当前位置:文档之家› 大型海上风电关键技术与装备

大型海上风电关键技术与装备

大型海上风电关键技术与装备
大型海上风电关键技术与装备

国家重大产业技术开发专项

大型海上风电关键技术与装备

(3MW以上海上风力发电机组研发与产业化)

一、申报单位概况

上海电气风电设备有限公司由上海电气集团股份有限公司控股,是大型风力发电机组设计、制造、销售、技术咨询、售后服务的新能源专业公司。

公司成立于2006年9月,总部位于上海紫竹高科技园区,生产基地分别位于上海闵行经济技术开发区和天津北辰科技园区。

通过技术引进并消化吸收,1.25MW风力发电机组已形成批量生产,08年将完成300MW的生产;通过与国际知名风机设计公司合作,联合设计的2MW机组今年将完成小批量生产。依靠上海电气人力资源优势和产业优势,一支结构合理、专业搭配齐全的风电工程技术团队业已形成。目前公司现有员工200余人(08年底将有400人),其中本科以上84人、硕士20人、博士1人,上海电气的风电产业正处于高速发展之中。

二、申报项目名称及主要内容

申报项目名称:3MW以上海上风力发电机组研发与产业化

主要内容:开发研制具有完全知识产权的3MW以上大型海上风力发电机组,并实现技术产业化生产,主要内容为:

1.研制海上3MW以上双馈式变速恒频海上风电机组的总体设计技术;包括气动

设计、结构设计和载荷计算;

2.大型海上风力发电机组系统集成技术;分部件接口技术;

3.海上风电机组控制策略的研究和应用;

4.海上风电机组机群远程监控技术的研究和应用;

5.大型海上风力发电机组的塔架基础设计技术研究;

6.海上风电机组在线监测、预警及故障诊断技术;

7.海上风电灾害预防及预防控制技术;

8.海上风电机组在特殊的海上气候、环境条件下,基础塔架、防腐、防潮、抗

台风等的技术解决方案和材料开发利用;

9.大型海上风力发电机组雷电保护系统开发;

10.海上风力发电机组海上风电场的安装技术和示范运行;

11.大型海上风力发电机组相关技术标准研究与制定;

12.海上风电机组、关键部套、工艺技术研究与突破;

三、产业基础

1. 1.25MW机组消化和2MW风机的联合设计,为实施本项目打下了坚实的基础

上海电气风电设备有限公司引进的国际先进水平的1.25MW风力发电机组技术,通过消化、吸收,在较短时间内已实现1.25MW风机的产业化生产,目前风机部件国产化率已达到75%以上。该项目已于07年6月被上海市高新技术成果转化项目认定办公室认定为高新技术成果转化项目。在引进技术消化吸收的基础上完成了二次创新,已研制开发出适合我国风况条件的1.25MW低温型风力发电机组。在二次创新过程中,我公司已申请了54项专利,其中发明专利32项、实用专利21项,目前4项实用新型专利已获得授权,32项发明专利已初审合格。

通过与德国Aerodyn公司联合设计,完成了具有自主知识产权的2MW大型风力发电机组设计,2MW风力机组样机将于08年3季度下线。与国际知名公司联合设计的方式,使技术团队得到了实质性的锻炼和全面的提高,为自主研制大型海上风机做好了准备。

2. 引进全套风机设计软件,形成完整的海上风机设计能力

上海电气投入巨资,引进了德国Aerodyn公司含源代码的风机全套设计软件(61个设计软件)和巨大的翼型数据库、技术专利数据库、技术文献数据库;在掌握这些核心技术后,可以根据市场需要进行独立自主开发设计各类新机型,包括海上风力机组;在我公司拥有这样全套的设计软件和巨大的数据库后,真正成为了国内第一家具备独立研发海上风机的能力的公司,为研制海上风机提供技术保障。

3. 投入巨资,培育自主研发创新能力

为了更快、更全面地掌握风机设计核心技术,上海电气还投入巨资与德国Aerodyn公司签订了《合作与技术转让》项目,由德国专家进行系统培训和伴随工作2年半,具体培训内容涉及到风机设计和制造的全过程,通过共20个不同培

训课程使工程师熟悉风机技术和理论,并熟悉61个设计软件的实际操作。通过系统培训,使我公司能尽快形成一支能独立、完整开发设计大型风机的技术团队,从容应对海上风机研制的挑战。该项目目前已正式启动。

4. 上海电气集团优势为海上风机研制提供坚强组织和保证

上海电气是国内最大火力发电集团,集聚了一大批机械、电气、材料、动力、控制、等关键工程技术人员,掌握着世界一流的发电专业技术,具有强大的人才优势和机组配套能力,装备齐全,同时凭借良好的地域优势,源源不断吸引着国内外专家学者和工程技术人员加盟,人才、资金和发电设备专业技术在国内是无可比拟的。

5. 已承担的项目为研制大型海上风机提供了可行性

上海风电风电设备有限公司承担了国家科技部科技支撑项目《海上风场关键技术的开发》和上海市科教兴市项目《MW级风机产业化和2MW风机开发》等一大批市级科研攻关项目。

在承担的国家科技部科技支撑项目中,我们做了海上风电场及海上风机关键技术前期研究,通过风电场选址、海上风电场电力输送技术、机组的选型、安装、运行和维护技术的研究,海上风电机组基础结构的研究,环境载荷对基础作用力

的影响、基础强度设计等,为研制大型海上风机做好了前期必要的准备和铺垫,

为本项目执行打下必不可少基础。

6. 利用区域优势,构筑产学研平台

上海集中了国内一流的大专院校和研究机构,是全国最大的人才集聚地,不少大专院校和研究机构已经承担着风电学科的研究,在1.25MW消化吸收和2MW联合开发进程中,我们和上海交大、同济大学、上海勘测设计院、汕头大学等建立了国内产学研平台,同时培养了一批全国范围内的部件供应商,只要我们优势互补,利用好全国最好的区域优势,带动起长江三角洲乃至国内人才资源,是有把握完成本项目相关课题的攻关。

7. 临港制造基地建设为本项目的实施提供了保证

我公司在现有的生产基地基础上扩容厂房,增加生产能力同时,抓住重新调整上海重型装备业布局的契机,通过增资扩股等资本金追加,计划拆资近10亿人民币在上海临港重装备工业区建造适合大型海上风力发电机组制造基地,该制造

基地生产能力和建设时间衔接上完全能保证3MW以上海上风力发电机组的研制要求。目前一期制造方案已获上海市相关政府部门的审核,准备于今年上半年开始启动。

四、公司现有产品的经营业绩

公司在06年即已承接山西国际电力的右玉、平鲁项目和山东鲁能的白云、莱州项目共计200MW,这4个项目正在实施过程中,目前已安装了25台风力发电机组并已并网发电。现已承接的订单已达650MW,包括中广核2个项目、京能集团2个项目,华能集团2个项目,华电集团2个项目等。

