,每名学生必须且仅能选修4.0学分体育课;男生必须选修“太极拳”,女生必须选修“健美操”。 ※实际上,多数专业必修课及专业选修课也没有年级限制。对应的年级是“培养方案”推荐的修该门课程的适当年级。 ※不开设任何专业必修课的院系为研究生院或其他不招收本科生的部门,如马克思主义学院、武装部等。 ※由于在某些院系下有不同专业方向,标注为必修课的课程可能并不对于所有学生均为必修(如外国语学院的各个语种分支)。相关信息请咨询相应院系教务。 ※多数课程可以跨院系选修,但可能需缴纳额外学费。 ※院系编号为学号中表示院系字段的数字,因院系调整原因,编号并不连续。“系”可能为院级单位,具体以相应主页标示为准。 ※课程名称后标注数字表示学分。一般情况下,对于非实验课及非习题课,每学分表示平均每周有一节50分钟时长课程,16-18周。 ※院系设置的课程不一定由本院系开设。 ※医学部课程仅包含在本部的课程内容。 ※本一览表不包括政治课、军事理论课、英语课、文科计算机基础、辅修及双学位课程。※本一览表不提供上课地点及主讲教师信息,请与相应院系教务联系。 001 数学科学学院 https://www.doczj.com/doc/e618339758.html,/ 一年级秋季学期 数学分析(I)(必)5.0 数学分析(I)习题(必)0.0 高等代数(I)(必)5.0 高等代数(I)习题(必)0.0 几何学(必)5.0 几何学习题(必)0.0 一年级春季学期 数学分析(II)(必)5.0

理论力学 期末考试试题 1-1、自重为P=100kN 的T 字形钢架ABD,置于铅垂面内,载荷如图所示。其中转矩M=20kN.m ,拉力F=400kN,分布力q=20kN/m,长度l=1m 。试求固定端A 的约束力。 解:取T 型刚架为受力对象,画受力图. 1-2 如图所示,飞机机翼上安装一台发动机,作用在机翼OA 上的气动力按梯形分布: 1q =60kN/m ,2q =40kN/m ,机翼重1p =45kN ,发动机重2p =20kN ,发动机螺旋桨的反作用 力偶矩M=18kN.m 。求机翼处于平衡状态时,机翼根部固定端O 所受的力。 解:

1-3图示构件由直角弯杆EBD以及直杆AB组成,不计各杆自重,已知q=10kN/m,F=50kN,M=6kN.m,各尺寸如图。求固定端A处及支座C的约束力。

1-4 已知:如图所示结构,a, M=Fa, 12F F F ==, 求:A ,D 处约束力. 解: 1-5、平面桁架受力如图所示。ABC 为等边三角形,且AD=DB 。求杆CD 的内力。

1-6、如图所示的平面桁架,A 端采用铰链约束,B 端采用滚动支座约束,各杆件长度为1m 。在节点E 和G 上分别作用载荷E F =10kN ,G F =7 kN 。试计算杆1、2和3的内力。 解:

2-1 图示空间力系由6根桁架构成。在节点A上作用力F,此力在矩形ABDC平面内,且与铅直线成45o角。ΔEAK=ΔFBM。等腰三角形EAK,FBM和NDB在顶点A,B和D处均为直角,又EC=CK=FD=DM。若F=10kN,求各杆的内力。

2-2 杆系由铰链连接,位于正方形的边和对角线上,如图所示。在节点D沿对角线LD方向F。在节点C沿CH边铅直向下作用力F。如铰链B,L和H是固定的,杆重不计,作用力 D 求各杆的内力。

初中物理力学计算题

1、在高速公路上,一些司机为了降低营运成本,肆意超载,带来极大的危害.按照我国汽车工业的行业标准,载货车辆对地面的压强应控制在 7 ×105Pa以内.有一辆自重 2000kg 的 6 轮汽车,已知该车在某次实际营运中装货 10t ,每个车轮与地面的接触面积为 0.02m2.求: (1)这辆汽车对路面的压强是多少 ?是否超过行业标准 ? (2)如果要求该车运行时不超过规定的行业标 准,这辆汽车最多装多少吨货 ?( 设车轮与地面的接触面积不变 )( 计算中 g 取 10N/kg)