公司08年预计完成15亿元产值,09年完成产值35亿元以上。

五、创新点和关键技术

1.海上风电机组整机设计技术;

2.海上风电机组基础设计技术及基础损伤检测与评价技术;

3.海上风电机组抗台风设计技术;

4.海上风电机组在线监测、预警及故障诊断技术;

5.海上风电机组防腐技术;

6.海上风机的安装、运行维护技术

7.海上风力发电机组的相关技术标准;

8.海上风机关键部件的设计技术

六、经济效益、社会效益预测

1. 经济效益

本项目达纲形成产业化后预计整机年销售收入可50亿元以上,拉动几百亿元产业链产值的形成,可带动上海地区及长三角地区的部件供应商的发展(叶片、齿轮箱、控制系统、液压及机械加工、热加工等产业),可带动风电工程EPC产业的跨越式发展,海上风电场的建设,45%左右是工程服务产业,项目抗风险能力良好。

2. 社会效益

大型海上风力发电机组的研制,不仅对于掌握提高我国大型风力发电机组研发能力也有更好的互补作用,而且为我国综合利用海上资源开辟了一条崭新的途径,是一项利国利民的环保项目,符合可持续发展的国家战略方针,符合国家产业导向和能源结构调整,因此,本项目的实施符合国家战略发展目标要求,能促进科技进步、推进产学研合作进程,增强企业自主创新与开发能力,同时为社会提供更多的就业岗位,达到节约煤、水资源,实现可持续发展,对于促进科学开发和利用海资源有极大的示范效应和社会效益。能够形成上海为主体的海上风机产业体系,研发、制造、配套、工程服务为一体化的集成效应,形成上海的海上风机整体技术的创新和提高,服务国内外。

根据“十一五”《国家中长期科学和技术发展规划纲要》和国内对海上风力发电的迫切需求,上海东海大桥两侧、浙江沿海、广东茂名、江苏沿海等海上风场前期测风选址等准备工作已经开始,市场前景非常看好。

而且实施大型海上风机项目可以带动长江三角洲和国内风机部件产业链的发展,对于尽快形成风机部件制造规模产生非常大的推进作用,对于大型风力发电机组出口也有直接的帮助。

2008年,3MW以上风力发电机组开始设计,2009年底~2010年上半年出样机,2010年~2011年开始小批量生产(年产50台左右),2012年开始批量生产,形成年产150台以上的生产能力。

(二零一二年十二月) 2020-2025年中国海上风电行业市场发展战略研究报告 可落地执行的实战解决方案 让每个人都能成为 战略专家 管理专家 行业专家 ……

报告目录 第一章企业市场发展战略研究概述 (7) 第一节研究报告简介 (7) 第二节研究原则与方法 (7) 一、研究原则 (7) 二、研究方法 (8) 第三节企业市场发展战略的作用、特征及与企业的关系 (10) 一、企业市场发展战略的作用 (10) 二、市场发展战略的特征 (11) 三、市场发展战略与企业战略的关系 (12) 第四节研究企业市场发展战略的重要性及意义 (13) 一、重要性 (13) 二、研究意义 (13) 第二章市场调研:2018-2019年中国海上风电行业市场深度调研 (14) 第一节海上风电概述 (14) 第二节我国海上风电行业监管体制与发展特征 (14) 一、行业主要监管部门 (14) 二、行业主要法律、法规和相关政策 (15) 三、2019年风电行业主要政策变化解读 (16) 四、行业技术水平与技术特点 (22) (一)行业技术水平现状 (22) (二)目前行业的技术特点 (22) 五、行业的周期性、区域性和季节性 (23) 六、上下游行业之间的关联性、上下游行业发展状况 (23) 七、海上风能资源分布情况 (24) 八、海上风电投资成本构成 (24) 第三节2018-2019年中国海上风电行业发展情况分析 (26) 一、我国海上风电市场发展态势 (26) 二、2018年已核准或签约的海上风电 (28) 三、中国海上风电行业主要项目分布 (31) 四、下游安装和运维市场情况 (32) 五、面临挑战 (34) 第四节重点企业分析 (34) 一、龙源电力 (34) 二、金风科技 (37) 三、泰胜风能 (37) 四、天顺风能 (38) 五、中闽能源 (39) 第五节2019-2025年我国海上风电行业发展前景及趋势预测 (39) 一、行业发展的有利因素 (39) (1)国家产业政策支持 (39) (2)国家能源结构持续优化 (40)

海上风电发展 大纲: 一、国外海上风电发展现状及各国远景规划 二、海上风电的特点与面临的困难 三、海上风电发展的关键技术 四、国外海上风电发展现状及各国远景规划 目前已进入运营阶段的海上风电场均位于西北欧,西班牙和日本也建立了各自的首个试验性海上风电场。截至2006年6月,全球共建立了24个海上风电场,累计安装了了402台海上风机,总容量805MW,年发电量约2,800,000,000千瓦时。 西北欧地区的海上风电场布局如下图所示,红色标志由兆瓦级风机构成的运营风电场,紫红色标志由小容量风机构成的运营风电场,而灰色则标志已完成规划的在建风电场。 图1 西北欧海上风电场 已投入运营的大规模海上风电场大多集中在丹麦和英国。其中丹麦海上风电总装机容量达426.8MW,其次是英国339MW,共计现有海上风电装机容量的95%。而德国早在2004年就在北海的Emden树立了首台Enercon的4.5MW风机,西班牙也于今年在其北部港市毕尔巴鄂树立了5台Gamesa 2MW风机。美国已经规划的三个海上风电场Cape Cod,Bluewater Wind,Nai Kun正处于不同阶段的论证与评估阶段,其中Cape Cod风电场将于2009年正式投入运营。 由此可见,各风电大国都不约而同地把注意力集中到海上风电开发的技术研发与运营经验实践中,以图控制海上风电发展的制高点。 根据欧盟的预测,到2020年欧洲的海上风电场总装机容量将从现有的805兆瓦增长到40,000MW。相比之下,过去7年来欧洲海上风电装机容量的年增长率约为35%。欧盟指派的工作组预测欧洲的海上风电潜力约达140,000MW。

中国海上风电行业发展现状分析在过去的十年中,风力发电在我国取得了飞速的发展,装机容量从2004年的不到75MW跃升至2015上半年的近125GW,在全国电力总装机中的比重已超过7%,成为仅次于火电、水电的第三大电力来源。 2014 年全球海上风电累计容量达到了8759MW,相比2013 年增长了24.3%。截至2014 年底全球91%(8045MW)的海上风机安装于欧洲的海域,为全球海上风电发展的中心。我国同样具备发展海上风电的基础,目前标杆电价已到位,沿海省份已完成海上风电装机规划,随着行业技术的进步、产业链优化以及开发经验的累积,我国海上风电将逐步破冰,并在“十三五”期间迎来爆发,至2020年30GW的装机目标或将一举突破。 陆上风电的单机容量以1.5MW、2MW类型为主,截止至2014年我国累计装机类型统计中,此两种机型占据了83%的比例。而海上风电的机型则以2.5~5MW为主,更长的叶片与更大的发电机,对于风能的利用率也越高。 2014年中国不同功率风电机组累计装机容量占比

2014年底中国海上风电机组累计装机容量占比 在有效利用小时数上,陆上风电一般为0~2200h,而海上风电要高出20%~30%,达到2500h以上,且随单机规模的加大而提高。更强更稳的风力以及更高的利用小时数,意味着海上风电的单位装机容量电能产出将高于陆上。 我国风电平均利用小时数及弃风率 根据中国气象局的测绘计算,我国近海水深5-50 米围,风能资源技术开发量约为500GW(扣除了航道、渔业等其他用途海域,以及强台风和超强台风经过3 次及以上的海域)。虽然在可开发总量上仅为陆上的1/5,但从可开发/已开发的比例以及单位面积可开发量上看,海上风电的发展潜力更为巨大,年均增速也将更高。

Offshore Project O&M, Health and Safety 海上风电运维,健康和安全
DNV / Royal Norwegian Consulate: Technical Workshop on Offshore Wind DNV / 挪威领事馆:海上风电技术研讨会
Dayton Griffin 20 June 2011

Outline 概述
Operation and Maintenance 运行和维护 Health and Safety 健康和安全 Case Study: Project Risk Analysis 案例研究:项目风险分析
Thursday, 23 September 2010 ? Det Norske Veritas AS. All rights reserved. 2

Considerations for Location of O&M Facility 基于运维设施地点的考虑
Proximity to wind farm 接近风场
- Onshore facility 陆上设施 - Offshore accommodations 海上住宿
24/7 Quayside access 24/7 码头进入 Speed limitations 速度限制 Conflicting traffic 交通冲突 Tidal constraints 潮汐限制 Flexibility of port owner (over 20-year project) 港口拥有者的灵活性(超过20年的项目) Local, skilled workforce 当地有经验的劳动力 Turbine manufacturer requirements 风机生产商的要求 Provision of helicopter service 提供直升机服务 Proximity to airport 接近机场
Thursday, 23 September 2010 ? Det Norske Veritas AS. All rights reserved. 3

2016-2022年中国海上风力发电市场深度调查与市场全景评估报告

什么是行业研究报告 行业研究是通过深入研究某一行业发展动态、规模结构、竞争格局以及综合经济信息等,为企业自身发展或行业投资者等相关客户提供重要的参考依据。 企业通常通过自身的营销网络了解到所在行业的微观市场,但微观市场中的假象经常误导管理者对行业发展全局的判断和把握。一个全面竞争的时代,不但要了解自己现状,还要了解对手动向,更需要将整个行业系统的运行规律了然于胸。 行业研究报告的构成 一般来说,行业研究报告的核心内容包括以下五方面:

行业研究的目的及主要任务 行业研究是进行资源整合的前提和基础。 对企业而言,发展战略的制定通常由三部分构成:外部的行业研究、内部的企业资源评估以及基于两者之上的战略制定和设计。 行业与企业之间的关系是面和点的关系,行业的规模和发展趋势决定了企业的成长空间;企业的发展永远必须遵循行业的经营特征和规律。 行业研究的主要任务: 解释行业本身所处的发展阶段及其在国民经济中的地位 分析影响行业的各种因素以及判断对行业影响的力度 预测并引导行业的未来发展趋势 判断行业投资价值 揭示行业投资风险 为投资者提供依据

2016-2022年中国海上风力发电市场深度调查与市场全景评估报告 ?出版日期:2016年 ?报告价格:印刷版:RMB 7000 电子版:RMB 7200 印刷版+电子版:RMB 7500 ?报告来源:https://www.doczj.com/doc/e617836519.html,/b/dianli/J68941VA3N.html ?智研数据研究中心:https://www.doczj.com/doc/e617836519.html, 报告目录 据中国风能协会以及世界自然基金会的估算,在离海岸线100公里、中心高度100米的范围内,每秒7米以上的风力给中国带来的潜在发电能力为年均110万亿千瓦,中国风电市场潜力巨大。中国有海上风能资源,海风呼呼地吹着,而且海岸线非常长,中国对能源的需求巨大,这些都为促成海上风力发电提供了条件。海上风电时代已经到来,而且来得非常迅速。2010年2月,中国第一座海上风电场示范工程,也是亚洲第一座大型海上风电场——上海东海大桥10万千瓦海上风电场的34台机组安装完毕,随后于6月全部实现并网发电,为40万家庭提供用电。与此同时,国内首批海上风电项目特许权招标工作于5月正式启动,标志着海上风电在中国的发展进入加速期。2010年因此在许多人眼中是中国海上风力发电元年。不过,中国海上风电的发展面临着挑战。 一方面,中国的(海上)风电行业有很大的扩容潜力,能够大规模采用新的解决方案;但另一方面,中国在这个领域缺乏相关的技术和经验,而且也缺乏在海上进行大规模装机的经验。 在陆地风电连续数年高速增长之后,从2010年开始,我国的海上风电建设也将起步。2010年将把海上风电作为最重要的任务来抓,很快将组织大型海上风电特许权项目的招标。海上风电是风电产业未来发展的前沿,市场前景广阔,我国已具备一定的技术基础,力争2010年在海上风电建方面迈出实实在在的步伐。经过2004年以来的连年翻番,截至2009年年底,我国陆地风电装机已经超过2500万千瓦,位居全球第二。但在海上风电方面,由于运行环境复杂,技术要求高,施工难度大,我国还处于起步阶段,尚未启动规模化