2、(6 分) 如图 l4 所示,小明在跑步机上 锻炼身体.设他在跑步机上以 5m/s的 速度匀速跑动 30min,跑动的总动力 为40N.求: (1)他在这段时间内相当于跑了多少路程 ? (2)他在这段时间内做了多少功 ? (3)他做功的功率是多少 ? 3、(7 分)磁悬浮列车是一种新型交 通工具,如图15 所示.列车受到磁力 作用而浮起,使列车与轨道间的摩擦力 减小到零.上海磁悬浮列车线路长是

30km,单向运行时间440s. (1)求列车单向运行的平均速度是多少 ? (2)假设一节车厢总质量是 20t ,磁悬浮列车行驶时,强大的磁力使车厢匀速上升10mm图15,求上升过程中磁力对该车厢做的功是多少?( g 取10N/kg) 4、(6 分)如图 20 所示是中国女子冰壶队参加2010 年冬奥会时的一个情景。冰壶由花岗岩凿磨而成,质量约为 19Kg,与冰道接触的底面积约为0.02m2,冰壶的体积约为 8X10-3m3。( g 取10N/Kg) 求:(1)冰壶的密度 (2)冰壶对水平冰道的压强。

中美著名大学《热力学与统计物理学》课程比较与分析 张立彬(教育部南开大学外国教材中心,天津300071) 徐皓、刘学文(南开大学物理科学学院,天津300071) 内容摘要:根据中美高校物理学排名,笔者搜集了美国12所顶尖高校与中国10所著名大学的热力学与统计物理学课程及其教材等信息,在此基础上,比较了中美著名大学热力学与统计物理学课程的内容、教材与参考书使用情况、培养目标、教学方式、师资力量等。通过比较发现了美国热力学与统计物理教学的特点和国内教学的不足,本文可为国内热力学与统计物理学课程教学的改善提供一定的启示与借鉴。 关键词:热力学与统计物理;美国大学;中国高校;课程特点;课程比较;物理教材 热力学与统计物理是“四大力学”的物理基础课程之一。对于各高校的物理专业是必不可少的必修课程。我们在日常生活中所接触的宏观物体是由大量微观粒子构成的。这些微观粒子不停地进行着无规则运动。人们把这大量微观粒子的无规运动称为物质的热运动。热运动有其固有的规律性。热运动的存在必然影响到物质的各种宏观性质。例如,物质的力学性质、电磁性质、聚集状态,乃至化学反应进行的方向和限度等等。热力学和统计物理的任务是研究热运动的规律及热运动对物理宏观性质的影响。 为了深入了解热力学与统计物理的教学情况,我们调研收集了美国物理学排名前十二的高校的课程情况、教材使用等信息,通过分析美国高校的培养目标、课程内容、学时、教学方式等来了解他们的热力学与统计物理课程的特点,并与国内进行了比较分析。研究的结果可为国内热力学与统计物理的教学给予启示。 文章收集了美国十二所顶尖大学(位列全美物理学排名前十二名)的热力学与统计物理课程信息,包括了课程主讲内容、使用教材及参考书等。这些学校有:麻省理工学院(Massachusetts Institute of Technology)、斯坦福大学(Stanford University)、加州理工学院(California Institute of Technology)、哈佛大学(Harvard University)、普林斯顿大学(Princeton University)、加州大学伯克利分校(University of California Berkley)康奈尔大学(Cornell University)、芝加哥大学(The University of Chicago)、伊利诺伊大学香槟分校(University of Illinois Urbana-Champaign)、加州大学圣芭芭拉分校(University of California Santa Barbara)、哥伦比亚大学(Columbia University )、耶鲁大学(Yale University)。 一、中美著名大学《热力学与统计物理学》课程的比较 1.课程内容方面 从课程内容上面来看,国内的《热力学与统计物理学》课程主要包括热力学的基本规律,均匀物质的热力学特性,单元系的相变,多元系的复相平衡和化学平衡,近独立粒子的最概然分布、玻耳兹曼统计、玻色统计和费米统计、系综理论、涨落理论、非平衡态的统计理论等10个章节的内容。我国的热力学部分和统计物理部分是合为一门课讲授的,前半部分为热力学,后半部分为统计物理。其中热力学是热运动的宏观理论,主要研究手段是对热现象的观测、实验和分析,总结出热力学四大定律:热力学第零定律、热力学第一定律、热力学第二定律和热力学第三定律。这些定律是无数观测和实验的总结,适用于宏观的一切热力学系统。而热力学就是通过从这几个最基本的定律出发,运用数学方法,通过逻辑演绎的方式,得到宏观物质的各种性质和物理过程发生的方向和限度。这些结论具有较高的普遍性。热力学的一大优点就是普遍性,能够研究与物质热性质有关的所有规律,并且只要没有其他的限制,所得到的结果和数据的精确度和可靠性很高。然而热力学的研究所得到的结论与物质的具体结构并无关系,因此在使用热力学时不可能研究所有的问题。而且研究过程中在很大程度上依赖于实验数据的测量,才能得到可用的结果。另外,热力学将系统视作连续体,使用的是连续函数来表征物质的性质,因此不能解释宏观现象的涨落问题,这也是热力学的缺点