浅谈海上风电运维工作安全管理 发表时间:2019-07-18T09:28:45.947Z 来源:《科技尚品》2019年第2期作者:刘振宇 [导读] 随着海上风电高速发展,开展海上风电风险管理研究,提出针对性的安全管理措施,基于现有安全管理模式,不断优化完善安全管理工作以适应海上风电运维安全需求,实现海上风电安全管理可控在控。 国家电投集团江苏海上风力发电有限公司 前言 2009年国家正式启动了江苏沿海千万千瓦级风电基地的规划工作,十年来,江苏沿海已陆续建设完成了多个海上风电常随着海上风电建设高速发展,海上运维工作已成为海上风电行业关注的焦点。国内海上风电运维工作尚处于起步阶段,各类安全风险逐渐暴露,加强海上风电运维期间的安全管理显得尤为重要。 一、江苏沿海海上风电特点 近几年海上风电,逐渐向远海发展,呈现明显的离岸化、深水化、规模化,运维难度也阶梯式的加大,远远超出常规陆上风电。因交通运维船舶发展滞后,海上航行往返航程越来越场,海洋环境的复杂,作业时间及其有限;此外因专业人员缺乏,人才培养滞后于行业发展,危险系数也越来越高。如何开展海上风电运维安全管理,确保企业安全长效稳定发展,成为海上风电行业面临的新课题。 二、海上风电运维的主要风险因素 (一)气象多变且海洋环境复杂 江苏属于温带向亚热带的过度性气候,气象灾害较多,影响范围较广,暴雨、强对流、雷电、大雾等恶劣天气频发,这些恶劣天气,还存在着一定的突发性,给海上风电运维带来了极大的不确定因素。 此外,台风为我国东南沿海所特有的风险因子,虽然目前尚未有海上风电场受到台风正面袭击的案例,但近年来,台风造成沿海风电场安全事故的案例并不少见,行业对于台风的研究还处于初级阶段。2018年密集登陆的台风,对海上风电场形成了不小威胁,台风"玛莉亚"直接导致沿海两起风电倒塔,给所有海上风电建设者敲响警钟。 此外还有风浪的影响,船只出航、登靠风机等都对风速、浪高以及可视条件等有原则要求,增加了海上运维的难度。 (二)运维船舶专业化水平较低 运维交通船是海上风电运维的主要装备。国外,专业运维船作为最重要的可达性装备被普遍应用到各海上风电场,有单体船、双体船以及三体船等船型。国内海上风电刚刚起步,运维船也处于起步阶段,虽然各个风场陆续有专业运维船投入使用,但目前仍然以普通交通船,作为主要运输工具,存在耐波性差,靠泊能力差等缺点,运送能力底,难以满足抗风浪、防撞击、海上施救等安全航行要求,安全风险大。 (三)人员落水和挤压风险高 人员落水和挤压风险主要存在于船舶海上航行和靠离风机塔基两个重要环节。目前,一般采用顶靠方式供维护人员登离风机基础,即船首端顶靠船桩。期间,受风、浪、流等因素影响,运维船的顶靠和人员的登乘的安全难以得到充分的保障,存在人员挤压、落水风险。 (四)海上应急救援能力发展慢 海上风电场多数为无人操作和值守,发生突发意外情况,救援人员很难及时赶到现常多数运维船舶船速仅有12节左右,个别船舶速度更慢,极大影响了救援的黄金时间。海上突发火灾也由于风机的安装高度和及其构造特性,均缺乏有效的灭火措施,常备的船舶消防设施,射程根本达不到风机高度。风电火灾主要立足于自救,但部分风机未配置主动灭火装置,一旦发生火灾事故,依靠手持式灭火器等无法自行施救。 (五)人员专业化技能水平不足 海上风电涉及海洋工程、船舶、电力等多个行业,专业水平要求高,员工必须有较高的专业知识、技术业务水平。目前,海上风电正处于高速发展阶段,还未形成一套行之有效的与其自身风险特征相适应的安全管理模式。同时,海上风电安全技术、法规与标准还不够完善,安全监督管理缺少相应的依据和手段。此外,运维人员大多以前从事陆上风电或者整机制造风电设备厂家,缺乏海上作业经验,行业也缺少相应的准入要求,给安全管理增加了难度。 三、海上风电安全管理措施建议 基于上述风险,提出具体的安全管理措施尤为必要,下面介绍一些针对海上风电运维的安全管理措施和工作规划。 (一)强化安全生产责任制,优化生产运维安全管控 首先要贯彻落实安全生产保证、监督、支持三个体系的责任,建立的覆盖全员的岗位安全生产责任制,逐级签订安全生产责任书,明确安全工作目标、指标,全面落实安全责任。一方面不断加大安全生产保证体系的主体责任,自主开展安全管理工作的良好氛围。另一方面发挥安全生产支持体系的作用,以服务保证体系安全管理为核心,开展日常工作,保障人员、机械、材料、制度等及时到位,实现基层组织、基础工作、基本技能稳步提升。第三方面,足额配备高素质的安全监管人员,通过开展检查、旁站、指导、考核等工作,以高压态势对生产运维工作进行管控,约束运维工作中的不安全行为或状态,保障生产运维工作可控在控。 (二)自建船舶,委托专业船机服务公司规范管理 为保障出海安全,大力推动专业的海上风电运维船投入,如:"电投01""风电运维5"、"广核1号"等。该类船目前设计时速最快已达到25节,大大缩短了风场的往返航行时间。同时,为船舶配备的英国MAXCCESS抱桩舷梯,采用的是抱桩登塔方式,或者配备其他辅助装置,确保船梯和塔梯相连,使上下风塔的安全系数大幅提高。让专业的人干专业的是,委托专业的船机服务公司,对船舶进行专业化管理,加强与海上航行单位的交流、检查、管理,有力保障海上交通安全,防控重大风险。 (三)丰富安全培训教育,提升员工安全技能水平 除了常规的三级安全教育和年度复训、各类取证培训、专项安全培训外,开展海上专业的应急救援培训,以及海上作业安全专项培训,海上应急救援综合能力培训,游泳技能培训,并邀请CCS等海上经验丰富的人员开展专题讲座,全面提高作业人员的安全技能和安全意识。此外,积极加强与国外海上风电公司、中海油等有着丰富经验与实践的单位的交流活动,学习借鉴先进,提升安全管理水平。

2018年海上风电行业深度研究报告

目录 1.风电未来空间广阔,机组大功率化是趋势 (4) 1.1全球风电投资和装机稳定增长,未来前景广阔 (5) 1.2风电装机成本不断下降,机组大功率化成趋势 (6) 1.3中国风电装机居世界首位,国内风电占比稳步提升 (8) 2.陆上风电存量消纳仍是主要目标 (9) 2.1全国电力需求稳定增长 (9) 2.2弃风率有所降低,存量消纳仍是主要工作 (9) 2.2.1国家电网多举措促进消纳,弃风率有所改善 (9) 2.2.2预计能源局四季度将核准多条特高压工程以促进消纳 (11) 2.3新增装机规模空间有限,风电建设向中东南部迁移 (12) 2.4配额制促进消纳,竞价政策加速风电平价上网 (14) 2.5陆上风电消纳为主,分散式风电尚在布局 (14) 3.海上风电有望迎来快速发展期 (15) 4.投资建议 (20) 4.1金风科技(002202) (20) 4.2天顺风能(002531) (21) 4.3东方电缆(603606) (21)

图目录 图1:风电行业产业链 (4) 图2:全球清洁能源装机和发电量占比(包含水电) (5) 图3:全球清洁能源和风电投资额(十亿美元)及风电投资占比 (5) 图4:全球风电装机容量(GW)预测及同比增速(右轴) (5) 图5:2010-2017年全球风电装机成本和LCOE变化趋势 (6) 图6:1991-2017年中国新增和累计装机的风电机组平均功率 (6) 图7:2008-2017年全国不同单机容量风电机组新增装机占比 (7) 图8:2011年以来新增风电机组平均风轮直径(m)及增速 (7) 图9:2017年新增风电机组轮毂高度分布 (7) 图10:2017年不同国家新增风电装机份额 (8) 图11:2017年不同国家累计风电装机份额 (8) 图12:风力发电设备容量及占全部发电设备容量的比重 (8) 图13:风力发电量及占全部发电量的比重 (8) 图14:全社会用电量变化趋势 (9) 图15:近年来中国弃风电量(亿千瓦时)及弃风率情况 (10) 图16:国家电网近年来风电并网容量(GW) (10) 图17:国家电网近年来特高压线路长度(万公里) (10) 图18:2010-2017年全国风电新增和累计装机容量(GW) (12) 图19:2017年与2020年底累计风电装机占比变化趋势 (13) 图20:海上风电厂主要组成部分 (16) 图21:截至2017年底我国海上风电制造企业累计装机容量(MW) (17) 图22:截至2017年底我国海上风电开发企业累计装机容量(MW) (18) 图23:截至2017年底我国海上风电不同单机容量机组累计装机容量(万千瓦) (18) 图24:截至2017年底我国沿海各省区海上风电累计装机容量(万千瓦) (19) 表目录 表1:双馈齿轮箱技术和直驱永磁技术比较 (4) 表2:国家电网2017年消纳新能源举措(不完全统计) (11) 表3:2018年以来风电行业相关政策 (11) 表4:拟核准的三条和清洁能源输送相关的特高压工程 (12) 表5:主要政策中关于风电建设规模的表述 (13) 表6:分散式风电发展低于预期的主要原因(不完全统计) (15) 表7:我国海上风资源分类 (16) 表8:2017年我国海上风电制造企业新增装机容量 (17) 表9:2018年以来核准和开工的海上风电项目(不完全统计) (19) 表10:海陆丰革命老区振兴发展近期重大项目之海上风电项目 (20)

能源与环境问题已经成为全球可持续发展所面临的主要问题,日益引起国际社会的广泛关注并寻求积极的对策.风能是一种可再生、无污染的绿色能源,是取之不尽、用之不竭的,而且储量十分丰富.据估计,全球可利用的风能总量在53 000 TW·h/年.风能的大规模开发利用,将会有效减少石化能源的使用、减少温室气体排放、保护环境.大力发展风能已经成为各国政府的重要选择[1~6]. - 在风力发电中,当风力发电机与电网并联运行时,要求风电频率和电网频率保持一致,即风电频率保持恒定,因此风力发电系统分为恒速恒频发电机系统(CSCF 系统)和变速恒频发电机系统(VSCF 系统).恒速恒频发电机系统是指在风力发电过程中保持发电机的转速不变从而得到和电网频率一致的恒频电能.恒速恒频系统一般来说比较简单,所采用的发电机主要是同步发电机和鼠笼式感应发电机,前者运行于由电机极数和频率所决定的同步转速,后者则以稍高于同步转速的速度运行.变速恒频发电机系统是指在风力发电过程中发电机的转速可以随风速变化,而通过其他的控制方式来得到和电网频率一致的恒频电能. - 1 恒速恒频发电系统- 目前,单机容量为600~750 kW 的风电机组多采用恒速运行方式,这种机组控制简单,可靠性好,大多采用制造简单,并网容易、励磁功率可直接从电网中获得的笼型异步发电机[7~9]. -恒速风电机组主要有两种类型:定桨距失速型和变桨距风力机.定桨距失速型风力机利用风轮叶片翼型的气动失速特性来限制叶片吸收过大的风能,功率调节由风轮叶片来完成,对发电机的控制要求比较简单.这种风力机的叶片结构复杂,成型工艺难度较大.而变桨距风力机则是通过风轮叶片的变桨距调节机构控制风力机的输出功率.由于采用的是笼型异步发电机,无论是定桨距还是变桨距风力发电机,并网后发电机磁场旋转速度由电网频率所固定,异步发电机转子的转速变化范围很小,转差率一般为3%~5%,属于恒速恒频风力发电机. - 1.1 定桨距失速控制- 定桨距风力发电机组的主要特点是桨叶与轮毂固定连接,当风速变化时,桨叶的迎风角度固定不变.利用桨叶翼型本身的失速特性,在高于额定风速下,气流的功角增大到失速条件,使桨叶的表面产生紊流,效率降低,达到限制功率的目的.采用这种方式的风力发电系统控制调节简单可靠,但为了产生失速效应,导致叶片重,结构复杂,机组的整体效率较低,当风速达到一定值时必须停机. - 1.2 变桨距调节方式- 在目前应用较多的恒速恒频风力发电系统中,一般情况要维持风力机转速的稳定,这在风速处于正常范围之中时可以通过电气控制而保证,而在风速过大时,输出功率继续增大可能导致电气系统和机械系统不能承受,因此需要限制输出功率并保持输出功率恒定.这时就要通过调节叶片的桨距,改变气流对叶片攻角,从而改变风力发电机组获得的空气动力转矩. - 由于变桨距调节型风机在低风速时,可使桨叶保持良好的攻角,比失速调节型风机有更好的能量输出,因此比较适合于平均风速较低的地区安装.变桨距调节的另外一个优点是在风速超速时可以逐步调节桨距角,屏蔽部分风能,避免停机,增加风机发电量.对变桨距调节的一个要求是其对阵风的反应灵敏性. - 1.3 主动失速调节- 主动失速调节方式是前两种功率调节方式的组合,吸取了被动失速和变桨距调节的优点.系统中桨叶设计采用失速特性,系统调节采用变桨距调节,从而优化了机组功率的输出.系统遭受强风达到额定功率后,桨叶节距主动向失速方向调节,将功率调整在额定值以下,限制机组最大功率输出.随着风速的不断变化,桨叶仅需微调即可维持失速状态.另外调节桨叶还可实现气动刹车.这种系统的优点是既有失速特性,又可变桨距调节,提高了机组的运行效率,减弱了机械刹车对传动系统的冲击.系统控制容易,输出功率平稳,执行机构的功率相对较小[8~13]. -恒速恒频风力发电机的主要缺点有以下几点: -

船舶租赁安全管理协议 承租单位:浙江华东建设工程有限公司(以下简称甲方) 出租单位:(以下简称乙方) 甲方为了实施台州市灵江排挡潮扩排工程,承租乙方的船舶用以配合甲方的生产任务。为贯彻《安全生产法》和“安全第一,预防为主,综合治理”的方针,明确双方的安全生产责任,确保甲、乙双方的船舶、设备、人员的安全,根据国家和行业的相关规定,双方在签订船舶租赁合同(协议)的同时,签订本安全管理协议。 一、项目概况 1.项目名称:台州市灵江排挡潮扩排工程 2.项目地址:台州临海 3.项目范围: 4.项目内容:江上水上钻探 二、项目工期 自年月日起至年月日止,根据实际情况双方协商调整。 三、协议内容 1、甲乙双方必须认真贯彻国家、地方和行业、安全生产主管部门颁发的有关安全生产的方针、政策,严格执行有关劳动保护法规、条例、规定。 2、甲乙双方都应有安全管理组织体系,包括分管安全生产的领导,各级专职和兼职的安全人员,应有各工种的安全操作规程、特种作业人员的审证考核制度及各级安全生产岗位责任制、定期安全检查制度和安全教育制度等。 3、甲乙双方在签订合同(协议)前要认真勘察作业现场、航行水域,确定船舶租赁的范围,同时乙方应做到: (1) 乙方应提供给甲方租赁船舶、设备的有效证书,其内容:船舶登记证书及其船舶营运执照、船舶检验证书、船舶航行登记簿、船舶安全检查记录簿、船舶排污记录簿、设备租赁经营确认证书、设备检验合格证(技监局核发)等;进场前提供租赁船舶的有效保险单材料;