1、圆柱O 重G=1000N 放在斜面上用撑架支承如图;不计架重,求铰链A 、B 、C 处反力 ? 解:(1) 研究圆柱,受力分析,画受力图: 由力三角形得: (2) 研究AB 杆,受力分析(注意BC 为二力杆),画受力图: (3) 列平衡方程 (4) 解方程组: 2、求下图所示桁架中杆HI 、EG 、AC 的内力? F H C A E

答:F F F F HI AC EG -===00 3、重物悬挂如图,已知G=1.8kN ,其他重量不计;求铰链A 的约束反力和杆BC 所受的力? 解: (1) 研究整体,受力分析(BC 是二力杆),画受力图: (2)列平衡方程: (3)解方程组:X A =2.4KN; Y A =1.2KN; S=0,848KN 4、三铰门式刚架受集中荷载F P 作用,不计架重,求支座A 、B 的约束力。 答:F A =F B =0。707F P 5、求梁的支座约束力,长度单位为m 。 解:

∑M A(F)=0 F B×4-2×Sin450×6-1.5=O ∑M B(F)=0 -F AY×4-2×Sin450×2-1.5=O ∑F X=0 F AX+2×coS450=O 解得: F AX=-1.41KN,F AY=-1.1KN,F B=2.50KN 6、求刚架的支座约束力。 解得:F AX=0 F AY=17KN F B=33KN。M 7、四连杆机构OABO1在图示位置平衡,已知OA=40㎝,O1B=60㎝,作用在曲柄OA上的力偶矩大小为M1=1N.m,求力偶矩M 2的大小及连杆AB所受的力(各杆的重量不计)? 解: (1)先取0A杆为研究对象, ∑M=0 F AB×OAsin300-M1=0 解得:F AB=5N (2)取O1B杆研究。 F′AB= F AB=5N ∑M=0 M2- F′AB×O1B=0 解得:M2= F′AB×O1B=3N.m 飞轮加速转动时,其轮缘上一点M的运动规律为s=0.02 t3(单位为m、s),飞轮的半径R=0.4m。求该点8、 的速度达到v=6m/s时,它的切向及法向加速度。 解:M点做圆周运动,则 V=ds/dt=3×0.02 t2=0.06 t2 将v=6m/s代入上式,解得 t=10s a t=dv/dt=2×0.06t=1.2m/s2 a n= v2/R=90 m/s2 9、已知点的运动方程:x=50t,y=500-5t2,(x、y单位为m、t单位为s)。求当t=0时,点的切向加速度、法向加速度及轨迹的曲率半径。 解:a n=v2/ρ=(1/ρ)×[(X′)2+(X′)2] a t=dv/dt =X′X″+ Y′Y″/[(X′)2+(X′)2]1/2 a2=( X″)2+( Y″)2 X′=50,X″=O Y′=-10t,Y″=-10 将t=0代入,得a t=0

相关主题
文本预览
相关文档 最新文档