(2)乙方应在进场前,须向甲方提供船舶驾驶人员、设备操作人员的花名册和身份证、上岗证、特种作业操作证等证件,无证人员一律严禁使用;根据花名册提供所有人员的人身保险单材料。 4、甲乙双方的有关领导,必须认真对本单位职工进行安全生产制度及安全技术知识教育,增强法制观念,提高职工的安全生产思想意思和自我保护的能力,督促职工自觉遵守安全生产纪律、制度和法规。 5、船舶使用前,甲乙应对乙方的管理、作业人员进行安全生产进场教育,介绍有关安全生产管理制度、规定和要求,乙方应组织召开管理、作业人员安全生产教育会议,并通知甲方委托有关人员出席会议,介绍有关安全生产规章制度及要求;乙方必须检查、督促作业人员严格遵守、认真执行。 根据项目内容与特点,甲乙双方应做好安全技术交底,并有交底的书面材料,交底材料一式二份,由甲乙双方各执一份。 6、施工期间,乙方指派_ _同志负责工程项目的有关安全生产工作;甲方指派__同志负责联系、检查、督促乙方执行有关安全生产规定。甲乙双方应经常联系,相互协助检查和处理项目有关的安全、防火工作,共同预防事故发生。 7、乙方在作业期间必须严格执行和遵守甲方的安全生产的各项规定,接受甲方的督促、检查和指导。甲方有协助乙方搞好安全生产以及督促检查的义务,对于查出的隐患,乙方必须限期整改。对甲方违反安全生产规定,制度等情况,乙方有要求甲方整改的权利,甲方应该认真整改。 8、在生产操作过程中的个人防护用品,由各方自理,甲、乙双方都应督促作业人员自觉穿戴好防护用品。 9、乙方应对所在施工区域、作业环境、操作设施设备、工具用具等必须认真检查,发现隐患,立即停止施工,并落实整改后方准作业。一经作业,就表示乙方确认施工场所、作业环境、设施设备、工具用具等符合安全要求和处于安全状态、乙方对作业过程中由于上述不良因素而导致的事故后果负责,甲方不再承担任何责任。 10、甲乙双方的人员,对各类安全防护设施、安全标准和警告牌,不得擅自拆除、更动。如确实需要拆除更动的,必须经甲乙负责人和甲乙方指派的安全管理人员的同意,并采取必要、可靠的安全措施后方能拆除。任何一方人员,擅自

海上风电发展现状分析 一、世界海上风电发展现状 1、世界海上风电发展迅猛 [慧聪机械工业网] 2009年海上风电装机容量继续增长。截至2009年底,全球共有12个国家建立了海上风电场,其中10个位于欧洲,中国和日本有小规模的安装。 截至2009年底,世界海上风电累计装机容量达2110MW,较2008年增长48.5%,占到全球风电总装机容量的1.2%。2009年世界海上风电新增装机容量达689MW,同比增幅超过100%,新增装机容量最大的前五个国家分别为英国、丹麦、中国、德国和瑞典。

2、欧洲海上风电发展令世人瞩目 欧洲是海上风电发展最快的地区。根据欧洲风能协会(EWEA)的最新统计,2009年欧洲水域的八个海上风电场总计安装199台海上风力涡轮机并实现了并网,总容量为577MW,较2008年增幅超过50%。其中,最小装机容量为2.3MW(挪威的Hywind),最大装机容量为209MW(Horns Rev 2)。另外,欧盟15个成员国和其他欧洲国家,有超过100GW的海上风力发电项目正在规划中。 在2 0 0 9年装机并网的1 9 9台风机中,西门子风机(2.3MW和3.6MW两种机型)146台,维斯塔斯风机(3MW)37台,WinWind 风机(3MW)10台,Multibrid风机(5MW)6台。除此之外,Repower 风机(5MW)6台,但尚未并网。

3、海上风电机组技术特点 目前,海上风电机组基本上是根据海上风况和运行工况,对陆地机型进行改造,其结构也是由叶片、机舱、塔架和基础组成。海上风电机组的设计强调可靠性,注重提高风机的利用率、降低维修率。当今,海上风电机组呈现大型化的趋势,国外主要风机制造商生产的海上风电机组主要集中在2~5MW,风叶直径在72~126m。

远景能源 海上(潮间带)风电现场EHS管理规程 (文档编号) (版本号V1.0)

版本历史

1概述 (2) 2适用范围 (2) 3定义与术语 (2) 4执行标准和引用文件 (3) 5总则 (3) 6基本要求 (4) 7海上风电机组的安装 (7) 8海上风电机组的调试、检修、维护 (9) 9海上风电场的运行安全 (10) 10海上风电场的应急事件处理 (11) 11海上逃生 (12)

1概述 为规范近海,潮间带风电场安装、调试、维护过程中人员的生命安全健康,保护环境。结合我国海上风力发电生产实践现状制定本规程。 2适用范围 本标准规定了近海、潮间带风电场人员健康、环境、安全作业的基本要求,风电机组安装、调试、检修和维护的安全要求,以及风电机组应急处理、海上救生等相关情况的安全要求。 本标准适用于远景能源所有的近海,潮间带风场。 3定义与术语 下列术语和定义适用于本标准 3.1 海上风电场 指沿海多年平均大潮高潮线以下海域开发建设的风力发电场,包括在相应开发区域内无居民海岛上建设的风电场。海上风电场包括潮间带和潮下带滩涂风电场、近海风电场和深海风电场。 3.2 潮间带和潮下带滩涂风电场 在沿海多年平均大潮高潮线以下至理论最低潮位以下5m水深内海域的风电场。 3.3 近海风电场 理论最低潮位以下5m-50m水深海域的风电场。 3.4 深海风电场 大于理论最低潮位以下50m水深海域的风电场。 3.5 风电场输变电设备 风电场升压站电气设备、集电线路、风电机组升压变等。 3.6 下海作业 必须使用船只或拖拉机作为交通工具前往海上风电场现场开展的工作。 3.7 安全带 高处作业或登高人员发生坠落时,将坠落人员安全悬挂的安全带。 3.8 静态调试 新投运机组并网前进行的各项检查和测试。

摘要 这篇文章介绍了海上风电场建设概况、海上风力发电机组的组成、海上风电机组基础的形式、海上风电机组基础的设计。 关键词电力系统;海上风电场;海上风电机组基础;设计

Abstract This article describes the overview of offshore wind farm construction, the composition ofthe offshore wind turbine, offshore wind turbines based on the form-based design ofoffshore wind turbines. Key Words electric power system;Offshore wind farm; Offshore wind turbine foundation; design

1前言 1.1全球海上风电场建设概况 截止到2012年2月7日,全球海上风电场累计装机容量达到238,000MW,比上年增加了21%。 1.2 中国 截至2010年底,中国的风电累计装机容量达到44.7GW,首次居世界首位,亚洲的另外一个发展中大国印度也首次跻身风电累计装机容量世界前五位。 1.3海上风力发电机组通常分为以下三个主要部分: (1)塔头(风轮与机舱) (2)塔架 (3)基础(水下结构与地基) ?与场址条件密切相关的特定设计;?约占整个工程成本的20%-30%; ?对整机安全至关重要。支撑结构

2 海上风电机组基础的形式 2.1海上风电机组基础的形式 目前经常被讨论的基础形式主要涵盖参考海洋平台的固定式基础,和处于概念阶段的漂浮式基础,具体包括: ?单桩基础; ?重力式基础; ?吸力式基础; ?多桩基础; ?漂浮式基础 2.1.1单桩基础:(如图1所示) 采用直径3~5m 的大直径钢管桩,在沉好桩后,桩顶固定好过渡段,将塔架安装其上。单桩基础一般安装至海床下10-20m,深度取决于海床基类型。此种方式受海底地质条件和水深约束较大,需要防止海流对海床的冲刷,不适合于25m 以上的海域。 2.1.2重力式基础:(如图2所示) 图1 单桩基础示意图

海上风电施工控制重点 (一)自然条件是影响海上风电施工的重要因素 1、分析 海上风电场都是离岸施工,工作场地远离陆地,受海洋环境影响较大,可施工作业时间偏短,因此施工承包商要根据工程区域海洋环境特点,选择施工设备、确定施工窗口期、制定施工工艺和对策,才能更好地完成本工程。 2、控制措施 (1)要求施工承包商必须充分收集现场自然条件资料,包括风、浪、流、潮汐、气温、降雨、雾等的历年统计资料和实测资料; (2)根据统计和实测资料,分析影响施工的自然条件因素; (3)分析统计影响施工作业的时间和可施工的窗口期; (4)根据统计资料和现场施工计划,有针对性的布置现场自然条件观测仪器,以便对自然条件的现场变化进行预测和指导施工安排。 (5)施工承包商必须根据自然条件的可能变化,做出有针对的现场施工应变措施。 (二)质量方面 1、海上测量定位是本工程的重点、难点 (1)分析 在茫茫大海是进行工程建设,测量定位是决定项目成败的关键。海上风电对质量要求很高,例如风机基础施工中单桩结构对桩的垂直度要求很高;导管架结构对桩台位置、桩的垂直度与间距要求很高,不是一般的测量与控制措施能够实现。另外,导管架安装定位精度高,如何通过测量定位手段指导安装导管架难

度大,因此海上测量定位是本工程的重点、难点。 (2)控制措施 ①要求施工承包商制定测量施工专项方案;使用高精度测量仪器设备在投入工程使用前,必须进行精测试比对; ②借鉴其他海上风电场的成功施工经验,特制专用的打桩的定位及限制垂直度的定位及限定垂直度的辅助“定位架”,保证桩的垂直度及间距高精度要求; ③施工承包商必须有专用的打桩船,减少风浪对打桩的影响; ④选择风浪、水流、能见度较好的沉桩施工时间段,确保对打桩的影响最小。 2、钢管桩制作是本工程的重点、难点 (1)分析 风机基础是主要受力构件、是风机的重要支撑,承受着巨大的风机自重、风、波浪和水流等荷载,直接关系到风机的安全运行,是非常重要的结构基础,其出厂成品质量的好坏是本工程能够成功的关键点之一。风机基础采用的钢管桩直径较大,钢材材质为低合金高强度钢,钢材的卷制和焊接施工难度较大,焊接质量不易控制,因此钢管桩制作是本工程监理的重点、难点。 (2)控制措施 ①组织相关专家,联合监理单位、施工单位对拟选的钢管桩制作厂家进行考察,该工厂必须有可靠的工艺流程、质量控制措施以及具备相应的生产能力和出运条件。 ②钢管桩制作过程的质量监控,可通过项目监理派出专职监理工程师驻厂监理钢管桩制作全过程施工以及项目管理部派员定期抽查来实现; ③钢管桩制作使用的钢材、焊条、焊接工艺以及防腐处理等都必须处于受控

未来5年中国海上风电行业发展分析预测 2019-2020年全球海上风电行业发展分析 一、2019年 中投产业研究院发布的《2020-2024年中国海上风电行业深度调研及投资前景预测报告》中显示:2019年全球海上风电行业新增装机容量超过6GW,达到创纪录的6.1GW,占全年风电新增装机的10%。总容量达到29GW。2019年的安装量比2018年增加了35.5%,安装了4.5GW。 中国海上风电新增装机超过2.3GW,创下新纪录(根据国家能源局发布的数据,2019年中国海上风电新增并网装机为 1.98GW)。作为全球海上风电累计装机最大的国家,英国位居第二,2019年新增1.8GW。德国位列第三,2019年新增装机1.1GW。 图表2015-2019年全球各国海上风电新增装机容量 数据来源:GWEC 截至2019年底,全球海上风电累计装机为29.1GW,英国以9723MW的累计容量排名第一,德国7493MW位居第二,中国6838MW名列第三(根据国家能源局发布的数据,截至2019年底中国海上风电累计并网装机为5.93GW)。

图表2019年全球海上风电累计装机国家分布 数据来源:GWEC 二、2020年 WFO发布了“2020年上半年全球海上风电报告”,统计显示,尽管受新冠疫情影响,全球上半年海上风电投产容量仍然超过250万千瓦,达到了2.535GW。 上半年共有来自英国、中国、德国、葡萄牙、比利时和美国的10座风场的海上风机投产。投产风场的平均规模为254MW,而2019年全年投产的海上风场规模为325MW。 截止到2020年上半年,从累计数据来看,全球海风装机总量接近30GW(29.839GW),有总计157座海上风场投产,其中105座位于欧洲,50座分布在亚洲,2座来自美国。 2019-2020年中国海上风电行业发展分析 一、2019年 中投产业研究院发布的《2020-2024年中国海上风电行业深度调研及投资前景预测报告》中显示:2018年中国海上风电新增装机436台,新增装机容量达到165.5万千瓦,同比增长42.7%;累计装机容量达到444.5万千瓦。 《2019全球风能发展报告》显示,2019年中国海上风电新增装机容量为2395MW,海上风电累计装机容量为6838MW。2019年,全国海上风电新增并网装机198万千瓦,到2019年底,全国海上风电累计并网装机593万千瓦。 2019年中国海上风电新增总装机量约为2.4GW,其中已并网1.98GW。中国仍然是海上风电新装机容量的领跑者,2019年新增装机容量超过2.3GW,为2.395GW。在亚洲,中国台湾以120MW的新增装机容量排在第六位,日本以3MW的新增装机容量排在第八位。到2028年,中国的风力发电预计将达到约1000TWh,太阳能发电将超过700TWh。也就是说,到2028年,技术升级将推动中国风力发电增量达到700TWh。 图表2013-2019年中国海上风电新增和累计装机容量 单位:万千瓦

中国海上风力发电发展现状以及趋势【摘要】:由于具有资源丰富,对人们的生产生活影响小,以及不占用耕地等优势,近几年,我国的海上风力发电得到越来越多的关注。本文就我国近海风电的行业背景、海上风电市场区域分析、国家政策、社会效益、技术支持、发展瓶颈及建议、以及未来发展趋势等几个方面进行论述。 【关键词】:海上风力发电,发展现状,发展趋势,海上风电技术,社会效益,国家政策 前言: 相对于我国陆地风能,海上风能以其资源丰富,风速稳定,对环境负面影响小,装机容量大,且不占用耕地等优势得到了众多风电开发商的青睐。 经过连续多年的高速增长,我国风电装机容量已居世界第1位。目前我国正在大力推动海上风电发展,将从以陆上风电开发为主向陆上和海上风电全面开发转变,目标是成为海上风电大国。近年来,政府相关部门多次出台技术和管理政策,大力推动我国海上风电开发进程。 1、行业背景: 我国近海风能资源丰富。拥有18,000多公里长的大陆海岸线,可利用海域面积多达300多万平方公里,是世界上海上风能资源最丰富的国家之一。据统计,我国可开发利用的风能资源初步估算约为10亿kW,其中,海上可开发和利用的风能储量约7.5亿kW]。 目前我国已经成功并网发电的海上风电项目有:东海大桥海上风电示范项目,响水潮间带实验项目,龙源如东潮间带风电场项目,华能荣成海上风电项目等。另外有南港海上风电项目,江苏大丰200MW海上风电项目等44个项目拟建或者在建。这意味着我国的海上风电正在高速发展着。 另外,随着海上风能的高速发展,也带动着风能产业链的高速发展。我国现有海上风机供应厂家12家,其中以明阳风能以及金风科技最为卓越,在全球最佳海上风机评选中,分别位列第二和第十,这标志着我国风机制造业已经拥有国际先进水平。 据数据分析,未来的15年内,我国风电设备市场的总利润将高达1400亿至2100亿元。巨大的利润,也必将使得我国海上风机制造业得到更加快速的发展。

海上风电项目风险管理实例研究 我国海岸线长,风能资源丰富。海上风电年利用小时长,风速较陆上更高,风电场选址和机组布置选择空间大;接近沿海用电负荷中心,发展海上风能的潜力巨大。但在海上风电场建设施工和运营管理各个不同阶段,都存在众多的风险。其中以建设期的风险最为集中。因而很有必要进行系统的风险评估与风险管理,以实现将风险有效地控制在决策者预定的范围之内。 龙源如东潮间带海上风电场,位于江苏如东潮间带海域,安装了10多个厂家共100多台风电机组,总装机容量280MW。承担风电机组基础的结构选型、设计与施工,机组安装及运行维护试验任务。本风电场建设,对我国的海上风电开发起到很好的示范及引领作用。 《风能》微信:chinawindenergy 海上风电项目风险的分析与评估 对海上风电项目,采用风险因素分解法进行风险分析、专家调查法进行风险识别。风险因素分解法与专家调查法相结合,能提高海上风电项目风险识别的准确性和全面性。 一、海上风电项目风险的识别 (1)国家政策风险 风能属于可再生洁净能源,在能源短缺和气候变化的双重压力下,国家对风电发展给予积极支持和很多优惠政策,如增值税减半征收等。同时,风电项目及产业对于国家宏观政策也有较强的依赖性,能否顺利发展在一定程度上取决于国家政策的支持力度。海上风电项目普遍存在投资较大、回收期较长的特点,项目经营及效益可能受到宏观政策、经营环境变化的影响,如地区电网容量是否饱和,地区风电企业运行是否稳定,利率及汇率的变化等。 通过对南通及如东地区2014年-2020年的电网电力平衡表分析可见,南通地区电网缺口逐年增大,风电增加装机可满足就地消纳;如东地区风电电能无法在当地全部消纳,根据其外送能力可转入南通电网平衡,风电不存在限电情况。 图1如东地区电网结构图 (2)法律风险 法律风险根据风电开发、建设、运营三阶段分为三种。

2021年海上风力发电行业市场调研报告

目录 1.海上风力发电行业现状 (5) 1.1海上风力发电行业定义及产业链分析 (5) 1.2海上风力发电市场规模分析 (7) 2.海上风力发电行业前景趋势 (7) 2.1新能源市场需求巨大 (7) 2.2具备自然资源上的优势 (8) 2.3为东南沿海省份提供能源补充 (8) 2.4海上风电技术要求更高 (9) 2.5海上风电成本更高 (9) 2.6大叶片和轻质化是趋势 (10) 2.7多种技术路线同台竞技,不相上下 (10) 2.8海上风电整机制造大型化 (10) 2.9运维设备专业化是未来趋势 (11) 2.10延伸产业链 (11) 2.11行业协同整合成为趋势 (12) 2.12生态化建设进一步开放 (12) 2.13需求开拓 (13) 3.海上风力发电行业存在的问题 (13) 3.1技术难度大,投资成本高 (13) 3.2管理体系不完善 (14)

3.3产业发展缺乏市场拉动力 (14) 3.4行业服务无序化 (15) 3.5供应链整合度低 (15) 3.6基础工作薄弱 (15) 3.7产业结构调整进展缓慢 (15) 3.8供给不足,产业化程度较低 (16) 4.海上风力发电行业政策环境分析 (17) 4.1海上风力发电行业政策环境分析 (17) 4.2海上风力发电行业经济环境分析 (17) 4.3海上风力发电行业社会环境分析 (17) 4.4海上风力发电行业技术环境分析 (18) 5.海上风力发电行业竞争分析 (19) 5.1海上风力发电行业竞争分析 (19) 5.1.1对上游议价能力分析 (19) 5.1.2对下游议价能力分析 (19) 5.1.3潜在进入者分析 (20) 5.1.4替代品或替代服务分析 (20) 5.2中国海上风力发电行业品牌竞争格局分析 (21) 5.3中国海上风力发电行业竞争强度分析 (21) 6.海上风力发电产业投资分析 (22) 6.1中国海上风力发电技术投资趋势分析 (22)

相关主题
文本预览
相关文档 最新文档